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Surgery for partially hyperbolic dynamical systems
I: Blow-ups of invariant submanifolds

ANDREY GOGOLEV

We suggest a method to construct new examples of partially hyperbolic diffeo-
morphisms. We begin with a partially hyperbolic diffeomorphism f W M ! M

which leaves invariant a submanifold N �M. We assume that N is an Anosov
submanifold for f , that is, the restriction f jN is an Anosov diffeomorphism and
the center distribution is transverse to TN � TM. By replacing each point in N

with the projective space (real or complex) of lines normal to N , we obtain the
blow-up yM. Replacing M with yM amounts to a surgery on the neighborhood of N

which alters the topology of the manifold. The diffeomorphism f induces a canonical
diffeomorphism yf W yM ! yM. We prove that under certain assumptions on the local
dynamics of f at N the diffeomorphism yf is also partially hyperbolic. We also
present some modifications, such as the connected sum construction, which allows
to “paste together” two partially hyperbolic diffeomorphisms to obtain a new one.
Finally, we present several examples to which our results apply.

37D30

1 Introduction

Let M be a closed manifold. A diffeomorphism f W M !M is partially hyperbolic
if the tangent bundle TM splits into Df –invariant continuous subbundles TM D

Es˚Ec ˚Eu such that

(1-1) kDf .vs/k< � < kDf .vc/k< � < kDf .vu/k

for some Riemannian metric k�k, some �< 1<� and all unit vectors vs 2Es, vc 2Ec

and vu 2Eu.

Similarly a flow 't W M !M is partially hyperbolic if the tangent bundle TM splits
into Df –invariant continuous subbundles TM DEs˚Ec ˚Eu such that

(1-2) kD't .vs/k< �t < kD't .vc/k< �t < kD't .vu/k for t � 1

for some Riemannian metric k�k, some �< 1<� and all unit vectors vs 2Es, vc 2Ec

and vu 2Eu.
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Partial hyperbolicity was introduced into smooth dynamics by Hirsch, Pugh and
Shub [10] and by Brin and Pesin [1] (motivated by a paper of Sacksteder [18]). The
importance of these definitions is well justified by the deep connections of partial
hyperbolicity to stable ergodicity and robust transitivity. The discussions on stable
ergodicity and robust transitivity and the original references can be found in recent
surveys by Carrasco, Rodriguez Hertz, Rodriguez Hertz and Ures [3; 16], Hammerlindl
and Potrie [7] and Hasselblatt and Pesin [9].

Examples of partially hyperbolic dynamical systems can be roughly classified (up to
homotopy, finite iterates and finite covers) into the following (overlapping) classes:

(1) Algebraic examples induced by affine diffeomorphisms of Lie groups.

(2) Geodesic flows in negative curvature.

(3) Skew products with slow dynamics in the fiber and partially hyperbolic dynamics
in the base.

(4) Surgery examples.

(5) Skew products with Anosov (or partially hyperbolic) dynamics in the fiber and
slow dynamics in the base (fiberwise Anosov).

(6) Twisting of Anosov flows.

The first three classes of examples are classical and a lot of research in the past
decades was focused on these examples. Some of the algebraic examples can be
viewed as fiberwise Anosov (class 5). Recently, it was demonstrated that this class
also contains some nonalgebraic examples; see Gogolev, Ontaneda and Rodriguez
Hertz [6]. Even more recently, new examples (class 6) were discovered by composing
the existing examples (such as time-1 maps of Anosov flows) with homotopically
nontrivial diffeomorphisms which respect cone fields; see Hammerlindl and Potrie [7,
Section 5] for an overview.

As outlined in the abstract, the current paper makes a contribution to the surgery
constructions of partially hyperbolic diffeomorphisms. First surgery constructions
of Anosov flows were discovered by Franks and Williams [5] and by Handel and
Thurston [8]. Since then, many more 3–dimensional Anosov flows were constructed by
using surgery. The approach used in these surgery constructions is to make “hyperbolic
pieces” by cutting the ambient manifold of a known example along well-positioned
(eg transverse to the flow) codimension-1 submanifolds and then create new examples
by assembling the “hyperbolic pieces” in various ways. For a long time these types

Geometry & Topology, Volume 22 (2018)



Surgery for partially hyperbolic dynamical systems, I 2221

of constructions were restricted to the realm of 3–dimensional Anosov flows, but
recently the cut-and-paste approach has spread out into the classification program of
3–dimensional partially hyperbolic diffeomorphisms as well as to higher dimensions.

Surgery constructions here are quite different because we make use of the Anosov
submanifold (which is also well-positioned with respect to the dynamics, but is not
of codimension 1) which is tangent to the stable and unstable distributions and works
equally well for diffeomorphisms and for flows. The examples which we work out in this
paper all belong to the class of fiberwise Anosov partially hyperbolic dynamical systems.
This new pool of examples vastly expands this class of fiberwise Anosov partially
hyperbolic dynamical systems. We plan to further develop the blow-up approach and
produce more examples, some of which are not fiberwise Anosov.

We are not aware of any prior appearance of blow-ups in partially hyperbolic dynamics.
However, blow-ups have been known to be a useful construction tool in dynamics for a
long time. At least, it goes back to work of Denjoy [4], where he used 1–dimensional
blow-up of an orbit to give an example of nontransitive circle diffeomorphism with
an irrational rotation number. Katok [13] used the blow-up of a fixed point in his
construction of Bernoulli diffeomorphism of D2 in order to pass from S2 to D2 ;
also Katok and Lewis [14] used the blow-up of a fixed point to produce examples of
nonstandard actions of SL.n;Z/.

2 The main theorem

2.1 Dominant Anosov submanifolds

Let f W M !M be a partially hyperbolic diffeomorphism with an invariant splitting
TM DEs˚Ec˚Eu controlled by � < 1<�, as in (1-1). An invariant submanifold
N �M is called Anosov if

TN DEs
˚Eu:

Further, an Anosov submanifold N is called dominant1 if, for all x 2N and all unit
vectors vc 2Ec.x/,

(2-1) �0 � kDf vc
k � �0 with

�0

�0
>max.�; ��1/:

1The domination condition is analogous to the well-known “center-bunching” condition on the center
distribution. We use a different term here because we view domination as a property of the fast distributions
rather than the center.
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An important special case is when ��1 D � and the domination inequality is

(2-2)
p
�� kDf vc

k �

p
��1:

We proceed to impose a strong assumption on local dynamics at N. Namely, we
will assume that the dynamics in the neighborhood of N is locally fiberwise. That
means that a neighborhood of N can be smoothly identified with Dk �N, where
Dk D fx 2Rk W kxk< 1g, so that the dynamics f jDk�N is the product

(2-3) f .x;y/D .Ax; fN .y// for .x;y/ 2Dk
�N \f �1.Dk

�N /;

where fN is the Anosov map given by the restriction f jN and AW Rk ! Rk is a
hyperbolic linear map. Moreover, we assume that the distribution Es˚Eu is integrable
on Dk �N and is tangent to the N –fibers; that is, for all .x;y/ 2Dk �N we have

(2-4) DixTyN DEs
˚Eu.x;y/;

where ix W N !Dk �N is given by ix.y/D .x;y/.

Note that the locally fiberwise condition implies, in particular, that the normal bundle
of N is trivial.

Similarly, we can define dominant Anosov submanifold N �M for a partially hyper-
bolic flow 't W M !M. In the flow setting, the formula (2-3) becomes

't .x;y/D .At .x/; 't
N .y//;

where 't
N

is identified with 't jN and At W Rk !Rk is a hyperbolic linear flow. The
condition (2-4) becomes

DixTyN �Es
˚Eu.x;y/:

Remark 2.1 The restriction EcjN is a “horizontal” subbundle in the .x;y/–coordi-
nates, because it is the only Df –invariant subbundle which is transverse to TN.
Therefore, given the local form (2-3), one can determine whether the submanifold
N �M is dominant by looking at the eigenvalues of A.

Remark 2.2 In this paper the locally fiberwise condition is viewed as a feature which
makes proving our results an easier task. One can also view it as a bug which crashes
some potential applications.
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Remark 2.3 Existence of an Anosov submanifold is an obstruction to the accessibility
property of f . And the important role of the Anosov tori for 3–dimensional partially
hyperbolic diffeomorphisms f W M ! M was revealed in [17]. Rodriguez Hertz,
Rodriguez Hertz and Ures conjecture that absence of Anosov tori implies ergodicity
of a partially hyperbolic diffeomorphism f W M 3!M 3. In the case when M is a
nilmanifold (¤ T3 ) they verified this conjecture [17].

2.2 The blow-up of an Anosov submanifold

We begin by blowing up the disk Dk at the origin 0. This amounts to replacing 0 with
the space of lines which pass through 0. More precisely, the disk Dk is being replaced
with the following subspace of Dk �RPk�1 :

(2-5) zDk
D f.x; `.x// W x 2Dk ; x 2 `.x/g;

where `.x/ are lines passing though the 0 and x . Then � W zDk ! Dk given by
.x; `.x// 7! x collapses the projective space RPk�1 to 0 2 Dk and is one-to-one
otherwise. It is easy to see that zDk is diffeomorphic to the connected sum Dk # RPk.

Now, by taking the product with N , we obtain the blow-up zDk �N !Dk �N and
then use the identity map to extend to the map � W yM !M, which we still denote
by � W yM !M. By construction, � collapses RPk�1 �N to N and is one-to-one
otherwise. We will call RPk�1 �N � yM the exceptional set.

Now let AW Rk!Rk be a linear map. Then, by linearity, x 2 `.x/ if and only if Ax 2

A.`.x// and, hence, the formula .x; `.x// 7!
�
x;A.`.x//

�
defines a diffeomorphism

zAW zRk ! zRk of the blown-up Rk, which we then restrict to zDk.

Now, assuming that a partially hyperbolic diffeomorphism f W M ! M is locally
fiberwise at N �M, we define yf W zDk �N ! zDk �N by

yf W .x;y/ 7! . zA.x/; fN .y//

and extend yf to the rest of yM using f . We conclude that if the dynamics of f is
locally fiberwise in a neighborhood of f then there is a canonical diffeomorphism
yf W yM ! yM which fits into the commutative diagram

(2-6)

yM

�

��

yf
// yM

�

��

M
f
// M
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Remark 2.4 By construction, yM can be obtained from M through the following
surgical procedure: remove the open set Dk�N from N and then replace it by zDk�N .
In general, such surgery affects the algebraic topology of the underlying manifold.

Remark 2.5 To obtain the diagram (2-6), one only needs to have an f –invariant
submanifold N ; see eg [20].

Analogous discussion (which we omit) in the continuous time setting yields the blown-
up flow y't W yM ! yM. Now we are ready to state our main result.

Main Theorem Let f W M!M (resp. 't W M!M ) be a partially hyperbolic diffeo-
morphism (resp. flow) and let N �M be an invariant, dominant, Anosov submanifold
of M. Also assume that the dynamics is locally fiberwise in a neighborhood of N . Let
� W yM !M be the blow-up of N. Then the induced diffeomorphism yf W yM ! yM

(resp. flow y't W yM ! yM ) is partially hyperbolic.

The same result remains true if we assume that Es and Eu are smooth distributions
rather than assuming their joint integrability to the N –fibers (2-4). We do not pursue
the proof of this modification here because all the examples which we consider here do
satisfy (2-4). Also, we would like to remark that the Main Theorem generalizes in a
fairly straightforward way to the case when the fiber diffeomorphism fN W N !N is
assumed to be partially hyperbolic rather than Anosov.

Remark 2.6 If f preserves a volume vol then diffeomorphism yf W yM! yM preserves
a smooth measure ��vol whose density vanishes on the exceptional set. It would be
very interesting to obtain a volume-preserving version of the Main Theorem. However,
it doesn’t seem that this can be done in a straightforward way. One can apply the trick
of Katok and Lewis [14], which is to alter the smooth structure at N, and obtain a
volume-preserving induced diffeomorphism zf W yM ! yM. Then it becomes clear that,
in order to retain partial hyperbolicity, a stronger domination property of N is needed.
This would make impossible many of examples which we construct in this paper. On
top of this, controlling the center distribution (estimates in Section 5.3.5) becomes a
very formidable problem.

Example 2.7 We demonstrate that the Main Theorem provides new examples. Let
H be the 3–dimensional Heisenberg group of upper-triangular 3� 3 matrices. There
exists a lattice � �H �H and a hyperbolic automorphism H �H !H �H such
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that M
def
D H �H=� is a compact nilmanifold and the automorphism induces an

Anosov diffeomorphism AW M !M. Construction of such Anosov diffeomorphisms
is due to Smale and Borel [19]. It is clear from the construction that A can be viewed
as a partially hyperbolic diffeomorphism with a 4–dimensional center distribution.
When considered this way, A has an Anosov torus T2 � M and, after making a
perturbation in a neighborhood of this torus, the Main Theorem applies and yields a
partially hyperbolic diffeomorphism yAW yM ! yM. Of course, the new diffeomorphism
is not Anosov anymore and has fixed points of indices 1 and 5. One can check that
the manifold yM (unlike M ) is rich in higher homotopy groups — the universal cover
of yM is homotopy equivalent to the infinite wedge sum

W
i S4

i — and one can deduce,
by looking at �4 , that the universal cover of yM is not diffeomorphic to any Lie group.
Also note that yA cannot be homotopic to a time-1 map of a geodesic flow simply
because yM is even-dimensional. We discuss the construction of yA in more detail later;
see Example 4.3.

2.3 The structure of the paper

In the next section we present some variations of the Main Theorem, such as the
complex blow-up version and the connected sum construction for partially hyperbolic
diffeomorphisms. Section 4 is devoted to discussion of examples to which our results
apply, both diffeomorphism and flow examples. Section 5 contains the proofs.

3 Some variations of the main theorem

3.1 A complex blow-up

We describe a version of the Main Theorem where one uses a complex blow-up instead
of a real one. This amounts to a different surgery on the neighborhood of N which
does not affect the fundamental group of the manifold.

As before, we assume that N � M is a dominant Anosov submanifold for a par-
tially hyperbolic diffeomorphism f W M !M. Further we assume that N has even
codimension 2k and that the neighborhood of N is identified with Dk

C �N, where
Dk

C D fx 2 Ck W kxk < 1g, so that f is locally fiberwise on Dk
C �N, that is, stable

and unstable distributions satisfy (2-4) and the restriction f jDk
C�N is given by

.x;y/ 7! .Ax; fN .y//;

where A is a hyperbolic complex-linear map.
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With such a setup we can follow through the discussion of Section 2.2 simply by
working over C instead of R, and arrive at the induced map yf W yMC!

yMC , where
yMC is obtained from M by replacing Dk

C�N with zDk
C�N . Here zDk

C is the complex
blow-up of Dk

C and one can check that zDk
C is diffeomorphic to Dk

C # CPk ; see eg [11,
Proposition 2.5.8]. The setup of the complex blow-up for flows is analogous.

Theorem 3.1 Let f W M !M (resp. 't W M !M ) be a partially hyperbolic dif-
feomorphism (resp. flow) and let N �M be an invariant submanifold which satis-
fies the above assumptions. Then the induced partially hyperbolic diffeomorphism
yf W yMC!

yMC (resp. flow y't W yMC!
yMC ) is partially hyperbolic.

The proof of this theorem is similar to the proof of the Main Theorem and we discuss
the necessary modifications in Section 5.4

3.2 Surgery variations

First we remark that the submanifold N does not have to be connected. For example,
N could have several connected components which are being cyclically permuted
by f .

3.2.1 Multiple blow-ups Another observation is that the blow-up procedure could
be carried out with respect to several Anosov submanifolds. For example, assume
that N1;N2 �M are both Anosov submanifolds such that the Main Theorem applies
to N1 and Theorem 3.1 applies to N2 . Then, after performing the real blow-up of N1

we obtain a partially hyperbolic diffeomorphism yf W yM ! yM which still leaves N2

invariant. Because the blow-down map � W yM !M preserves all dynamical structures
(including the stable and unstable distributions) away from the exceptional set, we
can further perform a complex blow-up at N2 �

yM and obtain a partially hyperbolic
diffeomorphism yyf W yyM ! yyM .

The same remark is applicable in the flow case.

3.2.2 Connected sums along the invariant submanifolds Now assume that Ni �

Mi are invariant under fi W Mi !Mi for i D 1; 2 and that both f1 and f2 satisfy
the assumptions of the Main Theorem. Moreover assume that both N1 and N2 are
diffeomorphic to a manifold N and that the local forms of f1 and f2 at the invariant
submanifold are the same (after identifying both neighborhoods of N1 and N2 with
Dk �N ),

.x;y/ 7! .Ax; fN .x//:

Geometry & Topology, Volume 22 (2018)
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Then one can glue f1 and f2 together as follows: First, perform the “spherical” blow-
up for both N1 and N2 ; that is, we replace Dk �Ni with Dk �Ni for i D 1; 2. Here
Dk is defined as

Dk
D f.x; r.x// W x 2Dk ; x 2 r.x/g;

where r.x/ is the ray based at 0 and passing through x . Both resulting manifolds M 1

and M 2 have boundaries diffeomorphic to Sk�1 �N . Each fi induces a diffeomor-
phism xfi W M i !M i for i D 1; 2. Moreover, on the neighborhood of the boundary
Sk�1 �N � Œ0; 1/, both xf1 and xf2 have the same form,

.s;y; t/ 7! . yAs; fN .y/; a.s/t/;

where yAW Sk�1! Sk�1 is the spherical projectivization of A and a.s/D kAsk (here
s 2 Sk�1 is viewed as a unit vector in Rk ).

Hence we can paste M 1 and M 2 together to form the connected sum M along
Sk�1�N and also paste xf1 and xf2 together to form the connected sum xf W M !M .
The above local form near the boundary implies that xf is a smooth diffeomorphism and
it easily follows from (the proof of) the Main Theorem that xf is partially hyperbolic.

Notice that if M1 DM2 and f1 D f2 then M is the topological double of M1 and
xf W M !M is a “partially hyperbolic double” of f . Also notice that if f W M !M

admits two different invariant submanifolds Ni �M for i D 1; 2, then in the same
way one can “spherically” blow-up f at both N1 and N2 and then “connect sum with
itself”.

Finally we notice that the above observations can be combined, such as doing multiple
blow-ups and multiple gluings at the same time.

4 Examples

This section is devoted to constructions of examples to which the Main Theorem and its
variations can be applied. We first discuss discrete time examples and then continuous
time examples. All examples considered here are fiberwise Anosov diffeomorphisms
or flows.

4.1 Fiberwise Anosov diffeomorphisms and flows

Let N and X be smooth compact manifolds and let pW M ! X be a smooth fiber
bundle with fiber F ; this means that pW M !X is a locally trivial fiber bundle given
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by smooth charts p�1.U˛/ ' U˛ �F for U˛ � X. Given x 2 X we denote by Nx

the fiber p�1.x/. Let T kM be the submanifold of the tangent bundle TM which
consists of all vectors tangent to the fibers of p ,

T kM D
[

x2X

TNx :

Now, given a smooth fiber bundle N !M !X we define fiberwise Anosov systems
as follows: a diffeomorphism F W M !M is called fiberwise Anosov if there exists
a diffeomorphism f W X ! X, an invariant splitting T kM D Es ˚Eu, a constant
� 2 .0; 1/ and a smooth Riemannian metric on T kM such that:

� F fibers over f ; that is, the diagram

M

p

��

F
// M

p

��

X
f
// X

commutes.

� The following inequalities hold for all unit vectors vs 2Es and vu 2Eu :

kDF.vs/k< � < ��1 < kDF.vu/k:

Similarly, a flow ˆt W M ! M is called fiberwise Anosov if there exists a flow
't W X ! X, an invariant splitting T kM D Es ˚ Eu, a constant � 2 .0; 1/ and a
smooth Riemannian metric on T kM such that:

� ˆt fibers over 't ; that is, the diagram

M

p

��

ˆt
// M

p

��

X
't

// X

commutes for all t .

� The following inequalities hold for all unit vectors vs 2 Es and vu 2 Eu

and t � 1:
kDˆt .vs/k< �t < ��t < kDˆt .vu/k:

4.2 Examples of fiberwise Anosov dynamical systems

In order to present examples to which the Main Theorem can be applied we will
consider smooth fiber bundles with torus fiber and fiberwise Anosov diffeomorphisms
and flows whose fiberwise dynamics is affine.
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4.2.1 Principal fiber bundles and B –diffeomorphisms Recall that a smooth fiber
bundle Td !M ! X is called principal if M admits a smooth free Td –action
y 7! yCg with g 2 Td whose orbits are precisely the fibers of the bundle. Hence,
all torus fibers of a principal torus bundle are canonically identified with Td up to
a translation. Given an automorphism BW Td ! Td , we say that a diffeomorphism
F W M !M is a B –diffeomorphism if F.y0Cy/DF.y0/ �B.y/ for all y0 2M and
all y 2 Td. In other words, F preserves the fibers and is locally given by the formula

(4-1) F W .x;y/ 7! .f .x/;ByC'.x// for .x;y/ 2 U˛ �Td ;

where 'W U˛! Td depends on the choice of charts at x and at f .x/. Clearly, if B

is hyperbolic then a B–diffeomorphism is fiberwise Anosov. We refer to [6] for a
thorough discussion of B –diffeomorphisms.

Potentially, B –diffeomorphisms with hyperbolic (or partially hyperbolic) B 2SL.d;Z/
provide a rich class of partially hyperbolic diffeomorphisms. Theorem 8.2 in [6] gives a
general criterion for partial hyperbolicity of a B –diffeomorphism. Loosely speaking, it
says that a B –diffeomorphism is partially hyperbolic provided that the base dynamics
is dominated by B . However, as explained in [6], it is difficult to create partially
hyperbolic B –diffeomorphism of nontrivial fiber bundles as there is no known general
method of verifying the assumption of this criterion, ie controlling the base dynamics
of the B –diffeomorphisms.

One application of the Main Theorem is that it provides a surgery machinery to create
new partially hyperbolic B–diffeomorphisms from the known examples. This is
achieved by applying the Main Theorem and Theorem 3.1 to invariant and periodic
torus fibers and by taking connected sums and “self-connected sums” along invariant
torus fibers. We proceed with description of examples.

4.2.2 Examples of partially hyperbolic B –diffeomorphisms We present some
known examples of B –diffeomorphisms which are partially hyperbolic: products, the
example of [6] and nilmanifold automorphisms; and explain how our results can be
applied to these examples.

Example 4.1 (product) The trivial example of a B –diffeomorphism is, of course, the
product diffeomorphism idX �BW X �Td !X �Td, where B is hyperbolic. Note
that, formally speaking, the Main Theorem does not apply to this example because we

Geometry & Topology, Volume 22 (2018)



2230 Andrey Gogolev

do not have a hyperbolic fixed point in the base, however we can modify it so that the
Main Theorem becomes applicable. Namely, let AW Rk !Rk be a hyperbolic linear
automorphism, which is dominated by B ; ie2

maxfj�j W � 2 spec.A/g
minfj�j W � 2 spec.A/g

<minfj�j W � 2 spec.B/; j�j> 1g;

minfj�j W � 2 spec.A/g
maxfj�j W � 2 spec.A/g

>maxfj�j W � 2 spec.B/; j�j< 1g:

(4-2)

Then one can homotope idX to a diffeomorphism f W X !X so that f coincides with
A on a disk Dk �X and f �B is still partially hyperbolic. Then the Main Theorem
applies and yields a partially hyperbolic diffeomorphism 1f �B W .X # RPk/�Td !

.X # RPk/ � Td. This is not of much interest as this diffeomorphism is merely a
product again. However, the diffeomorphism f �B becomes much more meaningful
for connected sum constructions (which we explain once we have more examples to
connect sum with).

Example 4.2 (over the K3–surface) Given a hyperbolic automorphism AW T2!T2,
there exists a principal fiber bundle T2!M !K3 over the K3–surface whose total
space M is simply connected and a partially hyperbolic A2 –map F W M !M which
fibers over f W K3! K3 (see [6]). Further, it is easy to see from the construction
in [6] that (after passing to a finite iterate) the base map f W K3! K3 has a fixed
point x0 such that on a disk D4 centered at x0 the base diffeomorphism f is given by
x 7!A˚A.x/. Note that A2 does not dominate A˚A as we require strict inequalities
in (4-2). However we can perturb f in C 1 topology, and F accordingly, so that F

is still partially hyperbolic and f about x0 is given by x 7! A0 ˚ A0.x/, where
A0 has eigenvalues closer to 1 and hence is dominated by A2. Then locally, in the
neighborhood D4�T2

x0
of the invariant fiber T2

x0
D p�1.x0/, the diffeomorphism F

is given by

.x;y/ 7! .A0˚A0.x/;A2yC'.x//:

In order to apply the Main Theorem at Tx0
we need to further modify F in order to

bring it locally fiberwise form (2-3). Namely, we replace F with a diffeomorphism F 0

which coincides with F outside D4 �T2
x0

and is given by

.x;y/ 7! .A0˚A0.x/;A2yC .x//

2This is simply a restatement of the domination assumption (2-1).
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on D4 �T2
x0

, where  coincides with ' near the boundary @D4 and equals 0 on a
smaller disk, so that on the smaller neighborhood F 0 has the locally fiberwise form

.x;y/ 7! .A0˚A0.x/;A2y/:

Because this procedure does not affect the base map f , the diffeomorphism F 0 is still
partially hyperbolic by [6, Theorem 8.2]. Now both the Main Theorem and Theorem 3.1
could be applied at x0 and yield partially hyperbolic diffeomorphisms yF 0W yM ! yM

and yF 0CW yMC!
yMC .

Example 4.3 (nilmanifold automorphisms) Recall that, by work of Mal’cev [12],
any compact nilmanifold M can be represented as a homogeneous coset space

M DN=�;

where N is a simply connected nilpotent Lie group and � �N is a cocompact lattice.
Further, again by [12], if Z.N /'Rd is the center of N , then �\Z.N / is a cocompact
lattice in Z.N / and, hence, Z.N /=� \Z.N / can be identified with the torus Td.
Note that Z.N / acts on N by left translation and this action descends to a free action
of Td on M. Hence M is the total space of a principal fiber bundle

Td
!M !X;

where X DN=� �Z.N / is a nilmanifold modeled on the simply connected nilpotent
Lie group N=Z.N /. This bundle is nontrivial provided that N is nonabelian.

Now let C W N!N be an automorphism and let B be its restriction to the characteristic
subgroup Z.N /. Assume that C preserves a cocompact lattice � and that B is
hyperbolic. Then C induces a nilmanifold automorphism C W M!M and B becomes
a hyperbolic toral automorphism. Further, we can view C as B –diffeomorphism over
the quotient automorphism of X.

Some nilmanifold automorphisms of this type can be perturbed to B –diffeomorphisms
to which the Main Theorem applies. For instance, such examples can be found within
the classical Borel–Smale family of Anosov automorphism of a 6–dimensional 2–step
nilmanifold M (see the original description [19] and [2] for a thorough exposition).
Namely, given a hyperbolic automorphism AW T2!T2 there exists an automorphism
F W M !M which fibers over A˚A,

M

��

F
// M

��

X
A˚A

// X
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Now, given an invariant fiber T2
x0

, one can perform exactly the same modifications
in the neighborhood of T2

x0
to obtain a partially hyperbolic A2 –diffeomorphism to

which the Main Theorem and its modifications apply.

4.2.3 Further surgery examples of partially hyperbolic B –diffeomorphisms We
would like to point out that connect-summing along invariant tori as explained in
Section 3.2.2 works well for all of the above examples. Indeed, the local form of base
map A0˚A0 near the fixed point is the same for the latter examples and we can also
choose the same local form for the product example. Further, by arranging for multiple
invariant fibers, repeated connected sums can be taken, which yield partially hyperbolic
A2 –diffeomorphisms of nontrivial principal T2 –bundles over manifolds of the form
M # nK3 # mT4, where M is an arbitrary manifold coming from the product example.

Finally we notice that the “self-connected sum” construction also applies to these
examples with two or more invariant fibers.

4.2.4 Examples of fiberwise Anosov flows Here we describe examples of fiberwise
Anosov flows on torus bundles Td !M !X whose structure group is SL.d;Z/ to
which the flow version of the Main Theorem applies.

Example 4.4 (suspension) Consider a product f �BW M �Td !M �Td, where
BW Td!Td is an automorphism. Let .M �Td /f�B be the mapping torus of f �B ,
ie

.M �Td /f�B DM �Td
� Œ0; 1�=.x;y; 1/�.f .x/;By; 0/:

We view .M �Td /f�B as the total space of the torus bundle over the mapping torus
Mf of f W M !M. Then the suspension flow ˆt W .M �Td /f�B! .M �Td /f�B

fibers over the suspension flow 't W Mf !Mf of f W M !M :

.M �Td /f�B

��

ˆt
// .M �Td /f�B

��

Mf

't

// Mf

Moreover, if B is hyperbolic then ˆt is fiberwise Anosov.

Further assume that f has a hyperbolic fixed point p and is given by x 7! Ax in a
chart centered at p . Then the restriction of 't to the orbit of p is the unit-speed flow
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on the circle S1 and the restriction of the fiberwise Anosov flow is the suspension flow
of B ; that is,

Td
B

��

ˆt
B
// Td

B

��

S1 't

// S1

It is easy to see that, after choosing appropriate coordinates in the neighborhood of the
invariant submanifold Td

B
� .M �Td /f�B , the flow ˆt is given by

.x;y/ 7! .Atx; ˆt
B.y//;

where At is the hyperbolic saddle whose time-1 map is A and ˆt
B

is the suspension
flow on Td

B
. Now we assume that B dominates A as in (4-2) (for example one can

pick f first and then pick B so that (4-2) holds). Then the Main Theorem applies to ˆt

and yields a fiberwise Anosov flow ŷ t W . 2M �Td /f�B! . 2M �Td /f�B by blowing
up the mapping torus Td

B
. One can check that the resulting flow is the suspension of

the map yf �BW yM �Td ! yM �Td, where yf is the blow-up of f at p . However,
this example still has value as a building block for connected sum constructions.

Of course, more generally, one can use any of the discrete time fiberwise Anosov
examples discussed before in place of B in the suspension construction.

Example 4.5 (higher-rank suspension) Another way to construct examples, which
allows one to dispose of taking the product with f , is to consider higher-rank (k � 3)
suspensions.

Let B1;B2; : : : ;Bk be commuting automorphisms of the torus Td. They define an
action BW Zk ! Aut.Td /. Let Zk act on Td �Rk by

xn.x; v/D .B.xn/x; v� xn/:

The higher-rank mapping torus

Td

B
D .Td

�Rk/=Zk

is a smooth closed manifold and the action of Rk on Td �Rk by translations,

u.x; t/D .x; t Cu/;
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descends to an Rk –action F W Rk �Td

B
! Td

B
. This action fibers over the action of

Rk on Tk :

Td

B

��

F.u/
// Td

B

��

Tk
u
// Tk

Given a nonzero primitive integral vector xn2Zk , we obtain the flow ˆt
xnW T

d
B
!Td

B
by

taking the restriction ˆt
xnDF.txn/, which ˆt

xn fibers over a periodic flow on Tk. Assume
that B.xn/ is hyperbolic (which is easy to arrange) and pick an ˆt

xn –invariant mapping
torus N

def
D Td

B.xn/
� Td

B
over a periodic orbit in the base. The normal neighborhood

of N can be identified with Dk�1 �N and, locally, the flow is given by

.x;y/! .x; ˆt
N .y//;

where ˆt
N

is the suspension flow of B.xn/. We can perturb the flow locally so that the
local form becomes

.x;y/! .Atx; ˆt
N .y//;

where At is a “slow” hyperbolic saddle. Now the Main Theorem applies to the Anosov
submanifold N and yields a partially hyperbolic flow on yTd

B
. Further, one can form a

connected sum of this example with Example 4.4.

Example 4.6 (Tomter example: suspension of the geodesic flow) Let GDPSL.2;R/
and let � �G be a torsion-free cocompact lattice acting on G by right multiplication.
The geodesic flow d t on the unit tangent bundle of a closed surface T 1S DG=� is
given by left multiplication by diag.et=2; e�t=2/. Let �W �!GL.4;Z/ be a represen-
tation. Then the semidirect product � �Ë Z4 acts on the right on G �R4 by

.
; xn/W .g; v/ 7! .g
; �.
�1/vCxn/

This action is smooth, free, properly discontinuous and cocompact. Therefore the
quotient M

def
D G �R4=� �Ë Z4 is a closed smooth manifold and it is easy to see that

M is the total space of the fiber bundle T4!M ! T 1S whose structure group is
Im.�/�GL.4;Z/. Clearly the action of � �ËZ4 fibers over the action of � on G and
the product flow d t � idW .g; v/ 7! .d tg; v/ descends to a flow ˆt W M !M which
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fibers over the geodesic flow:

M

��

ˆt

// M

��

T 1S
d t

// T 1S

Tomter [21, Chapter 4] proved that one can arrange the representation � so that this
flow is fiberwise Anosov (and, in fact, a homogeneous Anosov flow).

Further we assume that the fiberwise hyperbolicity dominates the geodesic flow in
the base so that ˆt is a partially hyperbolic with center distribution being transverse
to the torus fibers. Let ˛ be a closed geodesic in T 1S and let BW T4 ! T4 be
the monodromy automorphism over ˛ . Then the mapping torus T4

B
over ˛ is a ˆt –

invariant Anosov submanifold and a calculation shows that in a neighborhood D2�T4
B

the flow ˆt is given by

.x1;x2;y/ 7! .etx1; e
�tx2; ˆ

t
By/;

where ˆt
B

is the suspension flow on T4
B

. Now assume that the length T of ˛ is
sufficiently small, so that B dominates diag.eT ; e�T /. Under this assumption the
Main Theorem applies to T4

B
and yields a partially hyperbolic fiberwise Anosov flow

ŷ t W yM ! yM over the blow-up of the geodesic flow along ˛ .

Remark 4.7 Verifying the above assumptions — partial hyperbolicity and existence
of a short geodesic — is a nontrivial matter. The difficulty comes from the fact that
Tomter’s approach is to work with an arithmetic lattice � � G , so that �W � !
GL.4;Z/ extends to a representation �W G!GL.4;R/. Then M is the homogeneous
space G �Ë R4=� �Ë Z4 and ˆt is a homogeneous flow for which Tomter is able to
verify the fiberwise Anosov property. The author plans a separate paper on fiberwise
Anosov dynamical systems where the Tomter example will be revisited and the above
assumptions verified. The author also plans to describe further fiberwise Anosov flows
which are not homogeneous and to which the Main Theorem can be applied. (Note
that the above examples are homogeneous.)

Remark 4.8 According to our definitions, the time-1 map of a fiberwise Anosov
flow is a fiberwise Anosov diffeomorphism. Hence the discrete time version of the
Main Theorem applies to the time-1 maps of the above examples. Also one can form
partially hyperbolic connected sums of these time-1 maps with the product example,
Example 4.1.
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5 The proof of the main theorem

5.1 A family of Riemannian metrics on zDk

Let "0 be a small positive constant. We begin the proof with a description of a family of
Riemannian metrics g" for " 2 .0; "0/ on zDk (2-5). These metrics will be constructed
so that each metric g" in the family coincides with the canonical flat metric near the
boundary of zDk and restricts to the round metric of curvature "�2 on RPk�1 � zDk.

First we give an alternate description of zDk given by (2-5) as a quotient manifold.
Consider

Dk
D f.x; r.x// W x 2Dk ; x 2 r.x/g;

where r.x/ is the ray based at 0 and passing through x . Polar coordinates on Dk yield
the identification Dk ' Sk�1 � Œ0; 1/. Under this identification, the map Dk ! zDk

which sends the ray to the unique line containing the ray becomes the quotient map

Sk�1
� Œ0; 1/! Sk�1

� Œ0; 1/=�

with the gluing � given by .s; 0/� .�s; 0/, where s 7! �s is the antipodal map.

Let �W Œ0; 1/! RC be a smooth function which is C1–flat at 0 and let ds2 be the
standard round metric of curvature 1 on Sk�1. Then the warped metric

dt2
C �.t/2ds2

(see eg [15, Chapter 1]) on Dk factors through the quotient map to a smooth Riemannian
metric on zDk. Hence we can define the family of metrics g" for " 2 .0; "0/ on zDk in
the warped form

g" D dt2
C �".t/

2ds2;

where �"W Œ0; 1/!RC is chosen so that

�".t/D

�
" if t � 1

2
";

t if t � ";

and

(5-1) t � �".t/� " for t 2
�

1
2
"; "
�
:

Let canDdx2
1
Cdx2

2
C� � �Cdx2

k
be the canonical Euclidean metric on Dk. In the polar

coordinates .t; s/2 Œ0; 1/�Sk�1, this metric takes the warped form canD dt2C t2ds2.
Hence, by the definition of g" , the blow-down map � W .zDk ;g"/! .Dk ; can/ is an
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isometry when restricted to f.t; s/ W t > "g. Also note that the restriction of g" to˚
.t; s/ W t < 1

2
"
	

is the direct sum dt2C "2ds2.

5.2 Basic domination estimate

Here we will prove a basic lemma, which is the core for the proof of the partial
hyperbolicity of yf W yM ! yM.

Recall that AW Dk ! Dk is a hyperbolic linear automorphism and zAW zDk ! zDk is
the induced diffeomorphism introduced in Section 2.2.3

Because Ec is “horizontal” on N , the domination assumption (2-1) implies that

�0 �minfj�j W � 2 spec.A/g; �0 �maxfj�j W � 2 spec.A/g:

Hence, again by (2-1) (note the strict inequality), there exists � > 0 such that if we let

� Dmaxfj�j W � 2 spec.A/gC �; � Dminfj�j W � 2 spec.A/g� �;

then, by the second inequality of (2-1),

(5-2) � <
�

�
<
�

�
< �:

Denote by k � k" the norm induced by g" .

Lemma 5.1 Given the induced map zA and the family of metrics g" as above, there
exists a constant C > 0 (independent of ") such that, for any finite orbit

fx; zAx; zA2x; : : : ; zAnxg � zDk

and any v 2 Tx
zDk,

C�1
�
�

�

�n
kvk" � kD zA

nvk" � C
�
�

�

�n
kvk":

For the proof of the lemma, recall that .zDk ;g"/ is partitioned into three subdomains4

zDk
>" D f.t; s/ 2

zDk
W t > "g;

zDk
Œ"=2;"� D

˚
.t; s/ 2 zDk

W t 2
�

1
2
"; "
�	
;

zDk
<"=2 D

˚
.t; s/ 2 zDk

W t < 1
2
"
	
;

3More precisely, AW Rk !Rk is a hyperbolic linear automorphism and we abuse notation by writing
AW Dk ! Dk for the restriction AjA�1.Dk / . Such abuse of notation is harmless because we are only
interested in local dynamics.

4We will continue using subscript decorations to represent subdomains with various restrictions on the
radial coordinate.
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where the first one is flat, the second one is a “transition” domain, and the last one is met-
rically a product. Because A is hyperbolic, any finite orbit fx; zAx; zA2x; : : : ; zAnxg �
zDk can be split into five segments (some of which could be empty),

(5-3) fx; zAx; zA2x; : : : ; zAnxg DO1[O2[O3[O4[O5;

where O1 [O5 �
zDk
>" , O2 [O4 �

zDk
Œ"=2;"�

D
˚
.t; s/ 2 zDk W t 2

�
1
2
"; "
�	

and O3 �

zDk
<"=2

D
˚
.t; s/ 2 zDk W t < 1

2
"
	

. Using this partition we will reduce the proof of
Lemma 5.1 to the following special cases.

Lemma 5.2 Lemma 5.1 holds true if one additionally assumes that

fx; zAx; zA2x; : : : ; zAnxg � zDk
>":

In fact, a better estimate holds:

C�1�n
kvk" � kD zA

nvk" � C�n
kvk":

This statement easily follows from basic linear algebra and the fact that the metric g"

on zDk
>" is the standard Euclidean metric.

Lemma 5.3 Lemma 5.1 holds true if one additionally assumes that

fx; zAx; zA2x; : : : ; zAnxg � zDk
<"=2:

We will prove the above lemma later. Now we proceed with the proof of Lemma 5.1,
assuming Lemma 5.3.

Proof of Lemma 5.1 Denote by k � k the flat metric on zDknRPk�1, that is, the
pullback ��.can/ from .Dknf0g; can/. Let y 2 zDk

Œ"=2;"�
and v 2 Ty

zDk. Then the
bounds (5-1) imply that

1�
kvk"

kvk
� 2:

A similar bound holds on a larger domain. Namely, for

y 2 zDk
Œ"=2;"�[

zA.zDk
Œ"=2;"�/[

zA�1.zDk
Œ"=2;"�/

and v 2 Ty
zDk,

(5-4) 1�
kvk"

kvk
�K;
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where K depends on A but is independent of ". Indeed, this is easy to see from the fact
that

�
zDk
Œ"=2;"�

[ zA.zDk
Œ"=2;"�

/[ zA�1.zDk
Œ"=2;"�

/
�
\ zDk

t<c" D¿ for some c D c.A/ < 1
2

.

Now we can obtain estimates for the differential D zA as follows: Let

y 2 zDk
Œ"=2;"�[

zA�1.zDk
Œ"=2;"�/

and v 2 Ty
zDk. Then, using (5-4) and the obvious estimate

jA�1
j
�1
�
kD zAvk

kvk
� jAj;

we have

kD zAvk"

kvk"
D
kD zAvk"

kD zAvk
�
kD zAvk

kvk
�
kvk

kvk"
�KjAj;

kD zAvk"

kvk"
D
kD zAvk"

kD zAvk
�
kD zAvk

kvk
�
kvk

kvk"
�K�1

jA�1
j
�1:

(5-5)

Recall that the finite orbit is decomposed into five segments (5-3). It a standard fact,
which follows from dynamics of a hyperbolic saddle, that the lengths of O2 and O4

are uniformly bounded by an integer which depends on A. Because A commutes with
scaling, this integer is, in fact, independent of ".

We can decompose kD zAnvk=kvk into the product of five norm ratios according to
the splitting (5-3) and notice that the terms which correspond to O1 , O3 and O5 are
taken care of by Lemmas 5.2 and 5.3. The terms corresponding to O2 and O4 are
uniformly bounded by a constant which is independent of " because the lengths of these
orbit segments are uniformly bounded and the uniform estimates (5-5) hold for these
orbit segments. Also notice that the transition ratios kD zAvk=kvk for v 2 Ty

zDk, when
y 2O1 and f .y/ 2O2 or y 2O2 and f .y/ 2O3 etc, are also taken care of by (5-5).
By putting these estimates together we obtain the posited estimate of Lemma 5.1 with
a constant C > 0 which is independent of ".

Proof of Lemma 5.3 Recall that .zDk
<"=2

;g"/ is isometric to��
Sk�1

�
�
0; 1

2
"
��
=�; "2ds2

C dt2
�
:

For the purpose of estimating the expansion rate of zAW zDk
<"=2
! zDk

<"=2
the identification

� makes no difference. Hence we can consider the induced map on�
Sk�1

�
�
0; 1

2
"
�
; "2ds2

C dt2
�
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instead, which we still denote by zA. Also note that
�
Sk�1�

�
0; 1

2
"
�
; "2ds2Cdt2

�
iso-

metrically embeds into .Sk�1� Œ0;1/; "2ds2Cdt2/ and it would be more convenient
notationwise to consider

zAW .Sk�1
� Œ0;1/; "2ds2

C dt2/! .Sk�1
� Œ0;1/; "2ds2

C dt2/:

Because AW Rk !Rk maps rays to rays, the diffeomorphism zA has the skew product
form

zA.s; t/D . yAs; a.s/t/;

where yAW Sk�1! Sk�1 is the projectivization of A and aW Sk�1!RC is given by

a.s/D
kAvk

kvk
; where v D .s; 1/:

Claim 5.4 For any x 2 Sk�1 and any v 2 TxSk�1, the following estimate holds:

C�1
�
�

�

�n
kvk � kD yAnvk � C

�
�

�

�n
kvk;

where k � k2 D ds2.

Note that this claim is a particular case of Lemma 5.3 for vectors tangent to Sk�1�f0g�

Sk�1 � Œ0; "/.

We proceed with the proof of Lemma 5.3, assuming Claim 5.4. Let

An.s/D a.s/a. yAs/a. yA2s/ � � � a. yAn�1s/:

From the definition of � and � we have that there exists c1 > 0 such that

c�1
1 �n <

kAnvk

kvk
< c1�

n for all n> 0;

which implies

(5-6) c�1
1 �n <An.s/ < c1�

n for all n> 0:

Now let f.s; t/; zA.s; t/; : : : ; zAn.s; t/g � zDk
<"=2

be a finite orbit. Note that

(5-7) zAn.s; t/D . yAns;An.s/t/

and, hence, the second coordinate must be less than 1
2
":

(5-8) An.s/t < 1
2
":
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By differentiating (5-7) we obtain a lower diagonal form for the differential,

D.s;t/
zAn
D

�
Ds
yAn 0

trAn.s/ An.s/

�
:

We already have estimates on the diagonal entries, but we also need to control the
gradient of An.s/. Recall that k � k2 D ds2. By taking the gradient of the product we
have

krAn.s/k D





n�1X
iD0

An.s/

a. yAi.s//
r.a ı yAi/.s/






� c2A

n.s/

n�1X
iD0

kr.a ı yAi/.s/k � c2A
n.s/

n�1X
iD0

jD yAi
sj � kra. yAis/k

� c3A
n.s/

n�1X
iD0

jD yAi
sj � c4A

n.s/

n�1X
iD0

�
�

�

�i
D c5A

n.s/
�
�

�

�n
;

where for the first inequality we have used the fact that a is uniformly bounded from
below, for the third inequality we have used the fact that krak is bounded and for the
fourth inequality we have invoked Claim 5.4.

Let v D .vs; vt / 2 T.s;t/ zD
k
<"=2

, where vs 2 TsSk�1 and vt 2 Tt

�
0; 1

2
"
�
' R. Using

Claim 5.4, the bound (5-6), the above bound on the gradient and the obvious inequalities
jvt j � kvk" for "kvsk � kvk" , we obtain

kDs;t
zAnvk2" D "

2
kDs
yAnvsk

2
CjAn.s/vt C thrAn.s/; vsij

2

� "2C 2
�
�

�

�2n
kvsk

2
C
ˇ̌
c1�

n
jvt jC tkrAn.s/kkvsk

ˇ̌2
� C 2m

�
�

�

�2n
kvk2" C

ˇ̌̌
c1�

n
kvk"C tc5A

n.s/
�
�

�

�n
kvsk

ˇ̌̌2
� C 2

�
�

�

�2n
kvk2" C

ˇ̌̌
c1�

n
kvk"C c5

"

2

�
�

�

�n
kvsk

ˇ̌̌2
� C 2

�
�

�

�2n
kvk2" C

ˇ̌̌
c1�

n
kvk"C c5

�
�

�

�n
kvk"

ˇ̌̌2
� c6

�
�

�

�2n
kvk2" :

Hence, we have established the posited upper bound. The proof of the lower bound
takes the same route by rewriting the lower bound as an upper bound on the differential
of zA�1 and using the same steps. (Note that the main auxiliary bounds (5-6) and
the bounds in Claim 5.4 are symmetric.) Hence, the proof of Lemma 5.3 is complete
modulo Claim 5.4.
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Proof of Claim 5.4 This claim is well known and easy; however, we couldn’t locate
a reference in the literature.

Realize .Sk�1; k � k/ as the unit sphere in .Rk ; can/. Then, given v 2 TsSk�1, we can
decompose v 7!D yAnv as the composition

.s; v/ 7! .Ans;DAnv/ 7!

�
Ans

kAnsk
;

DAnv

kAnsk

�
7! . yAns;D yAnv/;

where the first map is self-explanatory, the second is a homothety and the third one is
just the projection on the tangent space T yAns

Sk�1 (and hence has norm � 1). Hence,
we have

kD yAnvk �
kDAnvk

kAnsk
� C

�
�

�

�n
:

The proof of the lower bound is analogous.

5.3 The proof of partial hyperbolicity

5.3.1 The scheme The strategy of the proof is fairly straightforward. The stable, the
unstable and the center distributions for yf — yEs, yEu and yEc — away from the excep-
tional set are pull-backs by the blow-down map � W yM !M and extend continuously
to the exceptional set. It is crucial to consider special Riemannian metrics yg" on yM, so
that .zDk�N;g"/� . yM ; yg"/ for "2 .0; "0/ are isometric embeddings. The exponential
estimates for the action of D yf along yEs and yEu are easy and the main difficulty
is to control D yf j yEc in the neighborhood of the exceptional set RPk�1 �N � yM.
Because the center distribution is close to the “horizontal” distribution near RPk�1�N ,
Lemma 5.3 provides control on D yf j yEc in the neighborhood of RPk�1�N . However,
an orbit can return to this neighborhood infinitely often and, hence, the constant C > 0

of Lemma 5.3 could contribute to the exponential rate. This problem is addressed
by letting "! 0. For smaller " the orbit would spend a larger time outside of the
neighborhood of RPk�1 �N where the metric was altered. This implies that the
exponential contribution of C > 0 can be made arbitrarily close to 1, which yields
partial hyperbolicity.

5.3.2 Riemannian metrics and partial hyperbolicity Recall that we have smoothly
identified a neighborhood of N with Dk �N. Let us equip M with a Riemannian
metric g such that the restriction of g to Dk�N is the direct sum gD canCgN, where
gN is a Riemannian metric on N. Recall that f W M !M is partially hyperbolic
and the inequalities (1-1) hold with respect to some Riemannian metric. For the newly
chosen metric g , the inequalities (1-1) do not necessarily hold, however there are
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K > 0 and ı > 0 such that, for all n> 0,

kDf n.vs/kg �K.�� ı/n;

K�1.�C ı/n � kDf n.vc/kg �K.�� ı/n;

K�1.�C ı/n � kDf n.vu/kg

(5-9)

for all unit vectors vs 2Es, vc 2Ec and vu 2Eu. Note that the existence of positive ı
comes from the strict inequalities (1-1) and compactness of M.

Now, for each "2 .0; "0/ equip yM with the Riemannian metric yg" which coincides with
g"CgN on zDk�N and with g elsewhere. Note that the blow-down map � W . yM ; yg"/!

.M;g/ is an isometry on the complement of zDk
<" �N. Denote k � k2" D yg". � ; � /. To

establish partial hyperbolicity of yf W yM ! yM, we will show that there exists ı > 0

and a D yf –invariant splitting T yM D yEs˚ yEc ˚ yEu, an " > 0 and yC > 0 such that,
for all n> 0,

kD yf n.vs/k" � yC .�� ı/
n;

yC�1.�C ı/n � kD yf n.vc/k" � yC .�� ı/
n;

yC�1.�C ı/n � kD yf n.vu/k"

(5-10)

for unit vectors vs 2 yEs, vc 2 yEc and vu 2 yEu.

5.3.3 The stable and unstable distributions The restriction � W yM nRPk�1� N !

M nN of the blow-down map is a diffeomorphism. Hence, away from the exceptional
set we can pull back the stable and unstable distributions:

yEs
j yMnRPk�1�N

def
D D��1Es

jMnN ; yEu
j yMnRPk�1�N

def
D D��1Eu

jMnN :

Recall that, by the locally fiberwise assumption (2-4), the distributions Es and Eu are
tangent to the N –fibers in the neighborhood Dk �N �M. It follows that yEs and
yEu are also tangent to the N –fibers in the neighborhood zDk �N � yM. Therefore,

the distributions yEs and yEu extend continuously to the exceptional set RPk�1 �N .

Notice that, by definition of yg" , if v 2 yEs ˚ yEu.x/, then kvk" D
p

gN .v; v/. It
immediately follows that (5-9) implies that, for all n> 0,

kD yf n.vs/k" �K.�� ı/n;

K�1.�C ı/n � kD yf n.vu/k"

for all unit vectors vs 2 yEs and vu 2 yEu. Hence, it remains to establish the middle
inequality of (5-10).
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5.3.4 The center distribution Let H be the “horizontal” distribution tangent to
the Dk –fibers in the neighborhood Dk � N � M and let yH be the “horizontal”
distribution tangent to the zDk –fibers in the neighborhood zDk�N � yM. By Remark 2.1,
EcjN DH jN.

As before, away from the exceptional set define

yEc
j yMnRPk�1�N

def
D D��1Ec

jMnN :

Because the angle †g.E
c.x/;H.x//! 0 as x approaches the exceptional set N , we

also have that †yg"
. yEc.x/; yH .x//!0 as x approaches the exceptional set RPk�1�N .

Hence, yEc extends continuously to the exceptional set and

yEc
jRPk�1�N D

yH jRPk�1�N :

5.3.5 The local center estimate Lemma 5.1 provides exponential estimates for the
action of D yf on yH . Namely, given a finite orbit fx; yf x; : : : yf nxg � zDk �N and a
vector vh 2 yH .x/, Lemma 5.1 gives

(5-11) C�1
�
�

�

�n
kvh
k" � kD yf

nvh
k" � C

�
�

�

�n
kvh
k":

The inequalities (5-2) imply that there exists a ı1 > 0 such that

�C ı1 <
�

�
<
�

�
< �� ı1:

Hence, (5-11) implies

(5-12) C�1.�C ı1/
n
kvh
k" � kD yf

nvh
k" � C.�� ı1/

n
kvh
k":

The goal now is to obtain the same estimates for vc 2 yEc near the exceptional set,
where yEc is close to yH .

Pick a small ! > 0 and let x 2 .zDk
<! �N /n.RPk�1 �N /. Pick a vc 2 yEc.x/ and

decompose vc D vhC vv, where vh 2 yH .x/ and vv is the “vertical vector” tangent
to the N –fiber through x . We can pull back this splitting of vc to T��1x.D

k �N /

using � to the splitting xvc D xvhCxvv. Then we have

kvvk"

kvhk"
�
kxvvk

kxvhk
� c1!

˛ for ˛ 2 .0; 1/;

where the first inequality is by the definition of the metric g" and the second one is
by Hölder continuity of Ec at N (in fact, any uniform modulus of continuity would
be sufficient for our purpose). This estimate on the ratio of “vertical” and “horizontal”
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components of vc makes it possible to compare the expansion of vc to that of vh as
follows:

(5-13)
kD yf vck2"

kvck2"

�
kD yf vhk2" CkD

yf vvk2"

kvhk2"

�
kD yf vhk2"

kvhk2"

C c2

kvvk2"

kvhk2"

�
kD yf vhk2"

kvhk2"

C c3!
2˛
�
kD yf vhk2"

kvhk2"

.1C c4!
2˛/

�
kD yf vhk2"

kvhk2"

.1C
p

c4!
˛/2:

The constant c2 is the bound on the expansion of “vertical” vectors, which is indepen-
dent of " because k�k" does not depend on " for “vertical” vectors. The constant c3=c4

is the upper bound on the expansion of “horizontal” vectors, which is independent of "
by (5-5).

The estimate (5-13) implies that, provided the orbit stays in zDk
<! �N , we can replace

vh by vc in (5-12) after adjusting the upper bound by a small exponential term:

kD yf nvc
k" � C.�� ı1/

n.1C
p

c4!
˛/nkvc

k":

The analogous lower bound can be established in a similar way. We conclude that
there exists an ! > 0 and a ı2 > 0 such that, for any " < ! , any finite orbit
fx; yf x; : : : ; yf nxg � zDk

<! �N and any vector vc 2 yE.x/, we have

(5-14) C�1.�C ı2/
n
kvc
k" � kD yf

nvc
k" � C.�� ı2/

n
kvc
k":

5.3.6 The global center estimate First note that (5-12) takes care of the posited
center estimate (5-10) in the case when x 2 RPk�1 �N and vh 2 yEc.x/ D yH .x/.
Now we will explain how (5-14) implies the posited center estimate on the complement
of the exceptional set.

Recall that there exists c D c.A/ > 1 such that

(5-15) yf .zDk
" �N /[ yf �1.zDk

<" �N /� zDk
<c" �N:

We pick ! > 0 so that (5-14) holds and then we consider all " 2 .0; !=c/. Cover yM
by two open sets U" D zDk

<c" �N and V" D yM nzDk
<" �N .

Now pick any x 2 yM which is not in the exceptional set and consider a finite orbit
segment fx; yf x; : : : ; yf n�1xg. This orbit can be partitioned into a finite number of (dis-
joint) segments Oy;i D fy; yf y; : : : ; yf iyg such that each segment is entirely contained
either in U" or in V" (and the orbit segments alternate between U" and V" ). Moreover,
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because of (5-15), this partition can be chosen so that, for each segment Oy;i , the next
point in the orbit yf iC1y also belongs to the open set (U" or V" ) containing Oy;i .

Now, given a vc 2 yEc.x/, we have the decomposition

(5-16)
kD yf nvck"

kvck"
D

Y
Oy;i

kD yf iC1vc
yk"

kvc
yk"

;

where vc
y 2
yEc.y/ is the image of vc under the appropriate iterate. Recall that we have

estimates for each factor in the product. Namely, if Oy;i [
yf iC1y � U" � zDk

<! then

C�1.�C ı2/
n
�
kD yf iC1vc

yk"

kvc
yk"

� C.�� ı2/
n

by (5-14). And if Oy;i [
yf iC1y � V" then, from partial hyperbolicity of f (5-9) and

the fact that ��g D yg" on V, we have

K�1.�C ı/n �
kD yf iC1vc

yk"

kvc
yk"

�K.�� ı/n:

Both of these estimates have constants (C and K ) which, of course, will contribute
exponentially to the product (5-16). However both constants are independent of ".
(Recall that C comes from Lemma 5.1.) Now, by sending " to 0, we shrink the open
neighborhood U" of N . The decomposition into orbit segments is, of course, changing.
And it follows that once an orbit leaves U" it takes a longer time to return to U" again.
Hence, by choosing sufficiently small ", the orbit segments Oy;i � V" can be made
arbitrarily long. It follows that the contribution of C and K to the product (5-16)
can be “absorbed” by a small adjustment of the exponential rate of the estimate on
these longer pieces in V" . (This are very standard inequality manipulations and we
suppress the details.) We conclude that there exists ı3 > 0 and an " > 0 such that, for
all vc 2 yEc,

.CK/�1.�C ı3/
n
kvc
k" � kD yf

nvc
k" � CK.�� ı3/

n
kvc
k":

Remark 5.5 We would like to point out that localization at the exceptional set played
a significant role twice. First, we had chosen a small ! so that the linear estimate
for the center given by Lemma 5.1 yields a nonlinear estimate along yEc near the
exceptional set (5-14). Second, we had to shrink the region U" where the metric yg"
differs from g so that partial hyperbolicity away from U" takes care of contributions
of the constants C and K . Uniform control on yg" was, of course, crucial for this
argument, namely the fact that C is independent of ".
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5.4 Complex blow-up

Here we explain how the proof can be adapted to the case of complex blow-up to yield
Theorem 3.1.

5.4.1 The Fubini–Study metric and a family of Riemannian metrics on the sphere
Let S2k�1 � Ck be the unit sphere equipped with the standard round metric ds2.
The circle S1 � C acts on S2k�1 by scalar multiplication ei' � .z1; z2; : : : ; zk/ 7!

.ei'z1; e
i'z2; : : : ; e

i'zk/. This action makes S2k�1 into the total space of the (gener-
alized) Hopf fibration

S1
! S2k�1 H

�!CPk�1:

Moreover, the S1 –action is isometric.

Let X be the 1–dimensional distribution tangent to the orbits of S1 –action and let
X? be the orthogonal distribution. We can decompose ds2 accordingly as

ds2
D d'2

C h;

where d'2 is the metric along the S1 –fibers and h is the metric on the orthogonal
complement. More precisely, if prW T S2k�1!X is the orthogonal projection then

d'2.v1; v2/D ds2.pr.v1/; pr.v2//

and h is the difference

h.v1; v2/D ds2.v1� pr.v1/; v2� pr.v2//:

The restriction hjX? is a positive definite symmetric bilinear form. Clearly the S1 –
action preserves X? and hjX? . Hence we can define the Fubini–Study metric xh on
CPk�1 by pushing forward h:

xh.DH.v1/;DH.v2//D h.v1; v2/ for v1; v2 2X?:

Also, for each �� 0 let
h� D �

2d'2
C h:

For � > 0 this yields a Riemannian metric and for �D 0 a degenerate metric with
circle fibers of zero length. Note that for each �� 0 the S1 –action is isometric and
H W .S2k�1; h�/! .CPk�1; xh/ is a Riemannian submersion. We refer to [15, Sections
1.4 and 2.5] for much more detailed discussion and explicit doubly warped expressions
for the Fubini–Study metric.
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5.4.2 A family of Riemannian metrics on zDk
C

Similarly to the real case, we begin
with the “spherical” blow-up

Dk
C D f.x; r.x// W x 2Dk

C; x 2 r.x/g:

Under the identification Dk
C ' Sk�1 � Œ0; 1/, the map Dk

C!
zDk

C which sends each
real ray r.x/ to the unique complex line containing it becomes the quotient map

(5-17) S2k�1
� Œ0; 1/! S2k�1

� Œ0; 1/=�;

where the relation � is given by the Hopf action of S1 on S2k�1 � f0g.

We define a family of metrics g" for " 2 .0; "0/ on Dk
C in the doubly warped form

g"
def
D dt2

C�".t/
2h�"

D dt2
C�".t/

2hC.�".t/�".t//
2d'2

D dt2
C�".t/

2hC t2d'2;

where �".t/D t�".t/
�1 and �" is a smooth function which satisfies

�".t/D

�
" if t � 1

2
";

t if t � ";

and
t � �".t/� " for t 2

�
1
2
"; "
�
:

We notice that g"jDk
>";C

is the standard Euclidean metric because h1 D ds2. For
t > 0 we clearly have a smooth Riemannian metric. However, when t D 0, the metric
becomes degenerate, namely, g"jS2k�1�f0g D h0 . Because h0 is S1 –invariant, the
metrics g" factor through to true Riemannian metrics on zDk

C , so that the quotient
map (5-17) is an isometry. Abusing the notation, we still denote this family of metrics
on zDk

C by g" . One can check that each g" is indeed a smooth metric at the exceptional
locus CPk�1 � zDk

C by using the standard smooth charts for the blow-up, such as

(5-18) .z1; z2; : : : ; zk/ 7! .z1; z1z2; : : : ; z1zk ; Œ1 W z2 W � � � W zk �/:

5.4.3 Local dynamics near the exceptional set Now we explain that the metrics g"

possess local product structure on zDk
<"=2;C and that zA behaves like a skew product

with respect to this product structure.

The manifold zDk
<"=2;CnCPk�1 is the product S2k�1 �

�
0; 1

2
"
�
. We have the distribu-

tions X and X? on each sphere fiber S2k�1 � ftg and we can define the assembled
distribution

E D
[

t2.0;"=2/

X?jS2k�1�ftg:
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Also let
F D

@

@t
˚

[
t2.0;"=2/

X jS2k�1�ftg:

Since the splitting T S2k�1 DX ˚X? is an orthogonal splitting with respect to every
metric h� and g" has warped form, the splitting T .zDk

<"=2;CnCPk�1/ D F ˚E is
orthogonal with respect to g" . This splitting smoothly extends to CPk�1, so that

EjCPk�1 D T CPk�1
� T zDk

<"=2;CjCPk�1 :

This again can be seen using charts. For example, the splitting E˚F.Œ1; 0; : : : ; 0�/

when expressed in the chart (5-18) becomes T Ck�1˚T C.0; 0; : : : ; 0/, where Ck�1D

f.z2; z3; : : : zk/g and C D f.z1; 0; : : : ; 0/g.

Distribution F integrates to complex 1–dimensional disks D1
<"=2;C and the restriction

of g" to these disks is given by dt2C t2d'2. Hence, we can view zDk
<"=2;C as a fiber

bundle
D1
<"=2;C!

zDk
<"=2;C!CPk�1

with flat fibers. Moreover, the projection map .zDk
<"=2;C;g"/ ! .CPk�1; xh/ is a

Riemannian submersion.

Our next observation is that the induced map zAW zDk
<"=2;C !

zDk
<"=2;C preserves F.

Indeed, by linearity, A preserves the real rays (integral lines of @=@t ) and, since A is
complex-linear, it preserves X. Hence, zA fits into the commutative diagram

(5-19)

zDk
<"=2;C

��

zA
// zDk
<"=2;C

��

CPk�1
yA
// CPk�1

where yA is the complex projectivization of AW Ck !Ck. Moreover, zA is conformal
on the fibers.5

5.4.4 The estimates The proof of partial hyperbolicity of the diffeomorphism

yf W yMC!
yMC

follows the steps of the proof of the Main Theorem very closely. In particular, the

5For the real blow-up, the situation was similar. We also had a nontrivial interval bundle over RPk�1,
but we had the luxury to pass to the double cover, which trivialized the bundle and allowed us to work
with a true skew product.
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proof of the second part, where the local estimate of Lemma 5.1 is used to establish
partial hyperbolicity, goes through without any alternations at all.

For the proof of the analogue of Lemma 5.1 (relative to the family of metrics g"

constructed above) for zAW zDk
C!

zDk
C , recall (5-16) that we have partitioned the finite

orbit into five orbit segments according to the distance to the exceptional set. Because
g" is flat on zDk

>";C and the transition domain zDk
Œ"=2;"�;C contains only a uniformly

bounded number of points from the orbit, the exact same argument which we have
used for the proof of Lemma 5.1 works again here. Hence, we only need to look at the
domain zDk

<"=2;C , where the metric g" is different in the complex case. Namely, given
a finite orbit fx; zAx; zA2x; : : : ; zAnxg � zDk

<"=2;C and any v 2 Tx
zDk
<"=2;C , we need to

show that there exists a C > 0 (which does not depend on ") such that, for all n> 0,

C�1
�
�

�

�n
kvk" � kD zA

nvk" � C
�
�

�

�n
kvk":

The proof of this bound follows the proof of Lemma 5.3, making use of the structure
of g" on zDk

<"=2;C on which we have elaborated above. Indeed, the bound on the
projectivization,

C�1
�
�

�

�n
kvkxh � kD

yAnvkxh � C
�
�

�

�n
kvkxh;

follows from Claim 5.4 and the fact that yAW CPk!CPk is the quotient of yAW S2k�1!

S2k�1 by the Riemannian submersion .S2k�1; ds2/! .CPk�1; xh/. Further, the func-
tion s 7! kAsk=ksk for s 2S2k�1�Ck factors through to a function aW CPk�1!R

which generates a cocycle AnW CPk�1 ! R which is controlled by �n and �n ;
see (5-6).

Finally we make use of the skew product structure (5-19) (just as we did in the real
case) to establish the posited estimates. Namely, given a v 2 Tx

zDk
<"=2;C , decompose

vD vECvF with vE 2E.x/ and vF 2F.x/. Then the growth of vF is controlled by
the bounds on the cocycle An and the growth of the E–component of vE is controlled
by the bounds on yAn. Since E is not zA–invariant, the vE –component also yields
some “shear growth”, which can be controlled, just as in the proof of Lemma 5.1, by
estimating the gradient rAn.
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