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Rotation intervals and entropy on
attracting annular continua
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We show that if f is an annular homeomorphism admitting an attractor which
is an irreducible annular continua with two different rotation numbers, then the
entropy of f is positive. Further, the entropy is shown to be associated to a C 0 –
robust rotational horseshoe. On the other hand, we construct examples of annular
homeomorphisms with such attractors for which the rotation interval is uniformly
large but the entropy approaches zero as much as desired.

The developed techniques allow us to obtain similar results in the context of Birkhoff
attractors.
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1 Introduction

The study of annular dynamics goes back at least to Poincaré, who used suitable
(Poincaré) sections in the restricted three-body problem to reduce the initial dynamics
to an annulus. This study turned out to be crucial in understanding the problem of
stability (see Chenciner [12]) and gave rise to what nowadays is known as KAM theory;
see Broer [11].

In this theory the considered dynamics are volume-preserving, reflecting the conser-
vation laws of the particular mechanical system. On the other hand, when physical
problems involving nonconservative forces are analyzed, sometimes one is led to study
dissipative versions of the former class of systems (see for instance Abraham and
Stewart [1], Akhmet and Fen [2] and Thompson and Stewart [41]). In this setting
strange attractors emerge as natural objects related to the underlying dynamics (for
the definitions and basic examples see Milnor [34]). These were proved to exist by
Birkhoff [7], who actually showed that they appear associated to the wide class of
differentiable annular maps given by dissipative twist maps (see P Le Calvez [28]
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for a comprehensive exposition). They were also found numerically by R Shaw [39],
associated to the dynamics induced by differential equations such as the forced Van der
Pol systems; see also Thompson and Stewart [41]. Since then, annular attractors have
been studied both from the mathematical and physical point of view (see [28; 41]).

In order to study this kind of attractors, there are two important dynamical invariants:
the rotation set and the topological entropy. The former is given by averages of
displacements of points in the attractor, information that is expressed by an interval
of real numbers (see below). The latter is a quantity which measures how chaotic the
attractor is.1 It is then natural to try to understand whether these two invariants are
related and this motivates our article: we prove that a nontrivial rotation set implies
positive topological entropy, and, in contrast, provide examples of systems which have
uniformly large rotation intervals and arbitrary small topological entropy.

From the pure mathematical point of view, this problem can be thought of as a version
of the well-known Shub’s entropy conjecture [40] for maps in the homotopy class of the
identity: some geometric property of the dynamical system detectable from “large scale”
imposes some lower bound on its complexity (eg topological entropy). In this case we
focus on the rotation set of a dynamical system (see Franks [15]), motivated by previous
results providing a relationship between the shape and size of this set and the topological
entropy in some particular settings (degree one circle maps, torus homeomorphisms
isotopic to the identity). Searching for similar relationships in the setting of dissipative
annular homeomorphisms, we came into a rather surprising outcome: it is possible to
show positive entropy assuming that the rotation set is nontrivial, yet it is not possible
to obtain lower bounds depending on the shape and size of the rotation set.

The following subsection presents an account of the results in this paper to prepare for
the precise statements.

1.1 Presentation of the results

The rotation set is an invariant for dynamical systems which has been shown to contain
essential information of the dynamics when the underlying space has low dimension,
in particular in dimensions one and two.

Poincaré’s theory for orientation-preserving homeomorphisms on the circle is the
paradigmatic case: the rotation number turns out to be a number which provides a

1A weaker version is the study of existence of positive Lyapunov exponents — when the dynamics is
smooth — which is implied by positivity of topological entropy.
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complete description of the underlying dynamics (see for example Katok and Hasselblatt
[22, Chapter 11]). Still in dimension one, there is a natural generalization of the rotation
number for degree one endomorphisms of the circle, given by an interval (possibly
trivial) called the rotation set. From this set, crucial information of the dynamics can
be deduced, providing, for instance, criteria for the existence of periodic orbits with
certain relative displacements among other interesting properties (see Alsedà, Llibre,
Mañosas and Misiurewicz [3]).

In dimension two, the dynamics of certain surface homeomorphisms homotopic to
the identity is usually described by means of this topological invariant. In particular,
for the annulus A D S1 �R and the two-torus T2 D R2=Z2 it can be said that a
theory has been built supported on the rotation set. In these contexts, for a dynamics f
given by a homeomorphisms in the homotopy class of the identity and any compact,
forward-invariant set K , the rotation set associated to a lift F W R2!R2 is defined as

�K .F /D

�
lim

k

�1.F
nk .xk/�xk/

nk

ˇ̌̌
xk 2 �

�1.K/; nk %C1

�
�R;

�K .F /D

�
lim

k

Fnk .xk/�xk

nk

ˇ̌̌
xk 2 �

�1.K/; nk %C1

�
�R2;

respectively, where � denotes for both cases the quotient map and �1 is the projection
over the first coordinate in R2 . In the case K D T2 one writes �.F / instead �K .F /.

When K�A is also connected, the shape of this set is given by an (possibly degenerated)
interval in the annular case. For the toral case the foundational result by Misiurewicz
and Ziemian [35] shows that �.F / is a (possibly degenerated) compact and convex set.
From these facts, there exists a vast list of interesting results, where, assuming possible
geometries for the rotation set, descriptions of the underlying dynamics are obtained.
We refer the interested reader to Beguín [6] and Passeggi [37] for a more complete2

account of this theory.

The topological entropy measures how chaotic a prescribed dynamical system is. It
measures the rate of exponential growth of different orbits in a dynamical system when
observed at a given (arbitrarily small) scale. We shall not provide a formal definition of
topological entropy here (see eg Katok and Hasselblatt [22, Chapter 3]). The precise
formulation of this notion is rather technical, but it is unimportant to our paper as
our proof of positivity of topological entropy relies on obtaining certain dynamical

2These surveys are not completely updated as there has been some fast progress in recent years.
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configurations which are interesting by themselves (and which are known to imply
positive topological entropy).

When the dimension of the rotation set equals the dimension of the space where the
dynamics acts, there exists a relation between the geometry and arithmetic of the
rotation set and the topological entropy of the system. For instance, for degree one
maps on the circle, the topological entropy is bounded from below by an explicit (and
optimal) function of the extremal points of the rotation set as shown in Alsedà, Llibre,
Mañosas and Misiurewicz [3]. In the toral case, the quantity considered for such a
lower bound is less explicit and, as far as the authors are aware, not optimal. See
Kwapisz [27], Le Calvez and Tal [30] and Llibre and MacKay [31].

In the annulus AD S1�R, a large rotation set is not necessarily associated with large
entropy. Integrable twist maps, eg maps of the form .x;y/! .xC r.y/ .mod 1/;y/,
preserving a foliation by essential circles, have zero entropy but may have rotation sets
of arbitrarily large size. One can look at the rotation set restricted to certain invariant
regions of the annulus and hope to draw better conclusions.

For this purpose, the class of invariant sets which turns out to be interesting to observe
are the essential annular continua: a continuum K �A is called an essential annular
continuum if A nK has exactly two connected components and both of them are
unbounded (and hence K must disconnect both ends of A). These sets are natural
objects in surface dynamics, which model, for instance, the mentioned attractors,
and have been the focus of several works in the field. The topology of essential
annular continua can be very simple, as for the circle or the closed annulus itself, and
very complex, as in the case of indecomposable annular continua, for instance the
pseudocircle.

We mentioned above that for the case where K �A is a closed essential annulus, there
is no relation between the length of the rotation interval and the topological entropy. As
a next step, one can look at those annular continua containing no essential annulus. For
this class of continua, there exists an interesting example by Walker [42], in which an
invariant annular continua having empty interior K is constructed having zero entropy
and arbitrary large rotation set. Nevertheless, this continuum contains an essential circle
inside, that is, K is not irreducible. Irreducible annular continua (see Section 2.3),
often called circloids, with nontrivial rotation sets are known as interesting examples,
and it is possible to construct them so that they are robust in the C 0 topology (see
Boroński and Oprocha [10] and Le Calvez [28]). Further, as we mentioned before,
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this kind of dynamics occur as global attractors of dissipative twist maps given by the
so-called Birkhoff attractors [28], and are the canonical model for the strange attractors
of annular diffeomorphisms.

In this article we show the following complementary facts. For an orientation-preserving
homeomorphism f and an attracting invariant circloid C :

� We show in Theorem A that if C has a nontrivial rotation set, then some power
of f has a topological horseshoe with a nontrivial rotation set (see Section 1.2
for the definition of rotational horseshoe). Moreover, this situation is C 0 –robust,
that is, any homeomorphism C 0 –close to f has a rotational horseshoe.

� In Theorem B we show that there is no relation between the entropy and the
length of the rotation set, so the power of f needed in order to find the horseshoe
in Theorem A can be arbitrary large for a prescribed rotation set.

The first result answers positively (assuming the circloid is a global attractor) a folklore
problem about the relation between entropy and rotation intervals on circloids (see for
instance Koropecki [24] and Question 3 in Boroński and Oprocha [10]). Moreover,
the result shows that these kind of attractors are associated to C 0 –robust topological
horseshoes with rotational information (see the definition below). The second result is
quite surprising: one might expect that the size of the rotation set could impose a lower
bound on the topological entropy, as is the case for degree one maps of the circle.

The techniques in the proofs allow us to deal with the related class of Birkhoff attractors
(see the definition below).

Next, we give precise statement of the results.

1.2 Precise statements

In what follows we list the obtained results. Recall that A stands for the infinite annulus
AD S1 �R. We denote by HomeoC.A/ the set of homeomorphisms of the annulus
which preserve orientation.

Given a homeomorphism f W X!X and a partition by m> 1 elements R0; : : : ;Rm�1

of X , the itinerary function �W X!f0; : : : ;m�1gZ WD†m is defined by �.x/.j /D k

if and only if f j .x/ 2Rk for every j 2 Z.

We say that a compact invariant set ƒ�A of f 2HomeoC.A/ is a rotational horseshoe
if it admits a finite partition P D fR0; : : : ;Rm�1g with Ri open sets of ƒ such that:
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(1) The itinerary � defines a semiconjugacy between f jƒ and the full-shift � W †m!

†m , that is, � ıf D � ı � with � continuous and onto.

(2) For any lift F of f , there exist a positive constant � and vectors v0; : : : ; vm�1 2

Z� f0g such that



.Fn.x/�x/�

nX
iD0

v�.x/





< � for every x 2 ��1.ƒ/; n 2N:

Clearly, the existence of a rotational horseshoe for a map implies positive topological
entropy larger than log.m/� log.2/. Other interesting implications can be obtained,
for instance the realization3 of every rational rotation vector in �ƒ.F /.

Theorem A Assume that f 2HomeoC.A/ has a global attractor C given by a circloid
for which �C.F / is a nontrivial interval, where F is a lift of f . Then there exists n0

such that f n0 has a rotational horseshoe ƒ contained in C . Moreover, there exists
a C 0 –neighborhood N in HomeoC.A/ of f such that for every g 2 N we have a
rotational horseshoe ƒg for gn0 . In particular, htop.g/ > "0 for all g 2N and some
positive constant "0 .

This result and Theorem C below can be derived from a more general statement, given
by Theorem 3.14 in Section 3.5.

The complementary result is given by the following:

Theorem B Given " > 0 there exists a smooth diffeomorphism f 2 HomeoC.A/
admitting a global attractor C , which is a circloid, such that �C.F / � Œ0; 1� for some
lift F of f , while htop.f / < ".

As we mentioned above, this implies that for a prescribed positive length of the rotation
interval, the minimum positive integer n0 as in Theorem A (for which f n0 has a
rotational horseshoe) could be arbitrary large.

Recall that given a riemannian manifold M a diffeomorphism f W M !M is said
to be dissipative whenever there exists " > 0 such that jdet.Dfx/j < 1� " for every
x 2M. Further, recall that a diffeomorphism f W A! A is said to be a twist map
if for some lift F of f there is " > 0 such that DFx..0; 1// D .a.x/; b.x// with
" < a.x/ < 1

"
.

3A periodic point x realizes a rational rotation vector p
q (with p 2 Z2 and q 2 Z>0 ) if there is a lift

zx of x such that Fq.zx/D zxCp .
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Given a dissipative twist map of the annulus which maps an essential closed annulus
into its interior one can associate a global attractor ƒ, given by the intersection of the
iterates of the annulus. This is an annular continua with empty interior and contains a
unique circloid C , which is the so-called Birkhoff attractor (see [28]). Notice, however,
that this situation differs from the situation in Theorem A, as the Birkhoff attractor C
might not be an attractor in the usual sense. In other words, it could be the case that
ƒ¤ C . In this setting, we show the following result:

Theorem C Assume that f W A! A is an orientation-preserving diffeomorphism
which is dissipative, verifies the twist condition and f .A/ � A for some compact
essential annulus A � A. Further, assume that �C.F / is a nontrivial interval, where
C is the Birkhoff attractor of f . Then there exists n0 such that f n0 has a rotational
horseshoe ƒ. Moreover, there exists a C 0 –neighborhood N of f in HomeoC.A/
such that for every g 2 N we have a rotational horseshoe ƒg for gn0 . In particular,
htop.g/ > "0 for all g 2N and some positive constant "0 .

We finish adapting the proof of Theorem B to show that the topological entropy and the
lengths of rotation intervals are again not related for Birkhoff attractors. The difference
with Theorem B is that although in this case we have dissipation, we cannot ensure
that the global attracting set coincides with the unique invariant circloid it contains.

Theorem D For every " > 0 there exists a dissipative twist smooth diffeomorphisms
f W A!A having a Birkhoff attractor C with �C.F /� Œ0; 1� and htop.f jC/ < ".

Remark 1.1 There is a certain analogy between Birkhoff attractors and regions of
instability of conservative annulus homeomorphisms (see for example Franks and
Le Calvez [17]). Recall that an instability region R for an area-preserving annular
homeomorphism is an invariant compact connected set whose boundary is given by two
disjoint essential annular continua C� and CC , having a point with ˛–limit in C� and
!–limit in CC , and a point with !–limit in C� and ˛–limit in CC . In a recent article,
Le Calvez and F Tal [30] (see also Franks and Handel [16]) have shown that whenever
an instability region has a nontrivial interval as rotation set, then the map has positive
entropy. In the process of proving Theorems B and D we must construct an instability
region (of a smooth twist map) with rotation set containing Œ0; 1� and arbitrarily small
entropy, showing that in this context again, there is no relation between the size of the
rotation interval and the topological entropy of the map.

Geometry & Topology, Volume 22 (2018)



2152 Alejandro Passeggi, Rafael Potrie and Martín Sambarino

1.3 The techniques

We present here some key points in the proofs of Theorems A and B, avoiding techni-
calities.

The main idea behind the proof of Theorem A is to work in the universal cover and use
the fact that there are periodic points turning at different speeds in order to construct a
topological rectangle R which has an iterate intersecting itself and a translate of itself
as well in a Markovian way. Using this configuration and the results of Kennedy and
Yorke [23], we obtain a rotational horseshoe as defined above.

We are not able to control the number of iterates we need to obtain this intersection
(and it would be impossible in view of Theorem B) but we give some geometric criteria
that forces a lower bound. The construction of this rectangle requires entering into
properties of the topology of noncompactly generated continua (a generalization of
indecomposable continua). The two key points are the construction of “stable” sets
for periodic points, obtained by approaching the dynamics by hyperbolic dynamics
in the C 0 topology (this step works in quite large generality; see Theorem 3.3), and
then show that for periodic points having different rotation vectors, these “stable sets”
intersect both boundaries of a given annulus containing the circloid (Proposition 3.6).

In order to construct the examples of Theorem B, the idea is to work with C 1 perturba-
tions of a twist-map, which are based on the C 1 –connecting lemma for pseudoorbits
in the conservative setting, due to M C Arnaud, C Bonatti and S Crovisier [4]. The
use of this theorem in this case is not completely straightforward, as it is a result of
generic nature, and we need to take care of some nongeneric properties of our examples.
However, by an inspection of the proof in Crovisier [13], one can state a suitable
version in order to obtain our desired perturbations. We remark that similar kind of
perturbative techniques were already considered in Girard [18] for different purposes.
Using these perturbations one can construct a smooth diffeomorphism of the closed
annulus which is conservative and for which points in each of the boundary components
are homoclinically related (and have different rotation numbers). A further perturbation
allows us to destroy the annulus and an attracting circloid emerges, which still has the
same rotation set. As the derivative of the original map had small growth, the same
holds for the perturbations which ensures small entropy.

Theorem B shows that the usual arguments dealing with Nielsen–Thurston theory as
used for instance in Llibre and MacKay [31] and Kwapisz [27] do not work for proving
Theorem A. On the other hand, recently Le Calvez and Tal [30] developed a forcing
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technique based in Le Calvez’s foliation by Brouwer lines (see Le Calvez [29]), which
could provide an alternative proof of the positive entropy in Theorem A.

Let us end this introduction by mentioning that Crovisier, Kocsard, Koropecki and
Pujals have announced progress in the study of a particular family of diffeomorphisms
of the annulus which they call strongly dissipative. In this class, they are able, among
other things, to prove positive entropy if there are two rotation vectors and the maximal
invariant set is transitive. We notice that even if our proof does not give lower bounds
on the entropy in all generality (and it cannot give one because of Theorem B), it is
possible that for some families such a lower bound exists. In particular, we reemphasize
that our method does give a lower bound after some configuration is attained (see
Lemma 3.1).

1.4 Organization of the paper

The structure of the article is the following. We start with some preliminaries in
Section 2. From those, Sections 2.1 and 2.2 are used in the proof of Theorem B while
Sections 2.3 and 2.4 are used for the proof of Theorem A.

Theorems A and B have independent proofs and can be read in any order. Theorems A
and C are proved in Section 3, whereas Theorems B and D are proved in Section 4. In
Section 3.5 a generalization of Theorem A is obtained, from which Theorem C can be
derived.
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2 General preliminaries

We introduce in this section some preliminary well-known results which will be used
later. Some results hold in higher dimensions too but we will always restrict to the
surface case. The reader can safely skip this section and come back when results are
referred to.
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2.1 A remark on continuity of entropy in the C 1 topology

For a C 1 –surface map f W M !M there is a bound on the topological entropy given
by

htop.f /� 2 log sup
x2M

kDfxk D 2 log kDf k:

See for example [22, Corollary 3.2.10]. Since htop.f /D
1
n
htop.f

n/, we have

htop.f /�
2

n
log kDf n

k for all n 2N:

We deduce the following:

Proposition 2.1 Let f W M !M be a C 1 –surface map such that

lim
n!1

2

n
log kDf n

k D 0:

Then, for every " > 0 there exists a C 1 –neighborhood N of f such that if g 2N, one
has that htop.g/ < ".

Proof Fix " > 0 and choose n > 0 such that 2
n

log kDf nk < ". Choose a C 1 –
neighborhood N of f so that for every g 2 N one has 2

n
log kDgnk < ". By the

estimate above, it follows that for every g 2N one has that htop.g/ < ".

2.2 Connecting lemma for pseudoorbits

In this section we state a C 1 perturbation lemma for pseudoorbits in the conservative
setting in the spirit of the well-known pseudoorbit connecting lemma [8; 4].

Let M be a surface, � an area form in M and let Diff1
�.M / be the space of C 1

area-preserving diffeomorphisms, with the C 1 topology. We recall that given ", a
finite sequence .zk/

n
kD0

is an "–pseudoorbit (or "–chain) from p 2M to q 2M

when z0 D p , zn D q and

d.f .zk/; zkC1/ < " for all k D 0; : : : ; n� 1:

Consider a compact set K �M. For x;y 2M we write x aK y if for every " > 0

there exists a "–pseudoorbit .zk/
n
kD0

with z0 D x , zn D y and

f .zk/; zkC1 2K whenever f .zk/¤ zkC1:
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Denote by Diff1
�;per.M / the set of those f 2 Diff1

�.M / for which the set of periodic
points of period k is finite for all k 2N. Recall that the support of a perturbation g of
f is the set of points x 2M where g.x/¤ f .x/.

Theorem 2.2 (a version of the C 1 –connecting lemma for pseudoorbits [13]) Let
M be a compact surface possibly with boundary and f 2 Diff1

�;per.M /. Given a
neighborhood N � Diff1

� of f , there exists N DN.f;N / such that if

� K is a compact set disjoint from the boundary,

� U is an arbitrary small neighborhood of K[ � � � [f N�1.K/, and

� p; q 2M with p aK q ,

then there exist a perturbation g 2 N of f supported in U and n > 0 such that
gn.p/D q .

This result follows with the same proof as that of Theorem III.1 presented in [13] via
[13, Theorem III.4], where the choice of N appears. The difference is that in [13]
the statement requires the complete pseudoorbit to be contained in K while here we
demand only the jumps to be contained there. By an inspection of the proofs in [13]
one can see that the perturbations are only performed when the pseudoorbit has jumps,
so our statement holds with only minor modifications.

Remark 2.3 The diffeomorphism g can be considered to be as smooth as f since
it is obtained by composing a finite number of elementary perturbations with small
support, all of which are smooth (though their C r –size with r > 1 might be large).

2.3 Some properties of separating continua

We first recall some basic facts about continua and separation properties in surfaces.
We refer the reader to [5] for more information. After this, we will show a property of
irreducible annular continua that will be useful in the proof of Theorem A.

Throughout this article we consider the annulus ADS1�R and � W R2!A the usual
covering map. Further, we will fix a two-point compactification of A given by the
sphere S2 and two different points C1;�12 S2 .

Recall that a continuum is a compact nonempty connected metric space. We say a
continuum E�A is essential whenever there are two unbounded connected components
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in A nE . These connected components are denoted in general by UC and U� , where
the first one accumulates in C1 and the second one in �1, when considered in S2 .
Notice that there could be also several bounded connected components in Ec . Continua
that are not essential in A are called inessential, and can be characterized as those
continua contained in some topological disk in A.

An annular continuum K � A is an essential continuum such that Kc contains no
bounded connected components. Finally, an irreducible annular continuum or circloid
C is an annular continuum which does not contain properly any other annular continua.
As is well known, the topology of these continua can be very simple, as the one of the
circle, or extremely complicated as the case of the pseudocircle. It can be the case that
the circloid has nonempty interior; an example (and figure) can be found, for instance,
in [38].

When a circloid has empty interior it is called a cofrontier as it coincides with the
boundaries of UC and U� . A partial converse result holds: whenever an annular
continuum C verifies that @CD @UC\@U� , we have that C is a circloid (with possible
nonempty interior). See [20, Corollary 3.3].

There is an important class of continua, which is associated to a complicated topology,
defined as follows. An indecomposable continuum C is a continuum such that whenever
C1 and C2 are a pair of continua included in C with CDC1[C2 , we have that C1D C
or C2 D C . In particular, one can define the indecomposable cofrontier. This definition
is not suitable for circloids having nonempty interior, as one can observe that in this
case the continua can be always decomposed. Nevertheless, a suitable generalization of
indecomposability for this situation can be considered, given by the following (see [21]).

Let C �A be an essential annular continua. We say that C is compactly generated if
there exists a compact connected set yC in R2 such that �.yC/D C (such a continuum yC
is called a compact generator). In particular this definition can be applied to essential
circloids. The annular continua which are not compactly generated and indecomposable
annular continua have strong relationships even if their properties are slightly different
(see eg [21, Remarks 1.1 and 5.5]). For this paper, the notion of being noncompactly
generated is the most suitable.

In this article we deal only with noncompactly generated circloids, as compactly
generated ones do not support two rotation vectors for a given dynamics. This result
was originally proved for Birkhoff attractors in [28] and then generalized for cofrontiers
in [5]. Finally, it was extended in [21] to deal with circloids. Although in this last
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reference the proof is not explicitly given for the nonempty interior case, as is remarked
by the authors, the proof they give works exactly as it is written for circloids with
nonempty interior (see [21, Remark 5.5]).

Theorem 2.4 [5; 21] Let f 2 HomeoC.A/ having an invariant circloid C such
that �C.F / contains two different rotation vectors for some lift F of f . Then C is
noncompactly generated.

We establish next a proposition concerning the topology of noncompactly generated
circloids. Given a circloid C �A, x 2 C , zC D ��1.C/ and a lift yx of x we define4

yCyx D
[

k2N

c:c:yx
�
zC \��1

1 .Œ�k; k�/
�
:

For indecomposable cofrontiers, these are connected sets which lift the composants
(see [19]).

Proposition 2.5 Let C be a noncompactly generated circloid. Then yCyx is an un-
bounded connected set which does not contain any point yxC j with j 2 Z n f0g.

Proof By definition, yCyx is an increasing union of compact connected sets Ck D

c:c:yx
�
zC \��1

1
.Œ�k; k�/

�
containing yx . Moreover, as zC is connected and unbounded,

one can observe that every connected component of zC \��1
1
.Œ�k; k�/ must intersect

@��1
1
.Œ�k; k�/, so Ck meets @��1

1
.Œ�k; k�/ for every k 2N. This implies that yCyx is

unbounded and connected.

Assume for a contradiction we have yxC j 2 yCyx with j 2 Z n f0g Then we have that
both yx and yxCj belong to Ck for some k 2N. Thus, �.Ck/ is an annular continuum,
so it must coincide with C as it is a circloid. But this implies that C has a compact
generator.

We are interested in studying inessential continua intersecting a noncompactly generated
circloid C which do not meet one of the unbounded components in the complement of
the circloid. Fix a noncompactly generated circloid C and let K 6� C be an inessential
continuum in A, so that K \ U� D ∅. Everything we show for this situation also
holds for the complementary case where K\UC D∅.

In general for a continuum C �A we say that an injective curve 
 W Œ0;C1/!A lands
at z 2 C from C1 if 
 .t/ 2 C c for all t ¤ 0, 
 .0/D z , and limt!C1 
 .t/DC1

4We denote for any point x in a topological space X its connected component by c:c:x.X / .
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when viewed in S2 . When C is an essential continuum, the points z which admit a
curve landing on them are called accessible points, and it is easy to prove that they
form a dense set in C \ @UC . Thus, in our situation we can consider a curve 
 as
before such that:

� 
 \K D∅.5

� 
 lands at z 2 C .

� �1.y
 / is a bounded set for any lift y
 of 
 .

Let yA be a connected component of ��1.UC n 
 /. Our main goal is to show the
following property, which is important to prove Theorem A.

Proposition 2.6 It holds that ��1.K/\ yA is bounded.

Consider zCD��1.C/, zUCD��1.UC/ and zU�D��1.U�/. Fix a lift yK of K which
intersects yA. In order to prove Proposition 2.6, it is enough to show that only finitely
many horizontal integer translations of yA meets yK .

We prove the following lemma. Recall that z 2 C is the landing point of the curve 
 .

Lemma 2.7 Fix yz 2 ��1.z/. If yK intersects yCyzC k and yCyzC k 0 then jk � k 0j � 1.

Proof Assume otherwise. Without loss of generality we can assume that k 0 > k .

By the definition of yCyz we can consider continua ƒk �
yCyzC k containing yzC k and

intersecting yK , and ƒk0 � yCyzCk 0 containing yzCk 0 and intersecting yK . Furthermore,
as C is not compactly generated, Proposition 2.5 implies that none of them contain
yzC kC 1.

Let y
 be the lift of 
 containing yz . We have that ƒk \ .y
 C k/ D fyz C kg and
ƒk \ .y
 C j /D∅ for every j 2 Z n fkg, and the symmetric conditions hold for ƒk0 .
See Figure 1.

Let � D .y
 C k/[ƒk [ .y
 C k 0/[ƒk0 [ yK , which is a closed and connected set.
Further, consider a horizontal segment H � zUC whose endpoints are contained one in
y
 C k , the other one in y
 C k 0, and there are no other intersection between H and � .
Notice that this can be easily constructed since the vertical coordinate of points in zC
are uniformly bounded.

5We here abuse notation by identifying the curve with its image using the same name.
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yz C k yz C k C 1 yz C k 0

y
 C k y
 C k C 1 y
 C k 0

ƒk

ƒk0

yK

H

Figure 1: Proof of Lemma 2.7

As � \ zU� D ∅, we have that zU� is contained in one connected component of �c ,
which we call U� . Moreover, H must be contained in a different connected component
of �c , as any curve from H to �1 which does not intersect � would allow us to
separate � into two connected components, one containing y
 C k and another one
containing y
 C k 0. We denote the connected component of �c containing H in its
closure by UC .

Due to our assumption, we have that y
 C kC 1 intersects H. Therefore, yzC kC 1 is
in the interior of UC and therefore is not accumulated by zU� , which contradicts that
zC is the lift of a circloid.

Now we are ready to prove Proposition 2.6.

Proof of Proposition 2.6 Working with y
 as before, we can assume without loss of
generality that the closure of yA contains both y
 and y
 C 1.

We will show that if a connected component yK of ��1.K/ intersects yAC k and
yAC k 0 for some k ¤ k 0, then it must intersect either yCyz C k or yCyz C k C 1. Thus,

Lemma 2.7 implies that yK meets only finitely many lifts of yA (in fact, at most three
consecutive lifts), which implies that ��1.K/\ yA is bounded.
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Without loss of generality, we assume that yK intersects yA and yACk for some k ¤ 0,
and assume by contradiction that yK does not intersect yCyz nor yCyz C 1. Choose a
curve � contained in yACk landing at a point y 2 yK (recall that yK\
 D∅). Choose
also a point x 2 yK\ yA.

Recall that we denote by �1W R
2 ! R the projection onto the first coordinate. By

Proposition 2.5 one has that �1. yCyz/ is unbounded, and we assume without loss of
generality that it has no upper bound. Notice that �1 is bounded both on y
 and �.

Choose a very large r > 0 and consider a vertical line vr D �
�1
1
.r/ which intersects

yCyz and yCyzC 1 in points wr
0

and wr
1

, respectively. Choose a nonseparating continuum
ƒr

0
in yCyz containing yz and wr

0
and similarly consider ƒr

1
� yCyzC 1 containing yzC 1

and wr
1

, which can be done due to the arguments we did before. Define Ir � vr as the
segment joining wr

0
with wr

1
.

Let �r D y
[ƒ
r
0
[.y
C1/[ƒr

1
[Ir . Then, by the same argument we did before, one can

consider UC.r/ as the connected component of �c
r containing an horizontal segment

H joining y
 and y
 C1. One can observe that, by construction,
S

r>0 UC.r/� yA, as
every point u in yA can be joined to a point in H, with a compact arc J, so that for
ru large enough we have that J \ pr�1

1
.Œru;C1// D ∅, so J � UC.r/ for r � ru .

Thus, for every r big enough, we find a point of yK\ yA in UC.r/. Therefore, as yK is
compact and connected, there exists r0 2 R such that yK � UC.r/ for every r > r0 .
Notice that we do not claim that UC.r/� yA, which is false in general.

On the other hand, as � cannot intersect H, one can see that � meets UC.r/c for
all r > r0 . Thus, if one considers r 0 > r0 such that � \ vr 0 D ∅ (which can be
done as �1.�/ is bounded), we have that UC.r 0/ \ � D ∅, otherwise � intersects
�r 0 n vr 0 , which is impossible by construction. This is a contradiction as �\ yK ¤∅
and yK � UC.r 0/.

2.4 Prime end compactification

Consider a homeomorphism f W A!A which we can compactify to a homeomorphism
yf W S2! S2 by adding two fixed points at infinity. In our context, there is a global

attractor C in A which is a circloid; this implies that the points at infinity are sources
for yf and the boundary of their basins coincide with @C .

Let UC and U� be the connected components of AnC (which are unbounded). Denote
by zU˙ their lifts to the universal cover R2 which are connected sets. Let F W R2!R2
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be a lift of f to R2 ; it follows that F ıT D T ıF, where T is any integer translation
in the first coordinate.

We denote by yU˙ D U˙[f˙1g the corresponding components in S2 . These are f –
and yf –invariant, respectively, simply connected open sets and the dynamics coincides
with that of the basin of a source in each yU˙ . We introduce here some very basic facts
from prime end theory used in this paper and refer to the reader to [32; 25; 33] or [24,
Section 2.2] for more details and references.

The prime end compactification of yU˙ is a closed topological disk U˙ŠD2 obtained
as a disjoint union of yUC and a circle with an appropriate topology (see [32]).

If one lifts the inclusion U˙ ,! yU˙ n f˙1g one obtains a homeomorphism

p˙W zU˙!H2;

and by considering yF˙ , the homeomorphism of H2 induced by F on zU˙ (ie such that
p˙ ıF D yF˙ ıp˙ ), one sees that yF˙ extends to a homeomorphism of the closure
clŒH2� in R2 and still commutes with horizontal integer translations. This allows one
to compute the upper and lower prime end rotation numbers of C (see [24] for more
details). However, we shall not use this, but just use the following fact about yF˙ and
its relation with F :

� The map yF˙ restricted to @H2ŠR is the lift of a circle homeomorphism where
the horizontal integer translations act as deck transformations.

We finish with a last topological property for the prime end compactification. Let U be
a topological disk bounded by a continuum C contained in some surface. For any curve

 W Œ0; 1�! U [ C , with 
 .t/ 2 C if and only if t D 0, we have that the corresponding
curve �W .0; 1�!D of 
 restricted to .0; 1� admits a unique continuous extension to a
curve x�W Œ0; 1�!D , with x�.0/ 2 @D .

3 Attracting circloids and entropy

In this section we give a proof of Theorem A, stating that an attracting circloid with
two different rotation numbers for a map f has a rotational horseshoe associated to
some power f n0 . We first present a proof of Theorem A. Then, in Section 3.5 we show
how the hypothesis in Theorem A can be relaxed to obtain a more general statement;
see Theorem 3.14, from which we can obtain Theorem C.

To fix the context, we introduce the following hypothesis:
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(GA) f W A!A is an orientation-preserving homeomorphism of the infinite annulus
A D S1 �R such that it has a global attractor C which is a circloid and the
rotation set of f restricted to C is a nontrivial interval.

Theorem A states that if f verifies 3 then there is a rotational horseshoe for some
power f n0 . Notice that by Theorem 2.4, property 3 implies that the circloid C must
be noncompactly generated.

3.1 Some previous definitions

Choose A � A any annular neighborhood of C (ie homeomorphic to S1 � Œ�1; 1�,
containing C in its interior) such that f .A/�A. Since C is a global attractor, we have
C D

T
n2N f

n.A/.

Denote by UC and U� the connected components of A n C whose projections into the
second coordinate is not bounded from above and below, respectively, and by @CA
and @�A the connected components of @A, contained in UC and U� , respectively.

Given any essential annulus A in A, with boundary components @�A and @CA, we
say that a continuum D joins the boundaries of A if it verifies the following conditions:

(1) D �A and it intersects both boundaries, ie D\ @CA¤∅ and D\ @�A¤∅.

(2) D is inessential (ie it is contained in a topological disk).

Let D0 and D1 be two disjoint continua in A joining the boundaries. It follows that
An .D0[D1/ has at least one connected component R which contains a curve joining
the boundaries of A. Such a component must verify that its closure intersects both D0

and D1 and it will be called a rectangle adapted to D0 and D1 . It is easy to show
that it is an open connected subset of A whose boundary (relative to A) is contained
in D0[D1 .

Recall that we have considered � W R�R! AD S1 �R, the canonical projection,
where S1 is identified with R=Z. Given an inessential continuum D �A which joins
the boundaries of A, one considers yD to be a connected component6 of ��1.D/ in
yAD ��1.A/. One defines the right of yD to be the (unique) unbounded component

of yA n yD accumulating in C1 in the first coordinate. One defines the left of yD
symmetrically.

6Notice that since A is essential, one has that ��1.A/ is connected.
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Notice that if D0 and D1 are two disjoint continua joining the boundaries of A, and
R is a rectangle adapted to D0 and D1 , then, if yR is a connected component of the
lift of R, there is a unique connected component of the lift of D0 (resp. D1 ) such that
it intersects the closure of yR. Call these components by yD0 and yD1 .

3.2 A criteria for producing rotational horseshoes

We start with a lemma which guarantees the existence of a rotational horseshoes. Then
we prove that under the hypothesis of Theorem A, we can apply this result. The proof
of the lemma is given by the well-known construction of the Smale’s horseshoe, which
is generalized in [23].

Lemma 3.1 Let A � A be an essential annulus as before, and hW A ! A be a
continuous map with h.A/� int.A/. Denote by zh the lift of h to the universal cover.
Assume we have two disjoint continua D0 and D1 joining the boundaries of A such
that for some rectangle R adapted to D0 and D1 and some connected component yR
of the lift of R, there is a positive integer j with the following properties:

(1) If yD0 and yD1 denote the connected components of the lift of D0 and D1

intersecting the closure of yR we have that zh. yD0/ is at the left of the closure
of yR.

(2) zh. yD1/ is at the right of the closure of yRC j .

Then there exists a C 0 –neighborhood N of h in HomeoC.A/ such that every g 2N
has a rotational horseshoe such that the associated partition has at least j C 1 symbols.

Proof The proof is given by a simple inspection of [23]. The hypothesis we have for
D0 and D1 implies that an adapted rectangle R is under the horseshoe hypothesis
(together with A and the map h), so applying Theorem 1 in the quoted article, we
already have the existence of a compact h–invariant set ƒ � A for which the first
condition of the definition of rotational horseshoe is verified (see Figure 2). As noticed
by the authors, the semiconjugacy is constructed by using a partition S0; : : : ;Sm�1

with m� 1 � j by a finite pairwise disjoint compact sets (which relative to ƒ are
open). Moreover, the construction in our particular case implies that this partition can
be considered such that

(1) for every i D 0; : : : ;m� 1 we have a lift ySi of Si in yR,

(2) zh. ySi/� yRCvi for some integer vector vi D .li ; 0/, where l0� 0 and lm�1> j .
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As the semiconjugacy is constructed by the itinerary function � associated to the sets
S0; : : : ;Sm�1 , one can deduce by a simple induction that given any lift yx2��1.ƒ/\ yR

of x , we have 



.zhn.yx/� yx/�

n�1X
iD0

v�.x/.i/





< �;
where � is the diameter of yR. This implies that ƒ is a rotational horseshoe.

In order to prove Theorem A, the crucial idea is the following: using the fact that the
dynamics is given on a circloid, and that it is an attractor, we will construct a sort
of stable manifolds for some periodic points p0 and p1 , given by two continua C0

and C1 , such that they have to intersects both components UC and U� . These continua
will play the role of D0 and D1 in the hypothesis of the last lemma, and this will
provide the rotational horseshoe.

We see in the next lemma how the existence of the continua as above allows us to use
the previous lemma.

Lemma 3.2 Let f W A!A verify 3 and assume that there exist two periodic points
p0 and p1 with different rotation numbers and two contractible continua C0 and C1

containing p0 and p1 , respectively, such that, for i D 0; 1:

(1) f ni .Ci/� Ci , where ni is the period of pi .

(2) Ci is inessential and intersects both boundaries of A.

Then f n0 has a rotational horseshoe for some n0 2N. Moreover, there exists a C 0 –
neighborhood N of f in HomeoC.A/ such that for any h 2N we have that hn0 has
a topological horseshoe.

We remark that we are not assuming that the sets Ci are contained in A, so we cannot
consider them as joining boundary components of A.

Proof Consider an iterate g of f and a lift G to the universal cover zA such that
both p0 and p1 are fixed and their lifts zp0 and zp1 verify G. zp0/ D zp0 � j and
G. zp1/D zp1C l for some positive integers j and l (ie p0 rotates negatively and p1

rotates positively).

As Ci and A are forward-invariant by f ni (and therefore also for g ) we have for
i D 0; 1 that g.Ci \A/ � Ci \A. Further, as Ci intersects both boundaries of A

Geometry & Topology, Volume 22 (2018)



Rotation intervals and entropy on attracting annular continua 2165

and pi are contained in the interior of A, there exist some continua Di � Ci in A
for i D 0; 1, joining the boundary components of A; see Figure 2 (for a proof of this
folklore topological fact, see for instance Theorem 14.3 in [36]).

We pick now some rectangle R adapted to D0 and D1 , and yR a connected component
of the lift of R. Let yC0 and yC1 be the lifts of C0 and C1 , containing yD0 and yD1 as
defined above. It is easy to see that the sets C0 and C1 must be disjoint, as they are
both forward-invariant for g and have different rotation vectors.

As both yC0 and yC1 have bounded diameter, and rotate negatively and positively, we
must have for some sufficiently large n 2N that

� Gn. yD0/ is at the left yR,

� Gn. yD1/ is at the right of yRC 1.

Lemma 3.1 now implies that gn has a rotational horseshoe, hence so does a power
of f . Furthermore, as the configuration above remains for small perturbations of g ,
we obtain the same result in a C 0 –neighborhood of f .

C1

D0

C0

D1 R

R RC 1

C1C k

C0� j

Gn.R/

Figure 2: The rotational horseshoe

3.3 A first reduction

The next result, whose importance we believe transcends the context, will be proved in
the next subsection. We will use it here in order to complete the proof of Theorem A.
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Theorem 3.3 Let f W A!A verifies 3 and let p 2 @C be a periodic point. Then there
exist an inessential continuum Cp containing p such that f np .Cp/� Cp , where np is
the period of p and Cp \ @A¤∅.

Notice that the continuum Cp might not intersect a priori both boundary components
of A. Moreover, although Cp meets Cc , it may happens that Cp intersects only
one of the unbounded connected components UC and U� , that is, Cp � .U�/c or
Cp � .UC/c .

We now proceed with the proof of Theorem A assuming Theorem 3.3. By Lemma 3.2
it is enough to find two periodic points p0 and p1 with different rotation vectors for
which Cp0

and Cp1
intersect both boundary components of A, which is equivalent to

the following condition since C is a global attractor:

(1) Cp0
\UC¤∅ and Cp0

\U�¤∅; Cp1
\UC¤∅ and Cp1

\U�¤∅:

We conclude the section by proving the existence of periodic points p0 and p1 such
that (1) holds.

Let us state the following realization theorem of [26], which improves previous results
[24; 5]. Here is one of the essential points where we use that C is irreducible (see [42]).
Notice that if one wishes to use [5] instead of [26], similar results hold but one needs
to add the assumption that the circloid C in Theorem A has empty interior.

Theorem 3.4 [26, Theorem G] Let hW A!A be a homeomorphism of the annulus
preserving a circloid C such that �C.H / is nonsingular for any lift H of h. Then
every rational point in the rotation set �C.H / is realized by a periodic orbit in @C .

The idea is to use points which are in @C but are not accessible from UC and U� such
that a connected set which intersects the boundary of A will necessarily intersect both
boundaries. Recall that a point x 2 @C is accessible if there exists a continuous arc

 W Œ0; 1�!A such that 
 .Œ0; 1//�A n C and 
 .1/D x .

Here we shall use a weaker form of accessibility which, moreover, involves the dynamics
of f in the annulus. We will say that a periodic point p 2 C is dynamically continuum
accessible from above (resp. dynamically continuum accessible from below) if there
exist a continuum Cp such that:

� p 2 Cp .

� Cp n C is nonempty and contained in UC (resp. U� ).
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� Cp is inessential in A.

� f np .Cp/� Cp for np the period of p .

Using the prime end theory and the result stated in Section 2.3, one can show the
following result:

Proposition 3.5 Let p and q in @C be periodic points of f which are both dynam-
ically continuum accessible from above (resp. from below). Then, for any lift of f
to R2 , both p and q have the same rotation number.

Proof Assume by contradiction that p and q have different rotation numbers for
some lift. Considering an iterate f j and a suitable lift G of f j to R2 , we can assume
that G. zp/D zp and G.zq/D zqC k with k ¤ 0.

Let Cp and Cq be given by the fact that p and q are continuum accessible from above.
By definition, we have that they are disjoint and inessential. Thus, we can consider a
proper arc 
 W Œ0;C1/! UC[ C such that 
 .0/D z 2 C and 
 .t/ 2 .C [Cp [Cq/

c

for every t 2 .0;C1/ and limt!C1 
 .t/DC1 (see Section 2.3).

Consider zUC D ��1.UC/, y
 a lift of 
 and yA the lift of ��1.UC n 
 / containing
y
 and y
 C 1 in its boundary. Further, consider the connected components yCp and
yCq of ��1.Cp/ and ��1.Cq/ intersecting yA, respectively, with yKp D

yCp \ zUC and
yKq D

yCq \ zUC . We have that G. yKp/� yKp and G. yKq/� yKqC k .

As yCp and yA are in the situation of Proposition 2.6, we have that yCp intersects only
finitely many of the sets yAC j for j 2 Z, and the same holds for yCq .

Consider the map H W H2!H2 induced by G and the prime end compactification
of UC as stated in Section 2.4, and let � W zUC!H2 be the induced conjugacy between
GjzUC and yH jH2 . As 
 lands at an accessible point z , we have that �D �.y
 n y
 .0//
can be extended continuously in t D 0, so that �.0/ 2 @H2 with respect to the usual
topology of R2 (see Section 2.4).

Then we have that the sets Kp D clŒ�. yKp/� and Kq D clŒ�. yKq/� are contained in a
region of clŒH2� between the extended curves �� j0 and �C j1 for some j0; j1 2N.
Furthermore, if yH is the continuous extension of H to clŒH2�, we can assume without
loss of generality that yH n.Kp/�Kp and yH n.Kq/�KqC nk for all n 2N. Let h

be the restriction of yH to @H2 , which is known to lift an orientation-preserving circle
homeomorphism as stated in Section 2.4.
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Thus we obtain two compact sets Lp D Kp \ @H2 and Lq D Kq \ @H2 such that
hn.Lp/ � Lp and gn.Lq/ � Lq C kn for all n 2N, which is impossible, as h lifts
an orientation-preserving circle homeomorphism.

We are now ready to complete the proof of Theorem A by showing the following
proposition:

Proposition 3.6 There exist two periodic points p0 and p1 in @C with different
rotation numbers such that Cp0

and Cp1
satisfy (1).

Proof Pick four rational points r0; r1; r2; r3 2 �C.F / with different denominators in
their irreducible form (in particular, different from each other). Using Theorem 3.4 we
know that all four are realized by periodic points pi in @C , and using Proposition 3.5
we know that at least two of them, say p0 and p1 , are not dynamically continuum
accessible.

Consider the compact connected sets Cp0
and Cp1

given by Theorem 3.3; since p0 and
p1 are not continuum accessible, it follows directly that (1) is verified, as desired.

3.4 Proof of Theorem 3.3

Let @CA and @�A be the two boundaries of A. Let FC
0

be a foliation by essential
simple closed curves in the upper connected component of Anf .A/ such that they
coincide in the boundary with @CA and f .@CA/ and let

FC D
[
n�0

f n.FC
0
/:

In a symmetric way we define F� . Notice that any annulus A1 whose boundary is
given by a curve of FC and curve of F� satisfies f .A1/� int.A1/.

From now on we fix a periodic point p 2 @C as in Theorem 3.3. Replacing f by an
iterate and choosing an appropriate lift F, we may assume that p is fixed and has zero
rotation vector. Let q 2 @C be another periodic point with different rotational speed.
We may assume without loss of generality that q is fixed and rotates one.

Lemma 3.7 There exist � > 0, an annulus A1 bounded by leaf of FC and a leaf of
F� and an arc Iq � A1 containing q and joining both boundaries of A1 such that,
if g is �–C 0 –close to f and G is the lift �–close to F , we have that G.yIq/ is to
the right of yIq and G2.yIq/ is to the right of yIqC 1 in ��1.A1/, where yIq denotes a
connected component of the lift of Iq .
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Proof Let � > 0 be such that B.p; �/ \ B.q; �/ D ∅. Let ı be small enough
that f .B.q; ı// and f 2.B.q; ı// are contained in B

�
q; 1

2
�
�

(recall f .q/ D q ). Let
B D B.q; ı/.

One can choose unique leaves FC
ı

and F�
ı

of FC and F� which intersect @B , and
do not intersect B .

We may assume (reducing ı if necessary) that both leaves also intersect B.p; �/ and
consider the annulus A1 determined by FC

ı
and F�

ı
. Denote by K the connected

component of B.q; �/\A1 that contains B . Notice that K is inessential in A1 since
it is disjoint from B.p; �/ (and there is an arc in B.p; �/ joining the two boundaries
of A1/.

Let � > 0 be small enough that if g is �–C 0 –close to f in A then:

� g.A1/� int.A1/.

� g.B.q; ı// and g2.B.q; ı// are contained in B.q; �/.

� g.B.q; ı//\B.q; ı/¤∅ and g2.B.q; ı//\B.q; ı/¤∅.

Let Iq be an arc inside B.q; ı/ joining the two boundaries of A1 . Notice that g.Iq/

and g2.Iq/ are both contained in K . Now, fix a lift yq of q and a lift yIq of Iq

containing yq and let yK be the connected component of ��1.K/ that contains yIq . Let
G be the lift of g which is �–close to the lift F of f . Since F.yq/D yqC 1, we have
that F.yIq/� yKC1 and F2.yIq/� yKC2, and the same holds for G , which completes
the proof.

Remark 3.8 By continuity, one can assume without loss of generality that there exists
a neighborhood N.Iq/ of Iq in the annulus A1 such that if N.yIq/ denotes a connected
component of the lift, then G.N.yIq// is to the right of yIq and G2.N.yIq// is to the
right of yIqC 1.

From now on we fix the annulus A1 given by the previous lemma. The idea will be to
approach f by homeomorphisms presenting a stable manifold of p escaping A1 and
not intersecting Iq , so that we will control its convergence in the limit.

Lemma 3.9 There exists a sequence of homeomorphisms fn converging to f in the
C 0 topology such that:

(1) p is a hyperbolic fixed point of fn .

(2) W s.p; fn/ intersects the boundary of A1 .
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Proof Let �n be a positive sequence converging to zero. We may assume that
B.p; 2�n/�A1 for every n. Let FC�n

and F��n
be the unique leaves of the foliations

FC and F� which intersect @B.p; �n/, and do not intersect B.p; �n/. Let A�n
be

the annulus determined by those leaves. Now consider gn such that gn D f outside
B
�
p; 1

2
�n

�
and p is a hyperbolic fixed point of gn . The C 0 distance between gn and

f is bounded by �n .

Fix a fundamental domain Ds of W s.p;gn/ inside B
�
p; 1

2
�n

�
and join an interior

point z of Ds with a point y in FC�n
\ @B.p; �n/ by a polygonal arc inside B.p; �n/;

see Figure 3. Let U be a neighborhood of this arc which does not intersect the forward
iterates gm

n .D
s/ for m� 1 and such that U is contained in the interior of g�1

n .A�n
/,

which is equal to f �1.A�n
/. We may assume that U � B.p; 2�n/ as well. See

Figure 3.

Consider 'W A! A such that ' � id outside U and '.y/ D z . The C 0 distance
between ' and the identity is bounded by 2�n . Let fn D gn ı ' . We have that
y 2W s.p; fn/ and f �1

n .y/ belongs to the boundary of f �1.A�n
/. Since gn D fn

outside U and gn D f outside B
�
p; 1

2
�n

�
, iterating backwards we eventually have

that W s.p; fn/ intersects the boundary of A1 .

Finally, it is clear that the C 0 distance from fn to f goes to zero with �n , as desired.

Denote by W s
1
.p; fn/ the connected component of W s.p; fn/\A1 that contains p .

Remark 3.10 The set W s
1
.p; fn/ verifies that fn.W

s
1
.p; fn//�W s

1
.p; fn/. Indeed,

fn.A1/�A1 and W s.p; fn/ is also fn –invariant.

We now use Lemma 3.7 to control the diameter of W s
1
.p; fn/ in order to be able to

consider a limit continuum through p which will be forward-invariant by f .

Lemma 3.11 Let A1 and Iq be as in Lemma 3.7. Then there is a neighborhood
N.Iq/ of Iq such that W s

1
.p; fn/\N.Iq/D∅ for every large enough n.

Proof In the lift zA1 of A1 , we choose yp in the fundamental domain D determined
by a connected component yIq of the lift of Iq and yIq � 1.

Consider a lift �W s
1
. yp; fn/ of W s

1
.p; fn/ through yp . Let W be the connected compo-

nent of �W s
1
. yp; fn/\D that contains yp and let Fn be a lift of fn close to the lift F

of f . Notice that Fn.W /�W . We may assume that fn is �–close to f , where � is
as in Lemma 3.7.
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p

B.p; �n/

U
FC�n

F��n

f �1.FC�n/

f �1.F��n/

W s.p;gn/

Figure 3: Construction of small perturbations having fixed hyperbolic saddles
with stable manifolds accumulating at �1 or C1

Choose N.Iq/ as in Remark 3.8. Assume that �W s
1
. yp; fn/ \ N.yIq/ ¤ ∅. Then

W \ N.yIq/ ¤ ∅. But then Fn.W / � W � D. Since Fn.N.yIq// is to the right
of yIq , Lemma 3.7 implies that Fn.W / is not contained in D, a contradiction. If�W s

1
. yp; fn/\ .yIq � 1/¤∅, we arrive at a contradiction as well, since then F2

n .W / is
contained in W and contains a point in F2

n .
yIq � 1/ which is to the right of yIq and so

it must intersect yIq .

End of the proof of Theorem 3.3 We say that a set S �R2 has bounded horizontal
diameter if its projection to the first coordinate is bounded. In this case, let us write
diamH .S/D diam.�1.S//. We consider the lift yA of A. Let A1 be as in Lemma 3.7
and let yA1 be its lift inside yA.

In this context, we have that the fundamental domain in yA1 determined by yIq � 1 and
yIq has bounded horizontal diameter, say by a> 0. This implies, by Lemma 3.11, that
diamH . �W s

1
.pn; fn// is also bounded by a.

Let m be the first positive integer such that f m.A/�A1 . Notice that f m
n .A/�A1

by construction. Let F be the lift of f and Fn the lift of fn . Then F�m
n . �W s

1
.p; fn//

has bounded diameter in R2 . Let yCn D F�m
n . �W s

1
.p; fn//. We have that:

(1) yCn is a continuum containing yp .

(2) yCn is forward-invariant by Fn (see Remark 3.10).
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(3) yCn intersects the boundary of yA.

(4) yCn has uniformly bounded diameter.

(5) Fn � F.

Then, by taking the Hausdorff limit yCp of . yCn/n2N , we have a continuum which
is forward-invariant under F and contains yp . Moreover, it intersects @ yA, and its
projection into A must be inessential, since otherwise it would intersect Iq , which is
not possible. Taking Cp D �. yCp/, we are done.

3.5 General statement for Theorem A

In this section we comment on the proof of Theorem A to see that weaker hypotheses
are enough to obtain the existence of rotational horseshoes. We state a general version
of the result, from which Theorem C can be obtained.

Consider an f 2HomeoC.A/ such that f .A/� int.A/ for some compact and essential
annulus A. In this situation an attractor KA D

T
n2N f

n.A/ exists and is an essential
annular continuum.

The proof of Theorem 3.3 extends to the following with the same proof.

Theorem 3.12 Assume we are in the situation above, and p; q 2KA are two periodic
points of f such that

� p and q have different rotation vectors for any lift F of f ,

� p and q are both an accumulation point of
S

n2Nf
n.@CA/ and

S
n2Nf

n.@�A/.

Then there exists an inessential continuum Cp containing p such that f k.Cp/� Cp ,
where k is the period of p and Cp \ @A¤∅. A similar statement holds for q .

The following is an easy application of Zorn’s lemma and Theorem 2.4.

Lemma 3.13 Let f 2 HomeoC.A/ and a closed essential annulus A such that
f .A/� int.A/. Further, assume that there are at least four periodic points p1 , p2 , p3

and p4 in A having pairwise different rotation vectors for any lift F of f , and thatS
n2N f

n.@iA/ accumulates in p1 , p2 , p3 and p4 for i DC;�. Then there exists an
invariant noncompactly generated circloid C �KA such that pi 2 C for i D 1; 2; 3; 4.

With these two results, following exactly the proof of Theorem A, we obtain a more
general result:
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Theorem 3.14 Let f 2 HomeoC.A/ and a closed essential annulus A such that
f .A/� int.A/. Further, assume that there are at least four periodic points p1 , p2 , p3

and p4 in A having pairwise different rotation vectors for any lift F of f , and thatS
n2N f

n.@iA/ accumulates in p1 , p2 , p3 and p4 for i DC;�. Then there exists
n0 2N and a C 0 –neighborhood N of f in HomeoC.A/ such that for every element
g 2N the power gn0 has a rotational horseshoe ƒg �A. In particular, every element
in N has topological entropy larger than log.2/=n0 .

We finish this section by showing that Theorem C can be derived from this last theorem
as well. In the hypothesis of Theorem C we have that, for the closed annulus A,
the attractor KA must have empty interior as the map is dissipative. Furthermore,
as the Birkhoff attractor C is by definition the unique circloid contained in KA and
has nonempty interior, it must be that C D UC \ U� where UC and U� are the
connected components of A nKA . This implies that both sets

S
n2N f

n.@CA/ andS
n2N f

n.@CA/ accumulate on every point of C . As the rotation set on C is not trivial,
the realization results [24; 5] imply that we have infinitely many periodic points in C
realizing every rational number in �C.F / for any lift F of f . Hence, the last theorem
can be applied, so we obtain Theorem C.

4 Entropy versus rotation set for circloids

Let us recall the basic definitions. We considered AD S1�R, where S1 DR=Z, and
the usual covering � W R2!A given by �.x;y/D .x .mod Z/;y/.

Consider the integrable twist map � W A!A given by the lift

T .x;y/D .xCy;y/:

If we denote by F D fCygy2R the foliation of A by essential circles given by Cy D

�.R� fyg/, we have that � jCy
is a rotation of angle 2�y .

Remark 4.1 A simple computation gives that limn
1
n

log kD�nk D 0. This can be
combined with Proposition 2.1 to get that, given " > 0, there is a C 1 –neighborhood
N" of � such that htop.f / < " for all f 2N" .

We will prove the following theorem:

Theorem 4.2 For every C 1 –neighborhood N of � there exists f 2N such that f
has a global attractor given by an essential circloid C with �C.F /� Œ0; 1� for some lift
F of f .
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Combining this with Remark 4.1, we show that there are circloids with rotation sets
containing Œ0; 1� whose entropy approaches zero as much as desired, therefore proving
Theorem B. Notice that the twist condition is C 1 –open, so we can assume also that the
obtained diffeomorphism verifies the twist condition. To obtain a dissipation hypothesis
(as required in Theorem D) one has to perform a slightly different perturbation, which
is explained at the end of this section.

We fix N and construct f 2N by means of a sequence of C 1 perturbations of � . We
remark that all the perturbations are just C 1 small, but the map itself can be considered
to be smooth (see Remark 2.3).

4.1 First perturbation

We first fix some notation. For y < y0 we denote by ŒCy ;Cy0 � the compact region
between these two circles, and by .Cy ;Cy0/ its interior.

As usual, given a map f W M !M and a point x 2M, we define for " > 0 the local
stable set of x to be W s

" .x; f / D fy 2 M j d.f n.y/; f n.x// < " for all n 2 Ng,
and define the stable set of x as W s.x; f /D fy 2M j limn d.f n.x/; f n.y//D 0g.
The local unstable and unstable sets are defined by considering f �1 instead of f ,
ie W u.x; f / D W s.x; f �1/. When x is a hyperbolic periodic point, the local
stable set is a submanifold tangent to the stable subspace at x , and W s.x; f / DS

n2N f �kn.W s
" .x; f //, where k is the period of x (see [22, Section 6]). A similar

result holds for unstable manifolds.

The first perturbation will be f1 2N such that (see Figure 4):

(1) f1 is conservative restricted to the annulus ŒC0;C1�.

(2) f1.Cr /D Cr for r 2 f0; 1g.

(3) f1 has a saddle x0 2 C0 and a saddle-node p0 2 C0 , so that W u.x0; f1/ D

C0 np0 , which implies that W s.p0; f1/� C0 n fx0g.

(4) f1 has a saddle x1 2 C1 and a saddle-node p1 2 C1 , so that W u.x1; f1/ D

C1 np1 , which implies as before that W s.p1; f1/� C1 n fx1g.

(5) There is a forward-invariant arc I s
0
�W s.p0; f1/\.�1;C0� with one endpoint

at p0 , and a small backward-invariant compact arc Iu
0
�W u.p0; f1/\ ŒC0;C1�

with one endpoint in p0 .
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C1

C0

x0
p0 x1 p1

Figure 4: The map f1

(6) There is a forward-invariant arc I s
1
�W s.p1; f1/\ŒC1;C1/ with one endpoint

at p1 , and a small backward-invariant compact arc Iu
1
�W u.p1; f1/\ ŒC0;C1�

with one endpoint in p1 .

(7) ŒC0;C1� is a global attractor for f1 .

(8) For every n 2N, f1 has finitely many points of period n.

This can be done by C 1 small smooth perturbations around the circles C0 and C1

and Franks’ lemma [14] — see [9, Proposition 7.4] for the conservative version — for
suitable perturbations of the derivative in the conservative setting. To obtain (7), one
can just take a dissipative perturbation supported in .C0;C1/

c . Item (8) can be achieved
by means of standard arguments in generic dynamics: a simple Baire argument allows
one to find a smooth diffeomorphism nearby for which all periodic points in the interior
of the annulus have no eigenvalues equal to ˙1, and this implies that the set of those
having period n is finite for all n 2N. This first perturbation is depicted in Figure 4.

4.2 Second perturbation

For the second perturbation, we make use of Theorem 2.2. We construct f2 2N such
that

(1) f2 is conservative in ŒC0;C1�,

(2) f2.x/D f1.x/ outside .Cr1
;Cr2

/ for some values 0< r1 < r2 < 1,
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(3) there is a transverse intersection between the connected component of the
intersection Iu

0
\ ŒC0;Cr1

� containing p0 and W s.x1; f2/ and a transverse
intersection between the connected component of Iu

1
\ ŒCr2

;C1� containing p1

and W s.x0; f2/.

Remark 4.3 The diffeomorphism f2 restricted to ŒC0;C1� is a conservative annulus
diffeomorphism which deviates the vertical and the whole annulus is an instability
region. In particular, the rotation set in this instability region is Œ0; 1� and the entropy
can be chosen to be as small as desired.

C1

C0

x0
p0 x1 p1

Figure 5: The map f2

In order to produce f2 we just have to choose a perturbation of f1 in N which is
conservative in ŒC0;C1�, supported outside a neighborhood of C0 and C1 in ŒC0;C1�,
and connects the forward orbit of a small arc in Iu

0
(inside the neighborhood where

the perturbation is made) with the stable manifold of x1 and symmetrically connects
the forward orbit of Iu

1
with the stable manifold of x0 . See Figure 5.

This will be achieved by means of Theorem 2.2. But first we need to show an abstract
lemma to put ourselves in the hypothesis of the theorem.

Lemma 4.4 Assume hW ŒC0;C1�! ŒC0;C1� is an area-preserving diffeomorphism
and D is a connected open subset whose closure is contained in .C0;C1/. Let z and w
be points in .C0;C1/ such that there are integers nz > 0 and nw > 0 such that hnz .z/

and h�nw .w/ are contained in D. Then z aclŒD� w .
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Proof Notice that it is enough to show that for every pair of points p and q in D and
" > 0 one can construct a pseudoorbit with jumps in D going from p to q , since one
can go without jumps from the interior of D to the points z and w .

We fix p in D, and consider for every " > 0 the set P" of those points q 2D such
that there exists an "–pseudoorbit .zk/

n
kD0

with z0D p; znD q and h.zk/; zkC1 2D

whenever h.zk/¤ zkC1 . It is enough to prove that P" is a nonempty open and closed
set in D.

For q 2 P" we can consider an "–pseudoorbit .zk/
n
kD0

as before. Then there exists "0

such that d.h.zn�1/; q/ < "0 < ". Pick a neighborhood V of q in D such that
V � B.q; "� "0/ and take z 2 V .

� If h.zn�1/D q , we have that z0; : : : ; zn�1; z is an "–pseudoorbit whose jumps
are in D. Thus z 2 P" , and V � P" , so P" .

� If h.zn�1/¤ q , then both h.zn�1/ and z are contained in D. Thus the pseudo-
orbit z0; : : : ; zn�1; z is an "–pseudoorbit who has its jumps in D. Thus, we
have again V � P" .

Therefore, we can conclude that P" is open. In order to check that it is also closed
in D, we consider a sequence of points qn 2 P" converging to a point q in D. Fix qn

such that d.qn; q/ < " and let V be a neighborhood of qn in D, contained in B.q; "/.

Consider an "–pseudoorbit p D z0; : : : ; zm D qn with jumps inside D. Hence,
d.h.zm�1/; qn/ < ". Poincaré’s recurrence theorem (see [22, Section 4.1]) implies that
we can consider a recurrent point r 2 V such that d.h.zm�1/; r/ < ". Let hl.r/ 2 V

and define the pseudoorbit

p D z0; : : : ; zm�1; r; h.r/; : : : ; h
l�1.r/; q:

Then we have an "–pseudoorbit from p to q whose jumps are all contained in D.

To show that P" is nonempty, notice that again that, by Poincaré’s recurrence theorem,
one has that p 2 P" .

Now let us construct the desired perturbation of f1 .

For f1 2 Diff1
�;per.A/ and the prescribed neighborhood N , let N DN.f1;N / be the

positive integer given by Theorem 2.2. We consider first the set D � .C0;C1/, given
by D0 D .Ca0

;Cb0
/, such that the arc Iu

0
and the invariant manifold W s.x1; f1/
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intersects D0 . Choose 0< a1 < a0 and b0 < b1 < 1 so that D1D .Ca1
;Cb1

/ contains
clŒD0[ � � � [f

N�1
1

.D0/�.

Choose a point z 2 Iu
0
nD1 and w 2W s.x1; f1/nD1 . It follows from Lemma 4.4 that

one has z aD0
w . Theorem 2.2 implies that there exists g 2 U such that gn.z/D w

and such that g D f1 outside D1 . Due to the way w is chosen and since g D f1

outside D1 , it follows that w still belongs to W s.x1;g/ after perturbation7 and the
same holds for Iu

0
, so we deduce that Iu

0
intersects W s.x1;g/. A further small

perturbation makes this intersection transversal. Being transversal, the intersection will
persist for sufficiently small C 1 perturbations even if the involved points are moved,

Now we do the same argument again but reducing a1 and b1 further so that we can
connect Iu

1
with the stable manifold of x0 and again make the intersection transversal.

We can choose the perturbation small enough that the intersection we had already
created persists thanks to transversality. This concludes the proof that f2 2N can be
constructed.

4.3 Final perturbation

For our last move, we fix z0 in one of the connected components of C0 n fx0;p0g and
z1 in one of the connected components of C1 n fx1;p1g. Consider for k D 0; 1

an open ball B.zk ; ı/ such that B.zk ; ı/ \ Ck D Ik is a wandering interval, ie
Ik \

S
n2Znf0g f

n
2
.Ik/D∅.

We now take two C1–diffeomorphisms b0 and b1 which are arbitrarily C1–close
to the identity and supported in B.z0; ı/ and B.z1; ı/, defined as follows.

If we set for every p 2R2 the coordinates zx D �1.p� z0/ and zy D �2.p� z0/,8 the
first map is given by

b0.p/D .zx; zyC�.zx; zy//;

where �W R2 ! Œ0; 1� is some C1 bump function which is zero in B.0; ı/c and
positive in B.0; ı/. Note that I0[ b0.I0/ is the boundary of an open disk contained
in .C0;C1/.

For b1 , if we now set for every p 2 R2 the coordinates zx D �1.p � z1/ and zy D
�2.p� z1/, we define

b1.p/D .zx; zy ��.zx;�zy//:

7Technically one has to choose z ¤ p0 in the connected component of Iu
0
nD1 containing p0 and

w ¤ x1 in the connected component of W s.x1; f1/ nD1 containing x1 .
8Here �1 and �2 stand for the projections over the first and second coordinate in R2 .
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Note that I1[ b1.I1/ is the boundary of an open disk contained in .C0;C1/. Let us
call by L0 the open disk between I0 and b0.I0/ and L1 the open disk in-between I1

and b1.I1/.

We are ready now to perform our final perturbation. We consider f 2N such that

f D b1 ı b0 ıf2;

where the following holds:

(1) Property (3) of the second perturbation f2 still holds.

(2) limn f
�n.l/D�1 for all l 2L0 .

(3) limn f
�n.l/DC1 for all l 2L1 .

Indeed, the choice of b0 and b1 imply immediately the last two properties and if b0

and b1 are small enough, then the transverse intersections required in (3) of f2 still
holds. Notice that f D f2 in a neighborhood of x0 , x1 , p0 and p1 . See Figure 6 for
a schematic drawing.

4.4 The perturbation verifies the announced properties

We must now show that f verifies our Theorem 4.2. Consider the set

B D clŒW u.x0; f /�:

Observe that it is a closed connected set. The next lemma shows that it coincides with
clŒW u.x1; f /�, and by construction B � ŒC0;C1�. Thus, we actually have that B is an
essential continuum with �B.F /� Œ0; 1� for some suitable lift F of f . Let us call U�

and UC the two unbounded connected components of A nB .

Lemma 4.5 The points x0 and x1 are homoclinically related.

Proof This follows by applying a small variation of the �–lemma [22] in a neigh-
borhood of p0 and p1 , respectively. Notice that the usual �–lemma does not apply
since p0 is not hyperbolic but by looking at the local dynamics of p0 and the way
we have performed the perturbation b0 (far from p0 ) one has that the new unstable
manifold of x0 will approach for forward iterates the unstable manifold of p0 which
is connected to the stable manifold of x1 . The symmetric argument gives that the
unstable manifold of x1 must intersect transversally the stable manifold of x0 .
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x0
p0

B.z1; ı/

B.z0; ı/

x1

p1

C0

C1

z1

z0

Figure 6: The final map f . We perform a small perturbation near z0 and z1

so that x0 , p0 , x1 and p1 belong to the same homoclinic class. The closure
of W u.x0; f / will give our desired circloid.

Furthermore, as we have one branch of W s.x0; f / contained in U� , Lemma 4.5
shows that @U� � B . In the same way, as the saddle x1 is homoclinically related to
x0 and one branch of W s.x1; f / is contained in UC , we have that W s.x0; f / must
intersect UC . Therefore, arguing with the �–lemma, we find that @UC � B . So

B � @U�\ @UC:

On the other hand, since U˙ is a connected component of A nB , the set U˙ [B is
closed, and in particular, @U˙ � B , therefore, B D @U� D @UC .

This implies, that B is the boundary of a circloid C with AnCDU�[UC , as is proved
for instance in [20, Corollary 3.3]. In order to obtain Theorem 4.2, we need to prove
that C is the global attractor of f .

For this, it is enough to show that every point u 2 U� has its ˛–limit in �1 and that
every point v 2 UC has it ˛–limit in C1. We work with U� ; the other case is similar.
Recall the definition of the open disk L0 associated to the wandering interval I0 . We

Geometry & Topology, Volume 22 (2018)



Rotation intervals and entropy on attracting annular continua 2181

have by construction that L0 is bounded by the concatenation of curves I0 and b0.I0/.
Denote by zI0 the maximal open interval in I0 .

In order to show that �1 D limn f
�n.u/ for all u 2 U� , it is enough to show the

following lemma:

Lemma 4.6 We have that U� D .�1;C0/[
S

n2N f
n.L0[

zI0/.

Proof It is easy to see that .�1;C0/� U� . Further, as L0[
zI0 � U� , we have that

U� � .�1;C0/[
S

n2N f
n.L0/. We must look now for the symmetric inclusion.

Observe that f n.I0/� C0 for all n 2N and that f n.b0.I0//� ŒC0;C1/\ C for all
n 2N.

Let W be the interior of the arc in C0 joining x0 and p0 and containing I0 . Observe
that the closure of the complementary connected component is contained in C . Then

C0\ C D C0 n

� [
n2N

f n.zI0/

�
:

Assume x 2 U�\ ŒC0;C1/; hence, we can connect x to �1 through a simple curve
� 0 � U� , which must contain a compact arc � � ŒC0;C1/ from x to a certain point
in f n0.I0/. Thus, � must be contained in a disk bounded by the concatenation of
f n0.I0/ and f n0.b0.I0//, otherwise � meets f n.b0.I0//� C .

Therefore we get that x 2 f n0.L0/, and we have

U� D .�1;C0/[
[

n2N

f n.L0[
zI0/:

We conclude that the nonwandering set of f is contained in C , so C must be a global
attractor for f , and we are done with the proof of Theorem 4.2 (and consequently of
Theorem B).

4.5 Proof of Theorem D

We here perform some modifications to the construction developed above to obtain a
proof of Theorem D. In the construction of f2 , it is not hard to construct another pair
of saddle periodic points inside .C0;C1/ so that they are homoclinically related and
have different rotation numbers which are as close as desired to 0 and 1, respectively.
This can be achieved using Theorem 2.2. See Figure 7.
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C0

x0
p0

C1

x1

p1

H

q0

q

Figure 7: The map f2 for the examples in Theorem D. We consider a homo-
clinic class H DH.q; q0/ contained in .C0;C1/ with a rotation set arbitrarily
close to Œ0; 1� .

Then, for an arbitrary small ı > 0 we can choose f2 so that there is a homoclinic class9

H DH.q; q0/� .C0;C1/ with .ı; 1�ı/� �H .F2/� Œ0; 1� for a lift F2 of f2 . Notice
that f2 verifies f2.S

1�Œ�1; 2�/�S1�.�1; 2/ and we can assume that the determinant
of the derivative of f2 is everywhere smaller than 1� ı outside S1 � Œ�1; 2�.

Now, instead of pushing the unstable manifolds of x0 and x1 , we will consider smooth
diffeomorphisms hn which coincide with the identity outside the region .C�n;CnC1/,
and having the form hn.x;y/D .x; yhn.y// and yhnW R!R is a function such that

� yh0n.y/2 .1�1=n; 1C1=n/ for every y 2R and yh0n.y/< 1�1=2n if y 2 Œ�1; 2�,

� the C 1 distance between hn and the identity tends to 0 as n!1.

We will consider the perturbations gn D hn ıf2 .

9In our context the homoclinic class is the minimal f –invariant set containing the closure of the
transversal heteroclinic intersections associated to the periodic points q and q0.
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Since f2 has the homoclinic class H, it follows that for large enough n, this class has
a continuation Hn which contains in its rotation set the interval Œı; 1� ı�. Moreover,
for large enough n there will still be a global attractor as one has gn.ŒC�1;C2�/ �

.C�1;C2/, and the dynamics is dissipative since the jacobian of gn in ŒC�1;C2� is
everywhere less than 1� 1=2n < 1. Since f2 satisfies the twist condition, which is
open, the same holds for gn when n is large. Thus gn presents Birkhoff attractors Cn

for large n 2N.

By the same arguments we did before, the closure of the unstable manifold W u.q;gn/

must be a circloid C0n which is invariant for some power of gn . As any power of gn is
also a dissipative twist map, it has a unique invariant circloid, so it must be that C0nD Cn

(the same holds for W u.q0;gn//. Therefore, the homoclinic class Hn is contained in
the Birkhoff attractor Cn , so �Cn

.Gn/� Œı; 1� ı� for some lift Gn of gn .

On the other hand, as gn can be considered in an arbitrary small C 1 neighborhood
of � , the entropy of gn can is arbitrary small (Remark 4.1), say smaller than 1

3
", and

then10 choosing g3
n we obtain the proof of Theorem D.

Remark 4.7 It might be possible that the global attractor ƒ in this case is equal to
the Birkhoff attractor C . However, we did not find a simple argument to prove this fact.
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