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Real line arrangements with the Hirzebruch property

DMITRI PANOV

A line arrangement of 3n lines in CP 2 satisfies the Hirzebruch property if each line
intersect others in nC 1 points. Hirzebruch asked in 1985 if all such arrangements
are related to finite complex reflection groups. We give a positive answer to this
question in the case when the line arrangement in CP 2 is real, confirming that there
exist exactly four such arrangements.

14N20, 32S22, 51F15, 52B70, 53C55; 20F55, 32Q15

1 Introduction and the main result

The goal of this article is to prove the following result:

Theorem 1.1 There exist exactly four line arrangements in RP2 consisting of 3 � n

lines such that each line intersects others in nC 1 points. These arrangements are
reflection arrangements of the Coxeter groups corresponding to spherical triangles with
angles
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Let us give a description of these four arrangements. The first arrangement is a union
of three generic lines. The second arrangement is composed of three lines spanning the
sides of a regular triangle in R2 together with three axes of symmetry of the triangle.
The third arrangement is composed of four sides of a square in R2, four symmetry axes
of the square, and the line at infinity. The fourth arrangement is composed of the sides
of a regular pentagon in R2, five axes of symmetry and five diagonals of the pentagon.

Following Panov and Petrunin [8], we say that a line arrangement in CP2 satisfies the
Hirzebruch property if it consists of 3n lines and each line intersects others in exactly
nC 1 points. Such arrangements were studied first by Hirzebruch and Höfer in the
context of construction of complex ball quotients.1 The ball quotients were obtained as
desingularisations of ramified covers of CP2 with branching along line arrangements;
the construction is described in Hirzebruch [4] and Barthel, Hirzebruch and Höfer [1].

1By this we mean complex projective surfaces that are quotients of the unit complex ball B2
C D

fjz1j
2Cjz2j

2 < 1g by a cocompact action of a discrete torsion free group.
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Contemplating the list of arrangements suitable for construction of ball quotients,
Hirzebruch [5] asked the following question:

Question 1.2 Let L be a complex line arrangement in CP2 consisting of 3 � n lines
such that each line of L intersect others at exactly nC 1 points. Is it true that L is a
complex reflection arrangement?2

This question is still open, and Theorem 1.1 gives a positive answer to it in the case
when the line arrangement in CP2 is real.

Apart from the context of ball quotients, arrangements with the Hirzebruch property
appear in the setting of polyhedral Kähler manifolds; see Panov [7]. This was used in
Panov and Petrunin [8] to prove that the complement to any complex line arrangement
with the Hirzebruch property is aspherical.

One more context in which these arrangements appear is the theory of convex foliations
on CP2, ie foliations whose leaves other than straight lines have no inflection points;
see Section 5 and Marín and Pereira [6] for more details.

About the proof Theorem 1.1 is deduced from the existence of a special polyhedral
metric with conical singularities on RP2 for which the lines of the arrangement are
geodesics. The metric on RP2 is obtained by restricting the polyhedral Kähler metric
on the complexification of RP2, constructed in [7] and whose properties are summarised
in Section 2.2. To prove Theorem 1.1 we show that the arrangement cuts RP2 into a
collection of isometric Euclidean triangles. Here we rely on a collection of elementary
statements about spherical polygons, proven in Section 3.

Acknowledgements I would like to thank Jorge Pereira and Anton Petrunin for useful
and stimulating discussions and Piotr Pokora for comments on the first version of the
paper. The author is supported by a Royal Society University Research Fellowship.

2 Polyhedral metrics

Recall the definition of polyhedral manifolds.

Definition 2.1 Let M be a piecewise linear manifold M with a complete metric g .
We say that M is a polyhedral manifold of curvature � if it admits a compatible
triangulation for which each simplex equipped with g is isometric to a geodesic simplex

2A complex reflection line arrangement is a line arrangement in CP2 consisting of lines fixed by
nontrivial elements of a finite complex reflection group acting on CP2.
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in the space of constant curvature � . Depending on the sign of � the manifold M is
called a polyhedral spherical, Euclidean or hyperbolic manifold. The complement to
metric singularities of a polyhedral manifold is denoted by M ı.

Any polyhedral metric is nonsingular in codimension 1. The set of metric singularities
M nM ı is a union of some codimension-two faces of a compatible triangulation. Let
� be one of codimension-two faces inside M nM ı and let x be an interior point of �.
Then in a neighbourhood of x there is a totally geodesic surface orthogonal to � at x .
The conical angle of such a surface at x is the same for the all interior points of �
and is called the conical angle at �.

We say that a polyhedral Euclidean manifold M is nonnegatively curved if the conical
angles at all its codimension-two faces are at most 2� .

2.1 Polyhedral surfaces

A polyhedral surface is a polyhedral manifold of dimension two. Such a surface S

has a finite number of conical points x1; : : : ;xn and a complete metric g which has
constant curvature � on S n fx1; : : : ;xng. We will only deal with the cases � D 1 and
� D 0. In a neighbourhood of any conical point on S there are polar coordinates .r; �/
with � 2R=2�Z in which the metric can be given by the formulas

g D dr2
C˛2 sin.r/2d�2 or g D dr2

C˛2r2d�2;

depending on whether � D 1 or � D 0. The conical angle at x is 2�˛ in both cases.

Each oriented polyhedral surface has a unique complex structure for which the poly-
hedral metric is Kähler on the complement to conical points. We will mainly study
positively curved polyhedral metrics on CP1, invariant under the complex conjugation
on CP1. Such metrics can be constructed by the doubling of spherical polygons, which
we will now describe.

Spherical polygons A convex spherical polygon is a closed convex subset of the
sphere S2

� of curvature � with boundary composed of a finite number of geodesic
segments. The geodesic segments are called the edges of the polygon and the points
where these edges meet are called the vertices. If P is a spherical (or Euclidean)
polygon and A is its vertex, we will denote the angle of P at A either by †A.P / or
just by †A (when the latter notation is unambiguous). We will assume that no two
adjacent edges of the polygon lie on one geodesic in S2

� .
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Doubling of polygons Let P be a convex spherical polygon and let P 0 be an isometric
copy of it. The doubling of P is obtained by gluing P with P 0 along their boundaries
by the natural isometry. The resulting polyhedral sphere has a natural involution.

Lemma 2.2 There is a one-to-one correspondence between convex spherical polygons
and polyhedral metrics of positive curvature on CP1 satisfying the following properties:

� The metric is invariant under the complex conjugation on CP1.

� All the conical points are real, ie belong to RP1 �CP1.

� All the conical angles are less than 2� .

The proof is straightforward; one direction of the correspondence is given by the
doubling construction. The other direction is given by taking the quotient of CP1 by
the conjugation. Indeed, the conjugation is an isometry and so it leaves invariant a
circle composed of geodesic segments.

2.2 Polyhedral Kähler manifolds

Here we recall some definitions and results from [7] concerning polyhedral Kähler
manifolds.

Definition 2.3 Let M be an orientable nonnegatively curved Euclidean polyhedral
manifold on dimension 2�n. We say that M is polyhedral Kähler if the holonomy of
the metric on M ı belongs to U.n/� SO.2 � n/.

Our proof of Theorem 1.1 relies heavily on the following theorem, proven in [7].

Theorem 2.4 Let L be an arrangement of 3n lines (n � 2) in CP2 with the Hirze-
bruch property. Then there exists a unique-up-to-scale polyhedral Kähler metric gC

L on
CP2 which is singular along L, nonsingular in the complement of L and has conical
angle 2� � n�1

n
at each line of the arrangement.

The existence part of this theorem is a partial case of Theorem 1.12 in [7]. The
uniqueness of the metric up to scale follows from general results on unitary flat
logarithmic connections.

The Euler field and the S 1 –isometry It was proven in [7] that a polyhedral Kähler
manifold complex dimension two has the structure of a smooth complex surface X

such that X nX ı is a divisor in X. Since X is polyhedral, each point x 2 X has a
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conical "–neighbourhood. It is obvious that on such a neighbourhood there is a real
vector field er acting by radial dilatation. In [7, Section 3] it was explained that this
field can be complexified to a holomorphic Euler field e D er C ies , and we sum up
the properties of e in the following theorem. It will be convenient to set "D 2, which
can always be achieved by scaling the metric by a large factor.

Theorem 2.5 Let x 2X be a point, Bx.2/ be its conical neighbourhood of radius 2

and Sx.2/ be the boundary of this neighbourhood. There is a holomorphic Euler vector
field e D er C ies defined on Bx.2/ with the following properties:

(1) The field er is the real radial vector field acting by dilatations of the metric, it
restricts to each ray of the cone as r @

@r
.

(2) The field es is given by esDJ.er /, where J is the operator of complex structure
on TX. The field es acts by isometries on Bx.2/.

(3) Let x be a multiple point of an arrangement L from Theorem 2.4 of multiplicity3

�.x/� 2. Then es integrates to an isometric S1 –action on Bx.2/ which is free
on Bx.2/ n x . The quotient Sx.2/=S

1 is a curvature-1 two-sphere with �.x/
conical singularities of angles 2� � n�1

n
.

Proof This theorem is a partial case of Theorem 1.7 in [7].

2.2.1 Polyhedral Kähler metric for real line arrangements From now on we will
assume that fL1; : : : ;L3ng D L is a real line arrangement in RP2 satisfying the
Hirzebruch property and fLC

1
; : : : ;LC

3n
g D LC is its complexification in CP2. Let

� be the involution on CP2 induced by the complex conjugation, and let gC
L be a

polyhedral Kähler metric on CP2 given by Theorem 2.4, with conical singularities of
angles 2� n�1

n
at lines LC

i .

Corollary 2.6 (1) The polyhedral Kähler metric gC
L is invariant under the complex

conjugation � on CP2.

(2) The metric gC
L restricts to a Euclidean polyhedral metric gR

L on RP2 and the
lines Li are geodesics on RP2 with respect to gR

L .

(3) Let x be a real point x 2 L� LC. Let e D er C ies be the Euler field defined
in a conical neighbourhood of x . Then �.e/D er � ies .

(4) The involution � descends to an isometry of the two-sphere Sx.2/=S
1, and

.Sx.2/=S
1/=� is a convex spherical polygon of curvature 1.

3The multiplicity of a point is the number of lines of the arrangement passing through the point.
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Proof (1) The antiholomorphic involution sends the polyhedral Kähler metric gC
L to

a polyhedral Kähler metric. Since such a metric is unique up to scale by Theorem 2.4,
it is invariant under � .

(2) For any polyhedral metric, the fixed set of any isometric involution is totally
geodesic, so RP2 � CP2 is totally geodesic. Hence, the restriction of the metric to
RP2 is a flat metric with conical singularities.

To see that the lines Li are geodesic in RP2, note that each complex line LC
i is totally

geodesic in CP2, and Li is the fixed locus of the isometric involution � on LC
i .

(3) Let e D er C ies be the holomorphic Euler field in a neighbourhood of x . Then
�.e/ is an antiholomorphic vector field. A the same time, since � is an isometry
preserving x , �.er /D er . This proves the claim.

(4) Indeed, from (3) it follows that �.es/D �es , hence � sends S1 –orbits to S1 –
orbits.

Definition 2.7 For a real line arrangement L1; : : : ;L3n satisfying the Hirzebruch
property let x be a multiple point. Denote by D.x/ the convex spherical polygon
.Sx.2/=S

1/=� from Corollary 2.6.

In the next lemma we summarise what we need to know about polyhedral Kähler
metrics in order to prove Theorem 1.1.

Let LD fL1; : : : ;L3ng be a real arrangement with the Hirzebruch property. Suppose
x is a multiple point of L and assume that k lines pass through x , ie �.x/D k . After
a possible reenumeration assume that the lines passing through x are L1; : : : ;Lk and
they go in a cyclic order at x on RP2. The spherical polygon D.x/ associated to x

by Definition 2.7 has k vertices A1; : : : ;Ak corresponding to the lines L1; : : : ;Lk .

Lemma 2.8 The angle of the spherical polygon D.x/ at each vertex Ai is equal
to � n�1

n
. Both angles between geodesics Li and LiC1 on RP2 at the point x

with respect to the metric gR
L are equal to 1

2
jAiAiC1j for all i 2 f1; : : : ; kg (here

AkC1 DA1 ).

Proof Let Bx.2/ be a conical 2–neighbourhood of x in CP2 with respect to the
metric gC

L . Consider its intersection with RP2, and let S1 be the boundary of this
intersection. Each line Li for i 2 f1; : : : ; kg intersects S1 in two points and we can
denote them by Bi and BiCk , so that points B1; : : : ;B2k go along S1 in a cyclic
order.
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Denote by � the quotient map Sx.2/!D.x/. Note that the map � W S1! @.D.x// is
a locally isometric cover of degree two, and for any i 2f1; : : : ; k�1g the segment of S1

included between Bi and BiC1 is sent isometrically to the edge AiAiC1 of D.x/.
Note finally that the length of BiBiC1 is twice the angle between Li and LiC1

on RP2.

3 Equiangular spherical polygons

From now on, by spherical polygons we mean polygons on the unit sphere S2. In view
of Lemma 2.8 we will need to study equiangular spherical polygons.

Definition 3.1 A convex spherical polygon is called equiangular if the angles of the
polygon at all vertices are equal. The polygon is called equilateral if all its edges are
of the same length.

The goal of this section is to prove the following proposition and its refinement
Lemma 3.8 on equiangular spherical polygons.

Proposition 3.2 Let P� be a convex equiangular spherical polygon with n�3 vertices.
The sum of lengths of any two consecutive edges of P is smaller than � if n is even
and smaller than 2� � 2 arccos

�
1

n�1

�
if n is odd.

To each convex spherical polygon P �S2 with vertices A1; : : : ;An , one can associate
the dual convex polygon P� with edges of lengths � � †Ai and angles of values
jAiAiC1j. To produce P� one starts with the convex cone CP in R3 over P � S2,
takes its dual cone C �

P
and intersects it with S2, ie P�DC �

P
\S2. Clearly, this duality

defines a one-to-one correspondence between equiangular and equilateral polygons. So,
Proposition 3.2 is equivalent to the following dual one, which we are going to prove.

Proposition 3.3 Let P be a convex equilateral spherical polygon with n� 3 vertices.
The sum of any two consecutive angles of P is larger than � if n is even and greater
than 2 arccos

�
1

n�1

�
if n is odd.

We will first reduce this statement to its Euclidean analogue by means of the following
standard lemma:

Lemma 3.4 For any convex spherical polygon P with vertices A1; : : : ;An , there
is a convex Euclidean polygon P 0 with vertices B1; : : : ;Bn such that, for all i ,
jAiAiC1j D jBiBiC1j and †Ai >†Bi .
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Proof Cut P into n� 2 convex triangles by diagonals A1Ai . Replace each triangle
by a flat one with sides of the same length and glue back to get a flat polygon. Since the
angles of all n� 2 triangles have decreased, the resulting Euclidean polygon satisfies
the condition of the lemma.

To prove Proposition 3.3 it remains to prove the following:

Proposition 3.5 Let P be a convex equilateral Euclidean polygon with n� 3 vertices.
The sum of any two consecutive angles of P is at least � if n is even and at least
2 arccos

�
1

n�1

�
if n is odd.

This proposition in its turn will be deduced from the following two lemmas, the first of
which is completely straightforward, and we omit its proof.

Lemma 3.6 For any convex Euclidean polygon P with n � 5 vertices A1; : : : ;An ,
there is an arbitrary small deformation of P that preserves the lengths of edges and
decreases the value †A1C†A2 .

Lemma 3.7 Let ABCD be a convex Euclidean quadrilateral with sides of integer
lengths such that jABjD1 and jABjCjBC jCjCDjCjDAjDn. Then †AC†B��

if n is even and †AC†B � 2 arccos
�

1
n�1

�
if n is odd.

Proof Consider first the case when n is even. If jCDj D 1, ABCD is a parallel-
ogram, so we can assume jCDj > 1. There exists a unique parallelogram ABC 0D

with C 0D D 1. Clearly, †A.ABC 0D/ D †A.ABCD/, and it is not hard to check
that †B.ABC 0D/ < †B.ABCD/. Since ABC 0D is a parallelogram, we conclude
†A.ABCD/C†B.ABCD/ > � .

Suppose now that n is odd and assume †AC†B < � . Let E be the intersection of
the lines AD and BC . Clearly

jAC jC jCBj< jADjC jDC jC jCBj D n� 1< jAEjC jEBj;

so there is a point F in the segment EC such that jAF j C jFBj D n� 1. Clearly,
.†A C †B/.ABCD/ > .†A C †B/.ABF /. Note finally that, among all possible
triangles of perimeter n with one side of length 1, the sum of two angles at this side
attains its minimum for the isosceles triangle, and this minimum is 2 arccos

�
1

n�1

�
.
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Proof of Proposition 3.5 Let …n be the space of all convex equilateral polygons
in R2 with sides of length 1. It has a natural compactification …n consisting of all
convex polygons with sides of integer length. The function .†A1

C†A2
/.P / defined

on …n extends continuously to …n , and from Lemma 3.6 it follows that it attains
its minimum on the part of …n consisting of quadrilaterals and triangles. Now the
statement follows from Lemma 3.7.

The next lemma is a slight refinement of Proposition 3.2 for pentagons.

Lemma 3.8 Any convex spherical equiangular pentagon satisfying

jAi�1Ai jC jAiAiC1j>
2�
3

for i D 1; : : : ; 5 satisfies jAi�1Ai jC jAiAiC1j< � .

Dually, any convex spherical equilateral pentagon satisfying †Ai C†AiC1 <
4�
3

for
i D 1; : : : ; 5 satisfies †Ai C†AiC1 > � .

Proof Let us prove the dual statement. We will assume †A1C†A2 � � , and deduce
that †A5C†A1C†A2C†A3 >

8�
3

, which contradicts the conditions of the lemma.

Let us decompose the pentagon into the union of the triangle A5A4A3 and the quadri-
lateral A5A1A2A3 . The condition †A1C†A2 � � implies jA1A2j> jA3A5j. So
jA4A5j D jA4A3j> jA3A5j and in the triangle A5A4A3 the sum of angles at vertices
A5 and A3 exceeds 2�

3
. Adding to this value the sum of all angles of the quadrilateral

A5A1A2A3 , which exceeds 2� , we get the contradiction.

The next lemma is straightforward; we omit the proof.

Lemma 3.9 Let k and n be two integers with n; k � 2. Let Pk be a regular (ie equi-
lateral and equiangular) spherical k –gon and Pn be a regular spherical n–gon. Suppose
that the angles and the sides of Pk have the same size as that of Pn . Then nD k .

4 Proof of Theorem 1.1

4.1 Properties of the polyhedral metric gR
L on RP 2

Let us start the section by summarising the properties of the metric gR
L on RP2 induced

from the polyhedral Kähler metric gC
L on CP2. First, we introduce some terminology.

A real line arrangement L cuts RP2 into a collection of polygons whose edges are
called the edges of the arrangement. Two multiple points of L are called adjacent if
they are the endpoints points of one edge.

Geometry & Topology, Volume 22 (2018)



2706 Dmitri Panov

For each multiple point x of L, by the star S.x/ of x we mean the union of all
polygons adjacent to x . The intersection of a small neighbourhood of x with a star
of x is a union of 2�.x/ sectors.

Theorem 4.1 Consider a real line arrangement L of 3n lines with the Hirzebruch
property and let gR

L be the corresponding metric on RP2. Then the following properties
hold:

(1) At any multiple point of L, each sector has an acute angle unless the point is
double, in which case all four sectors have angle �

2
.

(2) There is a constant a.n/ < �
3

such that the angles of sectors of all triple points
of L are equal to a.n/.

(3) L is simplicial,4 and no two vertices of multiplicity 2 are adjacent.

(4) Let x be a multiple point of L. The sum of angles of any two adjacent sectors
of x is less than 2�

3
if �.x/� 3, and less than �

2
if �D 4; 5.

(5) The multiplicity of each multiple point of L is at most 5, and any point of
multiplicity 5 has exactly 5 double points in the boundary of its star.

(6) For any multiple point of L, the number of adjacent multiple points of multiplicity
greater than 2 is at most five.

Proof Let x be a multiple point of L and let D.x/ be the associated spherical polygon.
It is equiangular by Lemma 2.8.

(1) The length of any edge of a convex spherical polygon is at most � and it is equal
to � only in the case when the polygon is a bigon. Hence, by Lemma 2.8, the angle
of each sector is at most �

2
and it is equal to �

2
if and only if D.x/ has exactly two

vertices, ie x is a double point.

(2) If x is a triple point then D.x/ is the unique regular spherical triangle with
angles � n�1

n
. The edges of such a triangle are shorter than 2�

3
, hence the statement

holds by Lemma 2.8.

(3) Since by property (1) the angles of all polygons in which the arrangement cuts
RP2 are not obtuse, the only polygons different from triangles that can be present in the
decomposition are rectangles. Assume, by contradiction, that there is such a rectangle
R in the decomposition. Applying again property (1), we see that all vertices of R are
double points. If follows that all polygons sharing an edge with R are rectangles as
well. Applying this reasoning repeatedly we come to a contradiction.

4That is, all the polygons of the decomposition are triangles.
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(4) This is proven by applying Proposition 3.2 to the polygon D.x/ if �.x/¤ 5 and
applying Lemma 3.8 if �.x/D 5.

(5) Let x be a point of the arrangement of multiplicity d and let S.x/ be its star. This
star is a union of triangles by property (3). Denote by P1;P2; : : : ;P2d the vertices of
these triangles lying on the boundary of S.x/, enumerated in a cyclic order. Note that
unless the point Pi is a double point of the arrangement, by property (4) the angle of
S.x/ at Pi is less than 2�

3
. We deduce from (3) that there are at least d points in the

boundary of S.x/ with angle less than 2�
3

. Since the boundary of S.x/ is convex and
the conical angle at x is less than 2� , applying the Gauss–Bonnet formula to the star
S.x/ we conclude that d � 5.

(6) The proof of this statement repeats the proof of statement (5).

4.2 Proof of Theorem 1.1

To prove Theorem 1.1 we will show that all the triangles in the decomposition of RP2

by L are isometric with respect to the metric gR
L . We will start with the following

lemma:

Lemma 4.2 Let x and y be two adjacent multiple points in a real arrangement
satisfying the Hirzebruch property. Suppose �.x/; �.y/ � 3. Then �.x/ D 3 or
�.y/D 3.

Proof Consider triangles �1 and �2 of the decomposition that contain the edge
xy and let Q1 and Q2 be their vertices opposite to xy . Since the angles at points
Q1 and Q2 can not be obtuse by Theorem 4.1(1), in quadrilateral xQ1yQ2 we have
†xC†y � � . Hence, either †x � �

2
or †y � �

2
, and the corresponding point is of

multiplicity 3 by Theorem 4.1(4)–(5).

The next two corollaries give a complete description of stars of vertices having multi-
plicities 4 and 5.

Corollary 4.3 Let x be a point of multiplicity 5 of a real arrangement with the
Hirzebruch property. Let P1; : : : ;P10 be the multiple points of the arrangement at
the boundary of S.x/ and assume that �.P1/ D 2. Then for i D 1; : : : ; 5 we have
�.P2i�1/D 2 and �.P2i/D 3.

Proof By Theorem 4.1(5), five of the points P1; : : : ;P10 have multiplicity 2. Hence,
it follows from Theorem 4.1(3) that the points P2i�1 have multiplicity 2. The remaining
five points have multiplicity 3 by Lemma 4.2.
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Corollary 4.4 Suppose x is a point of multiplicity 4 of a real arrangement with the
Hirzebruch property, and let P1; : : : ;P8 be the vertices of its star. Then at least one
of the points Pi , say P1 , has multiplicity 2. In such a case, for i D 1; : : : ; 4 we have
�.P2i�1/D 2 and �.P2i/D 3.

Proof By Theorem 4.1(6), x has at least one adjacent point of multiplicity 2. Let us
denote it by P1 . By Lemma 4.2, points P1; : : : ;P8 cannot have multiplicity 4 or 5.
So it is enough to show that there cannot be five points of multiplicity 3 in the star
of x . Since points of multiplicity 2 cannot be adjacent, this will follow if we show
that no two consecutive points Pi are simultaneously of multiplicity 3.

Suppose by contradiction that P2 and P3 have multiplicity 3 and let us deduce that
P6 and P7 have multiplicity 3.

Consider two triangles xP2P3 and xP6P7 . By Lemma 2.8, the angles at x of these
two triangles are the same. Hence, we should have

.†P2
C†P3

/.xP2P3/D .†P6
C†P7

/.xP6P7/:

So, using Theorem 4.1(1)–(2), we see that both points P6 and P7 should be of
multiplicity 3. To get a contradiction notice that P8 is of multiplicity 3 and either P4

or P5 has multiplicity 3. So we get at least 6 points of multiplicity 3 among Pi .

An immediate consequence of Corollaries 4.3 and 4.4 is the following statement:

Corollary 4.5 Let L be a real line arrangement with the Hirzebruch property and
let x be its multiple point. All sectors at x have the same angle at x with respect to
the metric gR

L .

Proof If x is a double or triple point then this statement holds by Theorem 4.1.

Suppose x is a point of multiplicity 4. Using the notation of Corollary 4.4, we see that
for any i D 1; : : : ; 7 triangles xPiPiC1 and xPiC1PiC2 (with P9DP1 ) are isometric
by an isometry that sends Pi to PiC2 and fixes PiC1 and x . Hence all 8 sectors at x

have the same angle.

The case �.x/D 5 follows from Corollary 4.3 in the same way.

Corollary 4.6 Suppose that x , y and z are adjacent points of a real arrangement with
the Hirzebruch property. Then the multiplicities of these points belong to the following
list (up to a permutation): .2; 3; 3/, .2; 3; 4/, .2; 3; 5/.
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Proof By Lemma 4.2, at most one of the points x , y or z can have multiplicity 4

or 5. Assume that this point is z . Then applying to the star of z either Corollary 4.3
or Corollary 4.4, we see that multiplicities of x and y are .2; 3/ up to a permutation.

All three points of the triangle xyz cannot be of multiplicity 3 since in this case
†x D†y D†z < �

3
by Theorem 4.1(2), which contradicts Gauss–Bonnet.

Corollary 4.7 Let L be a real line arrangement with the Hirzebruch property.

(1) The lines of L cut RP2 into isometric triangles with respect to the metric gR
L .

(2) There is some d 2 f3; 4; 5g such that the multiplicities of vertices of each triangle
are .2; 3; d/ up to a permutation.

Proof (1) Let xyz and xyt be two triangles of the decomposition that share the
side xy . Then, by Corollary 4.5, these triangles have the same angles at x and y .
Hence, they are isometric. Hence, all triangles of the decomposition are isometric.

(2) By Corollary 4.6, for any two triangles of the decomposition, their vertices can be
denoted by x , y , z and x0, y0, z0 in such a way that

�.x/D �.x0/D 2; �.y/D �.y0/D 3; �.z/D d; �.z0/D d 0; d; d 0 � 3:

In this case, by (1) there is an isometry between the triangles that sends x to x0, y to y0

and z to z0. By Corollary 4.5, the spherical polygons D.x/ and D.x0/ are regular.
Moreover, since †z D†z0 , the polygons have sides of the same length and additionally
they have angles of size � n�1

n
by Lemma 2.8. Hence, d D d 0 by Lemma 3.9.

Proof of Theorem 1.1 According to Corollary 4.7 we have three cases, d D 3; 4; 5.
Replace each triangle in RP2 by a spherical triangle (of curvature 1) with angles�
�
2
; �

3
; �

d

�
. As a result, we obtain an RP2 with curvature-1 metric and a Coxeter

arrangement in it.

5 Discussion

Hirzebruch [5] gives the list of complex reflection arrangements of 3n lines such that
each line intersects others in nC 1 points. This list consists of two infinite series and
five exceptional examples. The infinite series are called A0

m or Ceva arrangements
(m� 3) and A3

m .m� 2/ (or extended Ceva arrangements) and correspond to reflection
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groups G.m;m; 3/ and G.m;p; 3/ (p <m) from the Shephard–Todd classification.
The arrangements A0

m and A3
m are given in homogeneous coordinates by equations

.zm
0 � zm

1 /.z
m
1 � zm

2 /.z
m
2 � zm

0 /D 0;

z0z1z2.z
m
0 � zm

1 /.z
m
1 � zm

2 /.z
m
2 � zm

0 /D 0;

respectively. The five exceptional examples are associated to reflection groups G23 ,
G24 , G25 , G26 and G27 . The corresponding arrangements are called the icosahedron
configuration (15 lines), the configuration G168 or Klein configuration (21 lines), the
Hesse configuration (12 lines), the configuration G216 or extended Hesse configuration
(21 lines), and the configuration G360 or Valentiner configuration (45 lines); see [5].

I believe that in view of Theorem 1.1 one can restate Hirzebruch’s question as a
conjecture:

Conjecture 5.1 All arrangements satisfying the Hirzebruch property are complex
reflection arrangements.

Convex foliations Line arrangements with the Hirzebruch property have an interesting
relation to reduced convex foliations in CP2. A foliation in CP2 is called convex if its
leaves other than straight lines have no inflection points. A foliation is called reduced
if its inflection divisor is reduced [6]. It turns out that any arrangement which can
be realised as the union of all lines tangent to a reduced convex foliation satisfies the
Hirzebruch property. Moreover, all arrangements from Hirzebruch’s list apart from
G169 and G360 are indeed realised as line arrangements of reduced convex foliations
(see [6] for more details).

It was explained in [9] that any real line arrangement realisable as the line arrangement
of a convex foliation is simplicial, which can be seen as a partial case of Theorem 4.1(3).
Note that at the present only a conjectural classification of simplicial arrangements in
RP2 is known; see [2; 3].

Real polyhedral Kähler metrics Theorem 1.1 can be seen as a first step toward a
solution of the following classification problem:

Definition 5.2 A polyhedral Kähler metric on CP2 is called real if it is invariant
under the conjugation of CP2. We call this metric maximally real if the divisor of
singularities of the metric is smooth in the complement of RP2.

Problem 5.3 Classify all positively curved maximally real polyhedral Kähler metrics
on CP2.
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