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On the unstable intersection conjecture

MICHAEL LEVIN

Compacta X and Y are said to admit a stable intersection in Rn if there are maps
f W X!Rn and gW Y !Rn such that for every sufficiently close continuous approx-
imations f 0W X !Rn and g0W Y !Rn of f and g , we have f 0.X /\g0.Y /¤∅ .
The unstable intersection conjecture asserts that X and Y do not admit a stable
intersection in Rn if and only if dim X �Y � n� 1 . This conjecture was intensively
studied and confirmed in many cases. we prove the unstable intersection conjecture
in all the remaining cases except the case dim X D dim Y D 3 , dim X �Y D 4 and
nD 5 , which still remains open.

55M10; 54F45, 55N45

1 Introduction

All the spaces are assumed to be separable metrizable. A map means a continuous
map and a compactum means a compact metric space. Compacta X and Y are said to
admit a stable intersection in Rn if there are maps f W X !Rn and gW Y !Rn such
that for all sufficiently close continuous approximations f 0W X !Rn and g0W Y !Rn

of f and g , we have f 0.X / \ g0.Y / ¤ ∅. The modern research on this subject
was initiated by work of D McCullough and L Rubin [17], who refined the classical
Nöbeling–Pontrjagin theorem by constructing for every n � 2 an n–dimensional
Boltyanskii compactum X such that every map from X to R2n can be arbitrarily
closely approximated by an embedding. Recall that a compactum X is called a
Boltyanskii compactum if dim X 2 < 2 dim X (Boltyanskii’s compacta emphasize
the phenomenon that, in general, Lebesgue’s covering dimension does not obey the
logarithmic law dim X �Y D dim X C dim Y even for compacta; this was first shown
by Pontrjagin in 1930). One can easily observe that any map from a compactum X

to R2n can be approximated by embeddings if and only if X does not admit a stable
intersection with itself in R2n . This motivated the following well-known conjecture:

Conjecture 1.1 (unstable intersection conjecture) Compacta X and Y do not admit
a stable intersection in Rn if and only if dim X �Y � n� 1.
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Extensive work on this conjecture culminated in the following results:

Theorem 1.2 (Dranishnikov and West [8]; see also Sternfeld [21]) Let X and Y be
compacta such that dim X �Y � n. Then X and Y admit a stable intersection in Rn .

Theorem 1.3 (Dranishnikov, Repovs and Schepin [9]; Torunczyk and Spiez [20])
Let X and Y be compacta such that 2 dim XCdim Y � 2n�2 and dim X�Y �n�1.
Then X and Y do not admit a stable intersection in Rn .

Theorem 1.4 (Dranishnikov [4]) Let X and Y be compacta such that dim X �n�3,
dim Y �n�3 and dim X�Y �n�1. Then X and Y do not admit a stable intersection
in Rn .

The goal of this paper is to settle all the remaining open cases of Conjecture 1.1, except
only one, which still remains open.

Theorem 1.5 Conjecture 1.1 holds in all the cases except the following one, which
still remains open: dim X D dim Y D 3, dim X �Y D 4 and nD 5.

It is difficult to overestimate the impact of the unstable intersection conjecture on the
development of dimension theory. It gave rise to extension theory (in particular to
Dranishnikov’s extension criterion (Theorem 3.2) and a generalization of the Menger–
Urysohn formula for cohomological dimension (Theorems 2.7 and 2.8)), which, by
now, is considered as one of the major tools in dimension theory. This led to A
Dranishnikov’s breakthrough result (Theorem 1.4), which took care of the unstable
intersection conjecture for compacta of codimension larger than 2. In [4], Dranishnikov
expressed his opinion regarding the codimension-2 case, which is not covered by
Theorem 1.4: “The difficulties there look enormous, and they are basically due to the
presence of the fundamental groups. The problem with the fundamental group is that
basically the extension theory for nonsimple spaces is not constructed.” Indeed, as
Dranishnikov predicted, a development of extension theory was needed to advance
the codimension-2 case. It came in two papers by Dydak and the author [12; 13],
where it was first shown in [12] that Dranishnikov’s extension criterion holds for the
projective plane RP2 and then this result was generalized in [13] to all Moore spaces
M.Zm; 1/. Nevertheless, this partial development of extension theory covered only
specific CW–complexes that are not simply connected and did not seem to be much
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use for the unstable intersection conjecture. The crucial step in proving Theorem 1.5 is
establishing a link between the results of [13] and general CW–complexes that are not
simply connected. It is done through a version of the plus construction (Proposition 4.4)
and an appropriate factorization theorem (Theorem 3.1).

The paper is organized as follows: basics of cohomological dimension are presented in
Section 2, some results of extension theory are discussed in Section 3 and applied to
obtain a factorization theorem, Theorem 1.5 is proved in Section 4 and a few remarks
related to the paper’s results are given in the last section.

Acknowledgments This research was supported by ISF grant No. 522/14.

2 Cohomological dimension

Let us review basic facts of cohomological dimension. By cohomology we always
mean the Cech cohomology. Let G be an abelian group. The cohomological dimension
dimGX of a space X with respect to the coefficient group G does not exceed n, that
is, dimGX � n, if H nC1.X;AIG/ D 0 for every closed A � X. We note that this
condition implies that H nCk.X;AIG/ D 0 for all k � 1 [14; 5]. Thus, dimGX is
the smallest integer n� 0 satisfying dimGX � n and dimGX D1 if such an integer
does not exist. Clearly, dimGX � dimZ X � dim X.

Theorem 2.1 (Alexandroff) dim X D dimZ X if X is a finite-dimensional space.

Let P denote the set of all primes. The Bockstein basis is the collection of groups
� D fQ;Zp;Zp1 ;Z.p/ j p 2 Pg, where Zp DZ=pZ is the p–cyclic group, Zp1 D

dirlim Zpk is the p–adic circle and Z.p/D fm=n j n is not divisible by pg �Q is the
p–localization of integers.

The Bockstein basis of an abelian group G is the collection �.G/� � determined by
the rule

� Z.p/ 2 �.G/ if G=Tor G is not divisible by p ;

� Zp 2 �.G/ if p–Tor G is not divisible by p ;

� Zp1 2 �.G/ if p–Tor G is nontrivial and divisible by p ;

� Q 2 �.G/ if G=Tor G is nontrivial and divisible by all p 2 P .

Thus, �.Z/D fZ.p/ j p 2 Pg.
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Theorem 2.2 (Bockstein theorem) For a compactum X,

dimGX D supfdimH X WH 2 �.G/g:

Suggested by the Bockstein inequalities, we say that a function DW � !N [f0;1g

is p–regular if D.Z.p// D D.Zp/ D D.Zp1/ D D.Q/ and it is p–singular if
D.Z.p//DmaxfD.Q/;D.Zp1/C1g. A p–singular function D is called pC–singular
if D.Zp1/DD.Zp/ and it is called p�–singular if D.Zp1/DD.Zp/�1. A function
DW � ! N [ f0;1g is called a dimension type if for every prime p it is either p–
regular or p˙–singular. Thus, the values of D.F / for the Bockstein fields F 2fZp;Qg

together with p–singularity types of D determine the value D.G/ for all groups in � .
For a dimension type D , denote dim D D supfD.G/ W G 2 �g. We impose on every
dimension type D the following restriction: D.G/� 1 for every G 2 � if dim D > 0.

Theorem 2.3 (Bockstein inequalities [14; 5]) For every space X the function
dX W � !N [f0;1g defined by dX .G/D dimGX is a dimension type.

The function dX is called the dimension type of X .

Theorem 2.4 (Dranishnikov realization theorem [1; 3]) For every dimension type D

there is a compactum X with dX DD and dim X D dim D .

Theorem 2.5 (Olszewski completion theorem [18]) For every space X there is a
complete space X 0 such that X �X 0 and dX D dX 0 .

Let D be a dimension type. We will use the abbreviations D.0/ D D.Q/ and
D.p/DD.Zp/. Additionally, if D.p/D n 2N , we will write D.p/D nC if D is
pC–singular and D.p/ D n� if it is p�–singular. For a p–regular D we leave it
without decoration: D.p/D n. Thus, any sequence of decorated numbers D.p/ 2N ,
where p 2 P [ f0g, defines a unique dimension type. There is a natural order on
decorated numbers

� � �< n� < n< nC < .nC 1/� < � � � :

Note that the inequality of dimension types D �D0 as functions on � is equivalent to
the family of inequalities D.p/�D0.p/ for the above order for all p 2 P [f0g. Also
note that 0 has no decoration, 1 does not have the “�” decoration and D.0/DD.Q/

has no decoration.
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Let � be a decoration. We define the reversed decoration �� and the commutative
product of decorations ˝ as follows:

�.�/DC; �.C/D�; �.no decoration/D no decoration;

�˝ .no decoration/D �; �˝ � D � and C˝�D�:

For dimension types D1 and D2 we define the dimension types D1�D2 and D1˚D2

as follows: if D1.p/D n�1 and D2.p/Dm�2 , where �i is a decoration, then

.D1 � D2/.p/D .nCm/�1˝�2 ; .D1˚D2/.p/D .nCm/�..��1/˝.��2//:

For an integer n � 0 we denote by n the dimension type which sends every G 2 �

to n and for a dimension type D we denote by DC n the dimension type which is
the ordinary sum of D and n as functions. Note that DC n preserves the decorations
of D . Also note that dRn D n.

The operations D1 � D2 and D1˚D2 are motivated by the following properties:

Theorem 2.6 (Bockstein product theorem [5; 19; 11]) For any two compacta X

and Y ,
dX�Y D dX � dY :

Theorem 2.7 (Dydak union theorem [10; 7]) Let X be a compactum and D1 and
D2 dimension types and let X D A [ B be a decomposition with dA � D1 and
dB �D2 . Then dX �D1˚D2C 1.

Theorem 2.8 (Dranishnikov decomposition theorem [3; 7]) Let X be a finite-
dimensional compactum and D1 and D2 dimension types such that dX �D1˚D2C1.
Then there is a decomposition X DA[B such that dA �D1 and dB �D2 .

For a dimension type D and n� dim D , we define the dimension type nC 1	D by

.nC 1	D/.p/D .nC 1�m/�� if D.p/Dm�:

Note that nC1	D is indeed a dimension type and if dim D>0 then dim.nC1	D/�n

and nC 1	 .nC 1	D/DD . One can also easily verify the following properties:

Proposition 2.9 Let D be a dimension type and nD dim D . Then:

(i) D � .nC 1	D/ � nC 1. Moreover, for a dimension type D0 the condition
dim.D � D0/� nC 1 implies that D0 � nC 1	D ;
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(ii) nC 1 � D ˚ .nC 1	D/. Moreover, for dimension types D0 and D00 the
conditions D0 �D , D00 � nC1	D and nC1�D0˚D00 imply that D0DD

and D00 D nC 1	D .

In particular, Proposition 2.9(ii) implies Theorem 2.4. Indeed, let D be a dimension
type and n D dim D . By Theorem 2.8, consider a decomposition A [B D RnC2

with dA � D derived from the inequality nC 2 � D˚ .nC 1	D/C 1. Then, by
Proposition 2.9(ii) and Theorems 2.5 and 2.7, one can easily conclude that RnC2

contains a compact subset of dimension type D .

3 Maps to CW–complexes

The goal of this section is to prove:

Theorem 3.1 Any map from a finite-dimensional compactum X to a finite CW–
complex L with dim L � 3 can be arbitrarily closely approximated by a map which
factors through a compactum Z with dZ � dX and dim Z � 3.

For proving this theorem we need a few facts from extension theory.

Cohomological dimension is characterized by the following basic property: dimGX �n

if and only for every closed A�X and map f W A!K.G; n/, f continuously extends
over X, where K.G; n/ is the Eilenberg–Mac Lane complex of type .G; n/ (we assume
that K.G; 0/ D G with the discrete topology and K.G;1/ is a singleton). This
extension characterization of cohomological dimension gives a rise to extension theory
(more general than cohomological dimension theory) and the notion of extension
dimension. The extension dimension of a space X is said to be dominated by a
CW–complex K , written e-dim X � K , if every map f W A ! K from a closed
subset A of X continuously extends over X. Thus, dimGX � n is equivalent to
e-dim X �K.G; n/ and dim X � n is equivalent to e-dim X � Sn .

The following theorem shows a close connection between extension and cohomological
dimensions.

Theorem 3.2 (Dranishnikov extension theorem [2; 10]) Let K be a CW–complex
and X a metric space. Denote by H�.K/ the reduced integral homology of K . Then:

(i) dimHn.K /X � n for every n� 0 if e-dim X �K ;
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(ii) e-dim X �K if K is simply connected, X is finite-dimensional and

dimHn.K /X � n

for every n� 0.

Let G be an abelian group. We always assume that a Moore space M.G; n/ of type
.G; n/ is an .n�1/–connected CW–complex. Theorem 3.2 implies that for a finite-
dimensional compactum X and n> 1, dimGX � n if and only if e-dim X �M.G; n/.
We will refer to this property of M.G; n/ as being a classifying space for finite-
dimensional compacta X for which dimG X � n. This property can be extended to
some Moore spaces M.G; 1/ for the groups G in the Bockstein basis � .

We will consider the following standard models of M.G; 1/ for G 2 � :

� M.Q; 1/ is the infinite telescope of a sequence of maps from S1! S1 of all
possible nonzero degrees.

� M.Z.p/; 1/ is the infinite telescope of a sequence of maps S1 ! S1 of all
possible nonzero degrees not divisible by p .

� M.Zp1 ; 1/ is the infinite telescope of a p–fold covering map S1! S1 with
a disk attached to the first circle of the telescope by the identity map of the disk
boundary.

� M.Zp; 1/ is a disk attached to S1 by a p–fold covering map from the disk
boundary to S1 .

Note that M.Q; 1/ D K.Q; 1/ and M.Z.p/; 1/ D K.Z.p/; 1/ and hence M.Q; 1/

and M.Z.p/; 1/ are classifying spaces for compacta X for which dimQ X � 1 and
dimZ.p/

X � 1, respectively. The case of M.Zp; 1/ was settled in [13].

Theorem 3.3 (Dydak and Levin [13]) A Moore space M.Zp; 1/ is a classifying
space for finite-dimensional compacta X for which dimZp

X � 1.

The case of M.Zp1 ; 1/ still remains open.

Problem 3.4 Is a Moore space M.Zp1 ; 1/ a classifying space for finite-dimensional
compacta X for which dimZp1

X � 1?

Problem 3.4 leads to:

Definition 3.5 A finite-dimensional compactum X is said to be extensionally regular
if for every prime p we have either dimZp1

X ¤ 1, or dimZp1
X D 1 and e-dim X �

M.Zp1 ; 1/.
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Note that every M.G; 1/ for G 2 � is a 2–dimensional CW–complex and M.G; n/D

†n�1M.G; 1/. Thus, we obtain:

Corollary 3.6 For every n and G 2 � there is an .n�1/–connected, .nC1/–dimen-
sional countable CW–complex which is a classifying space for finite-dimensional
extensionally regular compacta X for which dimG X � n.

By a partial map of a space L to a CW–complex M we mean a map from a closed
subset of L to M. A collection F of partial maps from L to M is said to be
representative if for every closed subset F 0 of L and every map f 0W F 0!M with
M 2M, there is f W F !M in F such that F 0 � F and f jF 0 is homotopic to f 0.
If M is a collection of CW–complexes then a collection of partial maps of L to the
CW–complexes of M is said to be representative for M if it contains a representative
collection of partial maps to each M 2M. Note that if L is a compactum and M is a
countable CW–complex, then there is a countable representative collection F of partial
maps from L to M and a closed subset A of L is of extension dimension �M if and
only if every map f W F !M in F extends over A[F (see Proposition 2.2 of [3]).

In the proof of Theorem 3.1 we will use the following construction from [15; 16] for
resolving partial maps. A map between CW–complexes is said to be combinatorial if
the preimage of every subcomplex of the range is a subcomplex of the domain. Let
L be a simplicial complex and let LŒm� be the m–skeleton of L (that is, the union of
all simplexes of L of dimension �m). By a resolution EW.L;m/ of L we mean a
CW–complex EW.L;m/ and a combinatorial map !W EW.L;m/! L such that !
is one-to-one over LŒm� . Let f W N !M be a map of a subcomplex N of L into a
CW–complex M. A resolution !W EW.L;m/!L is said to resolve the map f if the
map f ı!j!�1.N / extends to a map f 0W EW.L;m/!M. We will call f 0 a resolving
map for f . The resolution is said to be suitable for a compactum X if for every
simplex � of L, e-dim X � !�1.�/. Note that if !W EW.L;m/!L is a resolution
suitable for X then for every map �W X !L there is a map  W X ! EW.L;m/ such
that .! ı /.��1.�//�� for every simplex � of L. We will call  a combinatorial
lifting of � .

Let L be a finite simplicial complex. Let f W N ! M be a cellular map from a
subcomplex N of L to a CW–complex M such that LŒm��N . Now we will construct
a resolution !W EW.L;m/!L of L resolving f and we will refer to this resolution
as the standard resolution for f . We will associate to the standard resolution a cellular
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resolving map f 0W EW.L;m/!M, which will be called the standard resolving map.
The standard resolution is constructed by induction on l D dim.L nN /.

For LDN set EW.L;m/DL and let !W EW.L;m/!L be the identity map with
the standard resolving map f 0 D f . Let l >m. Denote L0 DN [LŒl�1� and assume
that !0W EW.L0;m/! L0 is the standard resolution of L0 for f with the standard
resolving map f 0W EW.L0;m/!M. The standard resolution !W EW.L;m/!L is
constructed as follows.

The CW–complex EW.L;m/ is obtained from EW.L0;m/ by attaching the mapping
cylinder of f 0j

!0�1.@�/
to !0�1

.@�/ for every l –simplex � of L which is not con-
tained in L0. Let !W EW.L;m/!L be the projection which extends !0 by sending
each mapping cylinder to the corresponding l –simplex � such that the M –part of
the cylinder is sent to the barycenter of � and each interval connecting a point of
!0
�1
.@�/ with the corresponding point of the M –part of the cylinder is sent linearly to

the interval connecting the corresponding point of @� with the barycenter of �. We can
naturally define the extension of f 0j

!0�1.@�/
over its mapping cylinder by sending each

interval of the cylinder to the corresponding point of M. Thus, we define the standard
resolving map which extends f 0 over EW.L;m/. The CW–structure of EW.L;m/

is induced by the CW–structure of EW.L0;m/ and the natural CW–structures of the
mapping cylinders in EW.L;m/. Then, with respect to this CW–structure, the standard
resolving map is cellular and ! is combinatorial.

It is easy to see from the construction of the standard resolution that !�1.�/, for
each simplex � of L, is either contractible or homotopy equivalent to M and
dim EW.L;m/� dim L if dim M �mC 1.

Theorem 3.7 Any map from a finite-dimensional, extensionally regular compactum X

to a finite CW–complex L can be arbitrarily closely approximated by a map which
factors through a compactum Z with dZ � dX and dim Z � dim L.

Proof Recall that a finite CW–complex is a compact ANR and hence the identity map
of a finite CW–complex can be arbitrarily closely approximated by a map which factors
through a finite simplicial complex of the same dimension. Thus we may assume that
L is a finite simplicial complex.

Let gW X !L be a map. Set L0 DL and g0 D gW X !L0 . Fix � > 0 and denote
l D dim L. We will construct by induction a sequence of finite simplicial complexes
Li with dim Li � l , bonding maps !iC1

i W LiC1! Li and maps gi W X ! Li such
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that gi and !j
i ı gj are �=2j –close for every j > i , where !j

i W Lj ! Li is the
composition of the bonding maps between Lj ; : : : ;Li and !i

i is the identity map
of Li . Denote Z D invlim.Li ; !

iC1
i / and note that dim Z � l . Also denote g0i D

limj!1 !
j
i ıgj W X!Li and note that g0i is a well-defined map and !iC1

i ıg0
iC1
Dg0i .

Hence, the maps g0i determine the corresponding map g0W X!Z and for the projection
!0W Z ! L0 D L we have that g0 and !0 ı g0 are �–close. The construction will
be carried out in such a way that dZ � dX . Thus, Z and !0 ı g0 will provide the
compactum and the approximation required in the theorem.

Assume that the construction is completed for i and proceed to iC1 as follows. Let mD

dimGX for a group G 2� . Since the theorem is obvious for dim X D0 we may assume
that m � 1. By Corollary 3.6 there is an .m�1/–connected, .mC1/–dimensional
countable CW–complex M classifying for the finite-dimensional, extensionally regular
compacta X for which dimG X �m. Take a map ˛W F !M from a closed subset
F of Li . Replace the triangulation of Li by a sufficiently fine barycentric subdivision
such that ˛ extends over a subcomplex N of Li to a map f W N !M and, for every
simplex � of Li and every j � i , we have diam!i

j .�/� �=2
iC1 . Since M is .m�1/–

connected we may assume that N contains the m–skeleton of Li and, replacing f
by a cellular approximation, we also assume that f W N !M is a cellular map. Let
!W EW.Li ;m/!Li be the standard resolution resolving the map f . Since e-dim X �

M there is a combinatorial lifting giC1W X ! EW.Li ;m/ of gi . Set LiC1 to be a
finite subcomplex of EW.Li ;m/ containing giC1.X / and !iC1

i to be ! restricted
to LiC1 . Since the identity map of LiC1 can be arbitrarily closely approximated by
a map which factors through a finite simplicial complex of dimension � dim LiC1 ,
we may assume that LiC1 is a simplicial complex and the construction is completed.
Recall that ! resolves the map f and hence ˛ ı!iC1

i j.::: /W .˛ ı!
iC1
i /�1.F /!M

extends over LiC1 as well.

Now we will show that the map ˛ on the inductive step of the construction from i

to i C 1 can be chosen in a way that will lead to dZ � dX . Denote by M all the
classifying spaces mentioned in Corollary 3.6 such that e-dim X �M. Note that M
is a countable collection of countable CW–complexes. Once Li is constructed, take a
countable representative collection Bi of partial maps ˇW B!M from closed subsets
B of Li to the CW–complexes M of M and fix a surjection �i W N! Bi . Take any
bijection � W N ! N �N such that for every i and �.i/ D .j ; k/ we have i � j .
Let �.i/ D .j ; k/ and ˇ D �j .k/ 2 Bj . Recall that i � j and hence Bj is already
constructed. Thus ˇW B!M, where B is a closed subset of Lj and M 2M. Denote
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F D .!i
j /
�1.B/ and set ˛ D ˇ ı!j

i W F !M. One can easily verify that choosing in
this way the map ˛ for constructing LiC1 leads to e-dim Z �M for every M 2M
and hence dZ � dX . The theorem is proved.

In order to derive Theorem 3.1 from Theorem 3.7 we need to bypass the difficulties
imposed by Problem 3.4. We will need the extension versions of Theorems 2.5 and 2.8.

Theorem 3.8 [18] Let K be a countable CW–complex and X a space such that
e-dim X �K . Then there is a complete space X 0 such that X �X 0 and e-dim X 0�K .

Theorem 3.9 [3] Let K1 and K2 be countable CW–complexes, K D K1 �K2

the join of K1 and K2 , and X a compactum such that e-dim X � K . Then X

decomposes into X DA[B such that e-dim A�K1 and e-dim B �K2 .

In order to avoid confusion with our previous use of the letter L we will denote the
infinite-dimensional lens space model for K.Zm; 1/ by Lm and, as usual, LŒn�m stands
for the n–skeleton of Lm and p for a prime number. By a projection from Lpi to Lpj

with j � i , we mean a cellular map realizing the standard monomorphism of Zpi

into Zpj . The restrictions of a projection to the skeletons of Lpi and Lpj will also
be called projections. Note that LŒ2�m DM.Zm; 1/ and LŒ3�m is a 3–dimensional lens
space.

We assume that K.Zp1 ; 1/ is represented as the infinite telescope of a sequence of
projections from Lpi to LpiC1 and we consider the lens spaces Lpi as subcomplexes
of K.Zp1 ; 1/.

Theorem 3.10 [13, Theorem 7.1] Let X be a finite-dimensional metric space with
dimZm

X � 2 and f W X ! LŒn�m a map. Then there is a map f 0W X ! LŒ3�m such that
f and f 0 coincide on f �1.LŒ2�m /.

Proposition 3.11 Let X be a finite-dimensional compactum with dimZp1
X � 1.

Then for every i and every map f W F ! LŒ2�
pi from a closed subset F of X there is

j � i such that f followed by a projection of LŒ2�
pi to LŒ2�

pj extends over X as a map
to LŒ3�

pj .

Proof Take a map f W F!LŒ2�
pi from a closed subset F of X and extend f to a map

hW X !K.Zp1 ; 1/. Since X is compact, h.X / is contained in a finite subtelescope

Geometry & Topology, Volume 22 (2018)



2522 Michael Levin

of K.Zp1 ; 1/ and hence there is j � i for which h can be homotoped to a map
gW X ! Lpj such that g on F coincides with f followed by a projection to LŒ2�

pj .
Again by the compactness of X there is n such that g.X /� LŒn�

pj . By the Bockstein
theorem and inequalities, dimZ

pj
X � 2. Then, by Theorem 3.10, g can be replaced

by a map to LŒ3�
pj which coincides with g on F and the proposition follows.

Let L be a simplicial complex. By the star of a subset A of L, written st A, we mean
the union of the simplexes of L which intersect A. Let us say that for maps �W X !L

and !W Y ! L, a map  W X ! Y is an almost combinatorial lifting of � to Y if
.! ı /.��1.�//� st� for every simplex � in L.

Proposition 3.12 Let X be a finite-dimensional compactum with dimZp1
X � 1,

L a finite simplicial complex with dim L� 3, N a subcomplex of L, and �W X !L

and f W N ! K.Zp1 ; 1/ maps. Then there is a resolution !W EW.L; 1/! L such
that dim EW.L; 1/ � 3, ! resolves the map f and the map � admits an almost
combinatorial lifting to EW.L; 1/.

Proof Extending f over the 1–skeleton of L, we assume that LŒ1� � N. Since
f can be homotoped into Lpi � K.Zp1 ; 1/, we may assume that f .N / � Lpi .
By the Bockstein theorem and inequalities, dimZ

pi
X � 2. Then, by Theorem 3.2,

e-dim X �†M.Zpi ; 1/DS0�M.Zpi ; 1/ and hence, by Theorem 3.9, X decomposes
into X DA[B such that dim A� 0 and e-dim B �M.Zpi ; 1/, and by Theorem 3.8
(or Corollary 2 of [3]) we may assume that B is Gı and A is � –compact.

Now replace the triangulation of L by its sufficiently fine subdivision. Let R be the
collection of the stars of the vertices of L with respect to the barycentric subdivision
Lˇ of L and let vR be the vertex of L contained in R2R. Note that R partitions Lˇ

into contractible subcomplexes with nonintersecting interiors.

By @R for R 2 R, we denote the topological boundary of R in L. Clearly we
may assume that the triangulation of L is so fine that f can be extended to a map
f 0W N 0! Lpi over a subcomplex N 0 of Lˇ such that N �N 0 and for every R 2R
we have either R�N 0 or .R n @R/\N 0 D∅. Furthermore, we may assume that N 0

contains every 1–simplex of Lˇ contained in @R for every R 2R. Denote by L0 the
subcomplex of Lˇ which is the union of N 0 with @R for all R 2R. Let R0 be the
collection of R 2R such that R is contained in N 0, R00 DR nR0, and let L00 be the
subcomplex of L0 which is the union of @R for all R 2R00, and N 00 DN 0\L00.
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Replace f 0 by its cellular approximation to Lpi . Then

f 0.N 0/� LŒ3�
pi and f 0.N 00/� LŒ2�

pi :

Denote f 00Df 0jN 00 W N 00!LŒ2�
pi . Let !00W EW.L00; 1/!L00 be the standard resolution

resolving the map f 00 and let �00W EW.L00; 1/! LŒ2�
pi be the standard resolving map

for f 00. Extend !00 to the resolution !0W EW.L0; 1/!L0 such that !0 is one-to-one
over N 0 and extend �00 to the map �0W EW.L0; 1/ ! LŒ3�

pi defined by f 0 ı !0 on
!0 �1.N 0/. Note that dim EW.L0; 1/� 3 and �0 resolves the map f 0 over L0.

Recall that the set A is � –compact and 0–dimensional. Then one can replace � by an
arbitrarily close approximation by changing � only on the preimages of the interiors
of the 3–simplexes of L and assume that for every 3–simplex � of L and every
2–simplex �0 of the barycentric subdivision of � we have that �.A/\ .�0 n@�/D∅
and hence ��1.�0n@�/�B . Thus, for every 2–simplex �0 of L0 not contained in N 0

we have that ��1.�0 nN 0/� B and !0 �1.�0/ is homotopy equivalent to LŒ2�
pi . Then,

since e-dim B �M.Zpi ; 1/D LŒ2�
pi , we conclude that � restricted to X 0 D ��1.L0/

admits a combinatorial lifting  0W X 0! EW.L0; 1/.

Note that .�0 ı 0/.��1.@R//� LŒ2�
pi for R 2R00. Then, by Proposition 3.11, for every

R 2 R00 there is j � i such that �0 ı  0 restricted to ��1.@R/ and followed by a
projection � W Lpi ! Lpj extends over ��1.R/ as a map to LŒ3�

pj . Clearly j can be
replaced by any larger integer and hence we can find an integer j that fits every R2R00.
Since f 0 followed by � is homotopic to f 0 as a map to K.Zp1 ; 1/, we can replace
f 0 and �0 by their compositions with � and assume that f 0 and �0 are maps to LŒ3�

pj .

Now define EW.L; 1/ as the CW–complex obtained from EW.L0; 1/ by attaching to
!0 �1.@R/ the mapping cylinder of �0 restricted to !0 �1.@R/ for every R 2R00. Note
that each such mapping cylinder is of dimension � 3 since dim!0 �1.@R/ � 2 for
every R 2R00, and hence dim EW.L; 1/ � 3. Define !W EW.L; 1/! L as the map
that extends !0 by sending the LŒ3�

pj –part of every attached mapping cylinder to the
vertex vR of L contained in the corresponding set R 2 R00 and the intervals of the
mapping cylinder to the corresponding intervals connecting the points of @R with vR .
Clearly ! is combinatorial. Let �W EW.L; 1/! LŒ3�

pj be the map naturally extending
�0 over each mapping cylinder. Then � resolves f 0 and hence � resolves f as well.

Finally, note that for every R2R00 the map  0 restricted to ��1.@R/ and considered as
a map to the mapping cylinder attached to !0 �1.@R/ can be homotoped to the LŒ3�

pj –part
of the mapping cylinder and then extended over ��1.R/ as a map to LŒ3�

pj . This way,
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we can extend  0 to a map  W X ! EW.L; 1/ such that .! ı /.��1.R//�R for
every R 2R.

Thus, with respect to the original triangulation of L, the map !W EW.L; 1/ ! L

is a resolution resolving the map f and admitting an almost combinatorial lifting
 W X ! EW.L; 1/ of � , and the proposition follows.

Proof of Theorem 3.1 The proof of Theorem 3.7 applies to prove Theorem 3.1
with the following minor adjustment. Recall that the compactum Z in Theorem 3.7
is constructed as the inverse limit of maps !iC1

i W LiC1 ! Li of finite simplicial
complexes, where !iC1

i comes from the standard resolution !W EW.Li ;m/! Li

resolving a partial map f W N !M.G;m/ from a subcomplex N of Li to a Moore
space M.G;m/ with G 2 � and m D dimGX. Since in Theorem 3.1 the com-
pactum X is not assumed to be extensionally regular, we cannot use the Moore space
M.Zp1 ; 1/ as the classifying space any more, and therefore we replace M.Zp1 ; 1/

by the Eilenberg–Mac Lane complex K.Zp1 ; 1/. Then, for K.Zp1 ; 1/, instead of the
standard resolution we use the resolution from Proposition 3.12. We should mention
here that Proposition 3.12 provides a resolution that admits an almost combinatorial
lifting to EW.Li ; 1/ in contrast to the standard resolution which provides a resolution
that admits a combinatorial lifting to EW.Li ; 1/. However, we can assume that the
triangulation of Li is as fine as we wish, and therefore the difference between a
combinatorial lifting and an almost combinatorial lifting does not affect at all the
construction and the proof of the theorem.

4 Main result

The goal of this section is to prove Theorem 1.5. The following results will be used in
the proof.

Using Alexander duality and the Künneth formula in the Leray form it was shown
in [2] that:

Theorem 4.1 [2] Let X and Y be compacta such that Y �Rn and dim X�Y �n�1.
Then, for every open ball U in Rn and i � 0, we have dimHi .UnY /X � i , where
H�.U nY / is the reduced integral homology.

Let us recall that a tame compactum X �Rn with dim X � n� 3 is characterized by
the following property: for every open ball U in Rn , the complement U nX is simply
connected. It was also shown in [2] that Theorems 4.1 and 3.2 lead to:
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Theorem 4.2 [2] Let X be a finite-dimensional compactum and Y � Rn a tame
compactum of dim Y � n � 3 such that dim X � Y � n � 1. Then every map
f W X ! Rn can be arbitrarily closely approximated by a map f 0W X ! Rn such
that f 0.X /\Y D∅.

One of the problems this section is concerned with (and whose importance for the
unstable intersection conjecture was realized by Dranishnikov) is under what conditions
any map gW X !Rn from a finite-dimensional compactum X admits an arbitrarily
close approximation by a map g0W X ! Rn with dg0.X / � dX . Let us observe
that such an approximation exists if, for every partial map ˛W F !K.G;m/ of Rn

from a compact subset F of Rn to an Eilenberg–Mac Lane complex K.G;m/ with
dimGX �m and G in the Bockstein basis � , every map gW X !Rn can be arbitrarily
closely approximated by a map g0W X !Rn such that ˛ extends over F [g0.X /.

Indeed, since every partial map to a CW–complex extends over a neighborhood of
its domain, the collection G˛ of the maps g0 2 C.X;Rn/ such that ˛ extends over
F [g0.X / is open in C.X;Rn/. Consider a countable representative collection A of
partial maps of Rn from compact subsets of Rn to all of K.G;m/ with dimGX �m

and G 2 � . Then, if each G˛ is dense in C.X;Rn/, the intersection of all G˛ for ˛ 2A
is also dense in C.X;Rn/ and any map g0 from this intersection has the property that
dg0.X / � dX .

Proposition 4.3 Let X be a compactum with dim X � 3 and n� 6. Then any map
from gW X !Rn can be arbitrarily closely approximated by a map g0W X !Rn such
that dg0.X / � dX and g0.X / is tame in Rn .

Proof By Stanko’s reembedding theorem [23] it suffices to construct g0 such that
dg0.X / � dX . The cases n > 6 or dim X � 2 are trivial since any map from X

to Rn can be approximated by an embedding. So the only case we need to consider is
dim X D 3 and nD 6.

Let ˛W F!K.G;m/ with m�1 be a map from a compact subset F of Rn to K.G;m/

such that dimGX �m and G is a group in the Bockstein basis � . Extend ˛ over a
closed neighborhood FC of F to a map ˛C

F
W FC!K.G;m/ and extend g restricted

to g�1.FC/ and followed by ˛C
F

to a map ˇW X !K.G;m/. Note that, since X is
compact, the map ˇ can be considered as a map to a finite subcomplex K of K.G;m/.
Let � > 0 be such that any two 2�–close maps to K are homotopic. Approximate g

through a 3–dimensional finite simplicial complex L and maps  W X ! L and
gLW L!Rn such that  is surjective and:
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(i) g and gL ı  are so close that g.�1.FL//� FC for FL D g�1
L
.F / and the

maps ˛C
F
ıg and ˛C

F
ıgL ı  restricted to �1.FL/ are �–close.

(ii) The fibers of  are so small that there is a map ˇLW L!K such that ˇ and
ˇL ı  are �–close.

Take y 2 FL and let x 2X be such that  .x/D y . By (ii), ˇ.x/ and .ˇL ı  /.x/D

ˇL.y/ are �–close. By (i), ˇ.x/D .˛C
F
ıg/.x/ and .˛C

F
ıgLı /.x/D .˛

C

F
ıgL/.y/D

.˛ ıgL/.y/ are �–close. Thus, we get that ˇL and ˛ ıgL are 2�–close on FL and
hence, replacing ˇL by a homotopic map, we may assume that ˇL coincides on FL

with gL followed by ˛ .

Since dim L � 3 and n � 6, we can in addition assume that gL is finite-to-one and
gL is not one-to-one over only finitely many points of gL.L/. Then, since K.G;m/

is a connected CW–complex, we can change ˇL (up to homotopy) outside the set FL

so that ˇL will be constant on each fiber of gL which is not over F, and hence we can
assume that ˇL factors through a map ˛0W gL.L/!K.G;m/ such that ˛0 coincides
with ˛ on gL.L/\F. Thus the map g can be arbitrarily closely approximated by a
map g0 D gL ı  W X ! Rn such that ˛ extends over F [ g0.X /D F [ gL.L/. As
we observed before, this property implies the proposition.

Note that the use of Stanko’s reembedding theorem in Proposition 4.3 can be easily
avoided by constructing f .X / to be the intersection of a decreasing sequence of suffi-
ciently close PL–regular neighborhoods of 3–dimensional finite simplicial complexes
in Rn .

Proposition 4.4 (also see [6; 22]) Let K be a CW–complex. Then one can attach
to K cells of dimensions � 3 to obtain a simply connected CW–complex KC such
that the inclusion of K into KC induces an isomorphism of the integral homology in
dimensions > 1.

Proof Clearly by attaching intervals to K we can turn K into a connected CW–
complex preserving the integral homology of K in dimensions > 0. Thus, we may
assume that K is connected.

Let a simply connected CW–complex K0 be obtained from K by attaching 2–cells to
kill the fundamental group of K . Consider the inclusion i W K!K0 and the quotient
map pW K0!K0=K . Note that i�.H2.K//D ker p� and H2.K

0=K/ is a free group
since K0=K is a bouquet of 2–spheres. Then p�.H2.K

0// is a free group as well.
Take a collection !j for j 2 J of 2–cycles of K0 such that p�Œ!j � for j 2 J are free
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generators of p�.H2.K
0//. Since K0 is simply connected, one can enlarge K0 to a

CW–complex K00 by attaching for every j a 3–cell �j such that @�j is homologous
in K0 to !j (we consider the cellular homology). Replacing !j by @�j , assume that
!j D @�j . Let us show that the inclusion of K into K00 induces an isomorphism of
the homology groups in dimensions > 1.

Take a 2–cycle ˛ of K00. Then ˛ lies in K0 and p�Œ˛�D
P

nj p�Œ!j �, with nj 2 Z.
Thus, ˛�

P
nj!j is homologous to a cycle in K and since !j D @�j we get that ˛

is homologous in K00 to a cycle in K . Hence, the inclusion of K into K00 induces an
epimorphism of 2–homology.

Take a 2–cycle ˛ in K homologous to 0 in K00. Then ˛ D @.ˇC
P

nj�j / with ˇ
being a 3–chain in K . Thus, ˛ D @ˇC

P
nj!j and p�Œ˛�D

P
nj p�Œ!j �D 0, and

hence nj D 0 for every j . Thus, ˛ D @ˇ is homologous to 0 in K and hence the
inclusion of K into K00 induces a monomorphism of 2–homology.

Since we attached to K only cells of dimension �3 the inclusion of K into K00 induces
a monomorphism of 3–homology. Take a 3–cycle ˛ in K00. Then ˛ D ˇC

P
nj�j ,

where ˇ is a 3–chain in K . Hence, p�Œ@˛�D p�Œ@ˇC
P

nj!j �D
P

nj p�Œ!j �D 0

and we get that nj D 0 for every j . Thus, ˛Dˇ and hence the inclusion of K into K00

induces an epimorphism of 3–homology.

Clearly the homology groups of K and K00 coincide in dim> 3. Thus, the proposition
holds with KC DK00.

Definition 4.5 Let us say that a map f W X!Rn with n�6 from a finite-dimensional
compactum X is almost supported by an open subset V �Rn if there is an open subset
V � � V such that the closure of V � is contained in V and f .X / nV � is contained
in a tame compactum in Rn with dimension � 3 and dimension type � dX .

Proposition 4.6 Let Y � Rn with n � 6 be a compactum, U � Rn an open ball
in Rn and let X be a compactum such that dim X �Y � n� 1. Then any map from a
closed subset of X to V D U n Y extends over X to a map to U almost supported
by V .

Proof Let f W F ! V be a map from a closed subset F of X. By Theorem 4.1 and
Proposition 2.9 we have dimHi .V /X � i for every i . Take a triangulation of V and, by
Proposition 4.4, attach to V cells of dimensions � 3 to obtain a simply connected CW–
complex V C preserving the homology of V in dimensions > 1. Then, by Theorem 3.2,
e-dim X � V C and hence here is a map �W X ! V C extending f .
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Let L be a finite subcomplex of V C containing �.X /. Denote L� D V \L, let LC

be the 3–skeleton of K , X� D .�/�1.L�/ and XC D .�/�1.LC/. Clearly L� and
LC are subcomplexes of L, dim LC�3 and LDL�[LC . Take any map  W L!U

such that  does not move the points of L�and take an open neighborhood V � of
L� in V such that the closure of V � is contained in V . By Theorem 3.1, approximate
� restricted to XC by the composition of maps �C

Z
W XC ! Z and �C

L
W Z ! LC

such that dZ � dX and dim Z � 3. By Proposition 4.3, the map �C
L

followed by  
can be approximated by a map gW Z! U with a tame image of dimension � 3 and
dimension type � dZ � dX .

Consider the maps f C D g ı �C
Z
W XC ! U and f � D �jX� W X

� ! L� � V � .
Note that f � coincides with f on F. Also note that if �C

L
ı�C

Z
is close enough to

� restricted to XC and g is close enough to �C
L

followed by  , we may assume
that f � and f C restricted to X� \ XC are as close as we wish. Then one can
find a map f 0W X ! U such that f 0 coincides with f � on X� , f 0 �1.U nV �/D

.f C/�1.U nV �/ and f 0 coincides with f C on .f C/�1.U nV �/�XC . Thus, f 0

extends f and f 0.X / nV � � g.Z/ and, hence, f 0 is almost supported by V .

Theorem 4.7 Let X be a compactum with dim X � n� 2 and n� 6. Then any map
f W X !Rn can be arbitrarily closely approximated by a map f 0W X !Rn such that
df 0.X / � dX .

Proof We prove the proposition by induction on dim X. Clearly the theorem holds if
dim X D 0. Assume that the theorem is proved for compacta of dimension � dim X�1.
Fix � > 0 and partition X into finitely many closed subsets X D

S
Xj with disjoint

interiors such that dim @Xj � dim X � 1 and f .Xj / is contained in an open �–ball
Uj in Rn . By the induction hypothesis we can assume that df .@Xj / � dXj

� dX .

By Proposition 2.9 and Theorem 2.8, decompose Rn into Rn DA[B with dA � dX

and dB � n � 1	 dX . Clearly we may assume that f .@Xj / � A. Take any map
˛W F!K.G;m/ from a compact subset F of Rn to an Eilenberg–Mac Lane complex
with dimGX �m for some G 2 � and extend ˛ to a map ˛W W W !K.G;m/ over an
open subset W of Rn such that F [A�W . Let Yj be the closure of Uj nW in Rn

and Vj DUj nYj DUj\W . Then Yj is a compact subset of B and, by Proposition 2.9,
we have that dim Xj �Yj � n� 1. Note that f .@Xj /� Vj , apply Proposition 4.6 to
extend fj D f j@Xj

W @Xj ! Vj to a map f 0j W Xj ! Uj almost supported by Vj , and
take an open set V �j � Vj witnessing that f 0j is almost supported by Vj .
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Set f 0W X ! Rn to be the map defined by the maps f 0j and V � to be the union of
all V �j . Note that f 0 is �–close to f , the closure clV � of V � is contained in W ,
f 0.X / nV � is contained in the union of f 0j .Xj / nV �j , and, hence, f 0.X / nV � is of
dimension type � dX . Then ˛W restricted to F [ clV � extends over F [f 0.X / and,
as we observed before Proposition 4.3, this implies the result required in the theorem.

Theorem 4.8 Let X and Y be compacta such that dim X � n� 2, dim Y � n� 2,
dim X �Y � n�1 and n� 6. Then X and Y do not admit a stable intersection in Rn .

Proof We prove the theorem by induction on dim X. The case dim X D 0 is trivial.
Assume that dim X > 0. Take maps f W X ! Rn and gW Y ! Rn . Fix � > 0 and
partition X into finitely many closed subsets X D

S
Xj with disjoint interiors such

that dim @Xj � dim X � 1 and f .Xj / is contained in an open �–ball Uj in Rn . By
the induction hypothesis and Theorem 4.7, we can replace f and g by arbitrarily close
approximations and assume that dg.Y / � dY and f .@Xj /\g.Y /D∅ for every j .

Set Vj D Uj n g.Y /. Since dg.Y / � dY , we have dim X � g.Y / � n � 1. Note
that f .@Xj /� Vj , apply Proposition 4.6 to extend fj D f j@Xj

W @Xj ! Vj to a map
f 0j W Xj ! Uj almost supported by Vj , and take an open set V �j � Vj witnessing that
f 0j is almost supported by Vj .

Set f 0W X ! Rn to be the map defined by the maps f 0j and V � to be the union of
all V �j . Note that f 0 is �–close to f , the closure clV � of V � does not meet g.Y /,
f 0.X / n V � is contained in the union of f 0j .Xj / n V �j , and, hence, f 0.X / n V � is
contained in a finite union of tame compacta of dimension � 3�n�3 and of dimension
type � dX . Then, by Theorem 4.2, the map g can be arbitrarily closely approximated
by a map g0W Y !Rn such that f 0.X /\g0.Y /D∅ and the theorem follows.

Proof of Theorem 1.5 Theorem 1.5 follows from Theorems 4.8, 1.2 and 1.3.

5 Remarks

Problem 3.4 can be considered in a more general context.

Problem 5.1 Let K be a connected CW–complex whose fundamental group is abelian
and X a finite-dimensional compactum such that dimHn.K /X � n for every n > 0.
Does this imply that e-dim X �K?

It turns out that this problem reduces to 3–dimensional compacta.
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Proposition 5.2 Problem 5.1 is equivalent to the same problem with the additional
assumption that dim X � 3.

Proof Let f W F !K be a map from a closed subset F of X. By Proposition 4.4,
K can be enlarged to a simply connected CW–complex KC preserving the integral
homology of K in dimensions > 1 with dim KC nK � 3. Then, by Theorem 3.2,
f extends to a map gW X !KC . Let L be the 3–skeleton of KC , XL D g�1.L/

and XK D g�1.K/. By, Theorem 3.1, g restricted to XL can be arbitrarily closely
approximated by a map that factors through maps �W XL!Z and  W Z!L with a
compactum Z such that dim Z � 3 and dZ � dXL

� dX . Thus, we can assume that
g and  ı� restricted to XL\XK are as close as we wish. Then one can replace the
map  by a homotopic map and assume that  .�.XL\XK //�K , and g and  ı�
restricted to XL\XK are homotopic in K . Now, assuming that Problem 5.1 has the
affirmative answer for compacta of dimension � 3, one can extend  restricted to
�.XL\XK / over Z as a map to K and, hence, g restricted to XK extends over X

as a map to K . Recall that g coincides with f on F, and the proposition follows.

Let us state without proof two more results related to the techniques presented in this
paper.

� Theorem 3.1 can be extended to the following result: Let X be a finite-dimen-
sional compactum, L a finite CW–complex and f W X !L a map. Then f can
be arbitrarily closely approximated by a map that factors through a compactum
Z with dim Z �maxfdim L; 3g and dZ � dX .

� It turns out that Theorem 3.7 and Problem 3.4 are closely related. Namely, a
Moore space M.Zp1 ; 1/ is a classifying space for finite-dimensional compacta
with dimZp1

D 1 if and only if, for every 3–dimensional compactum X with
dimZp1

X D 1 and every map f W X !R2 , we have that f can be arbitrarily
closely approximated by a map that factors through a compactum Z with
dim Z � 2 and dimZp1

Z � 1.
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