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Alexander and Thurston norms, and the
Bieri–Neumann–Strebel invariants for free-by-cyclic groups

FLORIAN FUNKE

DAWID KIELAK

We investigate Friedl and Lück’s universal L2–torsion for descending HNN exten-
sions of finitely generated free groups, and so in particular for Fn -by-Z groups.
This invariant induces a seminorm on the first cohomology of the group which is an
analogue of the Thurston norm for 3–manifold groups.

We prove that this Thurston seminorm is an upper bound for the Alexander seminorm
defined by McMullen, as well as for the higher Alexander seminorms defined by
Harvey. The same inequalities are known to hold for 3–manifold groups.

We also prove that the Newton polytopes of the universal L2–torsion of a descending
HNN extension of F2 locally determine the Bieri–Neumann–Strebel invariant of the
group. We give an explicit means of computing the BNS invariant for such groups.
As a corollary, we prove that the Bieri–Neumann–Strebel invariant of a descending
HNN extension of F2 has finitely many connected components.

When the HNN extension is taken over Fn along a polynomially growing automor-
phism with unipotent image in GL.n;Z/ , we show that the Newton polytope of
the universal L2–torsion and the BNS invariant completely determine one another.
We also show that in this case the Alexander norm, its higher incarnations and the
Thurston norm all coincide.
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2648 Florian Funke and Dawid Kielak

1 Introduction

Whenever a free finite G–CW–complex X is L2–acyclic, ie its L2–Betti numbers
vanish, a secondary invariant called the L2–torsion �.2/.X IN .G// enters the stage;
see Lück [28, Chapter 3]. It takes values in R and captures in many cases geometric
data associated to X : if X is a closed hyperbolic 3–manifold, then it was shown by
Lück and Schick [30] that

�.2/
�
zX IN .�1.X//

�
D�

1

6�
� vol.X/

and if X is the classifying space of a free-by-cyclic group FnÌg Z, with g 2Aut.Fn/,
then ��.2/. zX IFn Ìg Z/ gives a lower bound on the growth rates of g , as shown by
Clay [7, Theorem 5.2].

Many generalisations of the L2–torsion have been constructed, eg the L2–Alexander
torsion (by Dubois, Friedl and Lück [11]) and L2–torsion function, or more generally
L2–torsion twisted with finite-dimensional representations (by Lück [29]).

In a series of papers, Friedl and Lück [14; 15; 16] constructed the universal L2–torsion
�
.2/
u .X IN .G// for any free finite L2–acyclic G–CW–complex. It takes values in

Whw.G/, a weak version of the Whitehead group of G which is adapted to the setting of
L2–invariants. The Fuglede–Kadison determinant induces a map Whw.G/!R taking
�
.2/
u .X IN .G// to �.2/.X IN .G//, and similar maps with Whw.G/ as their domain

take the universal L2–torsion to the aforementioned generalisations of L2–torsion.

Assuming that G satisfies the Atiyah conjecture, Friedl and Lück [16] construct a
polytope homomorphism

P W Whw.G/! PT .H1.G/f /;

where H1.G/f is the free part of the first integral homology of G and PT .H1.G/f /
is the Grothendieck group of the commutative monoid whose elements are polytopes in
H1.G/f˝R (up to translation) with pointwise addition (also called the Minkowski sum).
The image of ��.2/u .X IN .G// under P is the L2–torsion polytope of X, denoted by
PL2.X IG/. If M ¤ S1 �D2 is a compact connected aspherical 3–manifold with
empty or toroidal boundary such that �1.M/ satisfies the Atiyah conjecture, then it
is shown in [16, Theorem 3.27] that PL2. �M I�1.M// induces another well-known
invariant of M, the Thurston norm

k � kT W H
1.M IR/!R:
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Alexander and Thurston norms, and the BNS invariants for free-by-cyclic groups 2649

This seminorm was defined by Thurston [39] and is intimately related to the question
of the manifold fibring over the circle.

McMullen [32] constructed an Alexander seminorm from the Alexander polynomial
and showed that it provides a lower bound for the Thurston seminorm. This was later
generalised by Harvey [22] to higher Alexander seminorms

ınW H
1.M IR/!R:

Friedl and Lück’s theory can also be applied to free-by-cyclic groups, or more generally
to descending HNN extensions G D Fn�g , with g an injective endomorphism of Fn ,
and yields in this context a seminorm

k � kT W H
1.GIR/!R;

which we also call the Thurston norm due to the analogy with the 3–manifold setting.
We build a similar picture as for 3–manifolds and prove that this seminorm is an upper
bound for McMullen and Harvey’s Alexander seminorms:

Theorem 4.4 Let G D Fn�g be a descending HNN extension of Fn with stable
letter t and let  2H 1.GIR/. Then

ı1. /6 ı2. /6 � � �6 k kT :

If ˇ1.G/> 2, then also ı0. /6 ı1. /. If ˇ1.G/D 1, then ı0. /� j .t/j6 ı1. /.

When  is fibred (that is, ker is finitely generated), then all the inequalities above
become equalities.

For a particular type of automorphism called UPG (see Definition 6.1) we obtain an
equality:

Corollary 6.6 Let G D Fn Ìg Z with n > 2 and g a UPG automorphism. Let
' 2H 1.GIR/. Then for all k > 0 we have

ık.'/D k'kT :

In the case of two-generator one-relator groups G with b1.G/D2, the L2–torsion poly-
tope has been studied by Friedl and Tillmann [17]. They established a close connection
between PL2.G/ WD PL2.EGIG/ and the Bieri–Neumann–Strebel invariant †.G/.
We prove similar results in our setting:

Geometry & Topology, Volume 22 (2018)



2650 Florian Funke and Dawid Kielak

Theorem 5.13 Let gW F2 ! F2 be a monomorphism and let G D F2�g be the
associated descending HNN extension. Given ' 2 Hom.G;R/X f0g such that �' is
not the epimorphism induced by F2�g , there exists an open neighbourhood U of Œ'�
in S.G/ and an element d 2 D.G/� such that:

(1) The image of d under the quotient maps

D.G/�! D.G/�=ŒD.G/�;D.G/��ŠKw1 .ZG/!Whw.G/

is ��.2/u .G/. In particular, PL2.G/D P.d/ in PT .H1.G/f /.
(2) For every  ; 0 2 Hom.G;R/ X f0g which satisfy Œ �; Œ 0� 2 U and are d –

equivalent, we have Œ� � 2†.G/ if and only if Œ� 0� 2†.G/.

The d –equivalence is induced by the Newton polytopes associated to d in a simple
way (see Definition 5.11). As a corollary, we show (in Corollary 5.15) that the BNS
invariant for G D F2�g as above has finitely many connected components.

Over arbitrary rank we can strengthen this result again for UPG automorphisms:

Corollary 6.4 Let G D Fn Ìg Z with n > 2 and g a UPG automorphism. Let
' 2H 1.GIR/. Then Œ'� 2†.G/ if and only if F'.PL2.G//D 0 in PT .H1.G/f /.

The face map F' is defined in Definition 5.10. This theorem is motivated by Cashen
and Levitt’s computation [5, Theorem 1.1] of the BNS invariant of such groups.
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2 Preliminaries

2.1 Descending HNN extensions

Definition 2.1 Let G be a group, H 6G a subgroup and gW H!H a monomorphism.
The HNN extension associated to g is the quotient of the free product of G with htiŠZ
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Alexander and Thurston norms, and the BNS invariants for free-by-cyclic groups 2651

by
hhft�1xtg.x/�1 j x 2H gii:

The element t is called the stable letter of the HNN extension. The HNN extension
is called descending if H DG. The natural epimorphism G�g ! Z, sending t to 1
with G in its kernel, is called the induced epimorphism.

Remark 2.2 When gW G! G is an isomorphism, G�g D G Ìg Z is a semidirect
product, or a G -by-Z group (since extensions with a free quotient always split).

In the final sections of this paper we will focus on descending HNN extensions
G D F2�g . The following (well-known) result illustrates that this is somewhat less
restrictive than it might seem.

Proposition 2.3 Let gW F2!F2 be a monomorphism which is not onto. There exists
N 2N such that for every n > N there exists a monomorphism gnW Fn! Fn such
that

F2�g Š Fn�gn
:

Proof We start by observing that Marshall Hall’s theorem [21] tells us that there exists
N 2N such that g.F2/ is a free factor of a finite-index subgroup FN of F2 . In fact
it is easy to see (using the proof of Stallings [36]) that this statement holds for any
n>N (here we are using the fact that g is not onto; otherwise, N D 2 and we cannot
take larger values of n).

Now g factors as
F2

a
�!Fn

b
�!F2;

where a embeds F2 as a free factor and b is an embedding with image of finite index.
We let gn D a ı bW Fn! Fn .

Next we construct the desired isomorphism. Let t (resp. s ) denote the stable letter of
F2�g (resp. Fn�gn

). Let F2 D hx1; x2i and Fn D hx1; : : : ; xni; with this choice of
generators, the map a becomes the identity.

Consider hW F2�g ! Fn�gn
defined by

h.xi /D xi and h.t/D s:

It is a homomorphism since
t�1xi t D b.xi /
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and
h.t�1/h.xi /h.t/D s

�1xis D b.xi /D h.b.xi //:

Now consider h0W Fn�gn
! F2�g induced by

h0.xi /D tb.xi /t
�1 and h0.s/D t:

It is clear that h0 is the inverse of h.

Remark 2.4 Of course there is nothing special about F2 in the above result. The
proof works verbatim when F2 is replaced by Fm with m> 2.

2.2 Dieudonné determinant

While working with the universal L2–torsion, the Dieudonné determinant for matrices
over skew fields is of fundamental importance. We review here its definition and fix a
so-called canonical representative.

Definition 2.5 Given a ring R , we will denote its group of units by R� .

Definition 2.6 (Dieudonné determinant) Given a skew field D and an integer n, let
Mn.D/ denote the ring of n� n matrices over D . The Dieudonné determinant is a
multiplicative map

detDW Mn.D/! D�=ŒD�;D��[f0g

defined as follows: First we construct its canonical representative

detcDW Mn.D/! D

and then set detD.A/ to be image of detcD.A/ under the obvious map

D! D�=ŒD�;D��[f0g:

The canonical representative is defined inductively:

� For nD 1 we have detcD..a11//D a11 .

� If the last column of A contains only zeros, we set detcD.A/D 0.

� For general n (and a matrix A with nontrivial last column) we first identify the
bottommost nontrivial element in the last column of A. If this is ann we take
P D id; otherwise, if the element is ain , we take P to be the permutation matrix

Geometry & Topology, Volume 22 (2018)
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which swaps the i th and nth rows of A; in either case we have PADA0D .a0ij /
with a0nn ¤ 0. Now we define B D .bij / by

bij D

8<:
1 if i D j;
0 if i ¤ j and j < n;

�a0ina
0
nn
�1 if i ¤ j D n:

This way we have
BPAD A00 D .a00ij /

with a00in D 0 for all i ¤ n. Let us set C to be the .n� 1/ � .n� 1/ matrix
C D .a00ij /i;j<n . We define

detcD.A/D detP � detcD.C / � a
00
nn:

Note that the canonical representative detcD is not multiplicative, but the determinant
itself is, as shown by Dieudonné [10].

It is immediate from the definition that when D is a commutative field, the Dieudonné
determinant agrees with the usual determinant.

Proposition 2.7 (formula for square matrices) We have

detcD

�
a b

c d

�
D

�
ad � bd�1cd if d ¤ 0;
�bc if d D 0:

2.3 Crossed products

Definition 2.8 (crossed product group ring) Let R be a ring and G a group together
with maps of sets 'W G! Aut.R/ and �W G �G!R� such that

'.g/ ı'.g0/D c.�.g; g0// ı'.gg0/;

�.g; g0/ ��.gg0; g00/D '.g/.�.g0; g00// ��.g; g0g00/;

where cW R�! Aut.R/ maps an invertible element r to the conjugation by r on the
left. Then the crossed product group ring R�G is the free left R–module with basis G
and multiplication induced by the rule

(2-1) .�g/ � .�h/D �'.g/.�/�.g; h/gh

for any g; h 2G and �; � 2R . The conditions on � and ' ensure the associativity of
the multiplication, so that R �G is indeed a ring.

Note that when ' and � are trivial, we obtain the usual group ring RG.
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2654 Florian Funke and Dawid Kielak

Example 2.9 Crossed product group rings appear naturally: Given an extension of
groups

1!K!G!Q! 1;

we can identify RG Š .RK/�Q , where the structure maps ' and � are defined as
follows: Let sW Q!G be a set-theoretic section of the given epimorphism G!Q .
Define

'.q/

�X
k2K

ak � k

�
D

X
k2K

ak � s.q/ks.q/
�1

and
�.q; q0/D s.q/s.q0/s.qq0/�1 2K:

The isomorphism .RK/�Q!RG is given byX
q2Q

�q � q 7!
X
q2Q

�q � s.q/:

A case of particular interest occurs when QD Z. Under this assumption the section s
can be chosen to be a group homomorphism, so that � is trivial. The crossed product
ring .RK/�Q is then a ring of twisted Laurent polynomials, denoted by .RK/t Œz˙�,
where the twisting is determined by the automorphism t D '.1/. We will think of the
variable z as s.1/.

Definition 2.10 Given an element x D
P
h2G �h �h 2R�G, we define its support to

be
supp.x/D fh 2G j �h ¤ 0g:

Note that the support is a finite subset of G.

2.4 Ore localisation

We briefly review noncommutative localisation.

Definition 2.11 Let R be a unital ring without zero-divisors and let T �R be a subset
containing 1 such that for every s; t 2 T we also have st 2 T . Then T satisfies the
(left) Ore condition if for every r 2R and t 2 T there are r 0 2R and t 0 2 T such that
t 0r D r 0t .

One can then define a ring T �1R , called the Ore localisation, whose elements are
fractions t�1r with r 2R and t 2 T , subject to the usual equivalence relation. There
is an obvious ring monomorphism R! T �1R .

Geometry & Topology, Volume 22 (2018)
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One instance of the Ore localisation will be of particular interest in this paper. If G is
an amenable group, D a skew field and D �G a crossed product which is a domain,
then a result of Tamari [38] shows that D�G satisfies the left (and right) Ore condition
with respect to the nonzero elements in D �G. This applies in particular to the case
where G is finitely generated free abelian. (Note that for untwisted group algebras KG

without nontrivial zero divisors, the Ore condition for KG is equivalent to amenability
of G, by a result of Bartholdi and the second-named author [2].)

Throughout the paper, we will only take the Ore localisation with respect to all nonzero
elements of a ring.

2.5 The Atiyah conjecture and D.G/

In this section we review techniques which were originally developed for proving
the Atiyah conjecture, but have meanwhile been shown to be fruitful on many other
occasions.

Given a group G, let L2.G/ denote the complex Hilbert space with Hilbert basis G on
which G acts by translation. We use N .G/ to denote the group von Neumann algebra
of G, ie the algebra of bounded G–equivariant operators on L2.G/. Associated to
any N .G/–module M (in the purely ring-theoretic sense), there is a von Neumann
dimension dimN .G/.M/ 2 Œ0;1� (see [28, Chapter 6]).

Conjecture 2.12 (Atiyah conjecture) Let G be a torsion-free group. Given a matrix
A 2QGm�n , we denote by rAW N .G/m!N .G/n the N .G/–homomorphism given
by right multiplication with A. Then G satisfies the Atiyah conjecture if for every
such matrix the number dimN .G/.ker.rA// is an integer.

The class of groups for which the Atiyah conjecture is known to be true is large. It
includes all free groups, and is closed under taking directed unions, as well as extensions
with elementary amenable quotients. Infinite fundamental groups of compact connected
orientable irreducible 3–manifolds with empty or toroidal boundary which are not
closed graph manifolds are also known to satisfy the Atiyah conjecture. For these
statements and more information we refer to [15, Chapter 3].

Definition 2.13 Let R � S be a ring extension. Then the division closure of R
inside S is the smallest subring D of S which contains R such that every element
in D which is invertible in S is already invertible in D. We denote it by D.R � S/.

Geometry & Topology, Volume 22 (2018)
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Let U.G/ denote the algebra of affiliated operators of N .G/. This algebra is carefully
defined and examined in [28, Chapter 8]. Note that QG embeds into N .G/, and
therefore U.G/, as right multiplication operators. Let D.G/ denote the division
closure of QG inside U.G/.

The following theorem appears in [28, Lemma 10.39] for the case where QG is
replaced by CG in the above definitions, but the proof also carries over to rational
coefficients.

Theorem 2.14 A torsion-free group satisfies the Atiyah conjecture if and only if D.G/
is a skew field.

It is known that if H �G is a subgroup, then there is a canonical inclusion D.H/�
D.G/.

Recall from Example 2.9 that for an extension of groups

1!K!G!Q! 1

the group ring ZG is isomorphic to the crossed product ZK �Q , where Q acts on
ZK by conjugation. When G satisfies the Atiyah conjecture, this action extends
to an action on D.K/ and one can identify the crossed product D.K/ �Q with a
subring of D.G/ (see [28, Lemma 10.58]). If Q is finitely generated free abelian, then
D.K/�Q satisfies the Ore condition with respect to the nonzero elements T and the
Ore localisation admits, by [28, Lemma 10.69], an isomorphism

(2-2) T �1.D.K/�Q/ Š�!D.G/:

2.6 Semifirs and specialisations

In this section we review the notion of a specialisation, which allows us to compare
skew fields with given maps from a group algebra QG.

We start with the notion of a semifir. (In general, Cohn’s book [8] contains a detailed
discussion of many aspects of ring theory that will be of relevance to us.)

Definition 2.15 (semifir) A ring R is a semifir if every finitely generated right ideal
of R is free and of unique rank.

Theorem 2.16 (Dicks and Menal [9]) Let R be a ring and G a nontrivial group.
Then RG is a semifir if and only if R is a skew field and G is nontrivial and locally
free.
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Now we introduce the notion of specialisation.

Definition 2.17 (specialisation) Let R be a ring. An R–field consists of a skew field
D and a ring morphism ˇW R!D . An R–field D is epic if ˇ is an epimorphism, that
is, if for any ring S and any two ring morphisms �; � 0W D! S, we have

� ıˇ D � 0 ıˇ D) � D � 0:

Given two epic R–fields ˇW R! D and ˇ0W R! D0, a specialisation of D to D0 is a
pair .S; �/ where S is a subring of D containing imˇ , the map � W S !D0 is a ring
map with � ıˇ D ˇ0, and every element in S not mapped to 0 by � is invertible in S.
The ring S is called the domain of the specialisation.

Note that what we call a specialisation is referred to as a “subhomomorphism” by
Cohn; for Cohn, a specialisation is an equivalence class of subhomomorphisms.

Note also that an epic R–field is in particular an R–module. Hence, given a matrix M
over R , we can talk about M ˝D ; this is of course the same matrix as ˇ.M/, where
we apply the map ˇ to entries of M.

When G is torsion-free and satisfies the Atiyah conjecture, D.G/ is an epic QG–field
since it is the division closure of the image of QG in U.G/; see [8, Corollary 7.2.2].

Theorem 2.18 (Cohn [8, Theorem 7.2.7]) Let R be a ring and let D and D0 be epic
R–fields. The following are equivalent:

(1) There exists a specialisation from D to D0.
(2) For every square matrix M over R , if M˝D0 is invertible over D0 then M˝D

is invertible over D .

Cohn gives two further equivalent statements, but they will be of no importance to us.

We now define a class of groups for which the skew fields D.G/ admit desirable
specialisations.

Definition 2.19 (specialising groups) Let ˆ be a collection of morphisms 'W G!R.
We say that G is ˆ–specialising if G is torsion-free, satisfies the Atiyah conjecture
and, given any group epimorphism ˛W G ! � with � torsion-free and elementary
amenable such that every ' 2 ˆ factors through ˛ , the QG–field D.G/ admits a
specialisation to the QG–field D.�/, where the map QG ! D.�/ is obtained by
composing ˛W QG!Q� with the embedding Q�! D.�/.

We say that a group G is specialising if G is ∅–specialising.
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Note that ˆ–specialising implies ‰–specialising for ˆ � ‰ , and so specialising
is the strongest property in this family of properties. On the other extreme, when
ˆ � H 1.GIZ/, being ˆ–specialising means that we need to consider only those
quotients � which map onto H1.GIZ/f , the free part of the abelianisation of G.

The following is a combination of results of Cohn and Linnell.

Theorem 2.20 Locally free groups are specialising.

Proof Let F denote a locally free group. We start by observing that QF is a semifir
(by Theorem 2.16 for nontrivial F , and by the fact that Q is a field for trivial F ), and
hence a Sylvester domain by [8, Proposition 5.1.1] (this last term is defined in [8], but
its precise meaning is not really important for us here).

Now let M be an n�n matrix over QF . Suppose that there exist an n�m matrix P
and an m� n matrix Q , both over QF, where m < n, and such that M D PQ . In
such a situation M is defined to be nonfull, and if no such P and Q exist, then M
is full. Since QF is a Sylvester domain, Theorem 7.5.12 of [8] gives us an honest
ring homomorphism ˇW QF ! D , where D is an epic QF –field called the universal
localisation of QF with respect to the set of full matrices. “Honest” means precisely
that if a square matrix M is full over QF , then M ˝D is full over D . Since D is a
skew field, it is easy to see that being full is the same as having nonzero determinant
(and being invertible). Note also that ˇ is necessarily injective.

Let D0 be any epic QF –field. Clearly, if M is a square matrix over QF with
M D PQ , then M ˝ D0 D P ˝ D0 �Q˝ D0. Thus, if M ˝ D0 is invertible, then
M itself is full, and therefore M ˝D is full, and hence invertible. Thus, applying
Theorem 2.18 tells us that ˇW QF ! D admits a specialisation to any epic QF –field
(in Cohn’s terminology, D is therefore the universal field of fractions).

It remains to prove that DŠD.F /. Since any group is the union of its finitely generated
subgroups, there is an increasing sequence of finitely generated free subgroups Fi of F
such that F D

S
Fi . By [28, Lemma 10.83], we have

D.F /D
[

D.Fi /:

Also, by [28, Lemma 10.81], D.Fi / is universally †.QFi ! D.Fi //–inverting (see
[28, Section 10.2.2] for the definition of this concept). Since †.QFi ! D.Fi // �
†.QF ! D.F // is contained in the set of full matrices over QF , and ˇW QF ! D
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inverts all full matrices, there is a ring map i W D.Fi /! D such that the square

QFi //

��

QF

ˇ

��

D.Fi /
i

// D
commutes.

The map j agrees with i on D.Fi / for j > i ; they thus fit together to give a map
 W D.F /!D such that the triangle

QF

ˇ

��{{

D.F /


//// D

commutes. But, since ˇ is epic and  is necessarily injective,  must in fact be an
isomorphism.

2.7 Universal L2–torsion

Let G be a group satisfying the Atiyah conjecture. In [16, Definition 1.1], Friedl
and Lück define the weak K1–group Kw1 .ZG/ as the abelian group generated by
ZG–endomorphisms f W ZGn! ZGn that become a weak isomorphism (a bounded
injective operator with dense image) upon applying �˝ZG L

2.G/, subject to the
usual relations in K1 . The above condition is equivalent to f becoming invertible
after applying �˝ZG D.G/ (see [16, Lemma 1.21]). The weak Whitehead group
Whw.G/ of G is defined as the quotient of Kw1 .ZG/ by f˙g j g 2Gg considered as
endomorphisms of ZG via right multiplication. An injective group homomorphism
i W G!H induces maps

i�W K
w
1 .ZG/!Kw1 .ZH/ and i�W Whw.G/!Whw.H/:

Example 2.21 For H a finitely generated free abelian group, we have isomorphisms

Kw1 .ZH/ŠK1.T
�1.ZH//Š T �1.ZH/�;

where T denotes the set of nontrivial elements of ZH. The first isomorphism is a
special case of the main result of Linnell and Lück [27], and the second one is well
known and induced by the Dieudonné determinant over the field T �1.ZH/.
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A ZG–chain complex is called based free if every chain module is free and has a
preferred basis. Given an L2–acyclic finite based free ZG–chain complex C� , Friedl
and Lück [16, Definition 1.7] define the universal L2–torsion of C�

�.2/u .C�IN .G// 2Kw1 .ZG/

in a similar fashion as the Whitehead torsion.

If X is an L2–acyclic finite free G–CW–complex, then its cellular chain complex
C�.X/ is finite and free, and we equip it with some choice of bases coming from the
CW–structure. Since this is only well-defined up to multiplication by elements in G,
the universal L2–torsion �.2/u .X IN .G// 2Whw.G/ of X is defined as the image of
�
.2/
u .C�.X/IN .G// under the projection Kw1 .ZG/!Whw.G/.

A finite connected CW–complex X is L2–acyclic if its universal cover zX is an L2–
acyclic �1.X/–CW–complex. If this is the case, then the universal L2–torsion of X
is

�.2/u . zX/ WD �.2/u
�
zX IN .�1.X//

�
2Whw.�1.X//:

If X is a (possibly disconnected) finite CW–complex, then it is L2–acyclic if each path
component is L2–acyclic in the above sense. In this case, its universal L2–torsion is
defined by

�.2/u . zX/ WD .�.2/u . zC//C2�0.X/ 2Whw.….X// WD
M

C2�0.X/

Whw.�1.C //:

A map f W X ! Y of finite CW–complexes such that

�1.f; x/W �1.X; x/! �1.Y; f .x//

is injective for all x 2X induces a homomorphism

f�W Whw.….X//!Whw.….Y //

by

f� WD
�
.f jC /�W Whw.�1.C //!Whw.�1.D//

�
C2�0.X/

;

where f .C /�D.

The main properties of the universal L2–torsion are collected in [16, Theorems 2.5
and 2.11], of which we recall here the parts needed in this paper.
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Lemma 2.22 (1) Let f W X ! Y be a G–homotopy equivalence of finite free G–
CW–complexes. Suppose that X or Y is L2–acyclic. Then both X and Y are
L2–acyclic and we get

�.2/u .X IN .G//� �.2/u .Y IN .G//D �.�.f //;

where �.f / 2Wh.G/ is the Whitehead torsion of f and

�W Wh.G/!Whw.G/

is the obvious homomorphism.

(2) Let

X0 //

��

j0

!!

X1

j1

��

X2
j2
// X

be a pushout of finite CW–complexes such that the top horizontal map is cellular,
the left arrow is an inclusion of CW–complexes, and X carries the CW–structure
coming from the ones on Xi for i D 0; 1; 2. Suppose that Xi for i D 0; 1; 2 is
L2–acyclic and that for any xi 2Xi the induced homomorphism �1.Xi ; xi /!

�1.X; ji .xi // is injective. Then X is L2–acyclic and we have

�.2/u . zX/D .j1/�.�
.2/
u . zX1//C .j2/�.�

.2/
u . zX2//� .j0/�.�

.2/
u . zX0//:

(3) Let pW X ! Y be a finite covering of finite connected CW–complexes. Let
p�W Whw.�1.Y //!Whw.�1.X// be the homomorphism induced by restriction
with �1.p/W �1.X/ ! �1.Y /. Then X is L2–acyclic if and only if Y is
L2–acyclic and in this case we have

�.2/u . zX/D p�.�.2/u . zY //:

Next we apply this invariant to the groups we are interested in.

Definition 2.23 Let G be a group with a finite model for its classifying space BG,
and let gW G!G be a monomorphism. Let T be the mapping torus of the realisation
BgW BG!BG. Given a factorisation G�g

p
�!�

q
�!Z of the induced epimorphism,

denote by T ! T the � –covering corresponding to p . Suppose that the classical
Whitehead group Wh.�/ of � is trivial. Then T is L2–acyclic [28, Theorem 1.39],
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and Lemma 2.22(1) implies that we get a well-defined invariant

�.2/u .G�g ; p/ WD �
.2/
u .T IN .�// 2Whw.�/

which only depends on G , g and p , but not on the realisations. If p D idG , then we
write �.2/u .G�g/D �

.2/
u .G�g ; idG/.

A classical theorem of Waldhausen [40, Theorem 19.4] says that Wh.Fn�g/D 0, so
that we may apply this in particular to the special case where � DG�g D Fn�g and
p D id.

2.8 The L2–torsion polytope

Let H be a finitely generated free abelian group. An (integral) polytope in H ˝Z R is
the convex hull of a nonempty finite set of points in H (considered as a lattice inside
H ˝Z R).

Given two polytopes P1 and P2 in H ˝Z R, their Minkowski sum is defined as

P1CP2 WD fxCy 2H ˝Z R j x 2 P1; y 2 P2g:

It is not hard to see that the Minkowski sum is cancellative in the sense that P1CQD
P2CQ implies P1DP2 . It turns the set of polytopes in H ˝Z R into a commutative
monoid with the one-point polytope f0g as the identity. The (integral) polytope group
of H, denoted by P.H/, is defined as the Grothendieck completion of this monoid, so
elements are formal differences of polytopes P �Q , subject to the relation

P �QD P 0�Q0 () P CQ0 D P 0CQ;

where on the right-hand side the symbol C denotes the Minkowski sum. With motiva-
tion originating in low-dimensional topology, integral polytope groups have recently
received increased attention; see [6; 18].

We define PT .H/ to be the cokernel of the homomorphism H ! P.H/ which sends
h to the one-point polytope fhg. In other words, two polytopes become identified in
PT .H/ if and only if they are related by a translation with an element of H.

For a finite set F �H, we denote by P.F / the convex hull of F inside H ˝Z R.

Let G be a torsion-free group satisfying the Atiyah conjecture. Then, as before,
the integral group ring ZG embeds into the skew field D.G/. Let pW G ! H be
an epimorphism onto a finitely generated free abelian group H, and denote by K
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the kernel of the projection p . Friedl and Lück [16, Section 3.2] define a polytope
homomorphism

(2-3) P W Kw1 .ZG/! P.H/

as the composition of the following maps: Firstly, apply the obvious map

(2-4) Kw1 .ZG/!K1.D.G//; Œf � 7! ŒidD.G/˝ZG f �:

Since D.G/ is a skew field, the Dieudonné determinant constructed in Section 2.2
induces a map

(2-5) detD.G/W K1.D.G//! D.G/�=ŒD.G/�;D.G/��;

which is in fact an isomorphism (see Silvester [35, Corollary 4.3]). Finally, we use the
isomorphism (2-2):

(2-6) j W D.G/Š T �1.D.K/�H/:

For x 2 D.K/ �H we define P.x/ WD P.supp.x// 2 P.H/. It is not hard to see
that for two such elements x1 and x2 we have P.x1x2/D P.x1/CP.x2/. We may
therefore define a homomorphism

(2-7) P W
�
T �1.D.K/�H/

��
! P.H/; t�1s 7! P.s/�P.t/:

Since the target of P is an abelian group, the composition P ıj jD.G/� factors through
the abelianisation of D.G/� . The polytope homomorphism announced in (2-3) is
induced by the maps (2-4), (2-5), (2-6) and (2-7), and it does not depend on the choices
used to construct the isomorphism (2-6). We get an induced polytope homomorphism

(2-8) P W Whw.G/! PT .H/:

If x is an element in D.G/� , we will henceforth use the isomorphism j without
mention and therefore denote the image of x under P ı j jD.G/� simply by P.x/.

In the following definition we denote by H1.G/f the free part of the abelianisation
H1.G/ of a group G.

Definition 2.24 Let X be a free finite G–CW–complex. We define the L2–torsion
polytope PL2.X IN .G// of X as the image of ��.2/u .X IN .G// under the polytope
homomorphism (2-8).

Likewise, if gW G!G is a monomorphism of a group G with a finite classifying space,
and the obvious epimorphism G�g!H1.G�g/f factors through some pW G�g! �
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such that � satisfies the Atiyah conjecture and Wh.�/ D 0, then the L2–torsion
polytope of g relative to p ,

PL2.G�g ; p/ 2 PT .H1.�/f /D PT .H1.G�g/f /;

is defined as the image of ��.2/u .G�g ; p/ under P W Whw.�/ ! PT .H1.�/f /. If
p D idG , then we just write PL2.G�g/.

We expect the L2–torsion polytope to carry interesting information about the monomor-
phism g . Even for free groups we get an interesting invariant, which is new also for
their automorphisms. On the other side of the universe of groups, the L2–torsion
polytope was shown to vanish if X DEG is the finite classifying space of an amenable
group G that contains a nonabelian elementary amenable normal subgroup [19].

2.9 The Alexander polytope

The Alexander polynomial was first introduced by Alexander [1] as a knot invariant.
Its definition was later extended by McMullen [32] to all finitely generated groups in
the following way.

Given a finite CW–complex X with a basepoint x and �1.X/ D G, consider the
covering � W X !X corresponding to the quotient map pW G!H1.G/f DWH. The
Alexander module of X is the ZH –module

A.X/DH1.X; xx;Z/;

where xx D ��1.x/.

Now let A be any finitely generated ZH –module. Since ZH is Noetherian, we may
pick a presentation

ZH r M
�!ZH s

! A! 0:

The elementary ideal I.A/ of A is the ideal generated by all .s� 1/� .s� 1/ minors
of the matrix M. The Alexander ideal of X is I.A.X//, and the Alexander polynomial
�X is defined as the greatest common divisor of the elements in I.A.X//. This
invariant is well-defined up to multiplication by units in ZH and we will view it as
an element in Whw.H/Š T �1.ZH/=f˙h j h 2H g, where this isomorphism comes
from Example 2.21. Finally, the Alexander polytope PA.X/ is defined as the image
of �X under the polytope homomorphism

P W Whw.H/! PT .H/:
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The Alexander module and hence the Alexander polynomial depend only on the
fundamental group, and we define �G WD �X and PA.G/ WD PA.X/ for any space
with �1.X/DG. This applies in particular to descending HNN extensions of finitely
generated groups.

We emphasise that the Alexander polynomial is accessible from a finite presentation
of G : we can take X to be the presentation complex, so that the ZH –chain complex
of the pair .X; xx/ looks like

0! ZH r F
�!ZH s

! C0.X/=C0.xx/D 0;

where C0 denotes the group of zero chains and F contains the Fox derivatives associated
to the given presentation (see Section 2.12). Thus, A.X/ is the cokernel of the map F ,
which immediately gives a finite presentation of A.X/, as desired.

2.10 Seminorms on the first cohomology

Given a polytope P � H ˝Z R, we obtain a seminorm k � kP on Hom.H;R/ Š
HomR.H ˝Z R;R/ by putting

k'kP WD supf'.x/�'.y/ j x; y 2 P g:

It is clear that k � kP remains unchanged when P is translated within H ˝Z R. More-
over, if Q is another such polytope, then we get for the Minkowski sum

k'kPCQ D k'kP Ck'kQ:

Thus, we get a homomorphism of groups

NW PT .H/!Map.Hom.H;R/;R/; P �Q 7! .' 7! k'kP �k'kQ/;

where Map.Hom.H;R/;R/ denotes the group of continuous maps to R with pointwise
addition. In general, N.P �Q/ does not need to be a seminorm.

The following definition is due to McMullen [32].

Definition 2.25 If G is a finitely generated group, then the Alexander norm

k � kAW H
1.GIR/!R

is defined as the image of the Alexander polytope PA.G/ under N.
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If G is the fundamental group of a compact connected orientable 3–manifold M, the
first cohomology H 1.M IR/DH 1.GIR/ carries another well-known seminorm k�kT ,
called the Thurston seminorm. It was first defined and examined by Thurston [39] and
is closely related to the question of whether (and how) M fibres over the circle. One
of the main results of [16, Theorem 3.27] is the following:

Theorem 2.26 Let M ¤ S1 �D2 be a compact connected aspherical 3–manifold
such that �1.M/ satisfies the Atiyah conjecture. Then the image of the L2–torsion
polytope PL2. �M I�1.M// under N is the Thurston seminorm k � kT .

Motivated by this result, we make the following definition:

Definition 2.27 Let GDFn�g for a monomorphism gW Fn!Fn . We call the image
of the L2–torsion polytope PL2.G/ 2 PT .H1.G/f / as defined in Definition 2.24
under N the Thurston seminorm on G and denote it by

k � kT W H
1.GIR/!R:

In order for this definition to make sense, we need to argue that HNN extensions of
free groups satisfy the Atiyah conjecture.

To this end, observe that G fits into the extension

0! hhFnii !G! Z! 0:

By the work of Linnell (see [28, Theorem 10.19]), we know that the Atiyah conjecture
holds for Fn , is stable under taking directed unions, and so holds for hhFnii, and is
stable under taking extensions with elementary amenable quotients, and thus holds
for G.

The proof that the terminology seminorm in the above definition is justified needs to be
postponed to Corollary 3.5.

Harvey [22] generalised McMullen’s work and defined higher Alexander norms

ık W H
1.GIR/!R

for any finitely presented group G, where ı0Dk�kA . While we do not need the precise
definition of ık , the following ingredient will be needed throughout the paper.

Definition 2.28 The rational derived series

G DG0r �G
1
r �G

2
r � � � �
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of a group G is inductively defined with GkC1r being the kernel of the projection

Gkr !H1.G
k
r /f :

Note that the quotients �k WDG=GkC1r are torsion-free and solvable, and so

Wh.�k/D 0;

since solvable groups satisfy the K–theoretic Farrell–Jones conjecture by a result of
Wegner [41]. Moreover, �k satisfies the Atiyah conjecture by the work of Linnell
(see [28, Theorem 10.19]). Thus, given G D Fn�g , Definitions 2.23 and 2.24 produce
an L2–torsion polytope PL2.G; pk/ for the projections

pk W G! �k :

The next result is not explicitly stated in [15; 16], but we will indicate how it directly
follows from it.

Theorem 2.29 Let G D Fn�g be a descending HNN extension and let

pk W G! �k WDG=G
kC1
r

be the obvious projection. Then the image of the L2–torsion polytope PL2.G; pk/

under N is the higher Alexander norm ık , unless b1.G/D 1 and k D 0.

Proof Let �k W �k ! H1.G/f be the natural projection. There is an obvious ana-
logue of [15, Theorem 8.4] for HNN extensions of free groups which says that for
'W H1.G/f ! Z we have an equality

ık.'/D��
.2/.T Ipk; ' ı �k/;

where T denotes the mapping torus of a realisation of g . The right-hand side denotes
the twisted L2–Euler characteristic defined and examined in [15].

On the other hand, a similar argument as in the proof Theorem 2.26 (see the proof of
[16, Theorem 3.27]) shows that

N.PL2.G; pk//.'/DN
�
P .��.2/u .G; pk//

�
.'/D��.2/.T Ipk; ' ı �k/:

Motivated by this result, we introduce new terminology.

Definition 2.30 Let G D Fn�g be a descending HNN extension and let

pk W G! �k WDG=G
kC1
r

be the obvious projection. Then we call PL2.G; pk/ the higher Alexander polytopes.
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The Thurston and higher Alexander seminorms satisfy well-known inequalities for
compact orientable 3–manifolds by the work of McMullen [32] and Harvey [22; 23].
We use their characterisation in terms of polytopes to prove an analogue in the case of
descending HNN extensions of free groups. This will be the main result of Section 4.

2.11 The Bieri–Neumann–Strebel invariant †.G/

We first recall one of the definitions of the BNS invariant †.G/; see [37, Section A2.1].

Definition 2.31 (the BNS invariant) Let G be a group with finite generating set S.
The positive reals R>0 act on Hom.G;R/ n f0g by multiplication. The quotient will
be denoted by

S.G/D .Hom.G;R/ n f0g/=R>0:

Given a class Œ'� 2 S.G/, let Cay.G; S/' denote the subgraph of the Cayley graph
of G with respect to S that is induced by the vertex subset fg 2G j '.g/> 0g. The
BNS invariant or †–invariant is the subset

†.G/D fŒ'� 2 S.G/ j Cay.G; S/' is connectedg:

Note that S.G/, with the quotient topology, is naturally homeomorphic to the unit
sphere in H 1.GIR/. The invariant †.G/ is an open subset thereof (see Theorem A
of [4]).

For rational points in S.G/ we have a more tangible characterisation.

Theorem 2.32 [4, Proposition 4.3] Let 'W G!Z be an epimorphism. Then Œ�'� 2
†.G/ if and only if G can be identified with a descending HNN extension over a finitely
generated subgroup, so that ' is the epimorphism induced by the HNN extension.

Definition 2.33 (Sikorav–Novikov completion) Let G be a group and ' 2H 1.GIR/.
Then the Sikorav–Novikov completion bZG' is defined as the set

bZG' WD
�X
g2G

xg �g
ˇ̌̌
fg 2G j '.g/ < C and xg ¤ 0g is finite for all C 2R

�
:

It is easy to verify that the usual convolution turns bZG' into a ring which contains ZG.
The reason why we are interested in the Sikorav–Novikov completion is the following
criterion to detect elements in the BNS invariant.
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Theorem 2.34 Given a finitely generated group G, for a nonzero homomorphism
'W G!R we have Œ�'� 2†.G/ if and only if

H0.GIbZG'/D 0 and H1.GIbZG'/D 0:

Proof This is originally due to Sikorav [34]; see also [17, Theorem 4.3] for a sketch
of the proof.

Remark 2.35 In fact we are only discussing the first BNS invariant

†1.GIZ/D�†.G/:

It is easily deducible from the full result of Sikorav that for descending HNN extensions
of free groups the higher BNS invariants †n.GIZ/ all coincide with †1.GIZ/.

Definition 2.36 We define �' W bZG'! ZG in the following way: Let

x D
X
g2G

xg �g 2bZG'
and let

S D
˚
g 2 supp.x/ j '.g/Dminf'.supp.x//g

	
:

Then we let
�'.x/D

X
g2S

xg �g:

It is easy to see that �' respects the multiplication in bZG' .

The following criterion to detect units in bZG' is well known; we include a proof here
for the sake of completeness. Note that the Sikorav–Novikov completion is a domain,
so being left-invertible is equivalent to being right-invertible, and so is equivalent to
being a unit.

Definition 2.37 A group G is called indicable if it admits an epimorphism onto Z.
The group is locally indicable if all of its finitely generated subgroups are indicable.

Lemma 2.38 Let G be a locally indicable group and x 2bZG' . Then x is a unit in
bZG' if and only if �'.x/ is of the form ˙h for some h 2G.

Proof If x has an inverse y 2bZG' , then

1D �'.1/D �'.x/�'.y/:
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The latter is an equation in ZG, where the only units are of the form ˙h since G is
locally indicable [25, Theorem 13].

Conversely, write xD
P
g2G xg �g and write Gk for the (finite) set of elements g 2G

with g 2 supp.x/ and '.g/D k . After multiplying with the unit �'.x/�1 , we may
assume without loss of generality that Gk D∅ for k < 0, G0¤∅ and �'.x/D 1, so

x D 1C
X
g2G1

xg �gC
X
g2G2

xg �gC � � � :

It is now easy to successively build a left-inverse beginning with

1�
X
g2G1

xg �gC

� X
g2G1

xg �g

�2
�

X
g2G2

xg �gC � � � :

Finally we verify that the above characterisation of units in bZG' is applicable for the
groups of our interest.

Lemma 2.39 Let gW Fn! Fn be a monomorphism. Then the associated descending
HNN extension is locally indicable.

Proof Let GDFn�g denote the descending HNN extension and let  be the induced
epimorphism to Z.

We start by noting that G is locally indicable if and only if the normal closure of Fn
inside G is, since this normal closure is the kernel of  , and the image of  is a
free abelian group, and thus locally indicable. Now, since G is a descending HNN
extension, every finitely generated subgroup of ker' lies in a copy of Fn , which is
locally indicable. Hence, G is locally indicable.

2.12 Fox calculus

In order to start computing, we introduce as a last tool Fox derivatives (defined by
Fox [13]).

Definition 2.40 Let Fn be a free group generated by s1; : : : ; sn , and let w be a word
in the alphabet fs1; : : : ; sng. We define the Fox derivative @w=@si 2 ZG of w with
respect to si inductively: we write w D vt , where t is one of the generators or their

Geometry & Topology, Volume 22 (2018)



Alexander and Thurston norms, and the BNS invariants for free-by-cyclic groups 2671

inverses and v is strictly shorter than w , and set

@w

@si
D

8<:
@v=@si if t … fsi ; s�1i g;
@v=@si C v if t D si ;
@v=@si �w if t D s�1i :

This definition readily extends first to elements w 2 Fn , and then linearly to elements
of ZFn , forming a map @w=@si W ZFn! ZFn .

The following equation is known as the fundamental formula of Fox calculus [13,
Formula (2.3)].

Proposition 2.41 Let w 2 Fn be any word and let s1; : : : ; sn be a generating set
of Fn . Then we have

nX
iD1

@w

@si
� .1� si /D 1�w:

3 The invariants for descending HNN extensions of
free groups

In this section we describe the Alexander polynomial and the universal L2–torsion in
more explicit terms for descending HNN extensions of finitely generated free groups.
The computations in this chapter follow from the general properties of the invariants,
but we thought it worthwhile to collect them here in order to emphasise that a close
connection between the invariants should not come as a complete surprise.

Let us first observe the following:

Lemma 3.1 Let G be a descending HNN extension G D Fn�g . Pick a finite classi-
fying space BFn for Fn and a realisation BgW BFn! BFn . Then the mapping torus
TBg of Bg is a classifying space for G.

Proof It is well known that �1.TBg/ D G. For the higher homotopy groups we
observe that any map C ! zTBg with compact domain C can be homotoped to a map
whose image lies in a copy of eBFn , which is contractible.

We will always view an m � n matrix A over a ring R as an R–homomorphism
Rm!Rn by right-multiplication since we prefer working with left-modules.
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For a monomorphism gW Fn!Fn , let GDFn�g , and let s1; : : : ; sn denote generators
of Fn and t the stable letter of the HNN extension. The Fox matrix of g is

F.g/D

�
@g.si /

@sj

�n
i;jD1

2 ZFn
n�n:

Put S D fs1; : : : ; sn; tg. We will often consider the matrix

A.gIS/D

0@ s1� 1

Id� t �F.g/
:::

sn� 1

1A 2 ZGn�.nC1/:

Given s 2 S, we let A.gIS; s/ be the square matrix obtained from A.gIS/ by
removing the column which contains the Fox derivatives with respect to s . Let
�k D G=GkC1r , where Gkr are the subgroups of the rational derived series as in-
troduced in Definition 2.28. Denote by pk W G! �k the projection and denote the ring
homomorphisms pk W ZG! Z�k by the same letter. Notice that

�0 DH1.G/f DWH:

The following theorem summarises the various invariants introduced in Section 2 for
descending HNN extensions of finitely generated free groups.

Theorem 3.2 With the notation above, let G D Fn�g and s 2 S. Then:

(1) For the universal L2–torsion we have

�.2/u .G/D�ŒZGn
A.gIS;s/
����!ZGn�C ŒZG

s�1
��!ZG�

and so

PL2.G/D P
�
detD.G/.A.gIS; s//

�
�P.s� 1/ 2 PT .H/:

(2) If pk.s/¤ 0, then for the universal L2–torsion relative to pk we have

�.2/u .GIpk/D�ŒZ�
n
k

pk.A.gIS;s//
�������!Z�nk �C ŒZ�k

pk.s/�1
����!Z�k�

and so

PL2.G; pk/D P
�
detD.�k/

�
pk.A.gIS; s//

��
�P.pk.s/� 1/ 2 PT .H/:

(3) In Whw.H/Š .T �1QH/�=f˙h j h 2H g we have

�A.G/D

�
��

.2/
u .GIp0/ if b1.G/> 2;

��
.2/
u .GIp0/ � .p0.t/� 1/ if b1.G/D 1:
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(4) Let ' 2 Hom.G;R/. If '.s/¤ 0, then Œ�'� 2†.G/ if and only if the map

A.gIS; s/WbZGn'!bZGn'
is surjective, or, equivalently, bijective.

Proof (1) We write the relations defining the descending HNN extension G D Fn�g
as

Ri D si tg.si /
�1t�1:

If we let BFn be the wedge of n circles, then the ZG–chain complex of the mapping
torus TBg has the form

C� D 0! ZGn
c2
�!ZGnC1

c1
�!ZG! 0;

where c1 is given by the transpose of�
s1� 1 s2� 1 : : : sn� 1 t � 1

�
and c2 is given by the n � .nC 1/ matrix containing the Fox derivatives @Ri=@sj
and @Ri=@t . This is precisely the matrix A.gIS/ since

@Ri

@sj
D ıij C si t

�
@g.si /

�1

@sj
Cg.si /

�1
�
@t�1

@sj

�
D ıij � si tg.si /

�1
�
@g.si /

@sj

D ıij � t �
@g.si /

@sj
;

@Ri

@t
D si � si tg.sj /

�1t�1 D si � 1;

where ıij denotes the Kronecker delta.

Consider the ZG–chain complexes

B� D 0! 0! ZG s�1
��!ZG! 0;

D� D 0! ZGn
A.gIS;s/
������!ZGn! 0! 0:

We obtain a short exact sequence of ZG–chain complexes

0! B�! C�!D�! 0:
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Since B� is L2–acyclic by [28, Theorem 3.14(6) on page 129 and (3.23) on page 136],
D� is also L2–acyclic and we have the sum formula [16, Lemma 1.9]

�.2/u .G/D�.2/u .C�/D�
.2/
u .B�/C�

.2/
u .D�/D ŒZG

s�1
��!ZG��ŒZGn

A.gIS;s/
������!ZGn�:

The statement

PL2.G/D P
�
detD.G/.A.gIS; s//

�
�P.s� 1/ 2 PT .H/

is obtained by applying the polytope homomorphism P W Whw.G/! PT .G/.

(2) This follows exactly as (1) since the chain complex used to define �.2/u .GIpk/ is

0! Z�nk
pk.c2/
����!Z�nC1

k

pk.c1/
����!Z�k! 0:

(3) A ZH –presentation of the Alexander module A.G/ is given by

ZHn p0.A.gIS//
������!ZHnC1

! A.G/! 0:

We now apply the same argument as in the proof of [32, Theorem 5.1]: If b1.G/> 2,
then this yields

det
�
p0.A.gIS; s//

�
D .p0.s/� 1/ ��A.G/

for all s 2 S such that p0.s/¤ 0.

If b1.G/D 1, then

det
�
p0.A.gIS; t //

�
D�A.G/:

Since the isomorphism Whw.G/ Š T �1.ZH/ is given by the determinant over
T �1.ZH/, the claim follows from part (2) for k D 0 (since �0 DH ).

(4) By Theorem 2.34, Œ�'� 2†.G/ if and only if

H0.GIbZG'/D 0 and H1.GIbZG'/D 0:

The chain complex computing these homology groups is

0!bZGn' c2
�!bZGnC1'

c1
�!bZG'! 0:

We assume '.s/¤ 0 for a fixed s 2 S. Since G is locally indicable (by Lemma 2.39),
Lemma 2.38 shows that s�1 is invertible in bZG' , which implies that c1 is surjective,
and therefore H0.GIbZG'/D 0 for any nonzero ' .
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Assume without loss of generality that s D s1 . Then the kernel of d1 is the set

K D

�
.x1; : : : ; xnC1/ 2bZGnC1'

ˇ̌̌ nC1X
kD2

xk.sk � 1/.s1� 1/
�1
D�x1

�
:

By forgetting the first coordinate we see that K is bZG' –isomorphic to bZGn' , and

H1.GIbZG'/D 0
is equivalent to

A.gIS; s/WbZGn'!bZGn'
being surjective.

Since bZG' is stably finite (this was shown by Kochloukova [26]), an epimorphism
bZGn'!bZGn' is necessarily an isomorphism.

Remark 3.3 The above proof shows (and uses) that A.gIS; s/ (resp. pk.A.gIS; s/)
is invertible over D.G/ (resp. D.�k/). We will henceforth call a ZG–square matrix
with this property nondegenerate.

Example 3.4 Using part (1) of the above theorem we compute the L2–torsion polytope
in a few examples. We use a; b; c; : : : to denote some fixed generators of Fn .

(1) For arbitrary n and g D id the polytope is just a line of length n� 1 between 0
and tn�1 .

(2) For gW F2! F2 , x 7! akxa�k for some k 2Z, we get a tilted line between 0
and akt .

(3) For gW F3! F3 , a 7! b , b 7! c , c 7! aŒb; c�, we get a triangle, as shown in
Figure 1.

� 0

� tn�1

�0

� akt
�t2

�0

� a2t

Figure 1: The L2–torsion polytopes in Example 3.4

More importantly, we can now show that the L2–torsion polytope of free group HNN
extensions induces indeed a seminorm on the first cohomology.
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Corollary 3.5 Let G D Fn�g . Then the Thurston seminorm

k � kT W H
1.GIR/!R

as defined in Definition 2.27 is indeed a seminorm.

Proof As a difference of seminorms it is clear that k � kT is R–linear and continuous.

First let ' 2H 1.GIQ/ be a rational class. We easily find a generating set s1; : : : ; sn
of Fn such that '.s1/D 0. We add a stable letter to this set, and form a generating set
S for G.

We get from the previous theorem

�.2/u .G/D�ŒZGn
A.gIS;s1/
������!ZGn�C ŒZG

s1�1
��!ZG�:

By Theorem 2.2 of Friedl and Harvey [24] applied to K D D.K/, the polytope
P
�
detD.G/.A.gIS; s1//

�
defines a seminorm on H 1.GIR/, which we denote by k�kT 0 .

Then, since '.s1/D 0, we have

k'kT D k'kT 0 > 0

and, for any  2H 1.GIR/,

k'C kT Dk'C kT 0�j.'C /.s1/j6 k'kT 0Ck kT 0�j .s1/j D k'kT Ck kT :

This finishes the proof for rational classes.

The general case directly follows by the continuity of k � kT .

4 Thurston, Alexander and higher Alexander norms

In this section we are going to extend the inequalities between the Alexander norm,
the higher Alexander norms of Harvey and the Thurston norm from the setting of
3–manifolds to that of free-by-cyclic groups. Specifically, we will prove an analogue
of Theorem 1.1 of McMullen [32] and Theorem 10.1 of Harvey [22] for the newly
defined Thurston norm of descending HNN extensions of free groups.

The key technical tool used is the notion of a ˆ–specialising group, introduced in
Section 2.6.

Geometry & Topology, Volume 22 (2018)



Alexander and Thurston norms, and the BNS invariants for free-by-cyclic groups 2677

Proposition 4.1 Let R be a ring, and let RsŒz˙� be a ring of twisted Laurent poly-
nomials determined by an automorphism sW R! R . Let D and D0 be skew fields
and t W D ! D and t 0W D0 ! D0 automorphisms. Let ˇW R ! D and ˇ0W R ! D0

be two R–fields such that ˇ ı s D t ı ˇ and ˇ0 ı s D t 0 ı ˇ0. Suppose that there is a
specialisation .S; �/ from D to D0, with S preserved by t and t 0 ı � D � ı t . Then,
for any square matrix M over St Œz�, we have

deg detDM ˝D > deg detD0M ˝D0;

where deg denotes the degree of Laurent polynomials in z .

Proof We are going to prove the desired inequality by a triple induction. Firstly we
induct on the size of the matrix M ; secondly, on the number of nonzero entries in the
first column of M D .mij /; thirdly, on the sum d of the degrees of the elements of
the first column.

For 1� 1 matrices the result follows trivially, since

degm11 > deg �.m11/

as the support of the Laurent polynomial �.x/ is contained in the support of the Laurent
polynomial x for any x 2 St Œz�.

Now suppose that M is an n�n matrix with n > 1. If the first column of M is trivial,
then detDM ˝DD 0 and detD0M ˝D0 D 0, and so the degrees are both equal.

When the first column is not trivial, we need to consider two cases. Firstly, there
might be only one nonzero entry in the first column of M. Then both determinants are
products of determinants of the same smaller matrix (taken over D and D0 ), and an
element in St Œz�. In this case we are done by the induction hypothesis.

Secondly, there might be more than one nontrivial entry in the leftmost column of M.
Again, we need to consider two situations. Suppose first that the lowest and highest
terms appearing in any nonzero mi1 are not trivialised by � . Then we can perform the
first step of Euclid’s algorithm using an elementary matrix E whose off-diagonal entry
lies in St Œz� — it is the product of the lowest term of one entry and the inverse of the
lowest term of another entry in the first column. Therefore, E and EM are matrices
over St Œz�, and we have

detDM ˝DD detD.E˝D �M ˝D/
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and
detD0M ˝D0 D detD0.E˝D0 �M ˝D0/:

The sum of the degrees of the elements of the first column of EM is lower than that
of M, and the number of nontrivial entries was not increased.

The second possibility occurs when one of the entries mi1 has a lowest or highest term
with coefficient being mapped to 0 by � . Suppose that this term is xzk. Without loss
of generality we may assume that it occurs in m11 . Let M 0 be obtained from M by
subtracting xzk from m11 , and M 00 be obtained from M by forcing the first column
to be made of zeroes, except for the first entry, which is made equal to xzk. (In this
case, Cohn calls M the determinantal sum of M 0 and M 00, for reasons which will
become apparent below.) We have

detcDM ˝DD detcDM
0
˝DC detcDM

00
˝D

and
detcD0M ˝D0 D detcD0M

0
˝D0C detcD0M

00
˝D0 D detcD0M

0
˝D0

since M 00˝D0 has a column of zeroes. By induction,

deg detDM 0˝D > deg detD0M 0˝D0:

The coefficients of detcDM
00˝D are all mapped to 0 by � , since they are all multiples

of x . It is now clear that the set of powers of z with a coefficient not being mapped
to 0 by � is the same in detcDM and in detcD0M

0˝D ; but this is precisely the set of
powers which are still visible in detcD0M ˝D0. This proves the claim.

We will use the above proposition in two ways: firstly, it will allow us to show that any
descending HNN extension G of a free group is H 1.GIZ/–specialising; secondly,
we will use it directly to prove the inequality between Thurston and higher Alexander
norms for G.

Remark 4.2 Let ˆ be a family of morphisms G!R and let H be a subgroup of G.
Then ˆ naturally forms a family of morphisms H ! R. Moreover, if a morphism
takes G to Z then it also takes H to Z.

Corollary 4.3 Let G be a group. Let 'W G! Z be an epimorphism with kernel K
and let ˆ be a collection of homomorphisms G!R. If K is ˆ–specialising then G
is .ˆ[f'g/–specialising.
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Proof We start by remarking that G is torsion-free and satisfies the Atiyah conjecture,
since K does and Z is torsion-free and elementary amenable (see [28, Theorem 10.19]).

Choose an element z 2 '�1.1/ in G. Let R D QK . Recall from Example 2.9 that
QG has the structure of a twisted Laurent polynomial ring over R with variable z .

Let ˛W G ! � be an epimorphism to a torsion-free elementary amenable group �
such that every morphism  2 ˆ[ f'g factors through ˛ . Let LD ˛.K/. Since '
factors through ˛ , the ring Q� has the structure of a twisted Laurent polynomial ring
over QL with variable ˛.z/; we will abuse notation and call this variable z as well.
This way, ˛jK is a z–equivariant map.

Note that L is torsion-free and elementary amenable, and that every element in ˆ
restricted to K factors through ˛jK . Thus, by the assumption on K , there exists a
specialisation .S; �/ from the epic R–field D.K/ to the epic R–field D.L/, where the
map RDQK!QL! D.L/ is induced by ˛jK . Note that the maps QK!D.K/

and QK!D.L/ are z–equivariant — see [28, Lemma 10.57]. We may also require
that S is preserved by the z–action — eg we may replace S by

T
k2Z z

k.S/; it is
immediate that � will be z–equivariant as well.

We now claim that there exists a specialisation from D.G/ to D.�/. In view of
Theorem 2.18, let M be a square matrix over QG such that M ˝D.�/ is invertible.
We can view M as a matrix over the Laurent polynomial ring Rt Œz�, and ˛.M/ D

M ˝ D.�/ as a matrix over the polynomial ring .ZL/t Œz�. Since M ˝ D.�/ is
invertible, we have

detD.�/M ˝D.�/¤ 0

and hence

deg detD.�/M ˝D.�/> 0:

Now we apply Proposition 4.1 and conclude that

deg detD.G/M > 0;

which implies that detD.G/M ¤ 0, and so M ˝D.G/ is invertible. This proves the
claim.

Recall that b1.G/ denotes the (usual) first Betti number of G.
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Theorem 4.4 Let G D Fn�g be a descending HNN extension of Fn with stable
letter t and let  2H 1.GIR/. Then

ı1. /6 ı2. /6 � � �6 k kT :

If b1.G/> 2, then also ı0. /6 ı1. /. If b1.G/D 1, then ı0. /� j .t/j6 ı1. /.

When  is fibred (that is ker is finitely generated), all the inequalities above become
equalities.

Proof We start by noting that it is enough to verify the statements for integral classes;
once this is done, the statements for rational classes follow immediately, and for general
classes follow from continuity of the norms.

Since G is a finitely presented group of deficiency at least 1, Harvey showed in [23,
Corollary 2.3] that we have ıi . / 6 ıiC1. / for every i > 0. She also proved the
inequalities involving ı0 . Thus we need only show that ıi . /6 k kT for i > 0. To
this end, pick such an i .

Let 'W G ! Z denote the canonical epimorphism induced by the HNN extension.
Let  W G ! Z be a homomorphism. Let pi W G ! �i denote the map associated
to ıi . Note that �i maps onto �0 , which is the free part of the abelianisation of G.
Let K D ker . If  D ˙' , then K is locally free (since G is a descending HNN
extension). By Theorem 2.20, K is specialising.

If  ¤ ˙' , then 'jK is nontrivial. It is immediate that 'jK W K ! Z gives K the
structure of a (locally free)-by-cyclic group. By Theorem 2.20 and Corollary 4.3, K is
f'jKg–specialising.

Recall that ıi D N.PL2.G; pi // and k � kT D N.PL2.G//. Theorem 3.2(2) tells us
that

PL2.G; pi /D P
�
detD.�i /

�
pi .A.gIS; s//

��
�P.pi .s/� 1/

and

PL2.G/D P
�
detD.G/.A.gIS; s//

�
�P.s� 1/;

where S is a generating set of G and s 2 S is such that pi .s/¤ 0. Recall that QG

is naturally a twisted Laurent polynomial ring QKt Œz˙�. Let LD ker. W �i ! Z/,
and consider the subrings D.K/t Œz˙�� D.G/ and D.L/t Œz˙�� D.�i /. Since K is
f'jKg–specialising and 'jK factorises over pi jK W K!L, there exists a specialisation
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from D.K/ to D.L/. We now apply Proposition 4.1 with RDQK , DD D.K/ and
D0 D D.L/ and obtain

ıi . /D deg detD.�i /

�
pi .A.gIS; s//

�
� deg.pi .s/� 1/

D deg detD.�i /

�
pi .A.gIS; s//

�
� j .s/j

D deg detD.�i /

�
pi .A.gIS; s//

�
� deg.s� 1/

6 deg detD.G/.A.gIS; s//� deg.s� 1/

D k kT ;

where the degrees are taken of Laurent polynomials in z . Note that to use Proposition 4.1
we must guarantee that the embedding QK ,!D.K/ and the map QK!QL,!D.L/,
as well as the specialisation, are z–equivariant, but this follows from [28, Lemma 10.57]
and a discussion as before.

Now suppose that  is fibred, that is, that K D ker is finitely generated. It fol-
lows from the work of Geoghegan, Mihalik, Sapir and Wise [20, Theorem 2.6 and
Remark 2.7] that K is finitely generated free itself, say of rank m. Denote the inclusion
by i W K!G.

By claim (3.26) in the proof of [16, Theorem 3.24], we have

k kT DN.PL2.G//. /DN
�
P .��.2/u .G//

�
. /D��.2/.i� zT IN .K//;

where T is the mapping telescope of a realisation of g . Recall that the K–CW–complex
i� zT is a model for EK and that K is finitely generated free, so

��.2/.i� zT IN .K//D��.2/.K/D b.2/1 .K/D b1.K/� 1:

McMullen showed in [32, Theorems 4.1 and 5.1] that we have

b1.ker /� 16 k kA

irrespective of the fact that  is fibred. (In fact, McMullen showed that this is an
equality when  lies in the cone over an open face of the unit ball of the Alexander
norm.)

Combining the above results with Theorem 4.4 we obtain

b1.ker /� 16 k kA 6 k kT D b1.ker /� 1:

Remark 4.5 Dunfield [12] constructed a hyperbolic 3–manifold which fibres, and
whose Thurston and Alexander norms do not agree. His example is actually a link
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complement, and thus a manifold with toroidal boundary. Since it does fibre, it must
do so over a surface with a nonempty boundary. Thus, the fundamental group of
the 3–manifold is a free-by-cyclic group, and hence, noting that our definition of
the Thurston norm coincides with the usual one for a 3–manifold (as shown in [16,
Theorem 3.27]), we conclude that Dunfield’s example shows that also in our setting
the Alexander and Thurston norms are not equal in general.

5 The L2–torsion polytope and the BNS invariant

In this section we relate the L2–torsion polytope of a descending HNN extension
of F2 with the BNS invariant introduced in Section 2.11. This approach is motivated
by the following results: If M is a compact orientable 3–manifold, the unit norm ball
of the Thurston norm is a polytope, and there are certain maximal faces such that a
cohomology class comes from a fibration over the circle if and only if it lies in the
positive cone over these faces [39]. Bieri, Neumann and Strebel [4, Theorem E] showed
that the BNS invariant †.�1.M// is precisely the projection of these fibred faces to
the sphere S.G/D .Hom.G;R/X f0g/=R>0 . Since the L2–torsion polytope induces
the Thurston norm for descending HNN extensions of Fn , we expect a similar picture
in this setting. The work of Friedl and Tillmann [17, Theorem 1.1] provides further
evidence for this expectation.

Definition 5.1 Let H be an abelian group with a total ordering 6 which is invariant
under multiplication. Let R be a skew field. We define R.H;6/ to be the set of
functions H !R with well-ordered support, that is, f W H !R belongs to R.H;6/
if every subset of H whose image under f misses zero has a 6–minimal element.

Theorem 5.2 (Malcev [31]; Neumann [33]) Convolution is well-defined on

R.H;6/
and turns it into a skew field.

Remark 5.3 In fact, given structure maps 'W H ! Aut.R/ and �W H �H ! R�

of a crossed product R �H, one can also define a crossed product convolution on
R.H;6/ in a way completely analogous to the usual construction of crossed product
rings (see Definition 2.8). The resulting ring is still a skew field, and we will denote it
by R � .H;6/ for emphasis.
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Remark 5.4 The Malcev–Neumann construction works for all biorderable groups,
and not merely abelian ones.

In order to relate the L2–torsion polytope to the BNS invariant, we first need to
put the skew field D.G/ and the Novikov–Sikorav completion bZG' (introduced in
Definition 2.33) under the same roof.

Lemma 5.5 Let K D ker.p0W G ! �0 D H1.G/f /. Given ' 2 Hom.G;R/X f0g
with LD ker.'/, let 6' be a multiplication invariant total order on H1.G/f such that
' is order-preserving (we endow R with the standard ordering 6). We define

F.G; '/ WD D.K/� .H1.G/f ;6'/

in the sense of Remark 5.3. Then there is a commutative diagram of rings

ZK �H1.G/f // D.K/�H1.G/f // D.G/

i'
��

ZG

Š

OO

Š

��

44

))

F.G; '/

ZL� im' // 4ZL� im'�
Š

//bZG'

j'

OO

such that all maps are inclusions, where � denotes the inclusion im' ,! R and
4ZL� im' � denotes the Sikorav–Novikov completion of ZL � im' with respect to
�W im'!R.

Proof All maps apart from i' and j' are either obvious or have already been explained.
The commutativity of the upper and lower triangle is clear.

Since F.G; '/ is a skew field, the universal property of the Ore localisation allows us
to define

i' W D.G/Š T �1.D.K/�H1.G/f /! F.G; '/

as the localisation of the obvious inclusion

D.K/�H1.G/f ! F.G; '/:

The definition of

j' WbZG' Š4ZL� im'�! F.G; '/
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uses the same formulae as the composition

ZL� im' Š�!ZG Š
�!ZK �H1.G/f

and we need to verify that this indeed maps to formal sums with well-ordered support
with respect to 6' . But this follows directly from the fact that

'W H1.G/f !R

is order-preserving. The commutativity of the right-hand triangle follows immediately.

Definition 5.6 Given ' 2 Hom.G;R/ and

x D
X

h2H1.G/f

xh � h 2 D.K/� .H1.G/f ;6'/;

we set

S'.x/Dminsupp'.x/D
˚
h 2 supp.x/ j '.h/Dminf'.supp.x//g

	
and define �' W F.G; '/�! F.G; '/� by

�'

� X
h2H1.G/f

xh � h

�
D

X
h2S'.x/

xh � h:

We record the following properties:

Lemma 5.7 Let ' 2 Hom.G;R/.

(1) The map �' is a group homomorphism.

(2) It restricts to maps (denoted by the same name)

�' W D.G/�! D.G/� and �' WbZG�' ! ZG X f0g;

and the latter map agrees with �' W bZG�' ! ZG X f0g from Definition 2.36.

Proof This is obvious.

We now give a practical method for calculating the BNS invariant for descending HNN
extensions of F2 .

Theorem 5.8 Let G be a descending HNN extension of F2 . Let

' 2 Hom.G;R/X f0g:
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Suppose that x and y are generators of F2 for which '.x/; '.y/ > 0, and let
gW F2 ! F2 be a monomorphism such that G D F2�g , and such that g.x/ and
g.y/ have no common prefix. Then Œ�'� 2†.G/ if and only if

�'

�
1C t

@g.x/

@y
� t
@g.y/

@y

�
D˙z

for some z 2G.

Proof By Theorem 3.2(4), we have �' 2†.G/ if and only if the map

AWbZG'2!bZG'2

is an isomorphism, where

AD A.gIS; x/D
�
�t @g.x/=@y if x� 1;
1� t @g.y/=@y if y � 1:

Since '.y/¤ 0, the element y� 1 is invertible in bZG' , and thus we may perform an
elementary row operation over bZG' to obtain a triangular bZG' –matrix

B D

�
�t @g.x/=@y � .1� t @g.y/=@y/.y � 1/�1.x� 1/ 0

1� t @g.y/=@y y � 1

�
:

Note that A is invertible over bZG' if and only if the diagonal entries of B are invertible
in bZG' . One of the diagonal entries is y � 1, which we already know to be invertible.
The other one is invertible if and only if

�'

�
�t
@g.x/

@y
�

�
1� t

@g.y/

@y

�
.y � 1/�1.x� 1/

�
D˙z

for some z 2G, thanks to Lemma 2.38. But

�'

��
1� t

@g.y/

@y

�
.y � 1/�1.x� 1/

�
D �'

�
1� t

@g.y/

@y

�
and the supports of 1� t @g.y/=@y and t @g.x/=@y have a trivial intersection: the lack
of common prefixes of g.x/ and g.y/ implies that the only element in G which could
lie in both supports is t , but then we would need to have both g.x/ and g.y/ starting
with y , which would yield a nontrivial common prefix.

This implies

�'

�
�t
@g.x/

@y
�

�
1�t

@g.y/

@y

�
.y�1/�1.x�1/

�
D�'

�
�t
@g.x/

@y
�1Ct

@g.y/

@y

�
:
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Remark 5.9 The above theorem does not apply to ' 2H 1.GIR/X f0g which have
F2 6 ker' . There are however only two such cohomology classes (up to scaling): the
class  induced by the HNN extension G D F2�g , which lies in †.G/ if and only if
gW F2! F2 is an isomorphism, and � , which always lies in †.G/.

For every other ' 2H 1.GIR/X f0g one easily finds appropriate generators x and y ,
and then any monomorphism F2! F2 inducing G can be made into the desired form
by postcomposing it with a conjugation of F2 . Such a postcomposition does not alter
the isomorphism type of G.

Next we are going to relate the L2–torsion polytope PL2.G/ to the BNS invariant for
G D F2�g . For this we need some more preparations.

Definition 5.10 Let H be a finitely generated free abelian group. Let P �H ˝Z R

be a polytope and take ' 2 Hom.H;R/. We define the minimal face of P for ' to be

F'.P /D
˚
p 2 P j '.p/Dminf'.q/ j q 2 P g

	
:

It is easy to see that F' respects Minkowski sums and hence induces group homomor-
phisms

F' W P.H/! P.H/ and F' W PT .H/! PT .H/:

Definition 5.11 Let K D ker
�
p0W G ! H1.G/f DW H

�
, and let x 2 D.G/ D

T �1.D.K/ � H/ and '; 2 Hom.G;R/ D Hom.H;R/. We call ' and  x–
equivalent if we can write x D u�1v with u; v 2 D.K/�H in such a way that

F'.P.u//D F .P.u// and F'.P.v//D F .P.v//:

We are aiming at proving that the universal L2–torsion determines the BNS invariant
for descending HNN extensions of free groups. In this process the following lemma is
crucial in order to extract algebraic information about Dieudonné determinants from
geometric properties of their polytopes.

Lemma 5.12 Let x 2D.G/� and '; 2Hom.G;R/. If ' and  are x–equivalent,
then

�'.x/D � .x/:

Proof Write x D u�1v with u; v 2 D.K/�H1.G/f , so that by assumption we have

F'.P.u//D F .P.u// and F'.P.v//D F .P.v//:
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But F'.P.u//D F .P.u// implies

minsupp'.u/Dminsupp .u/

and so
�'.u/D � .u/:

The same argument applies to v and so the claim follows from

�'.x/D �'.u/
�1
��'.v/:

The following is similar to [17, Theorem 1.1]; although we do not provide markings on
the polytopes which fully detect the BNS invariant, Theorem 5.8 makes up for this lack.
The crucial point now is that the BNS invariant is locally determined by a polytope.

Theorem 5.13 Let gW F2 ! F2 be a monomorphism and let G D F2�g be the
associated descending HNN extension. Given ' 2 Hom.G;R/X f0g such that �' is
not the epimorphism induced by F2�g , there exists an open neighbourhood U of Œ'�
in S.G/ and an element d 2 D.G/� such that:

(1) The image of d under the quotient maps

D.G/�! D.G/�=ŒD.G/�;D.G/��ŠKw1 .ZG/!Whw.G/

is ��.2/u .G/. In particular, PL2.G/D P.d/ in PT .H1.G/f /.

(2) For every  ; 0 2 Hom.G;R/ X f0g which satisfy Œ �; Œ 0� 2 U and are d –
equivalent, we have Œ� � 2†.G/ if and only if Œ� 0� 2†.G/.

Proof Suppose that ker' ¤ F2 . We easily find generators x and y of F2 for which
'.x/; '.y/ > 0. Set

U D fŒ � j  .x/ > 0 and  .y/ > 0g � S.G/:

This is clearly an open neighbourhood of Œ'�. Suppose that Œ �; Œ 0� 2 U.

Let ADA.gIS; x/, as in the proof of Theorem 5.8. Since '.y/¤ 0, we can still form
the matrix B from Theorem 5.8, and Œ�'� 2†.G/ if and only if A is invertible over
bZG' if and only if B is invertible over bZG' .

Since B is obtained from A by an elementary row operation over F.G; '/ in which
we add a multiple of the last row to another row, and such operations do not affect the
canonical representative of the Dieudonné determinant, we have

i'.detcD.G/.A//D detcF.G;'/.A/D detcF.G;'/.B/;
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which is the product of the diagonal entries of B . Note that B is invertible over
bZG' if and only if the diagonal entries are invertible in bZG' , which is the case if
and only if their product is invertible in bZG' since bZG' is a domain. Thus, by
Lemma 5.7, Œ�'� 2†.G/ if and only if �'.detcF.G;'/.B//D �'

�
i'.detcD.G/.A//

�
is

of the form ˙z for some z 2G.

The same arguments apply to  and  0 since  .y/¤ 0¤  0.y/. By Lemma 5.7, it
therefore suffices to prove

� 
�
i .detcD.G/.A//

�
D � 0

�
i 0.detcD.G/.A//

�
:

If we put d WD detcD.G/.A/ � .x� 1/
�1 , then this is equivalent to

� .i'.d//D � 0.i .d//

since  .x/;  0.x/ > 0. But this is true by Lemma 5.12 if we assume that  and  0

are d –equivalent.

Theorem 3.2(1) says that d is mapped under the quotient maps

D.G/�! D.G/�=ŒD.G/�;D.G/��ŠKw1 .ZG/!Whw.G/

to ��.2/u .G/, as desired. This finishes the proof in the case that ker' ¤ F2 .

Now suppose that F2 6 ker' . Since �' is not induced by the HNN extension, we
must have '.t/ > 0.

Let us choose a generating set x and y for F2 , and set

U D

�
Œ �

ˇ̌̌
 .t/ > j .z/j; z 2 supp

@g.y/

@y

�
:

Again, this is an open neighbourhood of Œ'�.

We proceed similarly to the previous case. Observing that 1� t is invertible over bZG 
and bZG 0 reduces the problem to verifying whether the matrix A.g;S; t / is invertible
over bZG and bZG 0 . The bottom-right entry of A.g;S; t / is 1� t @g.y/=@y , which
is invertible for every Œ�� 2 U by construction. If  and  0 are additionally d –
equivalent for d WD detcD.G/.A.g;S; t // � .t � 1/

�1 , we now continue in precisely the
same way as before.

Remark 5.14 The result in the latter case also follows from the observation that †.G/
is open, since Œ�'� 2†.G/.

Note also that our neighbourhood U is very explicit, and rather large, especially when
ker' ¤ F2 .
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Corollary 5.15 Let G D F2�g be a descending HNN extension. Then the Bieri–
Neumann–Strebel invariant †.G/ has finitely many connected components.

Proof Let 'W G! Z be the induced map. We know that Œ�'� 2†.G/, and so there
exists an open set U' in S.G/ around Œ�'� which lies entirely in †.G/. For all other
nontrivial morphisms  W G!R we obtain open sets U as in the previous theorem.
Since S.G/ is compact, we only need to look at finitely many open sets U 1

; : : : ; U m
.

Thus it is enough to show that each such open set contains finitely many connected
components of †.G/. This is clear for U' , so let us assume that we are looking at
U with Œ �¤ Œ�'�.

The theorem above tells us that within U , lying inside of †.G/ is well-defined on
the equivalence classes of the relation of being d –equivalent. Since there are only
finitely many d –equivalence classes, the result follows.

6 UPG automorphisms

In this section we will strengthen Theorems 4.4 and 5.13 for a class of free group
automorphisms.

Definition 6.1 (polynomially growing and UPG automorphism) An automorphism
f W Fn ! Fn is polynomially growing if the quantity d.1; f n.g// grows at most
polynomially in n for every g 2 Fn , where 1 denotes the identity in G and d is
some word metric on Fn . If, additionally, the image xf of f under the obvious map
Aut.Fn/! GL.n;Z/ is unipotent, ie id� xf is nilpotent, then f will be called UPG.

The main result of Cashen and Levitt [5, Theorem 1.1] reads as follows:

Theorem 6.2 Let G DFnÌg Z with n> 2 and g polynomially growing. Then there
are elements t1; : : : ; tn�1 2G XFn such that

†.G/D�†.G/D fŒ'� 2 S.G/ j '.ti /¤ 0 for all 16 i 6 n� 1g:

Motivated by this, we prove:

Theorem 6.3 Let G D Fn Ìg Z with n> 1 and g a UPG automorphism. Denote by
pk W G! �k D G=G

kC1
r the projection, where Gkr denotes the kth subgroup of the

rational derived series. For simplicity write �1 for G and p1 for idG .
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Then there are elements t1; : : : ; tn�1 2G XFn , which can be chosen to coincide with
those of Theorem 6.2, such that, for k 2N [f1g,

(6-1) �.2/u .GIpk/D�

n�1X
iD1

ŒZ�k
pk.1�ti /
����!Z�k�:

In particular,

PL2.GIpk/D

n�1X
iD1

P.1� ti / 2 P.H1.G/f /

is a polytope (and not merely a difference of polytopes) which is independent of
k 2N [f1g.

Combining the previous two results, we see that the BNS invariant of UPG automor-
phisms is easily determined by their L2–torsion polytope. More precisely, we have the
following analogue of [17, Theorem 1.1]:

Corollary 6.4 Let G D Fn Ìg Z with n > 2 and g a UPG automorphism. Let
' 2H 1.GIR/. Then Œ'� 2†.G/ if and only if F'.PL2.G//D 0 in PT .H1.G/f /.

Proof Any one-dimensional face of

PL2.G/D

n�1X
iD1

P.1� ti /

contains a translate of P.1� ti / for some 16 i 6 n� 1.

Now, F'.PL2.G//¤ 0 if and only if F'.PL2.G// contains a one-dimensional face, ie
a translate of P.1� ti / for some i . This is equivalent to '.ti /D 0 for some i , which
by Theorem 6.2 is equivalent to Œ'� …†.G/.

Remark 6.5 We suspect Theorem 6.3 to hold as well for polynomially growing
automorphisms. It is well known that any polynomially growing automorphism has a
power that is UPG; see Bestvina, Feighn and Handel [3, Corollary 5.7.6]. Thus, in order
to reduce Theorem 6.3 for polynomially growing automorphisms to the case of UPG
automorphisms, one needs a better understanding of the restriction homomorphism

i�W Whw.Fn Ìg Z/!Whw.Fn Ìgk Z/

(induced by the obvious inclusion i W FnÌgk Z!FnÌgZ) since it maps �.2/u .FnÌgZ/

to �.2/u .Fn Ìgk Z/ (see Lemma 2.22(3)).
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We also obtain:

Corollary 6.6 Let G D Fn Ìg Z with n > 2 and g a UPG automorphism. Let
' 2H 1.GIR/. Then for all k 2N [f1g we have

k'kA D ık.'/D k'kT :

Proof This follows directly from the fact that PL2.GIpk/ is independent of k 2
N [f1g, as stated in Theorem 6.3. Note that b1.G/> 2 by [5, Remark 5.6]. Hence,
we get as special cases PL2.GIp0/ D PA.G/ by Theorem 3.2(3) and this polytope
determines the Alexander norm, and on the other hand PL2.GIp1/DPL2.G/, which
determines the Thurston norm.

Theorems 6.2 and 6.3 both rely on the following lemma, which follows from the
train track theory of Bestvina, Feighn and Handel [3]; see [5, Proposition 5.9] for the
argument.

Lemma 6.7 For n > 2 and a UPG automorphism g 2 Aut.Fn/, there exists h 2
Aut.Fn/ representing the same outer automorphism class as g such that either

(1) there is an h–invariant splitting Fn D B1 �B2 with hD h1 � h2 , or

(2) there is a splitting Fn D B1 � hxi such that B1 is h–invariant and h.x/D xu
for some u 2 B1 .

This lemma allows us two write the semidirect product associated to a UPG automor-
phism as an iterated splitting over infinite cyclic subgroups with prescribed vertex
groups. This is explained in [5, Lemma 5.10] and will be repeated in the following
proof.

Proof of Theorem 6.3 We prove the statement by induction on n. For the base case
n D 1 we have F1 Ìg Z Š Z2 and �.2/u .Z2Ipk/ D 0 for all k 2 N [ f1g by [16,
Example 2.7], which already verifies (6-1).

For the inductive step, we may assume that g D h in the notation of Lemma 6.7 since
the isomorphism class of FnÌg Z only depends on the outer automorphism class of g .
We analyse the two cases appearing in Lemma 6.7 separately.

Case 1 (there is a g–invariant splitting Fn D B1 �B2 with g D g1 �g2 ) Write

Gi D Bi Ìgi
Z
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and let G0 D Z ,!Gi be the inclusion of the second factor. Then we have

G D Fn Ìg ZŠG1 �G0
G2

and the Fox matrix of g is of the form

F.g/D

�
F.g1/ 0

0 F.g2/

�
:

Let ji W Gi !G be the inclusions, and denote a generator of G0 and its image in the
various groups Gi by t .

By [5, Remark 5.6], we have b1.G/ > 2 and similarly for G1 and G2 . Hence,
by Theorem 3.2(2)–(3) as well as the above matrix decomposition, we compute, in
Whw.�k/,

�.2/u .GIpk/D�Œpk.I � t �F.g//�C Œpk.t � 1/�(6-2)

D�Œpk.I � t �F.g1//�� Œpk.I � t �F.g2//�C Œpk.t � 1/�

D .j1/�.�
.2/
u .G1Ip

1
k//C .j2/�.�

.2/
u .G2Ip

2
k//� Œpk.t � 1/�;

where pi
k

denote the projections on the quotients of the rational derived series of Gi .
Here we have used that in our setting pi

k
can be seen as a restriction of pk .

Denote the rank of Bi by ri . By the inductive hypothesis applied to Gi , there are
elements

t 01; : : : ; t
0
r1�1
2G1 XB1

and

t 001 ; : : : ; t
00
r2�1
2G2 XB2

such that

(6-3) �.2/u .G1Ip
1
k/D�

r1�1X
iD1

Œp1k.1� t
0
i /�

and

(6-4) �.2/u .G2Ip
2
k/D�

r2�1X
iD1

Œp2k.1� t
00
i /�:

Notice that r1C r2 D n. Moreover, the corresponding induction step in the proof of
Theorem 6.2 adds t to the union of the t 0i and the t 00i . Thus the desired statement (6-1)
follows by combining (6-2), (6-3) and (6-4).
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Case 2 (there is a splitting FnDB1�hxi such that B1 is g–invariant and g.x/D xu
for some u 2 B1 ) In this case, let g1 D gjG1

and G1 D B1 Ìg1
Z�G, and denote

the stable letter of G1 and G by t .

In this case, the Fox matrix of g takes the form

F.g/D

�
F.g1/ 0

� 1

�
:

From this we compute in Whw.�k/, similarly as in the first case,

�.2/u .GIpk/D�Œpk.I � t �F.g//�C Œpk.t � 1/�(6-5)

D�Œpk.I � t �F.g1//�� Œpk.1� t /�C Œpk.t � 1/�

D �.2/u .G1Ip
1
k/� Œpk.1� t /�:

The corresponding induction step in the proof of Theorem 6.2 adds t to the elements t 0i
belonging to G1 which we get from the induction hypothesis. This finishes the proof
of Theorem 6.3.

Remark 6.8 The same strategy as above can be used to prove that the ordinary
L2–torsion �.2/.g/ WD �.2/.Fn Ìg Z/ 2 R vanishes for all polynomially growing
automorphisms. Here the reduction to UPG automorphisms explained in Remark 6.5 is
simpler since we have �.2/.gk/D k � �.2/.g/, so that the vanishing of the L2–torsion
of some power of g implies the vanishing of the L2–torsion of g . This is a special
case of a result of Clay [7, Theorem 5.1].
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