Volume 22, issue 5 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Quasi-isometric embeddings of symmetric spaces

David Fisher and Kevin Whyte

Geometry & Topology 22 (2018) 3049–3082
Bibliography
1 J Behrstock, M F Hagen, A Sisto, Quasiflats in hierarchically hyperbolic spaces, preprint (2017) arXiv:1704.04271
2 M Bonk, O Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000) 266 MR1771428
3 N Brady, B Farb, Filling-invariants at infinity for manifolds of nonpositive curvature, Trans. Amer. Math. Soc. 350 (1998) 3393 MR1608281
4 C Druţu, Quasi-isometric classification of non-uniform lattices in semisimple groups of higher rank, Geom. Funct. Anal. 10 (2000) 327 MR1771426
5 A Eskin, Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces, J. Amer. Math. Soc. 11 (1998) 321 MR1475886
6 A Eskin, B Farb, Quasi-flats and rigidity in higher rank symmetric spaces, J. Amer. Math. Soc. 10 (1997) 653 MR1434399
7 B Farb, The quasi-isometry classification of lattices in semisimple Lie groups, Math. Res. Lett. 4 (1997) 705 MR1484701
8 D Fisher, T Nguyen, Quasi-isometric embeddings of non-uniform lattices, preprint (2015) arXiv:1512.07285
9 T Foertsch, Bilipschitz embeddings of negative sectional curvature in products of warped product manifolds, Proc. Amer. Math. Soc. 130 (2002) 2089 MR1896045
10 M Gromov, Infinite groups as geometric objects, from: "Proceedings of the International Congress of Mathematicians" (editors Z Ciesielski, C Olech), PWN (1984) 385 MR804694
11 J Huang, Top-dimensional quasiflats in CAT(0) cube complexes, Geom. Topol. 21 (2017) 2281 MR3654109
12 B Kleiner, B Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997) 115 MR1608566
13 B Kleiner, B Leeb, Rigidity of invariant convex sets in symmetric spaces, Invent. Math. 163 (2006) 657 MR2207236
14 A W Knapp, Lie groups beyond an introduction, 140, Birkhäuser (2002) MR1920389
15 E Leuzinger, Corank and asymptotic filling-invariants for symmetric spaces, Geom. Funct. Anal. 10 (2000) 863 MR1791143
16 L Mosher, M Sageev, K Whyte, Quasi-actions on trees, II : Finite depth Bass–Serre trees, 1008, Amer. Math. Soc. (2011) MR2867450
17 T Nguyen, Quasi-isometric embeddings of symmetric spaces and lattice: the reducible setting, in preparation
18 P Pansu, Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1 MR979599