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Subflexible symplectic manifolds

EMMY MURPHY

KYLER SIEGEL

We introduce a class of Weinstein domains which are sublevel sets of flexible We-
instein manifolds but are not themselves flexible. These manifolds exhibit rather
subtle behavior with respect to both holomorphic curve invariants and symplectic
flexibility. We construct a large class of examples and prove that every flexible
Weinstein manifold can be Weinstein homotoped to have a nonflexible sublevel set.
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1 Introduction

It has been known since the work of Gromov [11] that subcritical isotropic submanifolds
of symplectic and contact manifolds satisfy an h-principle, meaning they belong to
the realm of algebraic topology. In the intervening time, a rich theory of holomorphic
curve invariants has shown that Lagrangians and Legendrians are generally quite rigid
geometric objects. However, the last few years have seen significant progress in the flex-
ible side of symplectic topology. Murphy’s discovery of loose Legendrians [18] shows
that, at least for isotropics in high-dimensional contact manifolds, symplectic flexibility
extends well into the critical dimension. Cieliebak and Eliashberg subsequently used
loose Legendrians to define flexible Weinstein manifolds, extending this flexibility to
the theory of symplectic handlebodies. In a slightly different direction, it was shown
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in Eliashberg and Murphy [9] that Lagrangian embeddings with a loose Legendrian
negative end also satisfy an h-principle. Applications of this have included Lagrangian
immersions with surprisingly few self-intersection points (see Ekholm, Eliashberg,
Murphy and Smith [8]), an h-principle for symplectic embeddings of flexible Weinstein
manifolds (see [9] and also Theorem 3.7 below), and a complete classification of the
smooth topology of polynomially and rationally convex domains in high-dimensional
affine space (see Cieliebak and Eliashberg [7]).

On the other hand, certain questions about the precise nature of these flexible objects
have been thus far unclear. One question raised by Cieliebak and Eliashberg (see
Remark 11.30(3) in [6]) is whether the notion of flexibility for Weinstein manifolds is
invariant under Weinstein homotopies, or if it somehow depends on how we chop up
the manifold into elementary pieces. A closely related question is whether a subdomain
of a flexible Weinstein manifold is necessarily flexible. More specifically, is every
sublevel set of a flexible Weinstein structure on Cn necessarily flexible? By the work
of Cieliebak and Eliashberg (see the proof of Theorem 1.5 below), this is equivalent to
asking whether every polynomially convex domain in Cn is necessarily flexible, and
the affirmative answer was conjectured in [7].

In this paper, our main result is the following:

Theorem 1.1 Every flexible Weinstein manifold has, after a Weinstein homotopy, a
nonflexible sublevel set.

Such sublevel sets, which we call subflexible, lie close to the interface between flexibility
and rigidity. We construct a large class of examples, including many which are sublevel
sets of the standard Weinstein structure on Cn up to Weinstein homotopy. In particular
this gives a negative answer to all of the above questions and disproves the conjecture
of Cieliebak and Eliashberg.

Our starting observation is that the exotic 6–dimensional Weinstein manifold X first
defined by Maydanskiy in [14] becomes flexible after attaching an additional critical
Weinstein handle (see Section 4.1). This gives another viewpoint on Maydanskiy’s
result that X has trivial wrapped Fukaya category (see Section 3 below, along with
[2, Proposition 2.3] for the connection with wrapping). On the other hand, Harris [12]
observed that X contains a Lagrangian S3 after arbitrarily small nonexact deformations
of the symplectic form. Applying Eliashberg and Murphy’s h-principle for embeddings
of flexible Weinstein manifolds, we can summarize the discussion so far as:

Geometry & Topology, Volume 22 (2018)



Subflexible symplectic manifolds 2369

Theorem 1.2 In the standard symplectic C3 , there is a Liouville subdomain X and a
C1–small closed form � 2�2X such that the symplectic manifold .X; !stdjX C �/

contains a Lagrangian S3 .

In fact, Harris’ observation suggests that X might be nonflexible, although deducing
this directly from the above theorem appears tricky. The reason is that after deformation
X becomes nonexact at infinity, and presently there is not a robust theory of holomorphic
curve invariants for such manifolds.

Inspired by the above example and the “homologous recombination” construction of
Abouzaid and Seidel [2], we introduce a general “subflexibilization” construction for
Weinstein manifolds. Subflexibilization inputs a Weinstein manifold W and outputs a
Weinstein manifold SF.W /, and applying the construction to T �S3 gives Maydan-
skiy’s manifold. Topologically this procedure has the effect of adding some subcritical
Weinstein handles. Symplectically it renders W subflexible, in particular killing its
symplectic cohomology, and yet the symplectic geometry of W is not completely
forgotten as we will explain. In fact, Harris’ observation can be understood as a
manifestation of Seidel’s result [22, Proposition 2.6] that squares of two-dimensional
Dehn twists are fragile, ie are not symplectically isotopic to the identity, but become
so after small nonexact deformations of the symplectic form. Correspondingly, for
6–dimensional W we identify the symplectomorphism type of SF.W / after a small
nonexact deformation as the boundary connect sum of W with some simple standard
(nonexact) symplectic manifold (see Theorem 4.7).

Detecting nonflexibility among subflexible manifolds is a rather subtle problem. In
general the basic tool for detecting nonflexibility of a Weinstein manifold is symplectic
cohomology. Indeed, the work of Bourgeois, Ekholm and Eliashberg [3] implies that
the symplectic cohomology of a flexible Weinstein manifold must vanish. We give an
alternative proof of this in Section 3 which may be of independent interest. However, a
standard argument involving the Viterbo transfer map implies that subflexible Weinstein
manifolds must have vanishing symplectic cohomology as well, so some other invariant
is needed. For this we turn to a twisted variation of symplectic cohomology. Twisted
symplectic cohomology also vanishes for flexible Weinstein manifolds, but, perhaps
surprisingly at first glance, subflexible manifolds can have nontrivial twisted symplectic
cohomology. In fact, the results of Siegel [25] imply that, for 6–dimensional W , twisted
symplectic cohomology of SF.W / coincides with standard symplectic cohomology
of W . Appealing to this computation, we deduce that SF.W / is subflexible, yet
nonflexible whenever W has nonvanishing symplectic cohomology.
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Remark 1.3 In fact, [25] also computes bulked deformed symplectic cohomology for
an analogous class of examples, and this can be used to distinguish exotic examples
for which ordinary or twisted symplectic cohomology cannot. However, for simplicity
we focus on twisted symplectic cohomology in this paper, especially since this suffices
to prove Theorem 1.1.

Applying the construction with a bit more care and incorporating other recent construc-
tions of exotic Weinstein manifolds, we prove the following. Recall that an almost
symplectomorphism is a diffeomorphism which furthermore preserves the homotopy
class of the symplectic form as a nondegenerate two-form.

Theorem 1.4 Let X be any Weinstein domain with dim X � 6 and c1.X /D 0. Then
there is a Weinstein domain X 0 such that

� X 0 is almost symplectomorphic to the boundary connect sum of X with some
standard subcritical Weinstein domain,

� X 0 is a sublevel set of a flexible Weinstein domain almost symplectomorphic
to X ,

� X 0 has nonvanishing twisted symplectic cohomology.

In particular, X 0 is subflexible but not flexible.

Taking X to be the standard Weinstein ball, we get a nonflexible sublevel set X 0

of a flexible Weinstein domain which is almost symplectomorphic to X , and hence
Weinstein deformation equivalent to X by the h-principle for flexible Weinstein domains
(see Section 2.2). Since every Weinstein manifold can be homotoped so that it contains
the ball as a small sublevel set, this establishes Theorem 1.1.

Incorporating the techniques of Cieliebak and Eliashberg [7], we also prove:

Theorem 1.5 If X admits a smooth codimension-zero embedding into Cn , and
moreover Hn.X IZ/ D 0 and Hn�1.X IZ/ is torsion-free, then X 0 is a sublevel set
of Cn , equipped with the standard Weinstein structure up to deformation. In particular,
X 0 is Weinstein deformation equivalent to a polynomially convex domain in Cn .

This paper is organized as follows. In Section 2 we review the relevant background
on Weinstein and Lefschetz structures and especially the interplay between the two.
In Section 3 we discuss symplectic cohomology and its twisted cousin and prove that
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these invariants vanish for flexible Weinstein structures. In Section 4 we introduce the
subflexibilization construction and establish its main properties, using the groundwork
laid in Section 2. Finally, in Section 5 we combine all of our results to produce some
exotic subflexible manifolds as in Theorem 1.4.
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2 Background

2.1 The geometry of Weinstein structures

We begin with a quick review of open symplectic structures, referring the reader to [6]
for more details. Recall that a Liouville domain is a pair .W 2nC2; �/, where

� W is a compact .2nC 2/–dimensional manifold with boundary,

� � is a 1–form on W such that ! WD d� is symplectic,

� the Liouville vector field Z� , defined by Z� y d�D �, is outwardly transverse
to @W .

There is also a weaker notion of a compact symplectic manifold with convex bound-
ary .W; !/, in which ! has a primitive � defined only near @W such that Z� is
outwardly transverse to @W .

A Weinstein domain is a triple .W; �; '/, where

� .W; �/ is a Liouville domain,

� �W W !R is a Morse function with maximal level set @W ,

� Z� is gradient-like for � .
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A Weinstein domain has a completion yW DW [ .Œ0;1/� @W /. Let r denote the
unique flow coordinate for Z� on Op.@W / satisfying LZ�.r/ � 1 and r j@W � 0.
Assuming that ' � r on Op.@W /, we extend � to Œ0;1/ � @W as y� D er�j@W

and we extend ' as y'.r;x/ D r . Here yW is an open manifold without boundary,
y'W yW ! Œ0;1/ is a proper Morse function, and the flow of the vector field Zy� is
complete. The completion . yW ; y�; y'/ is called a Weinstein manifold. In this paper we
require Weinstein manifolds to be of finite type, meaning the proper Morse function has
only finitely many critical points. Any finite-type Weinstein manifold is the completion
of a Weinstein domain.

For two Weinstein domains .W; �1; �1/; .W; �2; �2/ with the same underlying smooth
manifold, the natural equivalence relation is Weinstein homotopy, ie a 1–parameter
family of Weinstein structures .W; �t ; �t / connecting them, t 2 Œ1; 2�, where �t is
additionally allowed to have standard birth–death singularities at finitely many times.
For Weinstein manifolds, the definition is similar, but with the added stipulation that the
union of the critical points of �t for all t be contained in some compact subset (this is
to prevent critical points from disappearing off to infinity). Two Weinstein structures1

on a priori different smooth manifolds are deformation equivalent if, after pulling back
one structure by a diffeomorphism, the two resulting structures on the same smooth
manifold are Weinstein homotopic. For Weinstein manifolds, Weinstein homotopy (and
hence deformation equivalence) implies exact symplectomorphism. Note however that
two homotopic Weinstein domains need not be symplectomorphic, since for example
their volumes or symplectic capacities could be different. For this reason, regarding
questions of symplectomorphisms it is more natural to work with completions.

The definition of a Weinstein domain implies that � is a contact form when restricted
to Y c WD '�1.c/ for any regular value c . Furthermore, the descending manifold Dk

p

of any critical point p 2 W satisfies �jDk
p
D 0. Therefore Dk

p is isotropic in the
symplectic sense for d�, and ƒc

p WD Dk
p \ Y c is isotropic in the contact sense for

ker�jY c . In particular k WD ind.p/� nC 1.

If c 2R is a critical value of ' with a unique critical point p , then the Weinstein homo-
topy type of W cC"Df' < cC"g (for "> 0 sufficiently small) is determined by W c�" ,
together with the isotopy type2 of ƒc�"

p � Y c�" and a framing of the symplectic

1Here structure means either domain or manifold.
2ƒc�"

p is canonically parametrized as @DkC1
p , and its isotopy type through parametrized Legendrians

affects the symplectomorphism type of W cC" . We will often suppress this parametrization from the
notation.
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normal bundle of ƒc�"
p (which is necessarily trivial). This is also constructive: given a

Weinstein domain W and a (parametrized) isotropic sphere ƒk � @W , together with a
framing of the symplectic normal bundle of ƒ (assumed to be trivial), we can construct
a new Weinstein domain with one additional critical point, of index kC1, whose
descending manifold intersects @W along precisely ƒ. This procedure, called attaching
a Weinstein .kC1/–handle along ƒ, depends only on the framed, parametrized isotopy
class (through isotropics) of ƒ, up to Weinstein homotopy (see [28; 6] for more details).

In particular, for a Legendrian sphere ƒn � @W , we can attach an .nC1/–handle
H ŠDnC1�DnC1 along ƒ and extend the Weinstein structure over H . The resulting
Morse function agrees with ' on W and has one additional critical point pH of
index nC 1 in H . The core (resp. cocore) of H is made up of the Lagrangian disks
consisting of all points in H which limit to pH under the positive (resp. negative)
Liouville flow. The boundary of the core (resp. cocore) of H is a Legendrian sphere in
@W (resp. @.W [H )), which we refer to as the attaching sphere (resp. belt sphere)
of H . We denote the attaching sphere and belt sphere of H by AS.H / and BS.H /

respectively.

In general, if a critical point p of �W W 2nC2! R has ind.p/D nC 1, we say that
p is critical; otherwise it is subcritical. A Weinstein manifold is called explicitly
subcritical if all of its critical points are subcritical. Note that explicit subcriticality
is not invariant under Weinstein homotopy, since one can easily perform a Weinstein
homotopy which creates two canceling critical points, one of index n and one of
index nC 1; see [6, Section 12.6]. We will call a Weinstein manifold subcritical if it
can be made explicitly subcritical by a Weinstein homotopy.

2.2 Looseness and flexibility

Loose Legendrians were defined in [18], where it was shown that they satisfy an
h-principle: two loose Legendrians are Legendrian isotopic if and only if they are
formally isotopic. Intuitively, two Legendrians are formally isotopic if and only if they
are smoothly isotopic in such a way that their normal bundle framings are canonically
homotopic. A connected Legendrian of dimension n> 1 is loose if it admits a loose
chart, defined as follows. Let a denote the Legendrian arc in .B3

std; @B
3
std/, defined up

to Legendrian isotopy, with the properties depicted in the left side of Figure 1. Namely,
it has a single Reeb chord, of action a, and its front projection has a single transverse

Geometry & Topology, Volume 22 (2018)



2374 Emmy Murphy and Kyler Siegel

a

a zz

Figure 1: Left: the front picture of the Legendrian arc a with a chord of
action a . Right: the front picture of a once-stabilized Legendrian arc.

self-intersection and a single cusp. Set

V 2n�2
� WD f.q;p/ 2 T �Rn�1

W jqj � �; jpj � �g;

Zn�1
� WD f.q;p/ 2 V 2n�2

� W p D 0g:

Here T �Rn�1 is equipped with the Liouville form �p1 dq1�� � ��pn�1 dqn�1 , and we
equip the product B3

std�V� with the contact form z�y dx�p1 dq1�� � ��pn�1 dqn�1 .
A loose chart for a Legendrian ƒ�N is a contact embedding of pairs

.B3
std �V�; a �Z�/ ,! .N; ƒ/

such that a=�2<2. More generally, we say a Legendrian link is loose if each component
admits a loose chart in the complement of the other components.

Since loose Legendrians satisfy an h-principle, one might also expect an h-principle
for Weinstein manifolds built by iterative Weinstein handle attachments along loose
Legendrian spheres. This indeed turns out to be the case and is explored in depth in [6].

Definition 2.1 For n > 1, a Weinstein structure .W 2nC2; �; �/ is explicitly flexible
if there exist regular values c0; c1; : : : ; cN of � with c0 < min.�/ < c1 < � � � < cN

such that:

� All critical points of � are contained in f� < cN g.

� No gradient trajectories of Z� join two critical points in fci < � < ciC1g for
i D 0; : : : ;N �1, ie fci �� � ciC1g is an elementary cobordism in the language
of [6].

� The attaching spheres of all index nC 1 critical points in fci < � < ciC1g form
a loose Legendrian link in ��1.ci/ for i D 1; : : : ;N � 1.

A Weinstein structure is called flexible if it is Weinstein homotopic to an explicitly
flexible structure.
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Remark 2.2 (1) Any (explicitly) subcritical Weinstein domain is (explicitly) flexible.

(2) In a slight change of terminology, our definition of explicitly flexible coincides
with the definition of flexible given in [6].

(3) As explained in [6, Remark 11.30(3)], if c0 < c1 < � � �< cN is a partition as in
Definition 2.1, so is any finer partition of .W; �; �/ into elementary cobordisms.
In particular, if the critical points of � have pairwise distinct critical values then
.W; �; �/ is explicitly flexible if and only if the attaching Legendrian of each
index nC 1 critical point p is loose in ��1.�.p/� "/ for " > 0 sufficiently
small. If some of the critical points of � share the same critical value q , a
similar criterion holds if we consider all the corresponding attaching spheres as
a Legendrian link in ��1.q� "/.

To justify the name, Cieliebak and Eliashberg prove the following flexibility results
(see [6] for stronger and more precise statements).

Theorem 2.3 (1) Given an explicitly flexible Weinstein structure .W 2nC2; �; �/

and any Morse function z�W W ! R without critical points of index greater
than nC 1, there is a Weinstein homotopy starting at .W; �; �/ and ending at a
Weinstein structure whose Morse function is z� .

(2) Two explicitly flexible Weinstein structures are Weinstein homotopic if and only
if their symplectic forms are homotopic as nondegenerate two-forms.

(3) Any Weinstein structure .W; �; �/ is almost symplectomorphic to a flexible
Weinstein structure, ie there is a diffeomorphism respecting the homotopy classes
of the symplectic forms as nondegenerate two-forms. We denote this flexible ver-
sion by Flex.W; �; �/. Note that it is well-defined up to Weinstein deformation
equivalence.

One of the main goals of this paper is to show that explicit flexibility is not preserved
under Weinstein homotopies. To see that this is conceivably possible, imagine a
Weinstein domain .W; �; �/ with precisely two critical points of critical index, say
p1 and p2 , such that �.p1/ D 1 and �.p2/ D 2. Assume there are no gradient
trajectories between p1 and p2 , and suppose that .W; �; �/ is explicitly flexible,
which means that AS.p1/ � �

�1
�

1
2

�
and AS.p2/ � �

�1
�

3
2

�
are loose Legendrians.

Now suppose we were to homotope .W; �; �/ by lowering the value of p2 until p1

and p2 lie on the same level set of � . The result would be explicitly flexible if
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and only if AS.p1/[AS.p2/ is a loose link in ��1
�

1
2

�
. Since we did not assume

AS.p2/� �
�1
�

3
2

�
is loose in the complement of BS.p1/, there is no obvious reason

why AS.p2/� �
�1
�

1
2

�
should be loose in the complement of AS.p1/.

Note, however, that Theorem 2.3 above is tautologically also true for the more general
class of flexible Weinstein manifolds.

Definition 2.4 A Weinstein domain .W; �; '/ is called subflexible if it is Weinstein
deformation equivalent to a sublevel set of a flexible Weinstein manifold.

Remark 2.5 A sublevel set of a Weinstein domain is a special case of a Liouville
embedding, ie a smooth codimension-zero embedding i W .W0; �0/ ,! .W; �/ of a
Liouville domain into a Liouville manifold such that i���e��0 is exact for some �2R.
For Liouville embeddings one can define the Viterbo transfer map on symplectic
cohomology [27].

Flexible manifolds are also subflexible by definition, and at first glance it might appear
that these are the only examples. For instance, any subflexible Weinstein domain
has trivial symplectic cohomology (see Theorem 3.2). On the other hand, as we
explain in Section 3, the proof of Theorem 3.2 fails for a twisted version of symplectic
cohomology (even though a version of the transfer map still holds in this setting!). In
fact, twisted symplectic cohomology is strong enough to detect nonflexibility of the
examples we construct in Section 4.

2.3 Lefschetz structures

Roughly speaking, a smooth map � W E2n! B2 is a smooth Lefschetz fibration if B2

is a compact surface with boundary, E2n is a compact manifold with corners,3 and �
is a submersion except at finitely many singular points, near which it is modeled on the
holomorphic map

Cn
!C; .z1; : : : ; zn/ 7! z2

1 C � � �C z2
n :

If E has additional structure, we would like � to be compatible with this structure
in some sense. Roughly speaking, a symplectic Lefschetz fibration is a Lefschetz
fibration such that the total space is equipped with a symplectic form which restricts to

3From now on we will not explicitly mention the corners and will assume the corners have been
smoothed when needed.
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a symplectic form on each fiber, with some additional technical conditions to ensure
parallel transport is well-behaved. We now give an actual definition with the caveat that
the precise details are not crucial for our purposes and there seems to be no universally
agreed upon definition in the literature.

Definition 2.6 A symplectic Lefschetz fibration is a smooth map � W W !D2 , with
.W; !/ a compact symplectic manifold, satisfying the following conditions:

� Lefschetz-type singularities � is a submersion whose fibers are smooth man-
ifolds with boundary, except at finitely many critical points. The critical points
have distinct critical values lying in Int D2 , and near each critical point � is
modeled on Cn!C , .z1; : : : ; zn/ 7! z2

1
C � � �C z2

n , with ! identified with the
standard Kähler form on Cn .

� Compatibility with ! For any regular value p 2D2 , .��1.p/; !j��1.p// is
a compact symplectic manifold with convex boundary.

� Triviality near vertical boundary On a neighborhood of the vertical boundary
@vW WD �

�1.@D2/, the map � is equivalent (for some " > 0) to the map

� � IdW @vW � .1� "; 1�! S1
� .1� "; 1��D2;

with ! identified with !vC��!b , where !v is the pullback of !j@vW under
the projection @vW � .1� "; 1�! @vW and !b is some symplectic two-form
on D2 .

� Triviality near horizontal boundary On a neighborhood of the horizontal
boundary @hW WD @W n Int @vW , the map � is equivalent to the projection
Op.@M /�D2 ! D2 , with ! identified with a split symplectic form, where
M WD ��1.1/ is the fiber.

The key feature of symplectic Lefschetz fibrations is that the symplectic orthogo-
nals to the vertical tangent spaces define a symplectic connection, meaning any path
 W Œ0; 1�!D2 which avoids the critical values of � induces a parallel transport sym-
plectomorphism ��1. .0//Š ��1. .1//. The symplectic Picard–Lefschetz theorem
identifies the holonomy around a critical value of � with a symplectic Dehn twist along
the corresponding vanishing cycle (see below). The notion of a Liouville Lefschetz
fibration is similar, with ! D d� a Liouville structure on W and .��1.p/; �j��1.p//

a Liouville domain for each regular value p 2 D2 . We refer the reader to [23] for a
comprehensive treatment.
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Let .W; !/ be a symplectic manifold equipped with a symplectic Lefschetz fibration
� W W ! D2 , and let z1; : : : ; zk 2 D2 denote the critical values of � . A basis of
vanishing paths is a collection of embedded paths 1; : : : ; k W Œ0; 1� ,!D2 such that
i.0/ D 1 2 @D2 , i.1/ D zi and i j.0;1/ is an embedding in Int D2 n fz1; : : : ; zkg,
for each i D 1; : : : ; k . We associate to a basis of vanishing paths the vanishing cycles
V1; : : : ;Vk � �

�1.1/, where Vi is defined as the set of all points in M WD ��1.1/

which are parallel transported along i to the critical point in ��1.zi/. The vanishing
cycles V1; : : : ;Vk are embedded parametrized4 Lagrangian spheres in .M; !jM /.

Now suppose that .V1; : : : ;Vk/ are the vanishing cycles associated to a certain basis of
vanishing paths, and .V 0

1
; : : : ;V 0

k
/ are those associated to some other basis of vanishing

paths. It follows from the symplectic Picard–Lefschetz theorem that .V1; : : : ;Vk/ and
.V 0

1
; : : : ;V 0

k
/ differ by a sequence of Hurwitz moves. A Hurwitz move is one of the

following two operations:

.V1; : : : ;Vk/ .�V1
V2;V1;V3; : : : ;Vk/;

.V1; : : : ;Vk/ .V2; �
�1
V2

V1;V3; : : : ;Vk/:

(Here and throughout the paper, we denote by �V the symplectic Dehn twist around
the Lagrangian sphere V .) Note that the two moves are inverses of each other, and as
usual the vanishing cycles are only cyclically ordered, so the moves can be applied on
any two consecutive vanishing cycles.

In general, we call .M; !IV1; : : : ;Vk/ a symplectic Lefschetz datum if .M; !/ is a
compact symplectic manifold with convex boundary and V1; : : : ;Vk�M is a cyclically
ordered collection of embedded parametrized Lagrangian spheres. Given a symplectic
Lefschetz datum .M; !IV1; : : : ;Vk/ and a basis of vanishing paths, one can construct
a compact symplectic manifold S.M; !IV1; : : : ;Vk/, equipped with a symplectic
Lefschetz fibration

�.M;!IV1;:::;Vk/W S.M; !IV1; : : : ;Vk/!D2:

Moreover, the fiber is symplectomorphic to M and the vanishing cycles are identified
with V1; : : : ;Vk . Similarly, a Liouville Lefschetz datum is .M; �IV1; : : : ;Vk/ with

4Just as in the case of Weinstein manifolds and Legendrian attaching maps, vanishing cycles have a
canonical parametrization (modulo isotopies) since they are the boundaries of the Lagrangian thimbles.
Similar to the Weinstein case, this data is necessary to recover the symplectic topology of the total space
from the data of the fiber and the vanishing cycles.
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.M; �/ a Liouville domain, and one can construct a Liouville Lefschetz fibration

�.M;�IV1;:::;Vk/W L.M; �IV1; : : : ;Vk/!D2

which recovers the initial datum .M; �IV1; : : : ;Vk/.

The construction of �.M;!IV1;:::;Vk/W S.M; !IV1; : : : ;Vk/!D2 proceeds as follows.
If k D 0 we can simply take M �D2 with the split symplectic form !C!std . Now
suppose k D 1. For any s > 0 there is a “model” symplectic Lefschetz fibration
� W Es!D2 whose fiber is symplectomorphic to D�s Sn , the disk cotangent bundle
of Sn of radius s with respect to some Riemannian metric (see [23, Example 15.4]).
Near @hEs , the map � is equivalent to the projection Op.@D�s Sn/ � D2 ! D2 .
Here Op.@D�s Sn/ � D2 is equipped with the symplectic form !std C !b , where
!std is the canonical symplectic form on D�s Sn and !b is some symplectic form
on D2 . Now consider M � D2 with the split symplectic form ! C !b . By the
Weinstein neighborhood theorem, a neighborhood U of V1�D2 is symplectomorphic
to .D�s Sn�D2; !stdC!b/ for some s> 0. We can therefore remove U from M �D2

and symplectically glue in Es , and this gives the desired symplectic Lefschetz fibration.
More generally, if k � 2 we perform the above construction for each vanishing
cycle individually and then glue together the resulting symplectic Lefschetz fibra-
tions along a fiber, reidentifying the base with D2 . The Liouville Lefschetz fibration
�.M;�IV1;:::;Vk/W L.M; �IV1; : : : ;Vk/!D2 can be constructed in a similar fashion
(see [23, Section 16e] for more details).

There is also a notion of completion for a Lefschetz fibration over D2 , resulting in a
Lefschetz fibration over C . If � W W ! D2 is a symplectic Lefschetz fibration, the
completion y� W yW !C is obtained as follows. First, by triviality near the horizontal
boundary we can symplectically glue . yM nM / �D2 to W , where yM denotes the
completion of M D ��1.1/ as a compact symplectic manifold with convex boundary.
Denote the resulting symplectic manifold by .W1; !1/, and note that � has a natural
extension �1W W1!D2 . Now by triviality near the vertical boundary we can identify
the restriction of �1 to Op.��1

1
.@D2// with the map

� � IdW @vW1 � .1� "; 1�!D2:

Here the product @vW1 � .1� "; 1� is equipped with the symplectic form y!vC��!b ,
where y!v WD !1j@vW1

. Let .C; y!b/ denote the completion of .D2; !b/. Finally, we
complete the horizontal boundary of W1 by gluing in @vW1�Œ1;1/, equipped with the
symplectic form y!vC y!b . One can similarly complete a Liouville Lefschetz fibration,
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and in this case the completion as a Lefschetz fibration agrees with the completion as a
Liouville domain, up to Liouville deformation equivalence. We denote the completions
of S and L by yS and yL, respectively.

We compile a few basic facts that will be needed later:

� The symplectomorphism type of yS.M; !IV1; : : : ;Vk/ is well-defined and invari-
ant under symplectomorphisms of M and Hamiltonian isotopies and Hurwitz
moves of the vanishing cycles.

� L.M; �IV1; : : : ;Vk/ is well-defined up to Liouville deformation equivalence and
invariant under Liouville deformation equivalences of .M; �/ and Hamiltonian
isotopies and Hurwitz moves of the vanishing cycles.

� yL.M; �IV1; : : : ;Vk/ is symplectomorphic to yS.M; d�IV1; : : : ;Vk/.

� Let .M; !IV1; : : : ;Vk/ be a symplectic Lefschetz datum and let � be a closed
two-form on M with support disjoint from V1[� � �[Vk . Then there is a closed
two-form z� on yS.M; !IV1; : : : ;Vk/ such that yS.M; ! C s�IV1; : : : ;Vk/

is symplectomorphic to the result of adding s z� to the symplectic form of
yS.M; !IV1; : : : ;Vk/ (provided .M; ! C s�/ is symplectic and has convex
boundary).

As explained in [3, Section 8.2], the Liouville domain L.M; �IV1; : : : ;Vk/ can also be
constructed (up to Liouville deformation equivalence) by attaching Weinstein handles
to M �D2 along Legendrian lifts of V1; : : : ;Vk . If .M; �; �/ is a Weinstein domain,
this can be slightly refined to construct a Weinstein domain W.M; �; �IV1; : : : ;Vk/,
as we now explain. Let .M; �; �/ be a Weinstein domain, and let .D2; �std; �std/

be the standard Weinstein structure on the unit disk with �std D
1
2
x dy � 1

2
y dx and

�std.x;y/Dx2Cy2 . We would like to view the product .M; �; �/�.D2; �std; �std/ as
a Weinstein domain in such a way that part of the boundary is identified with M �S1 .
To accomplish this, we Weinstein homotope the completion . yM ; y�; y�/ to . yM ; y�; z�/,
where z�W yM ! R is C1–small on M and is of the form h.s/ on Œ0;1/ � @M ,
where s is the coordinate on Œ0;1/ and h0.s/ > 0. Now consider the Weinstein
manifold

�
yM �C; y�C 1

2
x dy � 1

2
y dx; z�Cx2Cy2

�
. Denote the Weinstein domain

given by the sublevel set fz�C x2C y2 � 1g as .M; �; �/� .D2; �std; �std/ (or just
M �D2 when the rest of the data is implicit).

We can decompose the contact boundary Y WD @.M �D2/ into two parts:

Y1 WD Y \ .M �C/; Y2 WD Y n Int Y1:
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Observe that Y1 is diffeomorphic to M �S1 , and the contact structure is given by

�C 1
2
.1� z�/dt;

where t is the coordinate on S1 D R=.2�Z/. We would like to remove the z� term.
To this effect, using the smallness assumption on z�jM we can find a contact form
on @.M �D2/ which is given by �C 1

2
dt on Y1 and agrees outside Op.Y1/ with�

y�C 1
2
xdy� 1

2
y dx

�ˇ̌
@.M�D2/

. Gray’s stability theorem gives a contact embedding�
M �S1; �C 1

2
dt
�
,!

�
Op.Y1/;

�
y�C 1

2
x dy � 1

2
y dx

�ˇ̌
Op.Y1/

�
:

Using this embedding, we can assume without loss of generality that the contact form
on Y1 is given by �C 1

2
dt .

Now suppose that V1; : : : ;Vk � .M; �/ are a collection of exact Lagrangians with
�jVi
D dFi for i D 1; : : : ; k . If kFik <

�
2k

for i D 1; : : : ; k , we can lift V1; : : : ;Vk

to disjoint Legendrian spheres in Y1 . More precisely, we can find Legendrian spheres
ƒ.V1/; : : : ; ƒ.Vk/� Y1 such that, for i D 1; : : : ; k :

� ƒ.Vi/ projects diffeomorphically onto Vi under the projection Y1!M .

� The projection of ƒ.Vi/ to the S1 factor is contained in an arc �i � S1 such
that �i \ �j D ∅ if i ¤ j and �1; : : : ; �k are cyclically ordered in the
counterclockwise S1 direction.

Indeed, we take the Legendrian lift of Vi to be

ƒ.Vi/ WD
n
.p; t/ 2 Y1 W p 2 Vi ; t D�2Fi.p/C .i � 1/

2�

k

o
:

Finally, if the condition kFik<
�
2k

is not satisfied, we can simply replace Vi by its image
under the Liouville flow of W for large backwards time, which is Hamiltonian isotopic
to Vi . We now set W.M; �; �IV1; : : : ;Vk/ to be the Weinstein domain given by
attaching Weinstein handles to M�D2 along the Legendrian lifts ƒ.V1/; : : : ; ƒ.Vk/�

@.M �D2/.

Definition 2.7 A Lefschetz presentation for a Weinstein domain .X 2nC2; �; �/ is
a Weinstein deformation equivalence between it and W.M 2n; �;  IV1; : : : ;Vk/ for
some Weinstein Lefschetz datum .M 2n; �;  IV1; : : : ;Vk/.

Remark 2.8 The cyclic ordering of the vanishing cycles is an essential part of the
Lefschetz data; changing the cyclic ordering often completely changes the symplectic
topology (and even the smooth topology) of the total space.
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Definition 2.9 Let W.M 2n; �;  IV1; : : : ;Vk/ be a Weinstein Lefschetz fibration,
and let Dn �M be a Lagrangian disk whose boundary is a Legendrian sphere in @M .
Let H be a Weinstein handle attached to M along @D , and let S � M[H be
the Lagrangian sphere formed by the union of Dn and the core of H . The Wein-
stein Lefschetz fibration W.M[H; �;  IV1; : : : ;Vk ;S/ is called the stabilization of
W.M; �;  IV1; : : : ;Vk/ along D , which is called a stabilizing disk (see eg [13]).

Remark 2.10 As is well known, the Weinstein deformation type of the total space of
a Lefschetz fibration does not change with stabilization. One can see this by viewing S

and @D as the attaching maps of a canceling pair of Weinstein handles. Alternatively,
it can be seen as boundary connect summing with D2nC2

std , which has the Lefschetz
presentation W.T �Sn; �std;  IZ/, where Z is the zero section, and  is a Morse
perturbation of the function jpj2 .

To apply subflexibilization to a Lefschetz fibration, we will need to make the following
additional assumption on the vanishing cycles V1; : : : ;Vk .

Assumption 2.11 There are Lagrangian disks T1; : : : ;Tk � M with disjoint Leg-
endrian boundaries in @M such that, for each 1 � i � k , the disk Ti intersects Vi

transversely in a single point (however Ti is allowed to intersect the other vanishing
cycles arbitrarily).

This is the same as Assumption 3.6 in [2]. In fact, in order to apply the results from [25],
we will make a slightly stronger assumption as follows. Consider an embedded path �
in the base of a Lefschetz fibration, which intersects the critical values precisely at its
endpoints. In the fiber above the midpoint of the path we get two vanishing cycles
corresponding to the critical values at the two endpoints. If these two (parametrized)
Lagrangian spheres are Hamiltonian isotopic, we call � a matching path, and we can
construct a corresponding matching cycle, a Lagrangian sphere in the total space which
projects to � (see [23, Section 16g] for details).

Definition 2.12 A Weinstein Lefschetz datum .M; �;  IV1; : : : ;Vk/ is of matching
type if .M; �;  / itself admits Lefschetz presentation such that each Vi is a matching
cycle with respect to this auxiliary Lefschetz fibration.

It is explained in Example 3.13 of [2] that every smooth complex affine variety (viewed
as a Weinstein domain) admits a Lefschetz presentation of matching type, and any
matching type Lefschetz fibration satisfies Assumption 2.11.
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Remark 2.13 By recent work of Giroux and Pardon [10], every Weinstein domain
admits a Lefschetz presentation.

3 Holomorphic curve invariants and (sub)flexibility

Our main goal in this section is to prove that (twisted) symplectic cohomology vanishes
for any flexible Weinstein domain. To review symplectic cohomology and its twisted
variant, we refer the reader to [25] and the references cited therein.

Let .W; �/ be a Liouville domain and let . yW ; y�/ denote its completion. Working over
any ground ring K, we have SH.W; �/, the symplectic cohomology of .W; �/. Among
other things, this is a unital K–algebra which is invariant under symplectomorphisms
(not necessarily exact) of . yW ; y�/ (see the discussion in [2, Section 2c]). Informally,
the symplectic cohomology of .W; �/ is defined as the Hamiltonian Floer cohomology
of . yW ; y�/ with respect to a Hamiltonian which grows sufficiently rapidly at infinity. In
particular, the underlying chain complex is generated by 1–periodic Hamiltonian orbits
in yW , and the differential counts isolated solutions to Floer’s equation. Symbolically,
the differential applied to an orbit C is of the form

ı.C/ WD
X

u2M.�;C/0

s.u/�;

where the sum is over all orbits � . Here M.�; C/
0 denotes the moduli space of

isolated (unparametrized) Floer trajectories asymptotic to �; C , and s.u/ 2 f˙1g

is a certain associated sign. Of course, one must work carefully to ensure that the
Gromov’s compactness theorem applies, and this necessitates picking Hamiltonians
and almost complex structures of a special form at infinity.

From now on we assume for simplicity that K is a field. In order to apply the twisting
construction, we further assume there is an injective group homomorphism T W R!K�

from the additive group R to the group of invertible elements in K. We set t WD T .1/

and more generally tr WD T .r/ for any r 2 R. For example, we could take K to
be simply R with T .r/ WD er . Or, more formally, we could take K to be the field
of rational functions in a formal variable t with real exponents and coefficients in
say Z=2. Note that in this paper there is no need to take a Novikov completion since
we are working in an exact setting.
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Remark 3.1 In the case c1.W; !/ D 0, we can trivialize the canonical bundle
of .W; !/, in which case SH.W; �/ inherits a Z–grading via the Conley–Zehnder
index. This grading plays a role in Proposition 5.3 below.

Now suppose that � is a closed two-form on W . In this case we can define SH�.W; �/,
the symplectic cohomology of .W; �/ twisted by �. This is again a unital K–algebra,
depending only on the cohomology class of � and invariant under symplectomorphisms
of . yW ; y�/ which respect Œ�� 2 H 2. yW IR/. The definition of SH�.W; �/ is almost
identical to that of SH.W; �/, except that in defining the differential and other relevant
structure maps we weight each curve uW R � S1 ! yW by the factor t

R
u�� . For

example, the twisted differential is of the form

ı�.C/ WD
X

u2M.�;C/0

t
R

u��s.u/�:

Our present goal is to prove the following:

Theorem 3.2 For .W; �; �/ a flexible Weinstein domain, we have SH�.W; �/ D 0

for any closed two-form � on W .

At least for untwisted symplectic cohomology, this result is already well known to
experts. One argument uses the surgery results of [3], together with the triviality of
Legendrian contact homology for loose Legendrians. It would be straightforward to
extend the techniques of [3] to make this argument work in the twisted case as well.
Instead, we give a proof of Theorem 3.2 based on an embedding h-principle for flexible
Weinstein domains (see Theorem 3.7 below).

Firstly, we will need the Künneth theorem for symplectic cohomology, adapted to the
twisted case. An inspection of Oancea’s proof [19] in the untwisted setting shows that
the twisting two-forms benignly come along for the ride, yielding the following.

Theorem 3.3 Let �1 and �2 be closed two-forms on Liouville manifolds .W1; �1/

and .W2; �2/ respectively. There is an isomorphism

SH�1
.W1; �1/˝SH�2

.W2; �2/Š SH�1C�2
.W1 �W2; �1C�2/:

Recall that Oancea’s basic idea is to consider a split Hamiltonian and almost complex
structure on yW1�

yW2 , for which the resulting Floer cohomology is as expected via the
algebraic Künneth theorem. However, this does not compute symplectic cohomology
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since this Floer data is not cylindrical at infinity with respect to the Liouville form
on yW1 �

yW2 . To rectify this, Oancea carefully modifies the split data to make it
cylindrical at infinity and argues via action considerations that this procedure does not
change the resulting homology. Alternatively, an unpublished argument due to Mark
McLean starts with cylindrical Floer data and modifies this to the product data. In this
case one can appeal to the more robust integrated maximum principle of Abouzaid to
rule out undesired Floer trajectories.

Next, we need to understand how flexibility behaves under products.

Proposition 3.4 Let .W; �; �/ be an explicitly flexible Weinstein domain and let
.W 0; �0; �0/ be any Weinstein domain. Then the product . yW � yW 0; y�Cy�0; y�C y�0/ is
an explicitly flexible Weinstein manifold.

Proof The critical values of y�C y�0 are of the form qC q0 for q a critical value of �
and q0 a critical value of �0 . Consider some pair q; q0 of critical values of � and �0

respectively. For sufficiently small " > 0, set

� N WD .y�C y�0/�1.qCq0�"/, equipped with the contact form ˛N WD .y�Cy�
0/jN ,

� Q WD ��1.q� "/, equipped with the contact form ˛Q WD �jQ ,

� Q0 WD .�0/�1.q0� "/, equipped with the contact form ˛Q0 WD �
0jQ0 .

Let Dtop.q/�W denote the union of the descending manifolds of all critical points of �
with critical value q and index equal to half the dimension of W . Define Dtop.q0/�W 0

and Dtop.qC q0/� yW � yW 0 similarly. We have Legendrian links

� ƒN WDDtop.qC q0/\N in .N; ker˛N /,

� ƒQ WDDtop.q/\Q in .Q; ker˛Q/,

� ƒQ0 WDDtop.q0/\Q0 in .Q0; ker˛Q0/.

As explained in Remark 2.2(3), explicit flexibility of .W; �; �/ means that ƒQ is a
loose Legendrian link for each critical value q of � , and our goal is to prove that ƒN

is loose for each critical value qC q0 of y�C y�0 .

Using the Liouville flow of y�, we get a smooth embedding ˆW Rs �Q ,! yW such
that ˆ�.y�/ D es˛Q . Here we are using the fact that the Liouville vector field Zy�
on yW is complete and exponentially expands the Liouville one-form y�. Similarly, we
get an embedding ˆ0W Rs0 �Q0 ,! yW 0 such that .ˆ0/�.y�0/ D es0˛Q0 . Consider the
hypersurface

H WD fsC s0 D 0g �Rs �Q�Rs0 �Q0;
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which comes with a codimension-one embedding

i WD .ˆ�ˆ0/jH W H ,! yW � yW 0

transverse to the Liouville vector field Zy�Cy�0 . Identifying H with Rs�Q�Q0 , where
s0 is determined by the relation s0 D �s , the hypersurface H naturally inherits the
contact one-form

˛H WD i�.y�Cy�0/D es˛QC e�s˛Q0 ;

along with the Legendrian submanifold

ƒH WD i�1.Dtop.q/�Dtop.q0//DRs �ƒQ �ƒQ0 :

By Lemma 3.5 below, ƒH is loose. Indeed, the ambient contact structure on H is
of the form ker.˛QC e�2s˛Q0/. In particular, the factor Rs �Q0 is equipped with
the one-form e�2s˛Q0 , for which the dual vector field �1

2
@s is everywhere nonzero

and tangent to the Lagrangian submanifold Rs �ƒQ0 . This means we can find loose
charts for ƒH in .H; ker˛H /, one for each component in the complement of the other
components.

We claim that these loose charts for ƒH can be pushed forward under the Liouville
flow of y� C y�0 to loose charts for ƒN in .N; ker˛N /. Indeed, let us denote by
Ft W
yW � yW 0! yW � yW 0 the time-t Liouville flow for t 2R. Since there are no critical

values of � in Œq� "; q/ or of �0 in Œq0� "; q0/, for each x 2H we have

lim
t!�1

.y�C y�0/.Ft .i.x/// < qC q0� ";

lim
t!C1

.y�C y�0/.Ft .i.x///� qC q0:

Since the function y�C y�0 is increasing under the Liouville flow, there is a uniquely
determined “flow time” function T W H ! R such that the map sending x 2 H

to FT .x/.i.x// defines a smooth embedding FT W H ,! N with the property that
F�

T
.˛N / D eT ˛H . In particular, FT is a contact embedding and maps ƒH to ƒN

since the Liouville vector field is tangent to Dtop.qC q0/. Therefore it sends the loose
charts for ƒH in .H; ker˛H / to corresponding loose charts for ƒN in .N; ker˛N /.

Strictly speaking, the above shows that FT .ƒH / is a loose link in .N; ker˛N /, and
in principle there could be duplicates in the collection fqC q0g where q and q0 vary
over the critical values of � and �0 respectively. Therefore we need to check that the
loose charts we produce for ƒN in .N; ker˛N / for different pairs .q; q0/ are disjoint.
To see this, suppose that r; r 0 is a distinct pair of critical values of �; �0 respectively,
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with r C r 0 D qC q0 . We claim that Dtop.r/�Dtop.r 0/ is disjoint from i.H /. Since
Dtop.r/�Dtop.r 0/ is Liouville flow invariant, this will imply that it is also disjoint
from FT .H /, and hence from the above loose charts for ƒH in H corresponding to
.q; q0/. In fact, observe that Dtop.r/�Dtop.r 0/ is disjoint from the image of ˆ�ˆ0 .
Indeed, if r < q , we must have that Dtop.r/ is disjoint from Q, since upward flow
trajectories ending at level r will never reach level q � ". Otherwise, if r 0 < q0 ,
we must have that Dtop.r 0/ is disjoint from Q0 . Either way, by invariance with
respect to the flows of Zy� and Zy�0 we have that Dtop.r/�Dtop.r 0/ is disjoint from
ˆ.f0g �Q/�ˆ0.f0g �Q0/, and the claim follows.

Lemma 3.5 Let ƒ be a loose Legendrian link in a closed contact manifold .Q; ker˛/,
and let L be a Lagrangian in an exact symplectic manifold .M; �/. Assume that �
vanishes when restricted to L and that the dual vector field Z� has flow defined for all
time and is nonvanishing along L and tangent to L. Then ƒ�L is a loose Legendrian
in the contact manifold .Q�M; ker.˛C �//.

Proof Recall from Section 2.2 that Vr � T �Rn is the box of radius r , typically
equipped with the canonical Liouville one-form �can D �

Pn
iD1 pi dqi . Observe

that the Liouville vector field Z�can D
Pn

iD1 pi@pi
vanishes identically on the set

Zr D fp1D � � � DpnD 0g � Vr , whereas by assumption this is not the case for Z�

on L, and therefore some preparation is needed before we can appeal to Lemma 3.6
below.5

Consider the modified Liouville one-form on Vr , given by �modD dpn�
Pn

iD1 pi dqi .
Notice that the corresponding Liouville vector field Z�mod D @qn

C
Pn

iD1 pi@pi
is

tangent and nonvanishing along Zr . We claim we can find an embedding F W Vr ,!M

such that F�� D �mod and F.Zr / � L, for some sufficiently small r > 0. Indeed,
note that �mod restricts to a contact form on fqn D 0g � Vr , with respect to which
fqnD0g \ Zr is Legendrian. Similarly, for a point x 2 L, we can find a small
codimension-one submanifold H �Op.x/ which is transverse to Z� . Then � jH is a
contact form on H , with respect to which L\H is Legendrian. By the contact Darboux
theorem (see [6, Proposition 6.19]), we can find an embedding f W fqnD 0g\Vr ,!H

such that f .fqn D 0g \Zr / � L \H and f �.� jH / D �modjfqnD0g\Vr
. Then the

map F is obtained by extending f to be equivariant with respect to the flows of Z�mod

and Z� and possibly restricting to a smaller r > 0.

5We thank the anonymous referee for pointing out a mistake related to this point in an earlier draft and
suggesting a fix.
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Similarly, consider a collection of points x1; : : : ;xk 2L, one on each connected com-
ponent Li of L. Applying the argument above, we can find embeddings Fi W Vr ,!M

for i D 1; : : : ; k such that F�i � D �mod and Fi.Zr / � Li . We also arrange that the
image of Fi is disjoint from L nLi .

Fix some C > 0 sufficiently large relative to r . The flow of Z� for time log.C / gives
a diffeomorphism M !M which pulls back � to C� . Then the composition given
by Fi followed by this flow is a map zFi W Vr ,!M such that zFi

�
� D C�mod . Since

Z� is tangent to L, we also have zFi.Zr /�Li .

Next, consider a function T W Vr!R, and let GT W Q�Vr!Q�Vr be the map given
by the time-T Reeb flow of ˛ on the first factor and the identity on the second factor.
Then we have G�

T
.˛CC�mod/D˛CC�modCdT . In particular, setting T D�Cpn , we

get a map G WDGT which satisfies G�.˛CC�mod/D˛CC�mod�CdpnD˛CC�can .
Since T vanishes on ƒ, we also have G.ƒ�Zr /Dƒ�Zr .

Finally, the composition .Id� zFi/ ıGW Q�Vr ,!Q�M maps ƒ�Zr to ƒ�Li

and pulls back ˛C � to ˛CC�can . By rescaling, we can identify .Vr ;C�can/ with
.VR; �can/ for R D

p
C r . In particular, since R can be arbitrarily large, it follows

from Lemma 3.6 below that ƒ�L is loose.

Lemma 3.6 Let ƒ be a loose Legendrian link in a contact manifold .N 2lC1; ker˛/.
Then, provided r is sufficiently large, ƒ�Zn

r is a loose Legendrian link in the contact
manifold .N 2lC1 �V 2n

r ; ker.˛�p1 dq1� � � � �pn dqn//.

Proof Since ƒ is loose, for each connected component there is a contact embedding
of pairs

GW .B3
std �V 2l�2

� ; a �Zl�1
� / ,! .N 2lC1; ƒ/

for some � > 0 with a< 2�2 , with image disjoint from the other components of ƒ.
This means that G�˛ is equal to z�y dx�p1 dq1� � � � �pl�1 dql�1 times ef for
some smooth function f . Then for each component of ƒ we can define a contact
embedding of pairs

.B3
std �V 2l�2

� �V 2n
� ; a �Zl�1

� �Zn
�/ ,! .N 2lC1

�V 2n
r ; ƒ�Zn

r /

given by G on the B3
std�V 2l�2

� factor and the time f Liouville flow on the remaining
factor. Note that this map is well-defined for r sufficiently large, and the image is
disjoint from the other components of ƒ�Zn

r . This restricts to a loose chart

.B3
std �V 2l�2C2n

� ; a �Zl�1Cn
� / ,! .N 2lC1

�V 2n
r ; ƒ�Zn

r /:
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Finally, we have the following corollary of the Lagrangian caps h-principle, amounting
to an h-principle for symplectic embeddings of flexible Weinstein domains.

Theorem 3.7 (Eliashberg and Murphy [9, Section 6]) Let .W 2n; �; '/ be a flexible
Weinstein domain, and let F W W ,! .X 2n; !X / be any smooth codimension-zero
embedding into a symplectic manifold. If nD3, assume X has infinite Gromov width.6

Suppose that F�!X is an exact two-form and is homotopic to d� through nondegener-
ate two-forms. Then F is isotopic to a symplectic embedding f W .W; "d�/ ,! .X; !X /

for some sufficiently small " > 0. If .X; !X / is an exact symplectic manifold, then we
can also arrange that f is an exact symplectic embedding.

Proof of Theorem 3.2 Let .W; �; �/ be a flexible Weinstein domain, and let the pair
.D�S1; �can/ denote the unit disk cotangent bundle of S1 , equipped with its canonical
Liouville form. By Theorem 3.3, we have

SH�.W; �/˝SH.D�S1; �can/Š SH�.W �D�S1; �C�can/:

(Here � is being abusively used to also denote its pullback to W �D�S1 , and the
twisting two-form on D�S1 is trivial.) Recall that SH.D�S1; �can/ is isomorphic to
the homology of the free loop space of S1 (see [1]) and in particular is nontrivial.
Therefore it suffices to prove that SH�.W �D�S1; �C�can/ is trivial.

Let .D2
r ; �std/ denote the standard Liouville disk of radius r > 0. Consider a split

symplectic embedding
i W W �D�S1 ,!W �D2

r

given by

� the identity on the first factor,

� any area-preserving embedding on the second factor.

Note that this embedding is not exact. Nevertheless, since the product is flexible by
Proposition 3.4, it satisfies the hypotheses of Theorem 3.7. Therefore i is isotopic to a
Liouville embedding

i 0W .W �D�S1; �C�can/ ,! .W �D2
r ; �C�std/:

Moreover, i 0�� extends to a closed two-form z� on W � D2
r . Note that without

changing the cohomology class, we can assume that z� is pullback of a closed

6This extra assumption on the nD 3 case proved to be unnecessary, as was shown by Yoshiyasu [29].
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two-form on W . Another application of Theorem 3.3, together with the vanishing
of SH.D2

r ; �std/, implies that SHz�.W �D2
r ; �C�std/ vanishes. Finally, a well-known

argument involving the Viterbo transfer map (see Theorem 3.8 below) shows that
SH�.W �D�S1; �C�can/ is trivial. Namely, the transfer map

SH�.W �D2
r ; �C�std/! SH�.W �D�S1; �C�can/

is a unital ring map, which forces SH�.W �D�S1; �C �can/ to be the trivial ring
with unit equal to zero.

One very useful feature of symplectic cohomology is the Viterbo transfer map. This
also holds for twisted symplectic cohomology, provided we take care in how we twist.

Theorem 3.8 ([27]; see also [21]) Let .W0; �0/ and .W; �/ be Liouville domains,
and assume there is a Liouville embedding i W .W0; �0/ ,! .W; �/. For � any closed
two-form on W , there is map of unital K–algebras

SH�.W; �/! SHi��.W0; �0/:

Corollary 3.9 SH.W; �/D 0 for any subflexible Weinstein domain .W; �; �/.

However, we wish to point out that there could be a closed two-form �0 on W0 which
makes SH�0

.W0; �0/ nontrivial, but such that �0 does not extend to W as a closed
two-form. Indeed, this is precisely what happens for the examples we construct in
Section 4.

4 Subflexibilization

4.1 Maydanskiy’s manifold revisited

Before giving the general subflexibilization construction we illustrate the main ideas
with an important example. We consider the two 6–dimensional Weinstein domains X 6

1

and X 6
2

from [12]. Each is diffeomorphic to D�S3 \ .D�S2�D2/ and is represented
by a Weinstein Lefschetz presentation. Here M1 \M2 denotes the boundary connect
sum of two equidimensional Weinstein domains M1 and M2 , ie the result of attaching
a Weinstein 1–handle to the disjoint union of M1 and M2 with one endpoint on @M1

and the other on @M2 . In the case of X1 , the fiber of the Lefschetz fibration is
the Milnor fiber A4

2
, ie a plumbing of two copies of D�S2 . The fiber A4

2
itself
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admits a secondary Lefschetz fibration with fiber D�S1 and three vanishing cycles.
The Lefschetz presentation for X1 has two vanishing cycles V1;V2 � A4

2
, given by

the matching cycle construction with the matching paths in the top left of Figure 2.
Similarly, the Lefschetz presentation for X2 has fiber A4

4
(a plumbing of four copies

of D�S2 ), which admits a secondary Lefschetz fibration with fiber D�S1 and five
vanishing cycles. X2 has four vanishing cycles W1;W2;W3;W4 � A4

4
specified by

the matching paths in the bottom left of Figure 2. We refer the reader to [14; 12] for
more details.

X1

X2

V1

V2

add vanishing
cycle

Hurwitz
move

zV1
zV2

zV3

W1

W2

W3

W4

Hurwitz
move

zW4
zW2

zW1

zW3

Figure 2: Top: X1 becomes flexible after adding a vanishing cycle and
applying a Hurwitz move. Bottom: X2 becomes flexible after applying a
Hurwitz move.

The manifold X1 was first considered by Maydanskiy in [14], where he applies Seidel’s
long exact sequence to show that X1 has vanishing wrapped Fukaya category (and
hence vanishing symplectic cohomology). This also follows from the fact that X1 is
subflexible, which can be seen as follows. Adding a vanishing cycle to X1 and applying
a Hurwitz move according to the top of Figure 2, we arrive at the Weinstein domain
W.A4

2
I zV1; zV2; � zV2

zV1/, which we show is flexible below (Theorem 4.3). Incidentally,

W.A4
2
I zV1; zV2; � zV2

zV1/ is precisely the exotic D�S3 illustrated in [15, Figure 2], which
gives another way of seeing that its symplectic cohomology vanishes.

On the other hand, X2 is actually flexible. To see this, apply the Hurwitz move
illustrated in the bottom of Figure 2. The result is Weinstein deformation equivalent to
the same flexible D�S3 as before, with an extra pair of canceling handles ( zW4 is in
canceling position) and an extra subcritical handle attached.

The main theorem of [12] states that X1 and X2 are not symplectomorphic. Harris
argues that an embedded Lagrangian sphere appears in X1 after an arbitrarily small
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deformation of the symplectic form, whereas no such Lagrangian can appear for X2 .
From the perspective of this paper, X1 and X2 can be distinguished by the fact that X1

has nontrivial twisted symplectic cohomology by Theorem 4.5, whereas X2 is flexible
and thus has trivial twisted symplectic cohomology.

The fact that X1 has nontrivial twisted symplectic cohomology reflects the symplec-
tomorphism type of X1 after a small deformation of its symplectic form. Namely,
notice that X1 can be viewed as W.A4

2
IS1; �

2
S2

S1/, where S1;S2 �A4
2

represent the
plumbed zero sections. According to Seidel [22, Proposition 2.6], a squared Dehn twist
around a two-dimensional sphere is a fragile symplectomorphism, and hence we expect
�2

S2
S1 to be Hamiltonian isotopic to S1 in the presence of an ambient deformation

of the symplectic form. Since W.A4
2
IS1;S1/ is just D�S3 with an extra subcritical

2–handle, this should imply that after deformation X1 becomes symplectomorphic to a
rather trivial deformation of the standard Weinstein structure on D�S3 \ .D�S2�D2/

(this is made precise in Theorem 4.7). By the standard tools in symplectic cohomology
we might expect the symplectic cohomology of the latter space to agree with homology
of the free loop space of S3 .

However, we point out that there are technical difficulties in making sense of the
symplectic cohomology of X1 and X2 after deformations. This is because X1 and X2

become nonconvex symplectic manifolds, and the standard definition and maximum
principle properties of symplectic cohomology do not apply to such manifolds. On the
other hand, twisted symplectic cohomology for Liouville domains is well-defined and
poses no serious technical difficulties beyond those of ordinary symplectic cohomology
(although computations are still in general quite difficult).

4.2 The subflexibilization construction

Let X 2nC2 be a Weinstein domain with a Lefschetz presentation which satisfies
Assumption 2.11. We explain how to use the Lefschetz presentation to modify X and
obtain a new Weinstein domain SF.X /.

Construction 4.1 Assume X 2nC2 has a Weinstein Lefschetz presentation with Wein-
stein fiber M 2n , vanishing cycles V1; : : : ;Vk in M and Lagrangian disks T1; : : : ;Tk

in M as in Assumption 2.11. The Weinstein domain SF.X / is defined to have a
Weinstein Lefschetz presentation with

� fiber given by attaching a Weinstein n–handle Hi to M along @Ti for each
1� i � k ,
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� vanishing cycles �2
S1

V1; �
2
S2

V2; : : : ; �
2
Sk

Vk , where Si is the Lagrangian sphere
given by the union of Ti and the core of Hi .

(We note that SF.X / depends on the Lefschetz presentation of X , but we suppress
this from the notation.)

In the case dim X D 6, let X 6
C denote the boundary connect sum of X with k copies

of the subcritical Weinstein domain D�S2 �D2 . In fact, as explained in [16], the
cycles �2

Si
Vi and Vi are smoothly isotopic through totally real submanifolds (for some

choice of compatible almost complex structure) and this implies that SF.X 6/ is almost
symplectomorphic to W.M 4[H1[ � � �[Hk IV1; : : : ;Vk/. The handles H1; : : : ;Hk

are attached away from the vanishing cycles and the latter space can be identified
with X 6

C (recall that the attaching sphere of each Hi bounds an embedded Lagrangian
disk in M 4 ).

Remark 4.2 For n> 2 the diffeomorphism type of SF.X 2nC2/ is not just the straight-
forward analogue of X 6

C . For n odd, the intersection form on HnC1.SF.X 2nC2//

is different from the one on HnC1.X
2nC2/. This reflects the fact, easily observed

by the Picard–Lefschetz formula, that squared Dehn twists around odd-dimensional
spheres typically act nontrivially on homology. When n is even and greater than two,
the subflexibilization process changes the diffeomorphism type of X in a more subtle
way (see [16] for more details). Since we only need to understand the case nD 2 for
our present applications, we leave it to the reader to work out the topological details in
higher dimensions.

Theorem 4.3 For any X 2nC2 satisfying Assumption 2.11, SF.X / is subflexible.
More specifically, when n D 2, the Weinstein domain SF.X 6/ becomes Weinstein
deformation equivalent to Flex.X 6/ after attaching k Weinstein 3–handles.

The main tool we will use is a proposition from [4] (the proposition there is phrased in
terms of open books; boundaries of Lefschetz fibrations are just a special case of this).

Proposition 4.4 Let W.M; �;  IV1; : : : ;Vk/ be a Lefschetz fibration, let L �M

be an exact Lagrangian sphere, and let T � M be a stabilizing Lagrangian disk
which intersects L transversely at one point. Let H be a Weinstein handle attached
to M along @T , and let S be the Lagrangian sphere given by the union of T

and the core disk of H . Then the Legendrian lift of �SL from the fiber ��1.1/
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of the stabilized Lefschetz presentation W.M [H; �;  IV1; : : : ;Vk ;S/ is loose in
the boundary of the total space. In particular, if the Weinstein domain defined by
W.M; �;  IV1; : : : ;Vk/ was flexible, then the Weinstein domain defined by W.M [

H; �;  IV1; : : : ;Vk ;S; �SL/ is flexible as well.

Proof of Theorem 4.3 If X DW.M; �;  IV1; : : : ;Vk/, then

SF.X /DW.M [H1[ : : :[Hk ; �;  I �
2
S1

V1; : : : ; �
2
Sk

Vk/;

where Si is the Lagrangian sphere given as the union of Ti and the core of the handle Hi

(and we continue to use .�;  / to denote the Weinstein structure on M[H1[: : :[Hk ).
We attach handles to SF.X / to define a new Weinstein manifold

zX DW.M [H1[ � � � [Hk ; �;  I �
2
S1

V1;S1; �
2
S2

V2;S2; : : : ; �
2
Sk

Vk ;Sk/:

We will show that zX is flexible in any dimension. In the case n D 2, we have that
zX is almost symplectomorphic to

W.M [H1[ � � � [Hk ; �;  IV1;S1;V2;S2; : : : ;Vk ;Sk/;

which is just the original manifold X (after stabilizing its Lefschetz fibration k times).
Hence zX is almost symplectomorphic to Flex.X /, so once we show that zX is flexible
it follows that it is Weinstein deformation equivalent to Flex.X / (by Theorem 2.3).

By applying k Hurwitz moves, we get

zX DW.M [H1[ � � � [Hk ; �;  IS1; �S1
V1; : : : ;Sk ; �Sk

Vk/:

The manifold zX 0 WDW.M; �;  I¿/ is subcritical, so in particular it is flexible. The
manifold W.M [H1; �;  IS1/, being a stabilization of the previous Lefschetz fi-
bration, is another Lefschetz presentation of zX0 (though not explicitly subcritical).
zX1 WDW.M [H1; �;  IS1; �S1

V1/ is flexible, since it is built from X0 by attaching
a handle to the loose Legendrian �S1

V1 . Then W.M [H1[H2; �;  IS1; �S1
V1;S2/,

being a stabilization of the previous Lefschetz presentation, is Weinstein equivalent
to zX1 . Next zX2 DW.M [H1[H2; �;  IS1; �S1

V1;S2; �S2
V2/ is flexible, because

it is built from the flexible Weinstein manifold zX1 by attaching a handle along the loose
Legendrian sphere �S2

V2 . Continuing in this way, we see that zX D zXk is flexible.

On the other hand, at least when n D 2, the manifold SF.X 6/ is often not flexible.
Indeed, by Theorem 3.2 it suffices to show that SF.X 6/ has nontrivial twisted sym-
plectic cohomology. In [25] the following result is proved for any X which satisfies
Assumption 2.11:
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Theorem 4.5 There exists a closed two-form � on X 6 such that

SH�.SF.X 6//Š SH.X 6/:

Corollary 4.6 SF.X 6/ is not flexible if SH.X 6/¤ 0.

The next result describes the symplectomorphism type of SF.X 6/ after certain small
deformations. Let !sf and !C denote the symplectic forms on 2SF.X 6/ and bX 6

C

respectively.

Theorem 4.7 There are closed two-forms �sf and �C on 2SF.X 6/ and bX 6
C , respec-

tively, such that .2SF.X 6/; !sfC "�sf/ and .bX 6
C ; !CC "�C/ are symplectomorphic

for " > 0 sufficiently small.

Remark 4.8 In [20], Ritter proves the isomorphism SH�.X; !/Š SH.X; !C�/ in
the case that � has compact support, provided !C t� is symplectic for all t 2 Œ0; 1�.
Suppose we also knew this to hold when � does not have compact support, and
furthermore that the symplectic cohomology of .2SF.X /; !sfC "�sf/ is well-defined
and invariant under symplectomorphisms. Then for small " > 0 we would have

SH"�sf.SF.X 6//Š SH.SF.X 6/; !sfC "�sf/

Š SH.X 6
C; !CC "�C/

Š SH"�C.X
6
C/:

Moreover, based on the behavior of symplectic cohomology with respect to subcritical
handles, it seems reasonable to guess that that latter term is isomorphic to SH.X 6/.
This gives at least a heuristic explanation of Theorem 4.5.

To prove Theorem 4.7, we need the following lemma, which is essentially due to Seidel.

Lemma 4.9 Let .M 4; !/ be a symplectic manifold, with S �M a Lagrangian sphere
and � a closed two-form on M such that Œ�jS �¤ 0 2H 2.S IR/. Consider the defor-
mation of the symplectic form given by !s WD !C s�. Then for any neighborhood U

of S , there is a smooth family of symplectomorphisms ˆs of .M 4; !s/, defined for
all s � 0 sufficiently small, such that

� ˆ0 D �
2
S

,

� ˆs is supported in U for all s ,

� ˆs is Hamiltonian isotopic to the identity by an isotopy supported in U, for
s > 0.
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Proof Let .D�r S2; !std/ denote the radius r disk cotangent bundle of S2 with respect
to the round metric, for some r sufficiently small. Let �std denote the pullback to
D�r S2 of an SO.3/–invariant area form on S2 with total area equal to

R
S �. Consider

the deformation .D�r S2; !stdC s�std/ for s � 0 small. By the usual Moser–Weinstein
technique we can find a smooth family of symplectic embeddings

EsW .D
�
r S2; !stdC s�std/ ,! .M 4; !s/

for all s � 0 sufficiently small. By shrinking r if necessary, we can ensure that all of
these embeddings have image in U .

Now, following Seidel [24] there is a smooth family of symplectomorphisms ˆs of
.D�r S2; !stdC s�std/, defined for all s � 0 sufficiently small, such that

� ˆ0 D �
2
S

,

� ˆs is supported in Int D�r S2 ,

� ˆs is Hamiltonian isotopic to the identity by an isotopy supported in Int D�r S2 .

Then the pushforward of ˆs by Es has the desired properties.

Proof of Theorem 4.7 Let .M 4
sf ; �;  / denote the Weinstein fiber SF.X 6/, ie the

result of attaching the Weinstein handles H1; : : : ;Hk to the fiber of X 6 . We have
symplectomorphisms

.2SF.X /; !sf/Š yS.Msf; d� I �
2
S1

V1; : : : ; �
2
Sk

Vk/;

.bXC; !C/Š yS.Msf; d� IV1; : : : ;Vk/:

Let � be a closed two-form on Msf whose support is disjoint from

V1[ � � � [Vk [ �
2
S1

V1[ � � � [ �
2
Sk

Vk

and such that Œ�jSi
�¤ 0 2H 2.Si IR/ for 1 � i � k and � is exact near @Msf (we

can take � to be Poincaré dual to the union of the cocores of the handles H1; : : : ;Hk ).
As in Section 2.3, we can find closed two-forms �sf and �C on 2SF.X / and bXC
respectively such that for small " > 0 we have symplectomorphisms

.2SF.X /; !sfC "�sf/Š yS.Msf; d� C "�I �
2
S1

V1; : : : ; �
2
Sk

Vk/;

.bXC; !CC "�C/Š yS.Msf; d� C "�IV1; : : : ;Vk/:

Lemma 4.9 implies that �2
Si

Vi is Hamiltonian isotopic to Vi in the symplectic manifold
.Msf; d�C "�/ for 1� i � k . By the Hamiltonian isotopy invariance of yS , it follows
that .2SF.X /; !sfC "�sf/ and .bXC ; !CC "�C/ are symplectomorphic.
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5 Applications

We now make use of subflexibilization to construct exotic examples. The starting point
is Abouzaid and Seidel’s [2] construction of an affine variety U 2n for any 2n� 6 such
that U is diffeomorphic to Cn and SH.U /¤0. Based on work of McLean [17], the idea
is to take U to be the Kaliman modification of .Cn;H;p/, where H �Cn is a singular
hypersurface given by the zero set of a weighted homogenous polynomial and p 2H is
a smooth point. This means that U is obtained by blowing up Cn at p and then excising
the proper transform of H . Choosing the weighted homogenous polynomial carefully,
Abouzaid and Seidel show that Cn nH has nonvanishing symplectic cohomology,
and therefore so does U by [17, Theorem 2.31]. Define l0 2 Z to be the minimal
number of vanishing cycles of a Weinstein Lefschetz presentation for U 6 satisfying
Assumption 2.11.

Before proving Theorem 1.4, we briefly consider the effects of products, boundary con-
nect sums, and subcritical handle attachments on subflexibility and twisted symplectic
cohomology.

Lemma 5.1 Let .W1; �1; �1/ be a subflexible Weinstein domain and .W2; �2; �2/

any Weinstein domain. Then .W1; �1; �1/� .W2; �2; �2/ is subflexible.

Proof Up to a Weinstein homotopy we can find a flexible Weinstein domain .X; �; �/
of which .W1; �1; �1/ is a sublevel set. Let m1 and m2 denote the maximal critical
values of �1 and �2 , respectively. We can arrange that any critical points of � on XnW1

have critical value at least m, for some m>m1Cm2�minW2
�2 . By Proposition 3.4,

. yX � yW2; y�Cy�2; y�C y�2/ is flexible, and moreover the sublevel set f�C�2 � C g is
Weinstein deformation equivalent to W1 �W2 for any

m1Cm2 < C <mCmin
W2

�2:

Lemma 5.2 Let W1 and W2 be subflexible Weinstein domains. Then W1 \W2 is
subflexible.

Proof We can assume that W1 and W2 become flexible after attaching some number
of Weinstein handles, whose attaching regions are disjoint from the attaching region of
the 1–handle joining W1 and W2 in the construction of W1 \W2 . Therefore we can
attach Weinstein handles to W1 \W2 to obtain a boundary connect sum of two flexible
Weinstein domains, and the latter is clearly flexible.
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Proposition 5.3 Let .W0; �0/ be a Liouville domain, and let .W; �/ be the resulting
Liouville domain after attaching a subcritical Weinstein handle. Assume c1.W / D

c1.W0/D 0. Then for any closed two-form � on W , we have an isomorphism

SH��.W; �/Š SH��jW0

.W0; �0/:

In the case of untwisted symplectic cohomology, this is a well-known result due to
Cieliebak [5]. Following [17, Section 10.3], the isomorphism is induced by the transfer
map, which can be constructed using a sequence of admissible Hamiltonians in such a
way that the subcritical handle introduces a single constant Hamiltonian orbit whose
index is unbounded in the direct limit (here we need the Chern class assumption to
define a Z–grading). In particular, one can easily check that the same proof applies in
the presence of a twisting two-form.

Proof of Theorem 1.4 We take X 0 to be Flex.X 6/ \SF.U 6/ in the case dim X 0D 6,
and for 2n> 6 we set

X 0 WD Flex.X 2n/ \ .SF.U 6/�D�S2n�6/:

(Many other options are also possible, giving different subcritical topologies.) As
explained in Section 4.2, SF.U 6/ is almost symplectomorphic to UC , which is the
result of attaching l0 two-handles to the six-dimensional ball. In particular, SF.U 6/ is
almost symplectomorphic to a subcritical space, and hence so is SF.U 6/�D�S2n�6 .
Since Flex.X / is almost symplectomorphic to X , this proves the first part of the
theorem.

By Theorem 4.3, SF.U 6/ becomes a ball after attaching l0 Weinstein handles. In fact,
since D2�D�Sk becomes the ball after attaching a canceling .kC1/–handle, we can
also attach handles to convert SF.U 6/�D�S2n�6 into the ball, and hence X 0 into
Flex.X 2n/ \B2n Š Flex.X 2n/. This proves the second part of the theorem.

Finally, we endow SF.U 6/ with the twisting two-form from Theorem 4.5 which makes
the twisted symplectic cohomology of SF.U 6/ nontrivial. Extend this to a closed two-
form on X 0 by pulling it back under the projection SF.U 6/�D�S2n�6!SF.U 6/ and
extending by zero over Flex.X 2n/. By Proposition 5.3 and Theorem 3.2, we can ignore
the Flex.X / factor for purposes of twisted symplectic cohomology. The third part of
the theorem now follows by appealing to the Künneth-type Theorem 3.3, together with
the well-known nonvanishing of symplectic cohomology for D�S2n�6 .

Geometry & Topology, Volume 22 (2018)



Subflexible symplectic manifolds 2399

We conclude by discussing how to use Theorem 1.4 to produce nonflexible polynomially
convex domains, disproving the conjecture of Cieliebak and Eliashberg [7]. Following
the conventions of [7], recall that a polynomially convex domain in Cn is a compact
domain with smooth boundary K �Cn such that K coincides with its polynomial hull

yKP WD
˚
z 2Cn

W jP .z/j �max
u2K
jP .u/j for all complex polynomials P on Cn

	
:

(See also [26] for background on polynomial convexity.) According to Criterion 3.2
of [7], an i –convex domain W � Cn is polynomially convex if and only if there
exists an exhausting i –convex function �W Cn! R for which W is a sublevel set.
Here W �Cn is i –convex if there is an i –convex function on W such that @W is its
maximal regular level set.

Proof of Theorem 1.5 Since X 0 is deformation equivalent to a sublevel set of
Flex.X /, we focus on Flex.X /. By [7, Lemma 2.1], the smooth hypotheses on X

imply that the Morse function on X extends to a Morse function on Cn without critical
points of index greater than n. By [6, Theorem 13.1], we can therefore extend the
Weinstein structure on X to a flexible Weinstein structure on Cn , and by flexibility
this is automatically Weinstein homotopic to the standard structure. Theorem 1.5(c)
of [7] now produces a Weinstein deformation equivalence of X 0 onto a polynomially
convex domain in Cn .
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