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Exotic open 4–manifolds which are nonleaves

CARLOS MENIÑO COTÓN

PAUL A SCHWEITZER

We study the possibility of realizing exotic smooth structures on finitely punctured
simply connected closed 4–manifolds as leaves of a codimension-one foliation on a
compact manifold. In particular, we show the existence of uncountably many smooth
open 4–manifolds which are not diffeomorphic to any leaf of a codimension-one
C 2 foliation on a compact manifold. These examples include some exotic R4’s and
exotic cylinders S3 �R .

37C85, 53C12, 57R30; 57R55

Introduction

The stunning results of Donaldson [9] and Freedman [10] provided the existence of
exotic smooth structures on R4 , which is known to be the unique euclidean space with
this property. This is in fact also true for an open 4–manifold with a collarable end;
see Bižaca and Etnyre [3]. The fact that these structures can arise in 4–dimensional
manifolds has implications for physics (see eg Asselmeyer-Maluga and Brans [1] and
Król [25]): what if our space-time carries an exotic structure? Since the discovery of
the exotic family in the 1980s, nobody has been able to find an explicit and useful exotic
atlas. It is worthy of interest to obtain alternative explicit descriptions of these exotica.

An open manifold which is realizable as a leaf of a foliation in a compact manifold must
satisfy some restrictions. Since the ambient manifold is compact, an open manifold
has to accumulate somewhere, and this induces recurrence and “some periodicity” on
its ends.

Before reviewing the history of realizability of open manifolds as leaves, we now state
our main results. In Section 2 we shall define a class Y of smooth open manifolds (up to
diffeomorphism) whose underlying topological manifolds are obtained by removing a
finite nonzero number of points from a closed, connected, simply connected topological
4–manifold. In fact (see Example 2.2 and Remark 2.3), every such topological manifold
is homeomorphic to uncountably many elements of Y .
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Theorem 1 No manifold Y 2Y is diffeomorphic to any leaf of a C 2 codimension-one
foliation of a compact manifold.

Theorem 1 and all our results and proofs hold for the slightly weaker assumption of
C 1CLip regularity. For the sake of readability and coherence with the references we have
decided to state this theorem for C 2 foliations. As a consequence of Theorem 1, for
every Y 2 Y there are uncountably many diffeomorphically distinct smooth manifolds
homeomorphic to Y that cannot be leaves in any C 2 foliation of a compact 5–manifold.
Also note that if Z is obtained by puncturing a smooth closed simply connected
manifold M , then the induced smooth manifold can easily be realized as a leaf of a
C1 codimension-one foliation; just insert Reeb components along transverse closed
curves in the product foliation of M �S1 .

It is not known whether any element of Y is diffeomorphic to a leaf of a C 1;0

codimension-one foliation on a compact manifold. If that can happen, we show that
some restrictions must appear as to how it is realized; this is summarized in the next
proposition, which is the main step in proving Theorem 1.

Proposition 2 If there exists a leaf diffeomorphic to Y 2Y in a C 1;0 codimension-one
foliation of a closed 5–manifold, then it is a proper leaf and each connected component
of the union of the leaves diffeomorphic to Y fibers over the circle with the leaves as
fibers.

Next we review some of the history of leaves and nonleaves. It was shown by J Cantwell
and L Conlon [6] that every orientable open surface is homeomorphic (in fact, dif-
feomorphic) to a leaf of a foliation on each closed 3–manifold, and nonorientable
open surfaces are homeomorphic to leaves in nonorientable 3–manifolds. The first
examples of topological nonleaves were due to E Ghys [16] and T Inaba, T Nishimori,
M Takamura and N Tsuchiya [23]; these are highly topologically nonperiodic open
3–manifolds which cannot be homeomorphic to leaves in a codimension-one foliation
in a compact manifold. Years later, O Attie and S Hurder [2], in a deep analysis of the
question, found simply connected 6–dimensional examples of nonleaves, nonleaves
which are homotopy equivalent to leaves and even a Riemannian manifold which is not
quasi-isometric to a leaf in arbitrary codimension. These examples follow the line of
the work of A Phillips and D Sullivan [28] and T Januszkiewicz [24] and led to other
examples of Zeghib [36] and Schweitzer [30].

C L Taubes [32] showed that the smooth structure of some of the exotic R4’s is, in
some sense, nonperiodic at infinity, and this leads to the existence of uncountably
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many nondiffeomorphic smooth structures on R4 . It is an open problem whether any
exotic R4 — and, by extension, any given open manifold with a similar exotic smooth
end structure — can be diffeomorphic to a leaf of a foliation on a compact manifold. By
a simple cardinality argument, most exotic R4’s cannot be covering spaces of closed
smooth 4–manifolds by smooth covering maps since the diffeomorphism classes of
smooth closed manifolds are countable. All these results motivated a folklore conjecture
in foliation theory suggesting that these exotic structures cannot occur on leaves of a
smooth foliation in a compact manifold.

The main difference between some exotic R4’s (called large) and the standard R4 is
the fact that they cannot embed smoothly in a standard R4 . An important question
for a large exotic R4 is to describe what the simplest spin manifolds (in the sense
of the second Betti number) in which it can be embedded are; this is measured by
the invariant defined by L Taylor [33], which provided the first direct tool to show
that some exotic R4’s cannot be nontrivial covering spaces. We shall show that these
exotica are also nonleaves.

For all the other finitely punctured simply connected closed 4–manifolds we shall see
that a Taubes-like end (see Definition 1.11) suffices to show that they are nonleaves. In
Proposition 2 we adapt Ghys’ procedure in [16] to show some necessary conditions for
such structures to be leaves of a codimension-one foliation on a compact manifold. In
Theorem 1, which is an easy corollary of Proposition 2, we complete this analysis in the
case of C 2 foliations (those where the transverse coordinate changes are C 2 maps).

The paper is organized as follows:

� The first section is devoted to exotic structures on open 4–manifolds, particularly
on R4 . This is in fact a brief exposition of results in Taubes [32] and Taylor [33].
Here we define the particular exotic structures that we consider on R4 and show
some of their properties.

� In the second section we prove Proposition 2, which gives necessary conditions
for certain exotic punctured simply connected closed 4–manifolds to be diffeo-
morphic to leaves, following Ghys’ method of proof [16], and we derive its
corollary, Theorem 1.

� The last section includes some last remarks and open questions.
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and the referees for their help in preparing this paper. We also want to thank PUC-Rio,
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1 Exotic structures on R4

In this section we construct uncountably many exotic structures in R4 which are
nonperiodic by Taubes’ work. Later we shall need a better control of this structure,
which is provided by the invariant defined by Taylor [33]. This introduction begins
with a brief reminder of some known facts in 4–dimensional topology.

1a Background

Theorem 1.1 (Freedman [10]) Two simply connected closed 4–manifolds are home-
omorphic if and only if their intersection forms are isomorphic and they have the same
modulo 2 Kirby–Siebenmann invariant. In particular, simply connected smooth closed
4–manifolds are homeomorphic if and only if their intersection forms are isomorphic.

Theorem 1.2 (Donaldson [9]) If a smooth closed simply connected 4–manifold has
a definite intersection form then it is isomorphic to a diagonal form.

Definite symmetric bilinear unimodular forms are not classified and it is known that the
number of isomorphism classes grows at least exponentially with the range. Indefinite
unimodular forms are classified [31]: two indefinite forms are isomorphic if they have
the same range, signature, and parity. There are canonical representatives for the
indefinite forms; in the odd case the form is diagonal and in the even case it splits into
invariant subspaces where the intersection form is either ˙E8 or H ; see Figure 1.
These canonical representatives are denoted as usual with the notation mŒC1�˚ nŒ�1�

for the odd case and ˙mE8˚ nH with n> 0 for the even one.

For each symmetric bilinear unimodular form there exists at least one topological simply
connected closed 4–manifold with an isomorphic intersection form. But this is no longer
true for the smooth case, as Donaldson’s theorem asserts. It is an open problem which
unimodular forms can be realized in smooth simply connected closed 4–manifolds.
Recall that a (not necessarily closed) simply connected smooth 4–manifold is spin if
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Figure 1: The intersection forms E8 (left) and H (right)

and only if its intersection form is even. It is known that for a smooth simply connected
spin 4–manifold with indefinite intersection form the number of “E8 blocks” must
be even (Rokhlin’s theorem). It is possible to say more, as in Furuta’s theorem [13],
which will be useful in this section.

Theorem 1.3 (Furuta [13]) If M is a smooth closed spin (not necessarily simply con-
nected ) 4–manifold with an intersection form equivalent to ˙2mE8˚nH and m> 0,
then n� 2mC 1.

Let us recall an important theorem of M H Freedman, which is the main tool to determine
when a manifold is homeomorphic to R4 .

Theorem 1.4 (Freedman [10]) An open 4–manifold is homeomorphic to R4 if and
only if it is contractible and simply connected at infinity.

Definition 1.5 Two ends e1 and e2 of smooth (resp. topological) manifolds are
diffeomorphic (resp. homeomorphic) if they have diffeomorphic (resp. homeomorphic)
neighborhoods Xe1

and Xe2
. It will always be assumed that orientation is preserved

by that diffeomorphism (resp. homeomorphism). Two manifolds with one end are
end-diffeomorphic (resp. end-homeomorphic) if their ends are diffeomorphic (resp.
homeomorphic).

The main tool for measuring the wildness of some exotica will be the Taylor index,
introduced by Taylor in [33].

Definition 1.6 (Taylor [33]) Let E be a smoothing of R4 . Let Sp.E/ be the set of
closed smooth spin 4–manifolds N with trivial or hyperbolic intersection form (a sum of
copies of H ) in which E embeds smoothly. Define bE D1 if Sp.E/D∅; otherwise

2bE D min
N2Sp.E/

fb2.N /g;

where b2.N / is the second Betti number of N .
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Let E.E/ be the set of topological embeddings eW D4!E such that e is smooth in the
neighborhood of some point of the boundary and e.@D4/ is (topologically) bicollared.
Set be D be. VD4/ where e. VD4/ has the smooth structure induced by E . The Taylor
index of E is defined to be


 .E/D max
e2E.E/

fbeg:

For a spin manifold M , the Taylor index of M is the supremum of the Taylor indices
of all the exotic R4’s embedded in M .

Remark 1.7 For the definition of bE the regularity of the embedding is not important
since every C 1 manifold admits a C1 structure by [35, Theorem 1], and every C 1

map (resp. diffeomorphism) of C1 manifolds can be approximated arbitrarily closely
by a C1 map (resp. diffeomorphism).

Another important tool for this section is the “end-sum” construction. For open
manifolds this is analogous to the connected sum of closed manifolds. Given two
open smooth oriented manifolds M and N with the same dimension we choose two
smooth properly embedded paths c1W Œ0;1/ ! M and c2W Œ0;1/ ! N , each of
them defining one end in M and N respectively. Let V1 and V2 be smooth tubular
neighborhoods of c1.Œ0;1// and c2.Œ0;1//. The boundaries of these neighborhoods
are clearly diffeomorphic to R3 and we can obtain a smooth sum by removing the
interiors of these neighborhoods and identifying their boundaries so as to produce
a manifold with an orientation respecting the orientations of M and N . This will
be called the end-sum of M and N associated to c1 and c2 , and it is denoted by
M \N D .M n VV1/[@ .N n VV2/. In the case where N and M have exactly one end
and are both homeomorphic to S3�RC, the paths c1 and c2 are unique up to ambient
isotopy and thus the smooth structure of M \N does not depend on the choice of
paths. End-sum was the first technique which made it possible to find infinitely many
exotic structures on R4 [17] and it is an important tool for dealing with the problem of
generating infinitely many smooth structures on open 4–manifolds [3; 14].

Lemma 1.8 [33, Lemma 5.2] If R and S are exotic R4’s, then the inequality

 .R \S /� 
 .R/C 
 .S / holds.

We now give a version of Taubes’ theorem [32, Theorem 1.4] sufficient for our purposes.

Definition 1.9 (periodic end) Let M be an open smooth manifold with an end
homeomorphic to the end of S3� Œ0;1/. We say this end is smoothly periodic if there
exists an open neighborhood V �M of the end that is homeomorphic to S3� .0;1/
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and a diffeomorphism hW V ! h.V / � V such that hn.V / defines the given end
(ie fhn.V /g is a neighborhood base for the end). If M has exactly one end then it is
said that M is smoothly periodic.

Note that this notion of smoothly periodic end is a particular case of the admissible
periodic ends considered in [32, Definition 1.3].

Theorem 1.10 (Taubes [32]) Suppose that M is an open smooth simply connected
4–manifold with a definite intersection form and exactly one end. If there exists an open
neighborhood of the end of M which is homeomorphic to S3 � .0;1/ and smoothly
periodic, then the intersection form is isomorphic to a diagonal form.

1b Our exotic models

Definition 1.11 Throughout this work M� (resp. MC ) will denote the family of
smoothings of closed topological 4–manifolds M with exactly one puncture such
that there exists a positive integer s such that \

s

iD1 M is end-diffeomorphic to a
smoothing of a once-punctured closed topological simply connected negative (resp.
positive) definite but not diagonal 4–manifold. Set MDM�[MC . These manifolds
and their ends will be called Taubes-like.

The set S will denote the family of all exotic R4’s R for which there exist two
integers s; k > 0 such that the s–fold end-sum \

s

iD1 R is end-diffeomorphic to a
smoothing of a once-punctured closed simply connected spin �k.E8˚E8/ manifold.1

The subfamily R will be formed by the exotica in S with finite Taylor index.

Remark 1.12 Of course, R � S �M� . Observe that .M˙; \/, .S; \/ and .R; \/
are semigroups; this comes from the fact that the sum of nondiagonal definite forms of
the same sign are still definite and nondiagonal by the Eichler–Kneser theorem (see eg
[15, Theorem 9.24]).

Proposition 1.13 (see [33, Theorem 5.3]) Let R 2 S , and take s; k 2 N so that the
s–fold end-sum \

s
R is end-diffeomorphic to a spin simply connected once-punctured

closed �k.E8˚E8/ manifold. Then 0 < 2k=s < 
.R/. Therefore 

�
\

n
R
�

tends
to 1 as n!1, and so 


�
\
1

iD1 R
�
D1.

Lemma 1.14 Let M and N be two smooth once-punctured closed 4–manifolds end-
homeomorphic to R4 such that M �N and N nM is homeomorphic to S3 � Œ0;1/

with topologically bicollared boundary. If M 2M then N 2M.

1These are called .s; k/–simple-semidefinite in [33].
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Proof Since M 2M , there exists s > 0 such that \
s
M is end-diffeomorphic to a

once-punctured closed simply connected smooth manifold having a definite but not
diagonal intersection form, which we denote by W . By the hypothesis, it is clear that
there exists a smooth embedding j W \

s
M ! \

s
N such that \

s
N n j

�
\

s
M
�
, with

the induced smooth structure, is still homeomorphic to S3 � Œ0;1/ with a bicollared
boundary. Let W 0 �W be an open set large enough that W nW 0 is diffeomorphic
to a neighborhood of the end of \

s
M . It follows that \

s
N is end-diffeomorphic to

W 0[@.W nW
0/[j \

s
N nj

�
\

s
M
�
, which is homeomorphic to a once-punctured closed

simply connected manifold having the same intersection form as W , so N 2M .

Corollary 1.15 The semigroup .S ; \/ is closed under countably infinite end-sums.
Moreover, if R 2 S and E is any smoothing of R4 then R \E 2 S .

Proof Since R 2 S there exist s; k > 0 such that \
s
R is end-diffeomorphic to a

once-punctured closed simply connected smooth �k.E8˚E8/ manifold, which we
denote by W . Thus, there exists a (topological) disk D � R sufficiently large that
\

s
R n \

s
VD is diffeomorphic to a neighborhood of the end of W with topologically

bicollared boundary. Thus \
s
VD is end-diffeomorphic to W n

�
\

s
R n \

s
VD
�
, which is

still a �k.E8˚E8/ manifold. Therefore VD 2 S �M . Observe that D �R�R \E ,
so VD and R \E satisfy the conditions of Lemma 1.14, so R \E 2M and therefore
it belongs to S since it is an exotic R4 .

The first affirmation follows by choosing E as any infinite end-sum of elements in S .

Remark 1.16 The above Corollary 1.15 does not hold for the semigroup .R; \/, by
Proposition 1.13; of course it is also false for M˙ just by purely topological reasons.

Remark 1.17 (see also [33, Theorem 5.4]) No Taubes-like manifold is smoothly
periodic: If M 2M is smoothly periodic then \

s
M will be also smoothly periodic

for all s 2 N . But for some s this manifold would be end-diffeomorphic to a defi-
nite nondiagonal simply connected 4–manifold (by definition of M), but this is not
possible by Taubes’ theorem. In particular, Taubes-like ends are exotic, ie they are
not diffeomorphic to the ends of the standard S3 �R, which are obviously smoothly
periodic.

Notation 1.18 Let R be an exotic R4 and let  RW R
4!R be a homeomorphism. Let

us denote K
 R
t D R.D.0; t//, where D.0; t/ is the standard closed disk of radius t ,

and consider the smooth structure induced on VK R
t by R . For future reference, we

choose the homeomorphism  R so that for each t > 0 the boundary of the topological
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disk K
 R
t is smooth in a neighborhood of some point. The existence of such  R’s is

clear; in fact, they can be chosen to be smooth in a neighborhood of one of the axes [29].
By an abuse of notation, we shall use the notation Kt instead of K

 R
t whenever the

underlying exotic R4 is clear from the context and  R is any homeomorphism as above.

Corollary 1.19 [33, Theorem 5.4] Let R 2 S and let  W R4 ! R be a homeo-
morphism. Then there exists r > 0 such that VKt is not diffeomorphic to VKs for
any t > s > r .

In the following, whenever R 2 S (resp. R), we will assume r R
is large enough that

VKt 2 S (resp. R) for all t > r R
.

If N1 and N2 are oriented manifolds with connected boundaries, where each boundary
is assumed to be smooth in a neighborhood of some point, then the boundary connected
sum M D N1 #@ N2 is obtained by identifying embedded smooth closed disks in
@N1 and @N2 by an orientation-reversing diffeomorphism (so that the resulting manifold
is oriented) and smoothing the result. Then the interior of the boundary connected sum
is the end-sum of the interiors: VM D VN1 \ VN2 . If N1 and N2 are disjoint connected
oriented codimension-zero submanifolds with connected boundaries embedded in a
connected oriented manifold M so as to respect the orientations, then N1 #@ N2 can
also be embedded in M using a standard cylinder to join smooth standard disks in the
boundaries of N1 and N2 .

Proposition 1.20 [33, Proposition 2.2] Let ei 2 E.E/, where i D 1; : : : ; k , be
pairwise disjoint closed topological disks in E (respecting the orientations). Then there
exists e 2 E.E/ such that e. VD4/ is diffeomorphic to \

k

iD1 ei. VD
4/.

By the choice of  R , it follows that Kt 2 E.R/ (ie Kt is a topologically embedded
ball with the properties indicated in Definition 1.6). The next proposition can be seen
as a corollary of [33, Theorem 7.1].

Proposition 1.21 [33, Theorem 7.1] No R 2R can be a smooth covering space of a
smooth compact 4–manifold.

Proof If this were the case then there would exist a properly discontinuous smooth
Z–action on R . It follows that R would contain infinitely many pairwise disjoint
copies of sets diffeomorphic to Kt for any t > r R

. By Proposition 1.20, it follows that
\
1
VKt could be embedded in R . Since r R

was chosen so that Kt belongs to S , it
follows that 
 .R/D1 by Proposition 1.13. But 
 .R/ must be finite since R 2R.
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On the other hand, \
1

iD1 R can be a nontrivial covering space of an open manifold.
In fact it admits several free actions (see eg [18; 19]); for example, this exotic is
diffeomorphic to the end-sum \i2Z R , which admits an obvious free action of Z

whose quotient is an exotic R3 �S1 .

Remark 1.22 Let R 2 S . Given a strictly increasing sequence ftkg tending to infinity
with every tk > r R

, let us set C
 R

k
DKtk

n VKtk�1
, each of which is homeomorphic

to S3� Œ0; 1�. We use the notation Ck instead of C
 R

k
whenever R and  R are clear

from the context.

Of course, Ck also depends on the sequence ftkg, but these data are inessential and will
be omitted for the sake of simplicity. A similar notation can be adapted to the end of any
Taubes-like manifold M . Let X be a cylindrical neighborhood of the end of M 2M
and let  X W X ! S3� Œ0;1/ be a homeomorphism. Given an increasing sequence of
positive numbers tk going to infinity, we can set Ck D  

�1
X
.S3 � Œtk�1; tk �/ with the

induced smooth structure as a subset of M . Again there is a dependence on the sequence,
the neighborhood X , and the homeomorphism  X which will also be omitted.

By means of the above construction, M n VCk has two components, one of them
compact, say Kk , and the other unbounded, say Xk . Let us denote the (topological)
boundary component of Ck which bounds Kk by @�Ck and the boundary component
which bounds Xk by @CCk . We claim that VKk is also a Taubes-like manifold for
every sufficiently large k: There exists s such that \

s
M is end-diffeomorphic to

a definite nondiagonal open 4–manifold, say N . Let Y be a neighborhood of the
end of N which is homeomorphic to S3 � Œ0;1/ and diffeomorphic (preserving
orientation) to a neighborhood Y 0 of the end of \

s
M . For all sufficiently large k the

set \
s
VKk\Y 0 is also homeomorphic to S3�Œ0;1/. Then \

s
VKk is end-diffeomorphic

to .N nY /[@
�
\

s
VKk \Y 0

�
, which is also a simply connected definite nondiagonal

manifold (homeomorphic to N ), so VKk is in fact Taubes-like.

Remark 1.23 All the above results given for R and S can be applied verbatim to R
and S , which denote the same manifolds but with the orientation reversed (so they are
elements in MC ). This follows from the fact that changing orientations does not affect
Furuta’s theorem (Theorem 1.3) or the Taylor index.

1c Examples

Example 1.24 The existence of exotica in R and S with these properties is well
known (see eg [14; 19; 33]). Let M0 be the K3 Kummer surface. It is known that
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the intersection form of M0 can be written as �2E8˚ 3H , where the six elements
in H2.M0;Z/ spanning the summand 3H can be represented by six Casson handles Ci

attached to a closed 4–dimensional ball B4 inside M0 . Let U D int
�
B4[

S6
iD1 Ci

�
,

which is clearly homeomorphic to a once-punctured #3
S2 � S2 by Freedman’s

theorem (Theorem 1.1). Let S be the union of the cores of the Casson handles, which we
consider to be inside #3

S2�S2 . By Theorem 1.4 the manifold PD
�
#3

S2�S2
�
nS is

homeomorphic to R4 . If this P were standard then we could smoothly replace the 3H

part in the intersection form of M0 by a standard ball, so the resulting smooth closed
manifold would have intersection form �.E8˚E8/, in contradiction to Donaldson’s
theorem (Theorem 1.2), since .�E8 ˚ E8/ is not isomorphic to a diagonal form.
Since P is contained in #3

S2 �S2 it follows that 
 .P /� 3 and therefore P 2R.

Example 1.25 With some care in the above construction (see eg [33, Example 5.6])
the six Casson handles can be arranged as three diffeomorphic pairs that can each
be embedded in S2 � S2 . As above, the complement of a neighborhood of each
core in S2 � S2 is an exotic R4 , say T , such that \

3
T D P . It is clear that T

cannot be end-diffeomorphic to any spin once-punctured closed mE8 manifold with
m 2 Z and m¤ 0, for otherwise we would obtain a smoothable closed spin simply
connected .mE8/˚H manifold: just use the end of T to attach S2 � S2 n T to
that punctured manifold. But this is impossible by Furuta’s and Rokhlin’s theorems
(depending on whether m is even or odd). This is another large exotic R4 which
belongs to R.

Example 1.26 Another interesting exotic R4 is given as follows. Take the indefinite
form �.E8 ˚ E8/ ˚ h1i. It follows by Freedman’s theorem (Theorem 1.1) that
there exists a closed simply connected manifold with such an intersection form that
is homeomorphic to #16 CP2 # CP2 (where CP2 denotes the complex projective
plane with the opposite orientation). Thus the former manifold is smoothable but it is
impossible to represent this manifold as a connected sum of a �.E8˚E8/ manifold
with CP2 using a smooth 3–sphere. But the homology generator of the CP2 summand
can be represented by a Casson handle. As above, that Casson handle can be embedded
in CP2 representing its homology. Removing a suitable neighborhood of its core we
get an exotic R4 , which will be called E , that is end-diffeomorphic to a once-punctured
closed spin simply connected �.E8˚E8/ manifold (so E 2 S ) and can be embedded
in CP2 (see details in [33, Example 5.10]). It is unknown whether its Taylor index is
finite. In particular it is unknown if E is diffeomorphic to P .

Geometry & Topology, Volume 22 (2018)



2802 Carlos Meniño Cotón and Paul A Schweitzer

Example 1.27 The family S includes the universal exotic R4 presented in [12] and
any other possible universal smoothing of R4 . Let U be a universal exotic R4 . By
means of universality, there exists a smooth embedding of any element R 2 S in U .
Let D �R �U be a disk (with topologically bicollared boundary) sufficiently large
that VD is still an element of S (see the proof of Corollary 1.15 for details). Thus
VD and U satisfy the conditions of Lemma 1.14 and therefore U 2 S .

Example 1.28 Finally, a smoothing of a once-punctured closed ˙E8 manifold is
trivially a Taubes-like manifold, so its end is not standard. But it is unknown whether
this manifold is end-diffeomorphic to an exotic R4 .

Remark 1.29 In [33, Example 5.10], uncountably many nondiffeomorphic smooth
structures on R4 with infinite Taylor index are exhibited. Consider the element E 2 S
presented in Example 1.26. It is shown that the manifolds VK E

t \
�
\
1

iD1 E
�

are pairwise
nondiffeomorphic for all t > r E

. In fact, their ends are pairwise not end-diffeomorphic.
Note also that, although \

1

iD1 E cannot be embedded in any spin closed manifold with
hyperbolic intersection form, it can be embedded in CP2 .

2 Exotic simply connected smooth 4–manifolds and foliations

2a The family of exotica

Here we define certain exotic simply connected smooth manifolds that we shall show
cannot be diffeomorphic to leaves of a C 2 codimension-one foliation in a compact
smooth manifold. As mentioned in the introduction, we are interested in the set of
open 4–manifolds which are obtained by removing a finite nonzero number of points
from a closed, connected, simply connected topological 4–manifold.

Definition 2.1 Let Y be the set of open smooth 4–manifolds Y (up to diffeomorphism)
that are homeomorphic to simply connected closed topological 4–manifolds with
finitely many punctures, such that Y satisfies one of the following two conditions (see
Definition 1.11 and Remark 1.23):

(1) Y 2R[R (and so Y is homeomorphic to R4 );

(2) Y is not homeomorphic to R4 and at least one (exotic) end is diffeomorphic (pre-
serving orientation) to the end of some element in M (ie it is a Taubes-like end).

Observe that Y is the (nondisjoint) union of two families: Yf , where at least one
Taubes-like end is diffeomorphic to the end of an exotic R4 with finite Taylor index,
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and Y1 , where at least one Taubes-like end is not diffeomorphic to the end of an
exotic R4 with finite Taylor index. By definition, R[R�Yf , hence only Yf contains
exotic R4’s.

Example 2.2 If Z is a simply connected smooth closed 4–manifold that is not home-
omorphic to S4 , then Z # R belongs to Y for all R 2 S [S . All these manifolds are
homeomorphic but not diffeomorphic to the standard Z n f�g by Taubes’ work.

If Z is an arbitrary simply connected but nonsmoothable closed 4–manifold, after
removing a point it becomes smoothable (every open 4–manifold is smoothable; see
eg [11]). In the proof of [18, Theorem 2.1], it is shown that Z nf�g admits a smoothing
which is end-diffeomorphic to some simply connected punctured spin �kE8 manifold
(in fact, we can take kD2 if the Kirby–Siebenmann invariant ks.Z/ is trivial and kD3

otherwise). So in both cases we get smooth Taubes-like manifolds in Y homeomorphic
to Z n f�g. Moreover, when ks.Z/D 0 that end is shown to be end-diffeomorphic to
an exotic R4 with finite Taylor index (it can be embedded in #n

S2 �S2 for some
sufficiently large n), so that the smoothing belongs to Yf . In any case, after forming an
infinite end-sum with (possibly distinct) elements in S we also obtain smooth manifolds
in Y1 homeomorphic to Z n f�g.

Of course, we can add more punctures to these smoothings and we still get elements
in Y , so any topological simply connected 4–manifold obtained by removing finitely
many punctures from a closed manifold is homeomorphic to some element in Y .

Remark 2.3 Taubes’ theorem (Theorem 1.10, Remark 1.17 and Corollary 1.19) shows
that for any Y 2 Y there exists an uncountable family of smooth manifolds in Y which
are homeomorphic but nondiffeomorphic to Y . The same argument works for elements
in Yf , ie for any element in Yf there is a continuum of elements in Yf which are
homeomorphic but not diffeomorphic to it.

Although Taubes’ theorem also applies to elements in Y1 we cannot derive so easily
a continuum of smoothings of Y 2 Y1 which belong to Y1 . For instance, consider
\
1

P (see Example 1.24 for the definition of P ); it has infinite Taylor index by
Proposition 1.13 but any VKt has finite Taylor index since it is contained in a finite
end-sum of copies of P , which has finite Taylor index by Lemma 1.8.

However Taylor’s results (see Remark 1.29) show that for all Y 2 Y1 which are end-
diffeomorphic to \

1
E there is a continuum of manifolds in Y1 which are homeomor-

phic but nondiffeomorphic to Y (this is also true if the orientation is reversed). Let M

be a topological (nonsmoothable) simply connected compact manifold. If ks.M /D 0
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then M # CP2 or M # CP2 smoothable by Freedman’s theorem (Theorem 1.1), since
the intersection form becomes indefinite. By surgering the CP2 or CP2 summand by
means of a suitable neighborhood of the core of a Casson handle (diffeomorphic to the
one given in Example 1.26, since any two Casson handles have a common refinement)
we can obtain a smoothing of M n f�g end-diffeomorphic to E or E . It follows
that every simply connected topological 4–manifold with finite punctures and trivial
modulo 2 Kirby–Siebenmann invariant admits a continuum of smoothings in Y1 . It
is not clear for us how to solve this question when ks.M /¤ 0 and there is a single
puncture; for two or more punctures, just take a smoothing where one end is standard
and then form an end-sum with \

1
E .

2b The proof of Proposition 2

Recall that Proposition 2 states that if a leaf of a C 1;0 codimension-one foliation of a
compact smooth manifold is diffeomorphic to Y 2 Y , then the leaf is proper and each
connected component of the union of all leaves diffeomorphic to Y fibers over the
circle with the leaves as fibers. Let us recall the meaning of C 1;0–regularity.

Definition 2.4 A codimension-one foliation is said to have regularity C 1;0 if its leaves
are tangent to a continuous hyperplane distribution of codimension one.2

Remark 2.5 It follows that holonomy maps of a C 1;0 foliation are only continu-
ous maps and projections from one plaque to another in a foliated chart are C 1–
diffeomorphisms. Under this hypothesis it is possible to show the existence of a foliated
atlas such that the leaves are C1 manifolds (see [4, Example 1.2.25]).

Definition 2.6 A foliated map (ie leaf-preserving map) hW .M; F /! .N; G / between
C 1;0 foliations is said to be of class C 1;0 if it is continuous. its restriction to each leaf
is C 1 , and every first partial derivative is also continuous.

In proving Proposition 2 we use the basic theory of codimension-one foliations of
smooth compact manifolds presented as integrable plane fields. Note that in this
general situation there exists a smooth transverse 1–dimensional foliation N and
a biregular foliated atlas, ie one in which each coordinate neighborhood is foliated
simultaneously as a product by F and N . The transverse coordinate changes are
only assumed to be continuous but the leaves can be taken to be smooth manifolds
and the local projection along N of one plaque onto another plaque in the same chart

2This regularity is denoted by C 1;0C in [4, Definition 1.2.24].
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is a diffeomorphism. Our basic tools are Dippolito’s octopus decomposition and his
semistability theorem [4; 8] as well as the trivialization lemma of Hector [22]. We
assume that our foliation is transversely oriented, which is not a real restriction since
every manifold we are considering to be a leaf is simply connected and therefore, by
passing to the transversely oriented double cover, a transversely oriented foliation with
a leaf diffeomorphic to it is obtained.

For a saturated open set U of .M; F /, let yU be the completion of U for the restriction
of a Riemannian metric on M to U . The inclusion i W U !M clearly extends to an
immersion i W yU !M , which is at most 2-to-1 on the boundary leaves of yU . We shall
use @� and @t to denote the tangential and transverse boundaries, respectively.

Theorem 2.7 (octopus decomposition [4, Proposition 5.2.14; 8, Theorem 1]) Let U

be a connected saturated open set of a codimension-one transversely orientable C 1;0 fo-
liation F with a transverse 1–dimensional foliation N on a compact manifold M. Then
there is a compact submanifold K (the nucleus) with boundary and corners such that:

(1) @�K � @� yU .

(2) @tK is saturated for i�N .

(3) The set yU nK is the union of finitely many noncompact connected components
B1; : : : ;Bm (the arms) with boundary, where each Bi is diffeomorphic to a
product Si � Œ0; 1� by a C 1;0 diffeomorphism �i W Si � Œ0; 1�!Bi such that the
leaves of i�N exactly match the fibers �i.f�g� Œ0; 1�/.

(4) The foliation i�F in each Bi is defined as the suspension of a homomorphism
from �1.Si/ to the group of homeomorphisms of Œ0; 1�. Thus the holonomy in
each arm of this decomposition is completely described by the action of �1.Si/

on a common complete transversal.

Observe that this decomposition is far from being canonical, for the compact set K

can be extended in many ways yielding other decompositions. We do not consider the
transverse boundary of Bi to be a part of Bi ; in particular, the leaves of i�F jBi

are
open sets in leaves of i�F . Observe that each set Bi has boundary; we assume that
each C 1;0 diffeomorphism �i can be extended over the boundary.

Lemma 2.8 [22, page 154, trivialization lemma] Let J be an arc in a leaf of N .
Assume that each leaf meets J in at most one point. Then the saturation of J is C 1;0

diffeomorphic to L�J , where L is a leaf of F , and the diffeomorphism carries the bifo-
liation F and N to the product bifoliation of L�J (with leaves L�f�g and f�g�J ).
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Theorem 2.9 (Dippolito semistability theorem [4, Theorem 5.3.4; 8, Theorem 3])
Let L be a semiproper leaf which is semistable on the proper side; ie there exists a
sequence of points fixed by all the holonomy maps of L converging to L on the proper
side. Then there exists a sequence of leaves Ln converging to L on the proper side and
projecting diffeomorphically onto L along the fibration defined by N .

Notation 2.10 Let X be a closed neighborhood of the ends of Y 2 Y identified
(topologically) with

Fn
iD1 S3 � Œ0;1/ such that the boundaries

Fn
iD1 S3 � f0g are

(topologically) bicollared in Y . Then we have the decomposition

Y DKY [X;

where KY is Y n VX , so it is compact with boundary, and, in the case that Y is not
homeomorphic to R4 with finite punctures, it has nontrivial second homology by
Freedman’s theorem (Theorem 1.1), since removing a finite number of points does not
change the second homology. Since the boundary is a disjoint union of (topological)
3–spheres, it also follows that H2.@KY /D 0.

Now we have enough information to begin to follow the line of reasoning of Ghys [16].
For the rest of this section we assume that Y 2 Y is diffeomorphic to a leaf, and we
shall find some constraints.

Definition 2.11 We say that a leaf L 2 F contains a lacunary vanishing cycle if
there exists a topologically bicollared connected embedded closed oriented 3–manifold
†�L and a family of connected 3–manifolds f†.n/ j n 2 N g embedded in the same
leaf L that are null-homologous on L and converge to † along leaves of the transverse
foliation N . It is a trivial lacunary vanishing cycle if † is null-homologous on L.

Lemma 2.12 Let L be a simply connected leaf with an end e homeomorphic to
S3�.0;1/. If L� lime.L/ then L does not contain any nontrivial lacunary vanishing
cycle homeomorphic to S3 .

To prove this, we shall use a special case of a weak generalization of Novikov’s theorem
on the existence of Reeb components [30, Theorem 4]. Recall that a (generalized) Reeb
component with connected boundary is a compact .kC1/–manifold with a codimension-
one foliation such that the boundary is a leaf and the interior fibers over the circle with
the leaves as fibers.

Suppose we are given a compact .kC1/–manifold M with a transversely oriented
codimension-one foliation F , a transverse 1–dimensional foliation N , a closed
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connected .k�1/–manifold B and also a bifoliated map hW B � Œa; b�!M , where
Œa; b� is an interval in the real line, such that h.B�ftg/ is contained in a leaf Lt of F
for every t 2 Œa; b� and haW B! La is an embedding with bicollared image, where
ht .x/D h.x; t/. Since h is bifoliated, it follows that ht is an embedding for all t .

Theorem 2.13 (see [30, Theorem 2.13(2)]) If Bt D ht .B/ bounds a compact con-
nected region in Lt for every t 2 .a; b�, but Ba does not bound on La , then La is the
boundary of a Reeb component whose interior leaves are the leaves Lt for t 2 .a; b�.

Proof of Lemma 2.12 Suppose that L � lime.L/ and that † � L is a nontrivial
lacunary vanishing cycle on L that is homeomorphic to S3 . Since F is assumed to
be transversely oriented, the transverse foliation N defines a map

ˆW S3
�R!M

that takes each set S3 � ftg into a leaf of F and such that ˆ.S3 � f0g/ D †. Let
ˆ�.F / be the pullback foliation on S3 �R (recall that this is only a C 0 foliation)
and set †t Dˆt .S

3/. Since the cycle is a lacunary vanishing cycle contained in L

and L� lime.L/, it follows (possibly after reversing the sign of R) that there exists a
decreasing sequence tn! 0, n 2 N , such that each †tn

is contained in L and bounds
a manifold Cn � L. Now Cn must be simply connected by van Kampen’s theorem,
since both S3 and L are, so the manifolds Cn lift to nearby leaves. By continuation
from C1 , using Reeb stability, there exists a minimal a 2 R[ f�1g such that †t

bounds a manifold homeomorphic to C1 for all a< t � t1 .

If a<0 the lacunary vanishing cycle would be trivial, so 0�a< t1 . Then by the preced-
ing theorem with BDS3 and kD4, we know that †a will be contained in the compact
boundary leaf of a generalized Reeb component and L is an interior leaf of that com-
ponent, so L cannot meet †t for t � a, contradicting the hypothesis that †0 �L.

Proposition 2.14 Suppose that F is a codimension-one C 1;0 foliation in a compact
5–manifold M . If there exists a leaf L of F diffeomorphic to Y 2 Y , then L is a
proper leaf without holonomy.

Proof Since L is simply connected, it is a leaf without holonomy. We also observe
that L has a saturated neighborhood not meeting any compact leaves, since a limit leaf
of compact leaves is compact (see [21] or [4, Theorem 6.1.1]).
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First consider the case that H2.Y / ¤ 0. Let KL � L be a compact connected
submanifold diffeomorphic to KY (see Notation 2.10). By Reeb stability there exists
a neighborhood U of KL bifoliated C 1;0–diffeomorphically as a product (see eg
[4, Section 2.4]). If L meets U in more than one connected component then there
exists a compact subset B �L homeomorphic to KL (via the transverse projection
in U ) and disjoint from KL . This is impossible since the inclusion i0W KL ,! L

induces an isomorphism i0�W H2.KL/! H2.L/ and the Mayer–Vietoris sequence
applied to .KL[B/[.Ln. VKL[

VB/ shows that B would give an additional nontrivial
summand in H2.L/. So in this case L is a proper leaf.

Let us consider now the case where Y 2 R[R is an exotic R4 (with finite Taylor
index). Let t > r R

, let gW Y !L be a diffeomorphism, and set DDg.Kt /. Since F
is C 1;0 , by Reeb stability D lifts to disks on nearby leaves such that their interiors
are diffeomorphic to VKt . If L is nonproper then Reeb stability will produce infinitely
many pairwise disjoint smooth embeddings of Kt in Y , so 
 .Y /D1 by Propositions
1.20 and 1.13, which gives a contradiction.

Finally consider the case that H2.Y / D 0 and Y has at least two ends (so it is
homeomorphic to R4 with at least one puncture). Let e be an end of Y diffeomorphic
to the end of some M 2M and recall that for all n 2 N , we can express M as
M DKn[Cn[Xn (see Remark 1.22), where Xn is a neighborhood of the end of M ,
Kn is a compact region and Cn is a topological compact cylinder bounding both
manifolds. If L is not proper, since the number of ends of Y is finite, there exists an
end e0 such that L � lime0.L/. By hypothesis, for some sufficiently large k , there
exists a smooth embedding gW VXk�2! L such that g. VXk�2/ is a neighborhood of
the end e ; therefore the simply connected compact set C D g.Ck/ is contained in
a neighborhood of e and separates the end e from the other ends of L. In addition
we can assume that VKk 2M (see Remark 1.22). By Reeb stability there exists a
neighborhood of C bifoliated as a product. Thus there exists a C 1;0 smooth C 1;0

bifoliated embedding j W C � .�1; 1/ ! .M; F / such that j .C � f0g/ D C . As
above, the projection of a tangential leaf to another in this neighborhood is a C 1

diffeomorphism. Thus L\j .C � .�1; 1// contains a nontrivial sequence of tangential
fibers j .C �fsmg/, with sm tending to 0, all of them contained in a neighborhood Xe0

of the recurrent end e0 .

By Lemma 2.12, for all sufficiently large m, we have that j .C �fsmg/ disconnects e0

from the other ends. Otherwise infinitely many j .C �fsmg/ would bound disks and L

would contain a nontrivial lacunary vanishing cycle homeomorphic to S3 .
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Note that C has two boundary components, corresponding to @�Ck and @CCk . We say
that j .C � fsmg/ is positively oriented if e0 is an end of the connected component
of L n j . VC � fsmg/ which contains the component of @C corresponding to @CCk ;
otherwise we say that it is negatively oriented.

Let s1 and s2 be distinct values in the sequence fsmgm2N (possibly changing the
subscripts), sufficiently close to 0 that both j .C �fs1g/ and j .C �fs2g/ disconnect e0

from the other ends and such that j .C�fs1g/ and j .C�fs2g/ have the same orientation.
Let N D j . VC � fs1g/[P [ j . VC � fs2g/, where P is the connected component of
Ln

�
j . VC �fs1g/[j . VC �fs2g/

�
that meets both C �fs1g and C �fs2g. Thus N is an

exotic relatively compact cylinder in Xe0 that contains both j . VC�fs1g/ and j . VC�fs2g/

as its extremities.

We can assume that j .C �fs1g/ contains the negative boundary of N , ie the boundary
component that corresponds to @�Ck and j .C � fs2g/ contains the positive boundary
of N , ie the boundary component that corresponds to @CCk . Let us consider the
manifold

W D .Kk [
VCk/[i� N [i N [i � � � ;

where i� is an orientation-preserving diffeomorphism which maps VCk to j . VC � fs1g/

and i is another orientation-preserving diffeomorphism from j . VC�fs2g/ to j . VC�fs1g/.
By Lemma 1.14, W 2M since VKk 2M. But this is in contradiction with Taubes’
theorem, which implies that no element in M is smoothly periodic (Remark 1.17).

Proposition 2.15 If there exists a leaf L diffeomorphic to Y , then there exists an
open F –saturated neighborhood U of L which is diffeomorphic to L� .�1; 1/ by a
diffeomorphism which carries the bifoliation F and N to the product bifoliation. In
particular, all the leaves of F jU are diffeomorphic to Y .

Proof Since L is a proper leaf, there exists a path, cW Œ0; 1/!M , transverse to F ,
with positive orientation and such that L\ c.Œ0; 1//D fc.0/g. Let U be the saturation
of c..0; 1//, which is a connected saturated open set, and consider the octopus decom-
position of yU as described in Theorem 2.7. Clearly one of the boundary leaves of yU is
diffeomorphic to L because it is proper without holonomy and c.0/ 2L. We identify
this boundary leaf with L and extend the nucleus K so that the set K0 D @�K\L is
homeomorphic to KY . By Reeb stability, there exists a neighborhood of K0 foliated
as a product by KY �f�g. Since L� @ yU has an end, there is an arm B1 that meets L.
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The corresponding S1 is diffeomorphic to a neighborhood of an end and homeomorphic
to S3 � .0;1/, thus B1 is foliated as a product (ie the suspension must be trivial).
The union of a smaller product neighborhood of L\B1 and the product neighborhood
of KY meeting L gives a product neighborhood on the positive side of S1[KY . We
can proceed in the same way for all the ends (which are finitely many), thus obtaining
a product neighborhood on the positive side of L�KY [S1[ � � � [Sk .

Proceeding in the same way on the negative side of L we can find the desired product
neighborhood of L. Each leaf is clearly diffeomorphic to Y since the projection to L

along leaves of N is a local diffeomorphism and bijective by the product structure.

Let � be the union of leaves diffeomorphic to Y . By the previous proposition this is
an open set on which the restriction F j� is defined by a locally trivial fibration, so
its leaf space is homeomorphic to a (possibly disconnected) 1–dimensional manifold.
Let �1 be one connected component of �.

Lemma 2.16 The completed manifold y�1 is not compact.

Proof First we note that @ y�1 cannot be empty, for otherwise all the leaves would be
diffeomorphic to Y , hence proper and noncompact. It is a well-known fact (see eg [4])
that a foliation in a compact manifold with all leaves proper must have a compact leaf,
for every minimal set of such a foliation is a compact leaf.

Now suppose that y�1 is compact and let L be a leaf diffeomorphic to Y . Take an
exotic end e of L that is end-diffeomorphic to an element in M. Then the limit set
of e of L contains a minimal set, which must be contained in the boundary of y�1

and must be a compact leaf. The holonomy of the leaf F is not the identity and has
no fixed points (otherwise it would produce nontrivial holonomy on an interior leaf).
Since all the orbits are proper, the holonomy group of each boundary leaf must be
isomorphic to Z.

The contracting map that generates the holonomy of F extends to a C 1;0 bifoliated
map h0W X ! X that preserves each leaf of both F and N on a neighborhood X

of F in y�1 (just by following the flow N in the direction towards F ). Since the
holonomy is cyclic, each connected component of L\X is end-diffeomorphic to an
end of a cyclic covering space of F , so there exists an open neighborhood V of e in L

where h0 is defined so that V �X and hD h0jV is an embedding hW V ! h.V /� V

such that fhn.V /gn�0 is a neighborhood base of the end e . But this contradicts Taubes’
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theorem (Theorem 1.10) and Remark 1.17, which implies that e cannot be smoothly
periodic.

Following the approach of Ghys in [16], we have a dichotomy: the leaf space of F j�1
,

which is a connected 1–dimensional manifold, must be either R or S1 .

Proposition 2.17 The leaf space of F j�1
cannot be R.

Proof Since y�1 is not compact there exists at least one arm for its octopus decom-
position. Let B1 be such an arm that is C 1;0 diffeomorphic to S1 � Œ0; 1� via a
C 1;0 diffeomorphism �1 carrying the vertical foliation to i�N . If the leaf space
is R, then �1.f�g � .0; 1// must meet each leaf in at most one point. Then the
trivialization lemma (Lemma 2.8) shows that the saturation of �1.f�g� .0; 1// is C 1;0

diffeomorphic to a product L � .0; 1/. Then the process of completing �1 to y�1

shows that the product L� .0; 1/ extends to a product L� Œ0; 1/, so the boundary leaf
corresponding to L�f0g must be diffeomorphic to Y , but this is a contradiction since
leaves diffeomorphic to Y have to be interior leaves of �.

Since �1 cannot fiber over the line, it must fiber over the circle, but this is just the
conclusion of Proposition 2, so its proof is complete.

2c Proof of Theorem 1

The rest of this section is devoted to proving Theorem 1. It will be a quick corollary of
Proposition 2 but first we have to introduce some terminology.

Let U be a saturated open set of a C 1;0 foliation F on a compact manifold and let
L�U be a leaf. For a Dippolito decomposition (Theorem 2.7) yU DK[B1[� � �[Bn ,
let us choose a transverse fiber of each arm Bi and denote it by Ti .

Definition 2.18 Let U be a saturated open set of a C 1;0 foliation F on a compact
manifold and let L�U be a leaf. Then L is said to be trivial at infinity for U if there
exists a Dippolito decomposition yU DK[B1[ � � � [Bn , and total transversals Ti of
each Bi , such that for each i L\Ti consists of fixed points for every element of the
total holonomy group associated to that arm.

The next theorem is a consequence of the so-called generalized Kopell lemma for
foliations, which can be found in Cantwell and Conlon [5] and in [4, proof of Theorem
8.1.26]. We thank the first referee for suggesting this argument.
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Theorem 2.19 [5] Let F be a transversely oriented codimension-one C 2 foliation
on a compact manifold. If L is a proper leaf then it is trivial at infinity for every
saturated open set containing L.

From this theorem we can deduce the following.

Lemma 2.20 Suppose F is a transversely oriented codimension-one C 2 foliation
on a compact manifold. Let U be an open saturated set. If yU is noncompact and
L�U is a proper leaf such that L meets the transverse fiber associated to the arm of a
Dippolito decomposition in infinitely many points, then L has infinitely many ends.

Proof Let yU DK[B1[� � �[Bn be a Dippolito decomposition and let T1; : : : ;Tn be
the transverse fibers associated to each arm, since yU is noncompact there exists at least
one arm in any decomposition. Assume that L\Ti consists of infinitely many points
for some 1� i � n. By Theorem 2.19, L is trivial at infinity, so there exists another
decomposition yU DK0[B0

1
[ � � � [B0m such that all the points of L\T 0j are fixed

points for the total holonomy group of each arm B0j , for 1� j �m, where T 0j denotes
a transverse fiber of the arm B0j . Without loss of generality we can assume that K�K0

and therefore every arm B0j is contained in some arm Bk . Consider an arm B0r � Bi .
Clearly there exists a holonomy map hri W Ti! T 0r , and therefore L\T 0r also consists
of infinitely many points. Since all of these points are fixed by the total holonomy group
of B0r , it follows that L\B0r is a disjoint union of infinitely many copies of the base
manifold of that arm. Each one of these copies defines a different end for the leaf L.

Proof of Theorem 1 Let L be a leaf diffeomorphic to some Y 2 Y and suppose
that F is C 2 and transversely oriented (otherwise pass to the transversely oriented
double cover). By Proposition 2, L is proper and the set �1 (the connected component
of the union of the leaves diffeomorphic to L that contains L) is an open, connected
and saturated set fibering over the circle. Moreover, Lemma 2.16 implies that y�1 is
noncompact. Since �1 fibers over the circle we can associate to every leaf L 2 F j�1

a diffeomorphism hW L ! L (the monodromy of the fibration) which associates
to each point x 2 L the next element in the negative direction of the transverse
foliation N which belongs to L. Let T be the transverse fiber of any arm of a
Dippolito decomposition of y�1 and let L be a leaf which meets T in a point x .
Since, by construction, T is contained in a flow line of N , it follows that every hn.x/,
where n 2 Z, also belongs to T and all of them are distinct points since N has no
closed orbits contained in any arm. Therefore L satisfies the hypothesis of Lemma 2.20
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and thus it must have infinitely many ends, in contradiction to the fact that every
manifold in Y has finitely many ends.

3 Final comments

It is possible to enlarge the family Y if, instead of working with ends homeomorphic
to S3� Œ0;1/, we allow admissible ends (in the sense of [32, Definition 1.3]) that are
simply connected. We avoid working with this generality in the interests of readability.

Recall that Proposition 2 says that if Y 2 Y is diffeomorphic to a leaf, then it is a
proper leaf without holonomy contained in an open saturated set �1 which consists
of leaves diffeomorphic to Y and fibers over the circle. As we saw in the proof
of Theorem 1 (see also [16, Section 5]), for any L 2 F j�1

, the monodromy map
hW L!L induces an orientation-preserving automorphism of our exotic manifold Y .
We saw in the description of exotic structures that self-diffeomorphisms of R 2R[R
are in some sense rigid; this allows us to say what kind of monodromy is admissible, in
the C 1;0 category, at the present state of the art. For instance, the compact set Kt �R

with t > r R
must meet the nucleus of any octopus decomposition of �1 and it seems

likely that the monodromy should have fixed points.

As far as we know, this work gives the first insight into the problem of realizing exotic
structures on open 4–manifolds as leaves of a foliation in a compact manifold. We
express our hopes in the following conjecture, which we are far from proving, since it
includes the higher-codimension case and lower regularity assumptions, which are not
treated in this paper. It is a goal for future research.

Conjecture 3.1 No open 4–manifold with an isolated Taubes-like end is diffeomorphic
to a leaf of a C 1;0 foliation of arbitrary codimension in a compact manifold.

The corresponding conjecture is in fact open for all the known families (of ends) of
exotic R4’s but, as a consequence of this work, those which are Taubes-like are the
best candidates. Another interesting question is what can be said if we allow infinitely
many ends, since in this case Lemma 2.20 will not work. For instance S4 minus a
Cantor set is diffeomorphic to a leaf of a C! codimension-one compact manifold;
observe that it is the universal covering space of a compact smooth 4–manifold with
fundamental group isomorphic to Z �Z, so any suspension of an analytic action of
that group on S1 does the job (see [27] for many such actions). It would be interesting
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to exhibit smooth structures on this manifold which are not diffeomorphic to leaves.
This question will be treated in a forthcoming work of the authors.

Let us say something about small exotica (those which embed as open sets in the
standard R4 ). Small exotica are more interesting from a physical point of view since
they support Stein structures (see eg [19]). There is a Taubes-type theorem for them
based on the work of De Michelis and Freedman [7], and with more generality in [34],
implying the existence of uncountably many small exotica. By means of a cardinality
argument, there should exist small exotica that are not smoothly periodic, but it is
difficult to tell whether or not a given small exotic R4 is smoothly periodic. Therefore
it seems possible to prove a version of Lemma 2.16 for certain families of small exotica.
Unfortunately, there is no known “Taylor index” invariant and therefore the first part of
our arguments, which shows that the leaf must be a proper leaf, fails for small exotica,
although it works for punctured simply connected 4–manifolds obtained by removing
finitely many points from closed manifolds not homeomorphic to S4 , since for these
manifolds the argument is purely topological.

It is also worth noting that if the smooth 4–dimensional Poincaré conjecture is false
then it is easy to produce exotic R4’s which are leaves of a transversely analytic (in
particular C 2 ) foliation. Consider S4 �S1 with the product foliation, where S4 has
an exotic smooth structure, and insert a Reeb component along a transverse curve, for
example f�g�S1 . This can easily be done so as to preserve the transverse analyticity.
The leaves would be exotic R4’s with a standard smooth structure at the end.

Finally we include a last remark. Recent work of J Álvarez López and R Barral Lijó [26]
states that every Riemannian manifold with bounded geometry can be realized iso-
metrically as a leaf in a compact foliated space. It is known [20] that every smooth
manifold supports such a geometry, so it follows as a corollary that every smooth
manifold is diffeomorphic to a leaf in a compact foliated space. In particular this holds
for any exotic R4 . However the transverse topology of this foliated space would in
general be far from being a manifold. Anyway, this gives us some hope of finding an
explicit description of exotic structures by using finite data: the tangential change of
coordinates of a finite foliated atlas.
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