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Lower bounds for Lyapunov exponents
of flat bundles on curves
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Consider a flat bundle over a complex curve. We prove a conjecture of Fei Yu that
the sum of the top k Lyapunov exponents of the flat bundle is always greater than or
equal to the degree of any rank-k holomorphic subbundle. We generalize the original
context from Teichmüller curves to any local system over a curve with nonexpanding
cusp monodromies. As an application we obtain the large-genus limits of individual
Lyapunov exponents in hyperelliptic strata of abelian differentials, which Fei Yu
proved conditionally on his conjecture.

Understanding the case of equality with the degrees of subbundle coming from the
Hodge filtration seems challenging, eg for Calabi–Yau-type families. We conjecture
that equality of the sum of Lyapunov exponents and the degree is related to the
monodromy group being a thin subgroup of its Zariski closure.

37D25

To the memory of Jean-Christophe Yoccoz

1 Introduction

Lyapunov exponents are dynamical analogs of characteristic numbers of vector bundles.
The Lyapunov exponents for the Teichmüller geodesic flow relate the dynamics on
moduli space with the dynamics on flat surfaces. Efficiently computing them is currently
still a challenge, both for strata of the moduli space of flat surfaces and for Teichmüller
curves, including all the Teichmüller curves generated by square-tiled surfaces. Starting
with Kontsevich [20] it was realized that the sum of (ie the sum of the positive)
Lyapunov exponents equals the normalized degree of the Hodge bundle on Teichmüller
curves; see Forni [14], Krikorian [23], Bouw and Möller [3] and Eskin, Kontsevich and
Zorich [11] for versions of this formula, including the case of strata. This observation
generalizes from the variation of Hodge structures over Teichmüller curves to any
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weight-1 variation of Hodge structures (VHS). Presently, irreducible summands of
weight-1 VHS are the only instances where such degree formulas are known. Even the
computation of Filip [13] of the top Lyapunov exponent for families of K3 surfaces can
be subsumed under this observation, if one refers to his proof using the Kuga–Satake
construction.

The main result of this paper is that an inequality for the sum of the top k Lyapunov
exponents holds in great generality. This was first conjectured by Fei Yu [37], but the
scope given here is more general.

Let C D H=� be a hyperbolic Riemann surface of finite area (or equivalently, a
complex quasiprojective curve) with a representation �W �1.C /! GL.V / such that,
if C is noncompact, the monodromies around the cusps �D C nC are nonexpanding,
ie all the eigenvalues lie on the unit circle. This assumption is necessary and also
sufficient for Oseledets’ theorem; see Sections 2.4 and 2.5. To be more precise, we
need to specify a norm on the flat bundle V determined by � . There are two natural
choices: the practical choice (for simulations) is a “constant” norm obtained by parallel
transport along a Dirichlet fundamental domain for � , and the sophisticated choice
of an admissible norm (see Section 2.3 for the precise definition) that has the right
growth at the cusps and compatibility with exterior powers. Oseledets’ theorem is
very insensitive to such choices: we show (Theorem 2.1 and Proposition 2.2; see also
the appendix for the background on measurable cocycles) that both norms satisfy the
integrability condition and compute the same Lyapunov exponents.

For VHS of arbitrary weight we show that the Hodge norm is admissible. Along with
the proof (Proposition 3.1) we give an upper bound for the Lyapunov exponents that is
uniform for all VHS of given weight and rank. However, our estimate is very crude. It
is an interesting problem to prove tight upper bounds for Lyapunov exponents for VHS.

In the setting of a local system V defined by � and a norm as above, we can now state
our main result, Theorem 4.1:

Theorem The parabolic degree of any holomorphic rank-k line bundle E of the
Deligne extension of V provides a lower bound for the sum of the top k Lyapunov
exponents, when normalized as follows:

(1)
kX

iD1

�i �
2 degpar.E/

2g.C /� 2Cj�j
:

Here g.C / is the genus of the curve C and j�j is the number of cusps.
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Here the parabolic degree degpar of a vector bundle is equal to the degree in the case
of unipotent monodromies and is defined in Section 2.1 in general.

A theorem in a similar spirit in rank two was proven previously by Deroin and Du-
jardin [8]. The main theorem of their subsequent paper [6] proves a formula similar
to (1) using Brownian motion techniques, applicable also to a higher-dimensional base
provided that the base is compact.

This theorem has two types of applications. The first is the large-genus limit of Lyapunov
exponents for hyperelliptic strata of abelian differentials (Corollary 5.3, proven by Yu
conditionally on our main theorem).

As preparation for our second application, we show in the last section that the parabolic
degrees of the Hodge bundles of hypergeometric local systems can be easily expressed
in terms of the local exponents; see Section 6.4 for the notions and Theorem 6.1 for
the precise statement.

This second application concerns families of Calabi–Yau threefolds and conjecturally
gives new cases where equality in (1) holds. There is a well-known list of fourteen
rank-4 hypergeometric local systems, including the mirror quintic (see Table 1), that
could be the middle cohomology of a family of Calabi–Yau threefolds with h2;1 D 1.
In seven out of these fourteen examples the monodromy group is thin in the symplectic
group (see Brav and Thomas [4], Singh and Venkataramana [34] and Section 6).

Conjecture The inequality (1) becomes an equality precisely in the seven out of these
fourteen cases where the monodromy group is thin.1

Initially, we stated a more optimistic conjecture on a region in the parameter space for
the local exponents where the equality is attained. This initial conjecture can no longer
be upheld after more detailed numerical experiments by Fougeron [15]. We discuss
this in more detail in Section 6.
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Filip for enlightening discussions around Proposition 3.2, and the referee for sugges-
tions which improved the presentation. We also thank the Max Planck Institute for
Mathematics in Bonn for its hospitality during the preparation of the paper.
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1Simion Filip has recently announced a proof of this conjecture.
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2 Lyapunov exponents for flat bundles with nonexpanding
cusp monodromies

In this section we show that Lyapunov exponents for flat bundles over the geodesic flow
on a (base) curve are defined for a very large class of flat bundles. The only restriction
that we impose is that the monodromies around the boundary points have eigenvalues
of absolute value 1. This (strictly) includes the case of quasi-unipotent monodromies.

We now give the background and the definitions alluded to above. Our base manifold
will always be an algebraic curve C D �nH , not necessarily compact. Let C be the
smooth compactification and �D C nC be the boundary points. The flow will always
be the unit-speed geodesic flow gt on the unit tangent bundle T 1C for the metric of
constant curvature �4 (see Remark 4.4 for the history of this convention) and � will
be the corresponding invariant probability measure.

Let V be a flat bundle over C of rank r . We will denote by .VC ;r/ the associated vec-
tor bundle with its flat connection. We say that V has nonexpanding cusp monodromies
if, for each element  2 �1.C; c0/ homotopic to a simple loop around a point in �,
all the eigenvalues of �. / have absolute value 1. Recall that V has quasi-unipotent
monodromies if, for each element  2 �1.C; c0/ homotopic to a simple loop around a
point in �, there exists some n such that �. /n� Id is nilpotent. Consequently, having
quasi-unipotent monodromy implies nonexpanding cusp monodromies. We show in
Sections 2.4 and 2.5 that this condition is necessary and sufficient for integrability of
the flat bundle V .

The remaining ingredient we need for the definition of a Lyapunov spectrum is a norm
k � k on V . We will define in Section 2.3 a notion of admissible metric h that we
can provide any local system with and that is suitable for metric extensions of line
bundles to C . Such a metric is also the basis for defining Lyapunov exponents for the
flat bundle V . These two notions will be our main hypotheses for the existence of
Lyapunov exponents for flat bundles. Our aim is to show the following norm bound for
the lift Gt of the geodesic flow gt to V .

Theorem 2.1 If V is a flat bundle of C–rank r on C such that the eigenvalues of
monodromy around points in � all have absolute value 1, then for any admissible
metric on V the induced cocycle is integrable (in the sense of Definition A.1). The
corresponding Lyapunov exponents �1 � �2 � � � � � �r are independent of the choice
of admissible metric.
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For practical purposes (eg for numerical simulations) it is useful to be able to compute
the Lyapunov exponents with a simpler norm. We define a constant norm k�kconst on V

to be the parallel transport of any norm at the fiber over some base point c0 extended
to a Dirichlet fundamental domain for � on H , or equivalently, on a simply connected
complement of some geodesic “boundary” curves in C . Note that the “constant” norm
is not continuous across these boundary curves and depends on the choice of the
Dirichlet domain.

Proposition 2.2 Any constant norm k �kconst on a flat bundle as in Theorem 2.1 is also
integrable and computes the same Lyapunov exponents as any admissible metric.

2.1 Parabolic bundles and filtered vector bundles

We begin with the definition of a parabolic bundle (see also [24], [31] for the origins
of this notion). We first define a Œ0; 1/–filtration on a complex vector space V to be
a collection of (real) weights 0 � ˛1 < ˛2 < � � � < ˛n < ˛nC1 D 1 for some n � 1

together with a filtration of vector subspaces

F �W V D V �˛1 © V �˛2 © � � �© V �˛nC1 D V �1
D 0:

We denote by gr˛i
V the graded piece at weight ˛i . The filtered dimension of .V;F �/

is defined to be the real number

dimF�.V /D

nX
iD1

˛i dim gr˛i
.V /:

The filtration is called trivial if nD 1 and ˛1 D 0. This is equivalent to the condition
dimF�.V /D 0.

Let E be a holomorphic vector bundle on a complex curve C and let � be a finite
set of “boundary” points. A parabolic structure .E ;F �/ on E (with respect to �) is a
Œ0; 1/–filtration F �Ec on the fiber Ec for each c 2�. A parabolic bundle is simply a
holomorphic vector bundle with a parabolic structure.

The parabolic degree of .E ;F �/ is defined to be

degpar.E ;F
�/D deg.E/C

X
c2�

dimF� Ec :

A morphism ' between parabolic bundles E and F is a morphism 'W E ! F of
holomorphic vector bundles such that for each c 2 � and each weight ˛ of Ec , the
image '.E�˛c / lies in F�ˇc whenever ˇ � ˛ . A parabolic subbundle E of F is an
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injective morphism of parabolic bundles with the additional requirements that for each
c 2� the weights of E are a subset of the weights of F and if ˇ is maximal such that
'.E�˛c /� F�ˇc then ˇ D ˛ .

With these notions of degree and subbundles we will recall later that the usual notions
of stability and of the Harder–Narasimhan filtration carry over verbatim to the parabolic
case.

For taking exterior powers it will be convenient to use the following equivalent notion.
A filtered vector bundle E DfE�;�g on C is a collection Ec;˛ of vector bundles in j c

�EC

for every c 2� and every ˛ 2R (where j c W C ! C [fcg is the inclusion) such that
the filtration is descending (Ec;˛ � Ec;ˇ if ˛ � ˇ ), right continuous (Ec;˛C"D Ec;˛ for
small ") and such that Ec;˛C1 D tEc;˛ � Ec;˛ , where t is a local parameter at c . To
retrieve the corresponding bundle with parabolic structure we take the extensions Ec;0

at every point c 2� and the filtrations given by the ˛ 2 Œ0; 1/ where the rank of the
fibers of Ec;˛ at c jumps. In particular, the notions of parabolic degree, etc, defined
above apply to filtered vector bundles as well. Obviously a filtered vector bundle is
completely determined by the extensions Ec;˛ for ˛ 2 Œ0; 1/. Conversely, given a vector
bundle with parabolic structure .E ;F �/ we can provide E with the structure of a filtered
bundle E�;� as follows. For every ˛ 2R and c 2� we associate to a section s of E in
a neighborhood of c the section s˛ D tb˛cs or s˛ D tb˛cC1s depending on whether
the germ of s in the stalk of E belongs to V �f˛g or not. We define Ec;˛ to be the
subspace generated by all the sections s˛ obtained in this way.

2.2 The Deligne extension

Here we recall the construction of Deligne’s extension of the bundle VC with flat
connection to a holomorphic vector bundle V on C with a logarithmic connection. The
hypothesis on the nonexpanding cusp monodromies implies that V has a canonical2

parabolic structure, as we now explain.

To construct the Deligne extension of VC we use a small disc D centered around the
point c 2� with coordinate q . We choose a base point c0 2D n fcg; the conjugation
resulting from moving the base point will not affect the extension. We let T D T . / 2

GL.V0/ be the monodromy of the flat bundle V along a loop  once around c , where

2The choice of the interval Œ0; 1/ is an artificial choice of a unit interval in R and so Deligne [7] calls
this extension quasicanonical.
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V0 D .VC /c0
is the fiber over the base point c0 . For every ˛ 2 Œ0; 1/ we can define

(2) W˛ D fv 2 V0 W .T � �˛/
rv D 0g; where �˛ D e2�i˛ and r D rank.V /:

These vector spaces are zero for all but finitely many ˛i 2 Œ0; 1/. Finally, we define

T˛ D �
�1
˛ T jW˛ and N˛ D log T˛;

since T˛ is unipotent.

Let qW H! D� , q.z/ D e2�iz be the covering of D� D D n fcg. Choose a basis
v1; : : : ; vr of V0 adapted to the direct sum decomposition V0 D

L
˛ W˛ . Since H is

simply connected, we may view the vi as sections vi.z/ of q�.VC jD�/. If vi 2W˛ ,
then we define

(3) zvi.z/D exp.2� i˛zC zN˛/vi :

These sections are constructed to be equivariant under z 7! z C 1, hence they give
global sections of VC .D

�/. The Deligne extension V of VC is the vector bundle whose
space of sections over D is the OD–module spanned by zv1; : : : ; zvr .

This construction naturally gives a parabolic structure on the special fiber Vx D .VC /x .
We let V˛ be the subspace generated by the zvi with vi 2 W˛ and we let V �˛ DL
ˇ�˛ Vˇ to obtain a filtration F � on Vx .

2.3 Metric extension, acceptable and admissible metrics

The notion of an admissible metric serves two technical purposes. On one hand it
should specify the correct metric extension by imposing appropriate growth near the
cusp, while on the other hand it should give an integrable flat bundle. This section
follows the treatment of metric extensions of vector bundles and local systems given
in [32, Section 10] and [33].

As preparation for the definition, we first recall the notion of metric extension „.EC /

of a vector bundle EC on C . Let j W C ! C be the inclusion. Given a metric h on E
we define „.EC / to be the family of subsheaves of j�EC indexed by ˛ 2R such that
sections s.q/ of „.EC /

�˛ are those holomorphic sections that satisfy the following
“growth” condition: for all "� 0 there exists C" such that3

(4) js.q/jh � C"jqj
˛�":

3[32, Section 10] has a typo: the exponent there is erroneously ˛C " .
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In general, the metric extension of a vector bundle is a coherent sheaf, not a vector
bundle. We will, however, use metric extensions only when they are vector bundles, in
fact Deligne extensions of local systems; see Lemma 2.4 below.

Following [33] we say that a smooth metric hDh � ; � i on the bundle EC on the curve C

(provided with the Poincaré metric) is acceptable if the curvature of the metric h admits
locally near every x 2� a bound

(5) jRhj � f C
C

jqj2j log.q/j2
with f 2Lp for some p > 1:

We also say that h is an acceptable metric on a filtered vector bundle E D fE�;�g if the
metric h is acceptable on EjC and E D„.EjC /.

For integrability purposes we require for admissibility growth rates that are slightly
more restrictive than (4), but obviously imply this bound.

Definition 2.3 A smooth metric hD h � ; � i on the bundle VC with underlying local
system V is called admissible if for every cusp c 2� with local coordinate q

(i) the metric extension „.VC / with respect to h is isomorphic as a filtered vector
bundle to the Deligne extension V of VC ,

(ii) for any e 2„.VC /
�˛ and any e0 2„.VC /

�˛0 there is some n 2N and C1 D

C1.e; e
0/ > 0 independent of q such that

he; e0i � C1jqj
˛C˛0.log jqj/2n;

(iii) there is some n 2N and C2 > 0 such that a generating section e of det.V/ has
the lower bound

kek2 � C2jqj
2 dimF� Vc .log jqj/�2n;

(iv) and, moreover, if the metric is acceptable.

In our situation, the relevant existence statement is the following lemma, which follows
from Theorem 4 in [33].

Lemma 2.4 A local system V with nonexpanding cusp monodromies has a metric
which is admissible for its Deligne extension V .
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Proof It suffices to construct such metrics locally and patch them with the help of a
partition of unity. On the complement of cusp neighborhoods we can take any metric.
On the cusp neighborhoods it suffices to treat each eigenspace for the monodromy
separately and declare the different eigenspaces to be pairwise orthogonal. The basis
elements zvi of the ˛–eigenspace of the Deligne extension are given the norm jqj˛ in
the local coordinate q around the cusp and defined to be pairwise orthogonal. This
implies that the Deligne extension is the metric extension and that the norm bounds
(ii) and (iii) hold. The fact that such a metric satisfies the curvature bound for being
acceptable can be shown directly; see also [33, Section 5].

In the proof of the main theorem it will be convenient to pass to exterior powers. We
now provide the necessary background in the case of parabolic bundles. First note that
if the metric h is acceptable on a bundle E , then the induced metric on any exterior
power of E is again acceptable. There are two natural ways to define its exterior powers
as filtered vector bundles. One is to declare v1 ^ � � � ^ vk to lie in

�VkE
�
c;˛

if and
only if ˛ �

P
˛i , where ˛i is maximal with vi 2 Ec;˛i

. The second possibility is to
take „

�Vk
.EjC /

�
. It is obvious from the definition that

Vk
.E/˛ � „

�Vk
.EjC /

�
˛

.
It was shown by Simpson (Proposition 3.1 of [33], using the calculations leading to
Corollary 10.4 of [32] and in particular the remark on page 911 of [32]) that accessibility
of h implies that the converse inequality also holds, ieVk

.„.EjC //D„
�Vk

.EjC /
�
;

and so both definitions of the exterior power agree.

Proposition 2.5 If E is a vector bundle of rank k then degpar E D degpar
�VkE

�
.

Moreover, any acceptable metric h computes the parabolic degree of E , ie

degpar.E ;F
�/D

1

2� i

Z
C

@x@ log.det hij /;

where hij D hei ; ej i are the coefficients of the acceptable metric.

Proof The first statement is a direct consequent of the first definition of the exterior
power.

By the first statement and since det hij is the coefficient of the induced acceptable
metric on the k th power (obvious from the second definition), we may suppose that
E is a line bundle. For any choice of a generating local section e D e.q/ near a point
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c 2 � and a smooth metric h" that agrees with h outside "–neighborhoods of the
cusps, we have (see eg [18, pages 60–61] for details)

(6) deg.E/D 1

2� i

Z
C

@x@ log h"

D
1

2� i

�Z
C

@x@ log hC
X
c2�

lim
"!0

Z
jqjD"

x@ loghe.q/; e.q/i
�

D
1

2� i

Z
C

@x@ log h�
X
c2�

dimF�c
Ec ;

and this proves the claim.

2.4 Proof of the integrability statements

It is obvious that in order to prove Theorem 2.1 and Proposition 2.2 it suffices to
prove the following two lemmas. We use the cocycle language for the flat bundle, as
introduced in the appendix.

Lemma 2.6 The cocycle A induced by the geodesic flow on a hyperbolic surface with
cusps on a normed flat bundle with nonexpanding cusp monodromies is integrable for a
constant norm.

Proof We have to estimate the growth of the norm over a geodesic segment of length 1.
Consider a complement C" to a neighborhood of cusps. If the starting point is located
in C" , then the geodesic segment of unit length starting at this point can cross the
boundary of the Dirichlet domain only finitely many times, and the bound is uniform
for all starting points. Thus, the growth of the constant norm is uniformly bounded for
such segments (where the bound depends on the flat bundle, on the Dirichlet domain
and on the choice of ").

It remains to estimate the growth of the norm for a geodesic segment of unit length
starting in a small neighborhood of a cusp. Since the boundary of the Dirichlet domain
near a cusp is represented by a geodesic ray going straight to the cusp, we have to count
how many times such a geodesic segment could turn around the cusp. Consider standard
coordinates in the neighborhood of the cusp; namely, take a half-strip �1

2
� x � 1

2
,

y � y0� 1 in the upper half-plane with coordinates z D xC iy and with hyperbolic
metric g of constant negative curvature �4,

(7) g D
jdzj2

4.Im z/2
D

dx2C dy2

4y2
:
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The upper bound of the number of turns around the cusp of a geodesic segment of unit
length starting at a point xC iy with y � y0� 1 is given by the path which first goes
straight to the cusp for time 1 and then follows the closed horocycle around the cusp
for time 1.

The first segment starts at a point xC iy and goes vertically up to the point xC ie2y .
The hyperbolic length of the closed horocycle around the cusp located at the height
y D e2y is 1=.2e2y/, so the path following the closed horocycle for time 1 makes at
most 2e2yC1 turns around the cusp. The condition on nonexpanding cusp monodromy
implies that the norm of a constant vector transported N times around the cusp grows
linearly in N . Hence for xC iy 2 C" the growth of the constant norm is bounded by

max
t2Œ�1;1�

logCkA.xC iy; t/k< c1 log yC c2

for some constants c1; c2 2R depending on the flat bundle. Clearly,Z 1
2

� 1
2

dx

Z 1
y0

.c1 log yC c2/
dy

4y2
<1;

and the integrability of the cocycle for the constant norm follows.

The notion of equivalent norms for integrable cocycles is definitely known; see, for
example, the corresponding remark in [29]. However, since this notion is important in
the context of this paper, for the sake of completeness we collect all necessary details
in the appendix.

Lemma 2.7 A constant norm and an admissible norm h are L1.�/–equivalent.

Proof Consider standard coordinates in the neighborhood of the cusp; namely, take a
half-strip �1

2
� x � 1

2
, y � y0 in the upper half-plane with coordinates z D xC iy

and hyperbolic metric g as in (7). Consider a geodesic ray fx0C iy j y � y0g going
straight to the cusp. Consider a section Evx0Ciy of the flat bundle over the geodesic
ray constant with respect to the flat connection. The coordinate q in a punctured disk
around the cusp is related to our coordinate z as above as

2� iz D log q; that is, log jqj D �2�y:

By condition (i) of admissibility, the flat section Evx0Ciy can be expressed on the half-
strip as a linear combination of either the basis elements Qvi or the basis elements vi

introduced along with the definition of the Deligne extension. By condition (ii) of
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admissibility, the sections exp.�2� i˛z/ Qvi are bounded above by C log jqj2n for
some C and n. By the conversion (3), the flat sections vi and hence also kEvx0Ciykadm

are bounded above by C log jqj2n0 (for an appropriate choice of the constant, depending
on the monodromies N˛ ). The lower bound for the determinant given by condition (iii)
of admissibility and Cramer’s rule imply that the norm of such a nonzero flat section is
bounded below by C 0 log jqj�2n00 . Thus the ratio of a constant norm and an admissible
norm is uniformly bounded in the complement of neighborhoods of the cusps and has
the form

max
Ev2Vx0Ciyn

E0

ˇ̌̌̌
log
kEvkadm

kEvkconst

ˇ̌̌̌
D max
Ev2Vx0Ciyn

E0

ˇ̌̌̌
log
kEvkconst

kEvkadm

ˇ̌̌̌
�K log y

in the local coordinates in the neighborhood of a cusp. The integralZ 1
2

� 1
2

dx

Z C1
y0

log y
dy

4y2

converges, so the constant norm and the admissible norm are L1–equivalent, and
Theorem A.5 implies that the cocycle corresponding to the admissible norm is integrable
and defines the same Lyapunov exponents as the one corresponding to the constant
norm.

2.5 Necessity of the nonexpanding condition

We remark that if there exists a cusp c0 of C such that at least one of the eigenvalues of
the monodromy around c0 has absolute value different from 1, then the flat bundle V

is not integrable with respect to the constant norm.

Proof Suppose that the starting point p D xC iy of a geodesic segment is located
sufficiently high in the cusp, that is, y � y0� 1 in coordinates (7). We consider the
geodesic launched from p in direction � from the subset

�
�
6
; �

3

�
[
�

2�
3
; 5�

6

�
� Œ0; 2��.

The direction is chosen to make the geodesic spiral toward the cusp so that its y–
coordinate still grows at least for some uniform starting time ".y0/ > 0 depending
only on the parameter y0 . We have chosen our geodesic to go not too steeply to the
cusp. The angle between the geodesic t .p; �/ as above and the vertical direction only
grows for t 2 Œ0; "�, so the horizontal projection of the geodesic has speed at least 1

2

for the entire interval of time Œ0; "�. Since the cusp at height y has width 1=.2y/ and
for the time " the geodesic does not get below the initial height y , we conclude that in
the interval of time Œ0; "� it makes at least y"� 1 turns around the cusp.
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Suppose that there is an eigenvalue of the monodromy around the cusp whose absolute
value is different from 1. Let a ¤ 0 be the logarithm of this absolute value. The
calculation above shows that for any geodesic as above we have

sup
t2Œ�";"�

logCkA.t .p; �//kconst � .y"� 1/ � a:

The subset of starting directions allowed above has 1
6

of the measure of the full unit
circle. Since the integral of the function y diverges with respect to the measure (7)
near the cusp, this implies that the integralZ

T 1C

sup
t2Œ�1;1�

logCkA.t .p; �//kconst d�.x/

diverges and, hence, that the flat bundle V is not integrable.

3 Existence of Lyapunov exponents for variations of
Hodge structures

In this section we show that the Hodge metric for families of varieties or more gener-
ally for a real variation of Hodge structures satisfies the admissibility assumption of
Section 2.3. For a variation of Hodge structures we sketch, moreover, that there are
uniform bounds for the Lyapunov exponents depending only on the rank and weight
of the VHS. An interesting open problem is to prove sharp estimates and interpret the
families that reach the upper bounds geometrically.

We recall the definition of real and complex variations of Hodge structures, and also
introduce the Hodge metric. A C–VHS on the curve C consists of a complex local
system VC with connection r and a decomposition of the Deligne extension V DL

p2Z Ep into C1–bundles, such that

(i) Fp WD
L

i�p E i are holomorphic subbundles and Fp WD
L

i�p Ep are anti-
holomorphic subbundles for every p 2 Z, and

(ii) the connection shifts the grading by at most 1, ie r.Fp/ � �1
C
˝Fp�1 and

r.Fp/��1
C
˝FpC1 .

To define the notion of R–VHS we first recall that for a real Hodge structure of
weight ` on W , we require a decomposition W ˝R C D

L`
pD0 W p;`�p such that

W p;q D W q;p . An R–VHS of weight ` over the base C consists of an R–local
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system V and a filtration

0D F0 � F1 � F2 � � � � � F`�1 � F` � V

on the Deligne extension of V with the property that the bundles Hp;q D Fp \Fq

fiberwise define an R–Hodge structure.

An R–VHS W is polarized if there exists a nondegenerate, locally constant bi-
linear form Q. � ; � / on W , skew for ` odd and symmetric for ` even, such that
Q.Hp;q;Hr;s/D 0 unless pD s and q D r , and such that ip�qQ.v; Nv/ > 0 for every
nonzero v 2Hp;q . Consequently, if we define an endomorphism S of V ˝R OC by
S.v/D ip�qv for v 2Hp;q , then the Hodge scalar product h.v; w/DQ.Sv; xw/ is
positive definite. We let k � kh be the associated Hodge norm of VC . It is obtained
by interpreting V as the direct sum of the smooth subbundles Hp;q and by using the
positive definite metric on each of them.

For any family of projective varieties f W X !C the `th cohomology gives a polarized
R–VHS of weight ` in this sense.

Note that by a theorem of Borel (see eg [30, Lemma 4.5]) the nonexpanding cusp
monodromy hypothesis holds. If the local system underlying the VHS has a Z–structure
(or arises as a direct summand of the cohomology of a family of varieties) then the
monodromies around the cusps are moreover quasi-unipotent.

Proposition 3.1 The Hodge metric on V is admissible.

Proof The corresponding estimates were first derived by Schmid [30]. They are
restated in [27]; see Proposition 2.2.1 for the growth rates and Example 3.2 for how to
derive the curvature estimate for acceptability.

The following result gives a second proof of integrability in this case. Recall that Gt

denotes the lift of the geodesic flow gt .

Proposition 3.2 For a VHS, the function x 7! supt2Œ0;1� logC kGtkx is bounded by a
constant depending on the rank and the weight only. Consequently, the Lyapunov expo-
nents of a VHS are bounded by a constant depending on the rank and the weight only.

We make no attempt here to make the estimate precise, since the bound from the
estimate below is very rough.

Proof Let D be the period domain for polarized weight-` Hodge structures with
dimensions of the filtration pieces as given by V . In general, D is not a symmetric
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domain but just a homogeneous space. The tangent bundle to D has the so-called
horizontal subbundle Th with two properties. First, by Griffiths transversality the
tangent vectors to the period map pW H! D for V lie in Th � TD . Second, the
holomorphic sectional curvature of directions in Th is negative and bounded away
from zero [16, Theorem 9.1; 5, Chapter 13], say by K . This contractivity along the
horizontal distribution implies the integrability, as we now elaborate.

To provide a universal bound, it suffices to bound for .@=@t/ log h.v.t/; v.t//jtD0 ,
where v.t/ is the parallel transport of a unit-norm vector v along gt . We decompose
v.t/D

P
vp;q.t/ into its Hodge components and write � D

P
�p for the graded pieces

�pW Hp ! HpC1 of the Gauss–Manin connection contracted against a unit tangent
vector at t D 0 in the direction of gt . Expanding into components, we obtain

(8) @

@t
log h.v.t/; v.t//jtD0 D

@
@t

h.v.t/; v.t//

h.v; v/

� 2

P`�1
pD0 h.�p.v

p;`�p/; vpC1;`�p�1/C h.�
|
pC1

.vpC1;`�p�1/; vp;`�p/P`
pD0 h.vp;`�p; vp;`�p/

;

where �|W HpC1!Hp is the adjoint of � . From this expression it is obvious that it
suffices to bound from above the operator norms of all the maps �p , hence of � . Since
D is homogeneous and finite-dimensional, any two norms are comparable, so we may
as well bound the euclidean norm � . But since � is just the derivative of the period
map p , we can now invoke the Ahlfors lemma in the version of [28, Theorem 2] to
obtain the bound k�k2 � kdpk2 �

p
jkj=

p
jKj, where k D�4 is the curvature of H

in the convention we use.

4 The bad locus and the main estimate

Suppose that we are given a C–local system V of rank r over a curve C with
nonexpanding cusp monodromies. Let � be the set of boundary points of C and recall
that by assumption �.C /D� deg�1

C
.�/ < 0. Denote by �1 � � � � � �r the Lyapunov

exponents of V with respect to the norm k � k D k � kh stemming from an admissible
metric h as given by Theorem 2.1. Note that the metric on V naturally equips the dual
bundle V_ with an admissible metric k � k_ defined by kuk_ D supv¤0 ju.v/j=kvkh ,
which is admissible as well [33, Theorem 4], and can be used to compute the Lyapunov
exponents of V_ .
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In this section we prove a conjecture of Yu [37], or, more precisely, a generalization from
the context of VHS to the case of local systems with nonexpanding cusp monodromies.

Theorem 4.1 If E � V is a holomorphic parabolic subbundle of rank k of the Deligne
extension V of V ˝C OC , then

(9)
kX

iD1

�i �
2 degpar.E/

deg�1

C
.�/
D

2 degpar.E/

2g.C /� 2Cj�j
:

We do not assume that the flat bundle V is irreducible. Clearly, the theorem is applicable
to every irreducible summands of V , so if V is reducible, we can decompose V into a
direct sum of irreducible summands and obtain finer estimates by applying the theorem
individually to each irreducible summand.

The condition “parabolic subbundle” refers to the parabolic structure on V introduced in
Section 2.2. This condition is void for unipotent monodromies. For Teichmüller curves
one can always restrict to this case. In fact, we can in this case (tacitly) replace C

by a finite unramified covering such that the local monodromies around the cusps in
� are unipotent. This is always possible since, in general, local monodromies are
quasi-unipotent and since �1.C / is finitely generated and free if C is not compact.
This base change does not modify Lyapunov exponents, and it multiplies numerator
and denominator of the right-hand side of (9) by the degree of the covering.

We prepare for the proof with three reduction steps. First, note that the Lyapunov
spectrum of V is symmetric with respect to zero, ie ��rC1�` D �` for any `. This
follows since the geodesic flow in negative time has on the one hand the negative of the
Lyapunov spectrum for every flow and on the other hand (due to the SL2.R/–action
on H) the flows in positive and negative time are conjugate and consequently have the
same Lyapunov spectrum.

Second, we remark that �i.V /D��rC1�i.V
_/. Combining these two observations,

it suffices to prove that

(10)
kX

iD1

�i.V
_/�

2 degpar.E/

deg�1

C
.�/

:

Moreover, we remark that it suffices to prove the theorem for the case when E is a line
bundle, ie to treat the case k D 1. In fact, given a parabolic subbundle E � V as in
the statement of the theorem, the exterior power LD

VkE is a parabolic subbundle ofVkV (obvious from the second definition of exterior powers as defined in Section 2.3)
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and
VkV is the Deligne extension of

VkV ˝OC . (This also follows from the first
defining property of an admissible metric and the compatibility of the metric with
taking exterior powers.) Since degpar.E/ D degpar.L/ by Proposition 2.5 and since
the top Lyapunov exponent of

VkV is just
Pk

iD1 �i , the claimed reduction to k D 1

follows.

Mimicking the idea of [20], we define an auxiliary norm on the dual bundle V_ by
defining for any point .c;u/ in the total space of V_

(11) kukE WD
j!c.u/jp
jh.!c ; !c/j

D
j!c.u/j

k!ckh
;

where !c is a nonzero element of the fiber Ec over the point c in C . This seminorm is
well defined, ie it does not depend on the choice of the nonzero vector !c in Ec , since
numerator and denominator are homogeneous of the same degree in !c .

The difference with the standard case of weight 1 (see [20; 14; 3; 10]) is that the
numerator can indeed become zero. We call the locus where the numerator in (11)
vanishes the bad locus with respect to E , that is, we define

T bad
D f.c;u/ W !c.u/D 0g

as a subset of the total space of the bundle VC over C .

Since Lyapunov exponents are defined by parallel transport, we really need a definition
of the bad locus that records all translates of a given vector. Let pW H! C denote the
universal cover. The flat structure on V_

C
provides a trivialization of '�V_

C
. Using this

trivialization, we define for u 2 V_c the bad locus of u as

(12) T bad.u/D fz 2H W !z.u/D 0g:

Here !z is a generator of the fiber .p�E/z of the induced bundle p�E over H . In
other words, T bad.u/ is the set of points z in H for which the fiber .p�E/z of the line
bundle p�E is contained in the hyperplane Ann u.

Lemma 4.2 For every c 2 C there is a countable union H of hyperplanes in V_c such
that for u 2 V_c nH the bad locus T bad.u/ is a discrete subset of H .

Proof Since E is a holomorphic subbundle, locally T bad.u/ is given as the vanishing
locus of a holomorphic function. Thus, for any given u the locus T bad.u/ is either
discrete in H or equal to H . The second possibility implies that u 2 Ann!c . (The
countable union results from the choice of a p–preimage.)
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In fact, one can prove that if the flat bundle V is irreducible over C , the subbundle
of V_ given by those u for which T bad.u/DH is actually the zero bundle. Next, we
compare the admissible metric and the k � kE–seminorm.

Lemma 4.3 For any point c of the curve C and for any u in the fiber V_c over c ,

(13) kuk_
kukE

� 1:

Proof The definition of the norm on the dual bundle implies j!c.u/j � k!ckh � kuk_ ,
implying the claim.

Proof of Theorem 4.1 Pull back the flat bundle and the holomorphic linear subbundle
E to the universal cover H over C . For any z 2H and for almost any u in the fiber
V_z over z one can express the Lyapunov exponent �1.V

_/ (see [11, Section 3.2]) as

�1.V
_/D lim

T!1

1

T

1

2�

Z 2�

0

log kgT r�uk_ d�:

Now we replace the admissible norm k �k_ by the seminorm k �kE . Lemma 4.3 implies
the inequality

(14) lim
T!1

1

T

1

2�

Z 2�

0

log kgT r�uk_ d� � lim
T!1

1

T

1

2�

Z 2�

0

log kgT r�ukE d�:

A priori, the limit in the right-hand side might be equal to �1. As an outline for
the remaining proof, we want to run the standard argument (compare eg [14], or
[11, Sections 3.2–3.3], see [17, proof of Theorem 3.3] with n D 1 and � D 1

2
, for

details allowing to trace the origin of the normalizing factor 2 in the numerator given
our curvature conventions) for computing Lyapunov exponents in terms of degree of
holomorphic subbundle. We use that from the definition of the seminorm kgt r�LkE

in (11) we get

log kgt r�ukE D log j!gt r�z.gt r�u/j � log k!gt r�zkh:

In contrast to the classical case, we need to consider the Laplacian of the first summand
on the right-hand side. Away from T bad.gt r�u/, the argument of the logarithm is a
nonzero holomorphic function, and since �hyp is proportional to @x@ this contribution
vanishes. Near a bad point, the local contribution is the integral of �hyp log.jzjn/
for some positive n, hence positive. Altogether, we argued (by integrating over the
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hyperbolic disc D.u/ around the basepoint of u swept out by gt r� ) that, for almost
every u,

(15)
Z

D.u/

�hyp log kuzkE dghyp.z/� �

Z
D.u/

�hyp log k!zkh dghyp.z/:

Here uz is the parallel transport of u to the point z 2D.u/. This inequality will imply
that �1.V

_/ is greater than or equal to the parabolic degree of E , suitably normalized.

To be self-contained, we reproduce this computation in detail. Let Dt be the hyperbolic
disc of radius t and �hyp be the Laplacian for the hyperbolic metric ghyp on Dt . In
the following chain of (in)equalities, we first apply an extra averaging over the unit
tangent bundle T 1C . Next, we apply a version of Green’s formula ([14, Lemma 3.1] or
[11, Lemma 3.6]) for the disc Dt .u/ centered around the basepoint of u of hyperbolic
radius t . The subsequent inequality follows from (15). Then we exchange the T –
limit and the C –integration, justified by dominated convergence since the metric h

is accessible. The resulting double integration over C and Dt .u/ both just shift the
basepoint and can be subsumed into a single integration. To pass to the next line, we
use that the integrand no longer depends on T and interchange the order of integration
again. Finally we pass from �hyp to @x@:

vol.C /�1.V
_/

�

Z
T 1C

lim
T!1

1

T

1

2�

Z 2�

0

log kgT r�ukEd� d�T 1C .u/

D

Z
T 1C

lim
T!1

1

T

1

2�

Z T

0

d
dt

Z 2�

0

log kgt r�ukE d� dt d�T 1C .u/

D

Z
T 1C

lim
T!1

1

T

Z T

0

tanh.t/
2 vol.Dt /

Z
Dt .u/

�hyp log kuzkE dghyp.z/ dt d�T 1C .u/

�

Z
C

lim
T!1

1

T

Z T

0

tanh.t/
2 vol.Dt /

Z
Dt .u/

��hyp log k!zkh dghyp.z/ dt dghyp

D lim
T!1

1

T

Z T

0

tanh.t/ dt

Z
C

�
1
2
�hyp log k!zkh dghyp.z/

D�
1

2

Z
C

�hyp log k!zkh dghyp.z/D�
1

4

Z
C

�hyp log jdet hij j dghyp.z/

D�
1

4

Z
C

4
@2

@z@Nz
log jdet hij j

i

2
dz ^ d Nz D

1

2i

Z
C

@x@ log jdet hij j

D � degpar.„h.EjC //� � degpar.E/;
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where the last inequality is justified as follows. By the hypothesis E �V , the hypothesis
VD„h.VjC / on the metric h, and the definition of a parabolic subbundle, the metric h

is acceptable for „h.EjC /, and hence „h.EjC / contains E as parabolic subbundle.
The degree decreases upon passing to subbundles. (In fact, the last inequality would
even be an equality by Proposition 2.5 if the metric h restricted from V to E was
acceptable for E .)

Taking into consideration that the hyperbolic area vol.C / in the hyperbolic metric of
constant negative curvature �4 has the form vol.C /D �

2
.2g.C /�2Cj�j/, we obtain

the desired inequality.

Remark 4.4 The normalization of the constant negative curvature on the Riemann
surface C to �4 is a matter of pure convention coming, partly, from the tradition to
associate Teichmüller geodesic flow to the action of the 1-parameter group

�
et

0
0

e�t

�
and

to have �1D1 for the top Lyapunov exponent of the Hodge bundle over the Teichmüller
geodesic flow. The choice of the constant negative curvature �1 would impose time
normalization which is half as fast, so the 1-parameter subgroup corresponding to
geodesic time for curvature �1 would be

�
et=2

0
0

e�t=2

�
. In other words, the Lyapunov

exponents for the geodesic flow in constant negative curvature �k2 are k times the
Lyapunov exponents for the geodesic flow in constant negative curvature �1. The
hyperbolic area of the Riemann surface in the metric of constant negative curvature
�k2 is k�2 times the hyperbolic area of the same Riemann surface in the metric of
constant negative curvature �1. The latter is equal to 2�.2g.C /� 2Cj�j/.

5 Application: Lyapunov exponents for the Hodge bundle
over the Teichmüller geodesic flow

Here we give applications of the main theorem to the Teichmüller geodesic flow. The
first is a comparison of slope polygons and the second is a contribution towards the
large-genus asymptotics of individual Lyapunov exponents. Both results were observed
in [37], and proved there conditionally on our main theorem. We assume in this
section that the reader is familiar with the stratification of the moduli space of abelian
differentials and with the notion of Teichmüller curves; see eg [22; 39; 25].

5.1 Two polygons

The slope of a vector bundle F on a curve is defined as �.F/ D deg.F/= rank.F/.
A bundle is called semistable if it contains no subbundle of strictly larger slope. A
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filtration
0D F0 � F1 � F2 � � � � � Fg D F

is called a Harder–Narasimhan filtration if the successive quotients Fi=Fi�1 are
semistable and the slopes are strictly decreasing, ie

�i WD �.Fi=Fi�1/ > �iC1 WD �.FiC1=Fi/:

The Harder–Narasimhan filtration is the unique filtration with these properties. Given
such a filtration, one can record the numerical data in a “Harder–Narasimhan polygon”
with vertices .rank.Fi/; 2 deg.Fi/=j�j/, where j�j D 2g� 2Cj�j.

Here, we apply these considerations to a Teichmüller curve C and to F Df�!X =C , the
direct image of the relative dualizing sheaf of the family of stable curves f W X ! C .
This agrees with the Deligne extension of the first filtration piece of the weight-1 VHS
associated with f .

Similarly, one can record the numerical data of the Lyapunov exponents in a “Lyapunov
polygon” with vertices

�
k;
Pk

iD1 �i

�
.

The Harder–Narasimhan polygon and the Lyapunov polygon share the endpoints
.0; 0/ and .g; 2 degf�!X =C =j�j/. Applying the main theorem to the subbundles in
the Harder–Narasimhan filtration immediately gives the following result, originally
conjectured by Yu [37].

Corollary 5.1 The Lyapunov polygon of a Teichmüller curve always lies above the
Harder–Narasimhan polygon (with equality permitted).

5.2 Lyapunov exponents for strata

So far, we only have been working over curves. From this we can deduce properties
of Lyapunov exponents for strata thanks to a convergence result in [2] for individual
Lyapunov exponents.

Theorem 5.2 [2] If
Pk

iD1 �i �M for a dense set of Teichmüller curves in some
connected component stratum H�.�/ of the moduli space of abelian differentials H.�/,
then the Lyapunov exponents �i.�/ for the Teichmüller geodesic flow on the entire
component H�.�/ also satisfy

Pk
iD1 �i.�/�M .

This theorem applies also to any GLC
2
.R/–invariant suborbifold that contains a dense

set of Teichmüller curves.
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In [21] the two authors conjectured that the large-genus limit of the Lyapunov is

lim
g!1

�2 D 1

for the hyperelliptic components of the strata H.2g� 2/ and H.g� 1;g� 1/ and that
for all other strata and their components

lim
g!1

�2 D
1
2
:

This first part of this conjecture now follows. The proof of this corollary was given by
Yu, assuming the validity of Theorem 4.1 and Theorem 5.2.

Corollary 5.3 [37, Conjecture 5.13] For the hyperelliptic components of the series of
strata H.2g�2/ and H.g�1;g�1/, the large-genus limits of Lyapunov exponents are

lim
g!1

�k D 1

for any fixed k � 1.

(The Lyapunov exponents in the preceding statement are defined for g � k .)

Proof For those hyperelliptic strata the Harder–Narasimhan filtration over any Teich-
müller curve is computed in [38] to be given by the subbundles

Ek D f�!X =C .�.2g� 2k/S/ and Ek D f�!X =C .�.g� k/.S1CS2//

respectively, for k D 1; : : : ;g , and the degrees of the successive quotient line bundles
Ek=Ek�1 are equal to

deg.Ek=Ek�1/D
j�j

2

�
1�

2.k�1/

2g�1

�
and deg.Ek=Ek�1/D

j�j

2

�
1�

.k�1/

g

�
:

The implies that 2 deg.Ek/=j�j tends to k in both cases as g tends to infinity. Together
with Theorem 5.2, our main theorem implies the result.

A similar statement holds for any family of hyperelliptic loci in a sequence of strata
where the order of at least one singularity tends to infinity.

6 Application: Lyapunov exponents for some
hypergeometric groups and Calabi–Yau threefolds

Now we apply our main theorem to a class of VHS of rank greater than 1. Our example
is the well-studied class of hypergeometric local systems that arise from Calabi–Yau
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threefolds with h2;1 D 1. The irreducible local systems that meet the additional
requirements imposed by physics (existence of a MUM-point and a conifold point;
see Section 6.3 for details) depend on two parameters �1; �2 called local exponents
(see Section 6.4 for the definition). For any pair 0 < �1 � �2 �

1
2

with �i 2R, the
corresponding local system admits an R–VHS. We compute the degrees of the Hodge
bundles and, consequently, lower bounds for the Lyapunov exponents. The terminology
will be explained in the sequel.

Theorem 6.1 Suppose that the local exponents 0< �1 � �2 �
1
2

at the point z D1

of a Calabi–Yau-type hypergeometric group with h2;1D 1 are .�1; �2; 1��2; 1��1/.
Then the degrees of the Hodge bundles are

degpar E
3;0
D �1 and degpar E

2;1
D �2:

For families of Calabi–Yau threefolds the local monodromies are quasi-unipotent, hence
�i 2Q. In Table 1 we reproduce from [9] the well-known list of possible parameters
.�1; �2/ that meet the physically relevant conditions. We present in the same table
approximations for the Lyapunov exponents. Explanations for the first three columns
are given in Section 6.3.

The most remarkable conclusion from the numerical approximation of Lyapunov
exponents is the following. In the first seven cases the sum of Lyapunov exponents
matches the lower bound predicted by Theorem 4.1. The table lists the corresponding
sum as exact fractions, but note that only three digits seem to be reliable in the
experiments. In the remaining cases, the sum �1C�2 of Lyapunov exponents is strictly
larger than predicted by the lower bound in Theorem 4.1. Note that in precisely the
seven cases of (numerical) equality the monodromy groups of the hypergeometric local
systems are of infinite index (“thin”) in Sp.4;Z/ while in the other seven cases the
monodromy group is of finite index in Sp.4;Z/. This follows from combining the
results in [4] and [34]. It would be interesting to decide if in these seven cases actually
equality holds and to explain the relation to the arithmeticity of the monodromy groups.
We provide further conjectures in this direction in Section 6.5 below.

There is another commonly used normalization of the degrees and Lyapunov expo-
nents. Instead of working with parabolic degrees and over P1 with three singular
points, we can view the above local systems as representations of the Fuchsian triangle
group �.n;1;1/, where n is the least common multiple of the denominators of �1

and �2 if 0 < �1 < �2 <
1
2

and where n D1 if at least one of the inequalities is
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# model C d �1; �2 �1 �1C�2 ��

1 46 1 1/12, 5/12 0.97 1 11/12

2 44 2 1/8, 3/8 0.95 1 7/8
3 52 4 1/6, 1/2 1.27 4/3 1
4 P 4Œ5� 50 5 1/5, 2/5 1.12 6/5 4/5
5 56 8 1/4, 1/2 1.40 3/2 1
6 P 6Œ22; 3� 60 12 1/3, 1/2 1.53 5/3 1
7 P 7Œ24� 64 16 1/2, 1/2 1.75 2 1

8 22 1 1/6, 1/6 0.75 0.92 1
9 34 1 1/10, 3/10 0.77 0.83 9/10

10 32 2 1/6, 1/4 0.84 0.97 11/12

11 42 3 1/6, 1/3 0.96 1.06 5/6
12 40 4 1/4, 1/4 1.07 1.30 1
13 48 6 1/4, 1/3 1.15 1.31 11/12

14 54 9 1/3, 1/3 1.34 1.60 1

Table 1: Table of CY-VHS and approximate values of their Lyapunov exponents

replaced by an equality. Geometrically, this corresponds to viewing the local systems
over the orbifold C D H=�.n;1;1/. The orbifold Euler characteristic �� of C

is given in each case in the last column. Note that 0 < �� � 1 in all the cases. One
can also define and compute Lyapunov exponents �orb

1
; �orb

2
of the corresponding local

systems over the orbifold C D H=�.n;1;1/. They are related to the Lyapunov
exponents �i over the thrice-punctured sphere by

�i D �
orb
i � j�j:

The corresponding orbifold degrees of Hodge bundles can be computed as ordinary
degrees of line bundles on a cyclic cover where all the monodromies are unipotent, as
indicated in Section 6.3. The orbifold normalization �orb

1
; �orb

2
was used in previous

computations for Teichmüller curves (eg in [3] and [10]).

6.1 Hypergeometric differential equations

We fix two sequences of real numbers, ˛D .˛1; : : : ; ˛n/ and ˇ D .ˇ1; : : : ; ˇn/, with

(16) 0� ˛1 � � � � � ˛n < 1; 0� ˇ1 � � � � � ˇn < 1

and with the property that ˛i ¤ 1� ǰ for any i and j . The regular hypergeometric
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differential operator is the operator

(17) P D P .˛;ˇ/D

nY
iD1

.D�˛i/� t

nY
iD1

.D�ˇi/; where D D t
d

dt
:

It gives rise to a flat connection r on the trivial vector bundle V0 on P1 with regular
singularities precisely at the points f0; 1;1g. We refer to this local system as the
hypergeometric local system V D V .˛;ˇ/.

A hypergeometric group with parameters a D .a1; : : : ; an/ and b D .b1; : : : ; bn/

subject to the conditions jai j D 1D jbj j and ai ¤ 1=bj for all .i; j / is a subgroup of
GLn.C/ generated by three elements

(18) h0; h1; h1 2 GLn.C/ with h1h1h0 D Id

such that

(19) det.X Id�h1/D

nY
iD1

.X � ai/; det.X Id�h�1
0 /D

nY
iD1

.X � bi/

and such that h1 is a pseudoreflection. Here, a pseudoreflection is an element g 2

GLn.C/ such that g� Id has rank one.

Up to conjugation there is a unique hypergeometric group for a given set of parameters.
The proof (due to Levelt) and monodromy matrices can be found, for example, in
[1, Theorem 3.5]. The hypothesis ai ¤ 1=bj guarantees that the flat bundle V is
irreducible [1, Proposition 3.3].

The monodromy group of V .˛;ˇ/ is the hypergeometric group with parameters a

and b where e2�i j̨ D aj and e2�i ǰ D bj for j D 1; : : : ; n.

6.2 Simpson’s correspondence in the parabolic case

In order to state Simpson’s correspondence, we need to extend the definition of parabolic
structure and stability from vector bundles to the cases of parabolic vector bundles,
local systems and Higgs bundles.

A regular parabolic Higgs bundle is a parabolic vector bundle .E ;F �/ together with a
Higgs field, ie a map of sheaves of OC –modules

(20) � W E! E ˝�1
C

Geometry & Topology, Volume 22 (2018)



2324 Alex Eskin, Maxim Kontsevich, Martin Möller and Anton Zorich

that respects the parabolic structure in the sense that for every c 2� the map � extends
for every ˛ 2 Œ0; 1/ to

(21) �c;˛W E�˛c ! E�˛c ˝�1

C
.�/:

A regular parabolic system of Hodge bundles is a regular parabolic Higgs bundle
whose underlying vector bundle admits a decomposition E D

L
p2Z Ep such that �

has degree �1 with respect to the grading given by this decomposition.

Recall that a vector bundle V is called stable if for every subbundle M � V the
condition

(22)
deg.M/

rank.M/
<

deg.V/
rank.V/

holds. Similarly, a parabolic vector bundle (resp. a local system, resp. a Higgs bundle)
is called stable if the condition (22) holds for every parabolic subbundle (resp. every
subbundle preserved by the connection, resp. every subbundle preserved by the Higgs
field).

Simpson’s correspondence [33] for the noncompact case states that there is a natural
one-to-one correspondence between stable regular parabolic Higgs bundles and stable
parabolic local systems of degree zero.

There is an action of C� on the set of regular parabolic Higgs bundles of degree zero,
where s 2C� sends .E; �/ to .E; s�/ while preserving the filtration. Fixed points of
this action are precisely the regular parabolic systems of Hodge bundles of degree zero.

Since hypergeometric local systems are rigid (see eg [1], Proposition 3.5), Simpson’s
correspondence implies the following (see [33, Corollary 8.1]).

Corollary 6.2 A hypergeometric local system V D V .˛;ˇ/ carries a complex varia-
tion of Hodge structures.

The Hodge numbers, ie the ranks hp of the summands Ep , are known by a theorem
of Fedorov. If we set �.k/ D #fj W j̨ < ˇkg � k , then the main theorem of [12]
(Theorem 1) states that

(23) hp
D #��1.p/

after an appropriate shifting of the weight (or the grading).
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6.3 Families of Calabi–Yau threefolds with h2 ;1 D 1 and generalizations

Families of Calabi–Yau threefolds with h2;1 D 1 carry a weight-3 variation of Hodge
structures, and by definition of Calabi–Yau threefolds, the Hodge numbers of these
families are .1; 1; 1; 1/, ie dim Ep;q D 1 for p D 0; 1; 2; 3. In a VHS arising from
geometry, the VHS has an R–structure and quasi-unipotent monodromies. Motivated
by physics requirements, the most intensely investigated families satisfy the following
properties: they are over P1 , smooth outside three points, have one point of maximal
unipotent monodromy (MUM, ie there is only one Jordan block of maximal size) and
one rank-1 unipotent point. There are fourteen possible cases, as derived in [9]. They
are given in Table 1. In some cases, these families have been realized geometrically
(eg as complete intersections in weighted projective spaces) and the first column of the
table lists this realization (if available; eg P4Œ5� refers to the (mirror) quintic).

The local exponents of such a hypergeometric system, with real structure, with a
MUM-point and with a point where the monodromy is unipotent of rank one, are

(24)

ˇ D .0; 0; 0; 0/ at t D 0;

.0; 1; 1; 2/ at t D 1;

˛D .�1; �2; 1��2; 1��1/ at t D1I

see eg [35; 36; 1; 12] for general background.

A realization of monodromy groups of the hypergeometric local systems listed in
Table 1 is given by

T0 D

0BB@
1 0 0 0

1 1 0 0
1=2 1 1 0
1=6 1=2 1 1

1CCA ; T1 D

0BB@
1 �C=12 0 �d

0 1 0 0

0 0 1 0

0 0 0 1

1CCA
with the parameters .C; d/ as in the table. Here, the symplectic form defining the
polarization of the Hodge structure on V .˛;ˇ/ is given by

�D

0BB@
0 C=12 0 d

�C=12 0 �d 0

0 d 0 0

�d 0 0 0

1CCA
and this symplectic form can be conjugated into Sp.4;Z/. The proof of Theorem 6.1
does not use properties of these realizations. In fact, the representation is real by
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[12, Theorem 2] if

˛mC˛4C1�m 2 Z and ˇmCˇ4C1�m 2 Z:

The basic principle for the proof of Theorem 6.1 is the following. We consider the
Kodaira–Spencer maps (graded pieces of the Higgs fields)

(25) �p�1W Ep;q
! Ep�1;qC1

˝�1

C
.�/:

In our situation, these are maps between line bundles. The maps �0 , �1 and �2 are
nonzero by Lemma 6.3 below, hence are inclusions. To compute the (parabolic) degrees
it suffices to compute the lengths of the cokernels of these maps and to determine
the parabolic structures. We prove the following lemma (which applies not only to
hypergeometric systems, but to any self-dual flat bundle) and explain the notions about
differential equations in the next subsection.

Lemma 6.3 If x 2 C is a regular point of the local system V on C , then all the
Kodaira–Spencer maps �i are isomorphisms at x .

More generally, if x 2 C and the local exponents �1 < �2 < �3 < �4 are distinct and
integral, then �0 has a cokernel of length �2��1� 1, and so does �2 by duality. The
map �1 has a cokernel of length �3��2� 1.

If c 2 � � C and the local exponents satisfy �1 � �2 � �3 � �4 , then �0 has a
cokernel of length b�2c� b�1c, and so does �2 by duality. The map �1 has a cokernel
of length b�3c� b�2c.

Proof of Theorem 6.1 We can apply the first observation in Lemma 6.3 to every
point different from 0; 1;1 and we can apply the observation for boundary points in
Lemma 6.3 at the MUM-point t D 0 and at the point t D1 to conclude that at all
these points all the �i are isomorphisms. Finally, the last statement in Lemma 6.3 tells
us that at the unipotent rank-1 point at t D 1, the map �1 is still an isomorphism, while
�0 and �2 have cokernels of length 1.

Next, we consider the Œ0; 1/–filtrations, which are nontrivial only at the point t D1.
There, since all the Ep;q are line bundles and since � must shift the degree by �1 for
a system of Hodge bundles, the only possibility for a filtration respecting the regularity
hypothesis (21) is

V
��i
1 D

3M
pD4�i

Ep;3�p
1 :
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We deduce from properties of an R–VHS that degpar Ep;q D� degpar Eq;p . Hence the
fiber at t D1 of Ep;3�p is the graded piece of weight �4�p of the filtration. This
implies that

� deg.E2;1/D deg.E1;2/C 1; � deg.E3;0/D deg.E0;3/C 1:

Since �1 is an isomorphism, we conclude from (25) that deg.E2;1/D deg.E1;2/C1 and
hence deg.E2;1/D 0 Since �0 has a cokernel of length 1 we conclude from (25) again
that deg.E3;0/D 0. This gives the parabolic degrees as claimed in the theorem.

6.4 Local exponents, weight filtration and the cokernel lemmas

We need two general concepts about a flat bundle V : local exponents and the mon-
odromy weight filtration. We let nD rank.V /, and later we specialize to the case nD 4

of primary interest.

To recall the definition and the properties of local exponents, fix a point c 2 C , let t be
a coordinate of C such that c is the point t D 0, and fix a section !.t/ of V whose
first n derivatives (with respect to rd=dt ) generate V in a neighborhood of c . Then
there are meromorphic functions Pi.t/ such that

L.!/D

�
r

n
d=dt C

n�1X
iD0

Pi.t/r
i
d=dt

�
.!/D 0:

Since the local system V is supposed to have regular singularities, tn�1�iPi.t/ is
holomorphic at 0. It will be convenient to rewrite the differential equation in terms of
the differential operator D D t � d=dt as

tn

�
r

n
d=dt C

n�1X
iD0

Pi.t/r
i
d=dt

�
Dr

n
D C

n�1X
iD0

Qi.t/r
i
D ;

for some Qi.t/ that are holomorphic at t D 0. Now consider in general a linear
differential operator

(26) L.y/D
dny

d tn
C

n�1X
iD0

Qi.t/
d iy

d t i
:

The local exponents f�1.c/; : : : ; �n.c/g of L at c 2C are the solutions of the equation

yn
C

n�1X
iD0

Qi.0/y
i
D 0:
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The local exponents at a point c are well-defined up to a simultaneous shift by some
integer. This ambiguity is due to the possibility of replacing the section !.t/ by tk!.t/;
see Frobenius’ theorem (eg in [35]) and below.

A point c 2 C is called regular if the functions Pi.t/ are regular at c . The reg-
ular points are precisely those points where the local exponents are of the form
fk; kC 1; : : : ; kC n� 1g for some k .

The local exponents f�1.c/; : : : ; �n.c/g determine the exponents needed to write
local solutions of the differential equation as a power of a uniformizer times a power
series expansion. More precisely, if the difference of any two local exponents is
nonintegral, then the theorem of Frobenius states that the solutions of the differential
equation (26) are

si D t�i Pi with Pi 2 1CCŒŒt ��:

We refer to this basis of solutions as the Frobenius basis. If some difference of
local exponents is integral, then one has to add logarithmic terms, according to the
monodromy at c . We give an example for nD 4.

Suppose that the monodromy is maximal unipotent (hence all the �i are the same).
Then the solutions are of the form

s1 D t�1P1;

s2 D log.t/s1C t�2P2;

s3 D
1
2

log.t/2s2C log.t/s1C t�3P3;

s4 D
1
6

log.t/3s3C
1
2

log.t/2s2C log.t/s1C t�4P4:

We deduce that, by definition, t�1P1 , t�2P2 , t�3P3 , t�4P4 forms a basis of local
sections of the Deligne extension. In fact, this last conclusion holds for any local
monodromy matrix. For this reason the proof of Lemma 6.3 does not depend on the
form of the monodromy matrix.

We have expressed above the local exponents in terms of a (polynomial associated to a)
differential operator L, which in turns depends on the choice of a local section ! of V .
We recall how to retrieve .V ; !/ up to isomorphism from L. In fact, let Sol � OC

be the rank-n local system of solutions of L. Then Sol Š V_ , since in fact the
multiplication map

mW Sol˝OC !OC
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defines a section of V and the pair .Sol;m/ is isomorphic to the pair .V ; !/ we started
with.

In terms of a basis of Sol and its dual basis we can compute the effect of the covariant
derivative. To simplify notation, we restrict to the case n D 4 of primary interest
here. Let fs1; s2; s3; s4g be a basis of Sol around c , and denote the dual basis by
fs_

1
; s21_; s_

3
; s_

4
g, so that

s_j

� 4X
iD1

si ˝gi

�
D gj 2 Sol_ Š V (where gi 2OC .U / for some U /:

In this basis, mD
P4

iD1 sis
_
i as a section of Sol_ Š V . Moreover,

rd=dt .m/

� 4X
iD1

si ˝gi

�
D d

� 4X
iD1

si ˝gi

�
�

4X
iD1

sigi D

4X
iD1

s0i ˝gi ;

that is,

rd=dt .m/D

4X
iD1

s0is
_
i :

This completes the preparation for the main lemma.

Proof of Lemma 6.3 We start with the case of a regular point. Without changing
the length of the cokernels, we may choose the section ! to be nonvanishing at c ,
hence the local exponents are f�1 D 0; 1; 2; 3g. The length of the cokernel of �0 at
the point c , ie at t D 0, is the vanishing order of

(27) rd=dt .m/D

4X
iD1

s0is
_
i 2 V =hmi;

where V D hs_
1
; s_

2
; s_

3
; s_

4
i is the fiber of V over c . We use the Frobenius basis

fs1; s2; s3; s4g from now on. Consider the matrix M DM.t/ with entries Mij .t/D

s
.j�1/
i .t/. Since the 2�2–minor M 12

12
of M has a determinant with nonzero constant

term (considered as element of CŒt �), the vanishing order of (27) is zero, ie the map �0

is an isomorphism at c . Similarly, the minor M 123
123

and also the determinant M itself
have nonzero constant terms by our hypothesis on the local exponents. Since

r
.j/

d=dt
.m/D

4X
iD1

s
.j/
i s_i ;
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this is precisely what we need to deduce that also the Kodaira–Spencer maps �1 and �2

are isomorphisms at x .

The case of general (but still integral) local exponents follows similarly. In fact, the
minimal order of vanishing of a 2�2–minor of the first two rows of M is given by M 12

12
,

which starts with t�2�1 . Hence the length of the cokernel of �0 is as claimed. The
minor M 123

123
starts with t�3�2 . This is the length of the cokernel of the composition

of Kodaira–Spencer maps �1 ı �0W E3;0! E1;2!�1

C
.�/˝2 and it implies the claim

about �1 . The same argument with the determinant M implies the claim about �2 .

The discussion so far was concerned with points c 2 C . If c 2 � � C , then the
calculations above are the same with M replaced by the matrix with entries Mij .t/D

.t @=@t/j�1si.t/. This increases the length of each of the cokernels by 1 with respect
to the previous calculations.

Finally, in the case of nonintegral local exponents, recall that the sections of the Deligne
extension are given by t f�i gsi in terms of the Frobenius basis, where f�g D ��b�c
denotes the fractional part of �. Consequently, the preceding calculation applies again,
now with �i replaced by b�ic.

6.5 Conjectural region of equality

It seems likely that the seven cases of Calabi–Yau type families with equality are not
isolated examples. Initially we conjectured that the equality �1C �2 D 2.�1C�2/

is attained in the entire region in the .�1; �2/–plane defined by the linear inequality
3�2��1C1. After more detailed numerical experiments by Fougeron, this conjecture
cannot be upheld in this form any more (see [15]). According to these experiments,
it appears, rather, that equality is attained at an infinite number of rational points in
the .�1; �2/–plane. It would be very interesting to relate, in general, thinness of the
monodromy group and the equality �1 C �2 D 2.�1 C �2/; see also [6] for some
results in this direction.

Special cases of the conjecture can be equivalently formulated as a number-theoretic
problem. This new hypothetical nonvanishing property is similar to the nonvanishing
of the classical modular form �.q/ WD q

Q
n�1.1� qn/24 for 0 < jqj < 1. Consider

the mirror quintic (row 4 in Table 1), normalized so that the MUM-point is zero, the
conifold point is at t D1, and the remaining singular point is t D

�
1
5

�5 instead of
t D 1. Since strict inequality in Theorem 4.1 is caused by the presence of bad points
(see (12)), it seems natural to look for a flat section of p�

�V2V
�

(where pW H! C
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is the universal cover) that avoids the bad locus. As a first attempt we take L to be
the Lagrangian 2–plane that is invariant under the monodromy around t D 0 and the
flat section it defines by parallel transport along the upper half-plane. In fact, since the
condition of having empty bad locus is open, it suffices to find a single flat section of
p�
�V2V_

�
whose pairing with L is everywhere nonzero on H . Here, again, we try

the 2–plane invariant under the monodromy around t D 0 and its parallel transport.
Near t D 0, the 2–plane L is generated by the differential 3–forms �3;0 and �2;1

generating E3;0 and E2;1 , respectively. The homology 2–plane is generated by the two
“shortest” 3–cycles 0; 1 . It is well-known (see eg [19]) that

 0.t/ WD

Z
0

�3;0.t/D
X
n�0

.5n/!

n!5
tn

and

 1.t/ WD

Z
1

�3;0.t/D log.t/ 0C

X
n�0

.5n/!

n!5

� 5nX
kDnC1

1

k

�
tn:

Since the Kodaira–Spencer map is nonvanishing (on P1 n
˚
0;
�

1
5

�5
;1

	
), the integral

against �2;1.t/ is given by the t–derivatives of  0 and  1 , respectively. Consequently,
the contraction of L against h0; 1i is given by the Wronskian

W .t/D  0.t/ 
0
1.t/� 

0
0.t/ 1.t/:

We consider the composition F.q/DW ı�.q/ with the �–function

�W ��!C; �.q/D
q

55
�

�P
n2Z qn2CnP

n2Z qn2

�4

;

where �� D fq 2 C W 0 < jqj < 1g denotes the punctured unit disc. By the choice
of L and f0; 1g, the function F extends meromorphically with a simple pole across
q D 0.

Altogether, the nonvanishing of L contracted against h0; 1i on the whole upper
half-plane and the mirror quintic case �1 D

1
5

, �2 D
2
5

of the conjecture stated in the
introduction follows from the following statement.

Conjecture 6.4 The pullback F of the Wronskian W .t/ via � vanishes nowhere on
the punctured unit disc �� .

Strong numerical evidence for this conjecture is given by considering the growth rate
of the coefficients of 1=F . They appear to grow like exp.C

p
n/ for some C , whereas,
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for the reciprocal of a function with a zero in the disc (for example 1= 0.�.q//), the
radius of convergence is strictly smaller than 1 and the coefficients grow like exp.n/.

Appendix: The multiplicative ergodic theorem and
equivalent norms for measurable cocycles

Suppose that we have a smooth or continuous (or just measurable) finite-dimensional
complex vector bundle V of rank r over the base B , where the smooth (or topological)
manifold B is endowed with a probability measure �. Suppose that a map T W B!B ,
ergodic with respect to the measure �, extends to a smooth (continuous, measurable)
automorphism A of the vector bundle V . In other words, we suppose that the map T

of the base to itself lifts to a map A of the total space of the vector bundle to itself,
preserving the bundle structure, such that A is fiberwise C–linear, and such that the
induced linear transformations Ax W V.x/ ! VT .x/ of the fibers is invertible for any
x 2 B . Suppose finally that each fiber V.x/ of the vector bundle V is endowed with a
norm k � k.x/ which depends smoothly (continuously, measurably) on the base point
x 2 B .

Consider the usual operator norm

kAxk WD max
Ev2VxnE0

kAx Evk.T .x//

kEvk.x/
:

Define logC.y/Dmax.0; log.y//.

Definition A.1 The above data .B;T; �;V; k � k;A/ defines a measurable cocycle if
logC kAxk is integrable over B with respect to the measure �, ieZ

B

logCkAxk d�.x/ <1:

We state the multiplicative ergodic theorem in a form close to the original formulation
in [26].

Theorem A.2 (Oseledets’ theorem) Suppose that .B;T; �;V; k � k;A/ is an inte-
grable cocycle. Then there exist real numbers �.1/ > �.2/ > � � � > �.k/ and T –
equivariant complex subbundles of V defined for almost every x 2 B , denoted by

0 ¨ V��.k/ ¨ � � �¨ V��.1/ D V;
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such that for vectors v 2 V��.i/ nV��.iC1/ we have

lim
N!1

1

N
log kT N .v/k! �.i/:

We also write �1 � �2 � � � � � �r for the Lyapunov spectrum consisting of the numbers
�.i/ from Oseledets’ theorem repeated with multiplicities rank.V��.i/=V��.iC1//.

Instead of a discrete ergodic transformation of the vector bundle one can consider an
ergodic flow gt on the base B and a smooth (continuous, measurable) connection r
on the vector bundle, where r is not necessarily assumed to be flat. Denote by
A.x; t/W V.x/! Vgt .x/ the linear transformation of the fibers induced by the holonomy
along the trajectory of the flow.

Definition A.3 The cocycle .B;gt ; �;V;r; k � k/ is called integrable if the function
supt2Œ�1;1� logC kA.x; t/k is integrable over B with respect to the measure �, ieZ

B

sup
t2Œ�1;1�

logCkA.x; t/k d�.x/ <1:

In this situation we also say that .V ;gt ; k � k/ is an integrable flat bundle.

The multiplicative ergodic theorem stated above generalizes naturally to multiplicative
cocycles over flows.

It is clear from the definition that integrability of the cocycle and the Lyapunov spectrum
do not depend on the choice of the norm in the vector bundle for a large class of norms.
To provide a convenient sufficient condition for two norms to be equivalent, we start
with the following definition.

Definition A.4 Let V be a vector bundle over the base B ; let � be a probability
measure on B . We say that two norms k � k1 and k � k2 on the vector bundle V are
L1.�/–equivalent if the quantity

(28) max
Ev2VxnE0

ˇ̌̌̌
log
kEvk2 .x/

kEvk1 .x/

ˇ̌̌̌
D max
Ev2VxnE0

ˇ̌̌̌
log
kEvk1 .x/

kEvk2 .x/

ˇ̌̌̌
is integrable over B with respect to the measure �, ie

(29)
Z

B

max
Ev2VxnE0

ˇ̌̌̌
log
kEvk2 .x/

kEvk1 .x/

ˇ̌̌̌
d�.x/ <1:

The relation of L1.�/–equivalence is, clearly, reflexive, symmetric, and transitive.
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Theorem A.5 Suppose that data .B;T; �;V; k � k1;A/ define a measurable cocycle.
For any norm k �k2 which is L1.�/–equivalent to k �k1 , the data .B;T; �;V; k �k2;A/
also define a measurable cocycle, and it has the same Lyapunov filtration and the same
Lyapunov exponents as the original one.

Suppose that data .B;gt ; �;V;r; k � k1/ define a measurable cocycle. For any norm
k � k2 which is L1.�/–equivalent to k � k1 the data .B;gt ; �;V;r; k � k2/ also define a
measurable cocycle, and it has the same Lyapunov filtration and the same Lyapunov
exponents as the original one.

Proof We prove the theorem for the cocycle with the discrete time; the proof for the
cocycles with continuous time is completely analogous. We have

logCmax
Ev2VxnE0

kAx Evk2 .T .x//

kEvk2 .x/

D logCmax
Ev2VxnE0

kAx Evk2 .T .x//

kAx Evk1 .T .x//
�
kAx Evk1 .T .x//

kEvk1 .x/
�
kEvk1 .x/

kEvk2 .x/

� logC max
Ew2VT .x/n

E0

k Ewk2 .T .x//

k Ewk1 .T .x//
C logCmax

Ev2VxnE0

kAx Evk1 .T .x//

kEvk1 .x/
C logCmax

Ev2VxnE0

kEvk1 .x/

kEvk2 .x/

� max
Ew2VT .x/n

E0

ˇ̌̌̌
log
k Ewk2 .T .x//

k Ewk1 .T .x//

ˇ̌̌̌
C logCmax

Ev2VxnE0

kAx Evk1 .T .x//

kEvk1 .x/
C max
Ev2VxnE0

ˇ̌̌̌
log
kEvk1 .x/

kEvk2 .x/

ˇ̌̌̌
:

It remains to note that, since T W B! B is measure-preserving, we haveZ
B

max
Ew2VxnE0

ˇ̌̌̌
log
k Ewk2 .T .x//

kEvk1 .T .x//

ˇ̌̌̌
d�.x/D

Z
B

max
Ev2VxnE0

ˇ̌̌̌
log
kEvk2 .x/

kEvk1 .x/

ˇ̌̌̌
d�.x/:

Thus, the first and the third terms in the latter sum are L1.�/–integrable by definition
of L1.�/–equivalent norms, and the second term is L1.�/–integrable since the cocycle
represented by the data .B;T; �;V; k � k1;A/ is integrable by the assumption of the
theorem. We have proved that L1.�/–equivalence of the norms k�k1 and k�k2 implies
that if the cocycle represented by the data .B;T; �;V; k � k1;A/ is integrable, then the
cocycle represented by the data .B;T; �;V; k � k2;A/ is also integrable. It remains
to prove that the Lyapunov filtrations and the Lyapunov spectra of the two cocycles
coincide.

For almost all points x 2B , the Lyapunov filtrations and Lyapunov exponents are well
defined for both cocycles, and the ergodic sum of the quantity (28) along the trajectory
x;T .x/;T .T .x//; : : : converges to the integral (29). Namely, let
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aN .x/ WD
1

N

�
max
Ev2VxnE0

ˇ̌̌̌
log
kEvk2 .x/

kEvk1 .x/

ˇ̌̌̌
C max
Ev2VT .x/n

E0

ˇ̌̌̌
log
kEvk2 .T .x//

kEvk1 .T .x//

ˇ̌̌̌
C � � �C max

Ev2V
T N�1.x/

nE0

ˇ̌̌̌
log
kEvk2 .T N�1.x//

kEvk1 .T N�1.x//

ˇ̌̌̌�
:

The ergodic theorem implies that, for almost all x 2 B ,

lim
N!C1

aN .x/D

Z
B

max
Ev2VxnE0

ˇ̌̌̌
log
kEvk2 .x/

kEvk1 .x/

ˇ̌̌̌
d�.x/ <1;

which implies for almost all x 2 B the vanishing of the limits

lim
N!C1

.aN � aN�1/D 0 and lim
N!C1

1

N
aN�1 D 0;

and hence

(30) lim
N!C1

1

N
max

Ev2V
T N�1.x/

nE0

ˇ̌̌̌
log
kEvk2 .T N .x//

kEvk1 .T N .x//

ˇ̌̌̌
D lim

N!C1
aN �

N �1

N
aN�1 D 0:

Thus, for almost any x 2 B and for any Ev 2 Vx n
E0 we have

�.1/.Ev/D lim
N!C1

1

N
log kT N

Ev.x/k1 D lim
N!C1

1

N
log
�
kT N Ev.x/k1

kT N Ev.x/k2
� kT N

Ev.x/k2

�
D lim

N!C1

1

N
log
kT N Ev.x/k1

kT N Ev.x/k2
C

1

N
log kT N

Ev.x/k2

D 0C�.2/.Ev/;

where �.1/.Ev/ (resp. �.2/.Ev/) is the Lyapunov exponent associated to the vector Ev
defined by the first (resp. second) cocycle, and where the equality

lim
N!C1

1

N
log
kT N Ev.x/k1

kT N Ev.x/k2
D 0

is the corollary of (30).
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