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Floer homology and covering spaces

TYE LIDMAN

CIPRIAN MANOLESCU

We prove a Smith-type inequality for regular covering spaces in monopole Floer
homology. Using the monopole Floer/Heegaard Floer correspondence, we deduce
that if a 3–manifold Y admits a pn –sheeted regular cover that is a Z=pZ–L–space
(for p prime), then Y is a Z=pZ–L–space. Further, we obtain constraints on
surgeries on a knot being regular covers over other surgeries on the same knot, and
over surgeries on other knots.

57R58; 57M10, 57M60

1 Introduction

Monopole Floer homology (see Kronheimer and Mrowka [20]) and Heegaard Floer
homology (see Ozsváth and Szabó [39; 38]) are two leading theories used to study three-
dimensional manifolds. Recently, the two theories have been shown to be isomorphic,
by work of Kutluhan, Lee and Taubes [22; 23; 24; 25; 26] and of Colin, Ghiggini and
Honda [8; 9; 10] and Taubes [48; 49; 50; 51; 52]. Although Floer homologies have found
many applications, their interaction with many classical topological constructions is still
not fully understood. The purpose of the present paper is to study their behavior with
respect to regular coverings. Coverings play a fundamental role in three-dimensional
topology, particularly in view of the recent proof of the virtually fibered conjecture; see
Wise [53] and Agol [1]. Although our results are limited to covers between rational
homology spheres, we expect that some of the techniques will extend to more general
covers between three-manifolds.

Our model is the following well-known inequality, due to P Smith [47]; see also
Bredon [7] and Floyd [13]. Suppose that a group G of order pn (where p is prime) acts
on a compact topological space X, with H�.X IZ=pZ/ finite-dimensional. Let X G

denote the fixed-point set. The mod p Betti numbers of X and X G are then related
by

(1)
X

i

dim Hi.X
G
IZ=pZ/�

X
i

dim Hi.X IZ=pZ/:
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Seidel and I Smith [46] proved that an analogue of (1) holds for Lagrangian Floer homol-
ogy, under certain conditions. Specifically, they only considered the case G D Z=2Z,
and assumed that the Lagrangians admit a stable normal trivialization. Hendricks [16]
used their result in the context of Heegaard Floer theory to show that the knot Floer
homology of a knot K � S3 has rank at most as large as the knot Floer homology
of K inside the double branched cover †.K/.

Another natural setting in which one can hope to apply the Seidel–Smith inequality is
the Heegaard Floer homology of covers. If zY !Y is a covering of closed 3–manifolds,
one can obtain a Heegaard diagram for zY from a Heegaard diagram for Y ; see the work
of Lee and Lipshitz [27]. If zY ! Y is a double cover and we take suitable symmetric
products of the Heegaard surfaces, we end up almost in the setting of Seidel and
Smith. However, a stable normal trivialization does not exist for the Lagrangians under
consideration, and this approach runs into difficulties. An alternative approach would be
to use monopole Floer homology, as defined by Kronheimer and Mrowka [20], instead
of Heegaard Floer homology. Difficult issues related to equivariant transversality arise
in this setting as well.

Our strategy is to work with another version of monopole Floer homology. In [33],
the second author defined an invariant of rational homology spheres, which takes the
form of an equivariant suspension spectrum. Specifically, given a rational homology
sphere Y equipped with a Spinc structure s, one can associate to it an S1 –equivariant
spectrum SWF.Y; s/. The construction uses finite-dimensional approximation of the
Seiberg–Witten equations, and skirts transversality issues. This makes it possible to
prove the following:

Theorem 1.1 Suppose that zY is a rational homology sphere, Y is orientable and
� W zY ! Y is a pn –sheeted regular covering for p prime. Let s be a Spinc structure
on Y . Then

(2)
X

i

dim zHi.SWF.Y; s/IZ=pZ/�
X

i

dim zHi.SWF. zY ; ��s/IZ=pZ/:

Observe that, under the assumptions of the theorem, Y must be a rational homol-
ogy sphere as well. Indeed, if H 1.Y IZ/ ¤ 0 then there would exist a surjective
homomorphism �1.Y /! Z. Since �1. zY / � �1.Y / is a subgroup of finite index,
the restriction of that homomorphism to �1. zY / would be nontrivial, which would
contradict b1. zY /D 0.
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The proof of Theorem 1.1 is not difficult. The Floer spectrum SWF is constructed
from Conley indices in the finite-dimensional approximations, and (2) follows from an
application of the classical Smith inequality (1) to these Conley indices.

Theorem 1.1 becomes powerful in conjunction with our work from a previous paper [29].
There, we proved that the monopole Floer homology of Kronheimer and Mrowka can
be recovered from SWF.Y; s/. Specifically, if Y is a rational homology sphere with a
Spinc structure s, we showed that there are isomorphisms

(3) zHM�.Y; s/Š zH S1

� .SWF.Y; s//; eHM�.Y; s/Š zH�.SWF.Y; s//:

Here, zHM is the “to” version of monopole Floer homology defined in Kronheimer and
Mrowka [20], eHM is the homology of the mapping cone of U on the monopole Floer
complex zCM (see Lee [28, Section 5.3] and Bloom [3, Section 8]), and zH S1

� denotes
reduced equivariant (Borel) homology.

Thus, from Theorem 1.1 we obtain the following inequality in monopole Floer homol-
ogy:

Corollary 1.2 Under the assumptions of Theorem 1.1, we have

(4) dim eHM.Y; sIZ=pZ/� dim eHM. zY ; ��sIZ=pZ/:

Furthermore, by applying the work of Kutluhan, Lee and Taubes, Colin, Ghiggini
and Honda, and Taubes on the monopole Floer/Heegaard Floer equivalence, we can
rephrase Corollary 1.2 in terms of Heegaard Floer theory. Their results say that

(5) zHM.Y; s/Š HFC� .Y; s/; eHM.Y; s/ŠbHF�.Y; s/;

where HFC and bHF are two versions of Heegaard Floer homology from Ozsváth and
Szabó [39]. Thus, Corollary 1.2 turns into an inequality in Heegaard Floer homology.

Corollary 1.3 Under the assumptions of Theorem 1.1, we have

(6) dimbHF.Y; sIZ=pZ/� dimbHF. zY ; ��sIZ=pZ/:

One can adapt these arguments to obtain a similar result for HFred , the reduced version
of Heegaard Floer homology defined in [39]:

Theorem 1.4 Under the assumptions of Theorem 1.1, we have the inequality

dim HFred.Y; sIZ=pZ/� dim HFred. zY ; �
�sIZ=pZ/:
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In [37], Ozsváth and Szabó defined a Z=pZ–L–space to be a rational homology
sphere such that bHF.Y IZ=pZ/ has dimension jH1.Y IZ/j over Z=pZ (for p prime).
Equivalently, bHF.Y; sIZ=pZ/ should be one-dimensional for all Spinc structures s.
In terms of HFred , this means that HFred.Y; sIZ=pZ/D 0 for all s. Inequality (6) (or,
alternatively, Theorem 1.4) has the following immediate consequence:

Corollary 1.5 Suppose that � W zY !Y is a regular pn –sheeted covering of orientable
3–manifolds for p prime. Then, if zY is a Z=pZ–L–space, so is Y .

The Z=pZ–L–spaces are of interest because of various geometric properties. For
example, a Z=pZ–L–space Y cannot support coorientable taut foliations, and no
contact structure on Y admits a symplectic filling with bC

2
> 0; see Ozsváth and Szabó

[37, Proof of Theorem 1.4].

A more natural notion is that of an L–space (see Ozsváth and Szabó [40]), which is
defined to be a rational homology sphere Y with the property that bHF.Y; s/ is free
abelian of rank jH1.Y IZ/j. An L–space is a Z=pZ–L–space for all p . Examples
of L–spaces include all elliptic manifolds [40, Proposition 2.3], all double branched
covers of S3 over quasialternating links (see Ozsváth and Szabó [41]), and many others.
In the context of monopole Floer homology, L–spaces were studied in Kronheimer,
Mrowka, Ozsváth and Szabó [21].

Corollary 1.5 has the following implication with regard to L–spaces:

Corollary 1.6 Suppose that � W zY !Y is a regular covering of orientable 3–manifolds
such that zY is an L–space and the group of deck transformations is solvable. Further,
suppose that for any intermediate cover Y 0 (ie such that there exist possibly trivial
covers zY ! Y 0 and Y 0 ! Y ), the group bHF.Y 0/ is torsion-free. Then Y is an
L–space.

The torsion-free assumption in Corollary 1.6 is not unreasonable. In fact, there are no
known examples of rational homology spheres with bHF containing torsion. (For the
first examples of Z–torsion in Heegaard Floer homology, see Jabuka and Mark [19].
Those examples have b1>0.) Potentially, the notions of L–space and Z=pZ–L–space
are the same.

Ozsváth and Szabó asked whether, among prime, closed, connected 3–manifolds,
L–spaces are exactly those that admit no coorientable taut foliations. In a similar
vein, Boyer, Gordon and Watson [5] conjectured that an irreducible rational homology
3–sphere is an L–space if and only if its fundamental group is not left-orderable. It
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is worth noting that both of these potential alternate characterizations of L–spaces
behave well under taking covers. Indeed, suppose that zY ! Y is a covering between
compact 3–manifolds. If Y has a coorientable taut foliation, then so does zY . Also,
if �1.Y / admits a left-ordering, then so does its subgroup �1. zY /. In view of these
observations, the following question was raised in [5]:

Question 1.7 (Boyer, Gordon and Watson [5]) If � W zY ! Y is a covering map, Y is
orientable and zY is an L–space, does Y have to be an L–space?

Our Corollary 1.6 can be viewed as a partial answer to Question 1.7. More evidence
for an affirmative answer to Question 1.7 comes from manifolds with Sol geometry or
with Seifert geometry, or more generally graph manifolds. For Seifert fibrations, the
equivalence between L–spaces, non-left-orderable fundamental groups and the absence
of coorientable taut foliations has already been established; see Boyer, Gordon and
Watson [5], Boyer, Rolfsen and Wiest [6], Lisca and Stipsicz [32] and Peters [44]. This
implies that the answer to Question 1.7 is “yes”, provided that Y has Seifert geometry.
If one works with Z=2Z–coefficients, the same holds for Sol geometry [6; 5] and
graph manifolds; see Boyer and Clay [4] and Hanselman, Rasmussen, Rasmussen and
Watson [15].

Note that the covering of the Poincaré homology sphere by S3 is an example of a
regular cover with nonsolvable automorphism group, for which the conclusion of
Corollary 1.6 still holds. By taking intermediate covers corresponding to nonnormal
subgroups of the binary icosahedral group, we can also get examples of irregular covers
between L–spaces.

Remark 1.8 It is worth pointing out that a rational homology sphere that covers an
L–space is not necessarily an L–space. For example, consider the double cover of S2

over itself, branched at two points. By introducing two orbifold points of type 1
4

at
the branch points on the base, and an orbifold point of type 2

3
somewhere else on the

sphere, we obtain a genuine double cover between 2–orbifolds,

S2
�

2
3
; 2

3
; 1

2
; 1

2

�
! S2

�
2
3
; 1

4
; 1

4

�
:

This pulls back to a double cover between Seifert fibered rational homology spheres

M
�
�2I 2

3
; 2

3
; 1

2
; 1

2

�
!M

�
�1I 2

3
; 1

4
; 1

4

�
;

in the notation of Lisca and Stipsicz [32]. By the criterion in [32, Theorem 1.1],
M
�
�1I 2

3
; 1

4
; 1

4

�
is an L–space, whereas M

�
�2I 2

3
; 2

3
; 1

2
; 1

2

�
is not.
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In view of the inequality (6), it is natural to ask the following strengthened version of
Question 1.7:

Question 1.9 If � W zY ! Y is a covering map between closed orientable 3–manifolds
and s is a Spinc structure on Y , do we necessarily have

rkbHF.Y; s/� rkbHF. zY ; ��s/ ?

(Here, rk denotes the rank of an abelian group.)

Some partial results along these lines, for double covers with b1 > 0, were obtained by
Lipshitz and Treumann [31] using methods from bordered Floer homology.

We now turn to some concrete topological applications of our covering inequalities. For
any family of rational homology spheres where we can obtain a good understanding of
their monopole or Heegaard Floer homologies, we can look for obstructions to covering.
For example, we have:

Corollary 1.10 Let K be a hyperbolic alternating knot and let L be any quasialter-
nating link. Then the double branched cover †.L/ is not an rn –sheeted regular cover
of S3

p=q
.K/ for any prime r .

Proof By Ozsváth and Szabó [40], S3
p=q

.K/ is not a Z=rZ–L–space for any r . If L

is a quasialternating link, then as discussed above, †.L/ is an L–space; see Ozsváth
and Szabó [41]. The result now follows from Corollary 1.5.

Remark 1.11 It is interesting to compare Corollary 1.10 to the case where K is a
nonhyperbolic alternating knot, ie K D T .2; 2nC 1/. Then there are infinitely many
lens space surgeries (namely those of the form p=q with j.4nC 2/q � pj D 1; see
Moser [34]). Any such lens space regularly covers infinitely many other lens spaces; in
fact, we can find a cover of this form with any finite cyclic deck transformation group.
Notice that lens spaces are branched double covers of two-bridge links with nonzero
determinant, and such two-bridge links are quasialternating by Ozsváth and Szabó [41].

Let us focus further on manifolds obtained by Dehn surgery on knots in S3 . The
Heegaard Floer homology of surgeries on knots can be computed in terms of the knot
Floer complex; see Ozsváth and Szabó [42; 43]. This yields a rank inequality between
the reduced Heegaard Floer homologies of different surgeries. Using Theorem 1.4, we
obtain:
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Theorem 1.12 Let K be a nontrivial knot in S3 and let p , q , p0 and q0 be positive
integers. If p=q � 1 and dq=pe < bq0=p0c, then S3

p=q
.K/ cannot be an rn –sheeted

regular cover of S3
p0=q0

.K/ for any prime r .

While Theorem 1.12 can be considerably strengthened, we work with it in its current
incarnation to keep both the statement and proof simple.

Remark 1.13 The condition that K be nontrivial is clearly necessary, as, for all
nonzero q 2 Z and p0=q0 2Q, the surgery S3

1=q
.U /D S3 is a p–fold regular cyclic

cover of S3
p0=q0

.U /DL.p0; q0/.

Remark 1.14 If K is the right-handed trefoil, then there are infinitely many pairs
of surgeries for which one regularly covers the other with a prime-power number of
sheets. Indeed, p=q–surgery on K gives the lens space L.p; 4q/ when p D 6q˙ 1;
see Moser [34, Proposition 3.2]. Let rn be a prime power of the form 6k C 1 for
a positive integer k . Then S3

.6q˙1/=q
.K/D L.6q˙ 1; 4q/ is a regular rn –cover of

S3
.6q0˙1/=q0

.K/DL.6q0˙ 1; 4q0/ for q0 D qC k.6q˙ 1/. Note that these examples
have surgery coefficients greater than 1, unlike in the statement of Theorem 1.12.
Similar examples can be found for other torus knots.

The results and examples above raise the following question:

Question 1.15 For what knots K � S3 do there exist pairs of surgery coefficients
p=q ¤ p0=q0 such that S3

p=q
.K/ is a cover of S3

p0=q0
.K/?

Surgeries of this form can be called virtually cosmetic. Thus, Question 1.15 general-
izes the problem of characterizing all cosmetic surgeries, ie those with S3

p=q
.K/ Š

S3
p0=q0

.K/. This is related to the cosmetic surgery conjecture, which asks if a nontrivial
knot can have orientation-preserving homeomorphic surgeries; see Gordon [14, Con-
jecture 6.1]. For recent progress using similar techniques to those used here, see for
example Ni and Wu [36] and Ozsváth and Szabó [43].

In a different direction, we can also obtain obstructions to covering between surgeries
on different knots. A simple class of examples comes from L–space knots, which are
knots for which some positive surgery is an L–space. We have the analogous notion
of Z=rZ–L–space knots.
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Theorem 1.16 Let K and K0 be nontrivial Z=rZ–L–space knots and p , p0, q

and q0 positive integers satisfying

.2g.K/� 1/
l

q

p

m
< .2g.K0/� 1/

�
q

p0

0
�
I

then S3
p=q

.K/ is not an rn –sheeted regular covering of S3
p0=q0

.K0/ for any prime r .

This paper is organized as follows. In Section 2 we outline the construction of the
Seiberg–Witten Floer spectrum from Manolescu [33]. In Section 3 we discuss covering
spaces and prove Theorems 1.1 and 1.4, as well as their corollaries. In Section 4 we
recall the knot surgery formula from Ozsváth and Szabó [43], and use it to deduce
Theorems 1.12 and 1.16.
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2 The Seiberg–Witten Floer spectrum

We review here the construction of the Seiberg–Witten Floer spectrum SWF.Y; s/,
following [33]. We mostly use the notational conventions from [29].

2.1 The Seiberg–Witten equations in global Coulomb gauge

We will be studying the Seiberg–Witten equations on a tuple .Y;g; s;S/, where Y is a
rational homology three-sphere, g is a metric on Y , s is a Spinc structure on Y and
S is a spinor bundle for s. We choose a flat Spinc connection A0 on S which gives
an affine identification of �1.Y I iR/ with Spinc connections on S .

Consider the configuration space

C.Y; s/D�1.Y I iR/˚�.S/:

The gauge group G D G.Y / WD C1.Y;S1/ acts on C.Y; s/ by

u � .a; �/D .a�u�1du;u ��/:
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Since b1.Y /D 0, each u 2 G can be written as ef for some f W Y ! iR. We define
the normalized gauge group Gı to consist of those u D ef 2 G for some f withR

Y f D 0.

Let �W T Y ˝ C! End.S/ be the Clifford multiplication. For � 2 �.S/ we will write
.���/0 for the trace-free part of ��� 2 �.End.S//, and let

�.�; �/D ��1.���/0 2 �.iT Y /Š �.iT �Y /D�1.Y I iR/:

Further, for a2�1.Y I iR/, we will use DaW �.S/!�.S/ to denote the Dirac operator
corresponding to the connection A0C a, and D for the case of aD 0.

Inside of C.Y; s/ we have a global Coulomb slice to the action of Gı :

W D ker d�˚�.S/� C.Y; s/;

where d� is meant to act on imaginary 1–forms.

For any integer k , we let Wk denote the L2
k

Sobolev completion of W . For k � 5,
we consider the Seiberg–Witten map

l C cW Wk !Wk�1;

where

l.a; �/D .�da;D�/;(7)

c.a; �/D .� ı �.�; �/; �.a/�C �.�/�/;(8)

where � denotes the L2 orthogonal projection to ker d� and �.�/W Y ! iR is charac-
terized by d�.�/D .1��/ı�.�; �/ and

R
Y �.�/D 0. Note that l is a linear Fredholm

operator and c is compact. The Seiberg–Witten map is the gradient in an appropriate
metric of the Chern–Simons–Dirac functional, L, defined by

L.a; �/D 1

2

�Z
Y

h�;Da�i �

Z
Y

a^ da

�
:

Let I �R be an interval. If a map 
 W I !Wk satisfies

d

dt

 .t/D�.l C c/.
 .t//;

we say that 
 is a Seiberg–Witten trajectory (in Coulomb gauge). Such a trajectory

 D .a.t/; �.t//W R! Wk is said to be of finite type if L.
 .t// and k�.t/kC 0 are
bounded in t .
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2.2 Finite-dimensional approximation

For � > 1, let us denote by W � the finite-dimensional subspace of W spanned by
the eigenvectors of l with eigenvalues in the interval .��; �/. The L2 orthogonal
projection from W to W � will be denoted by zp� . We modify this to make it smooth
in �, by defining

(9) p� D

Z 1

0

ˇ.�/ zp���
��C� d�;

where ˇ is a smooth, nonnegative function that is nonzero exactly on .0; 1/ and such
that

R
R ˇ.�/ d� D 1. Observe that the image of p� is the subspace W � .

On W � , we consider the flow equation

(10) d

dt

 .t/D�.l Cp�c/.
 .t//:

We refer to solutions of (10) as approximate Seiberg–Witten trajectories.

Fix a natural number k � 5. There exists a constant R> 0 such that all Seiberg–Witten
trajectories 
 W R!W of finite type are contained in B.R/, the ball of radius R in Wk .
The following is a corresponding compactness result for approximate Seiberg–Witten
trajectories:

Proposition 2.1 [33, Proposition 3] For any � sufficiently large (compared to R), if

 W R!W � is a trajectory of the gradient flow .l Cp�c/ and 
 .t/ is in B.2R/ for
all t , then in fact 
 .t/ is contained in B.R/.

2.3 The Conley index and the Seiberg–Witten Floer spectrum

The Seiberg–Witten Floer spectrum will be defined by means of the Conley index, an
important construction from dynamical systems [11]. We briefly recall the relevant
definitions.

Let f�tg be a one-parameter family of diffeomorphisms of a smooth manifold X. For
a subset A�X, define

Inv.A; �/D fx 2A j �t .x/ 2A for all t 2Rg:

Note that if A is compact, so is Inv.A; �/. We say that a compact set S � X is an
isolated invariant set if there is a compact set A such that S D Inv.A; �/ � int.A/.
We call A an isolating neighborhood for S . The Conley index of an isolated invariant
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set is roughly a pair consisting of an isolating neighborhood and the set of points where
the flow exits the isolating neighborhood. We make this precise.

Definition 2.2 A pair .N;L/ with N and L compact subsets of X is called an index
pair for an isolated invariant set S if:

(a) Inv.N �L; �/DS � int.N �L/.

(b) For all x 2 N, if �t .x/ 62 N for some t > 0, then there exists 0 � � < t with
�� .x/ 2L, and we call L an exit set for N .

(c) For x 2 L and t > 0, if �s.x/ 2 N for all 0 � s � t , then �s.x/ 2 L for
0� s � t and we say L is positively invariant in N .

Conley proved that any isolated invariant set admits an index pair [11]. We define
the Conley index of an isolated invariant set S to be the pointed space .N=L; ŒL�/
for an index pair .N;L/. This is denoted by I.�;S /, and its pointed homotopy is
independent of the choice of index pair (although it depends heavily on the choice
of S ). If � is G–equivariant for a compact Lie group G acting on X, then a G–
invariant index pair can be constructed [12; 45], thus yielding a G –equivariant Conley
index, denoted IG.S /.

With this in mind, we are ready to define the Seiberg–Witten Floer spectrum. We fix
k , R and sufficiently large � such that Proposition 2.1 applies. We consider the vector
field u�.l Cp�c/ on W � , where u� is a smooth, S1 –invariant, cut-off function on
W � that vanishes outside of B.3R/. This generates the flow �� that we will work
with. Denote by S� the union of all trajectories of �� inside B.R/. Recall from
Proposition 2.1 that these are the same as the trajectories that stay in B.2R/. This
implies that S� is an isolated invariant set.

Since everything is S1 –invariant, we can construct the equivariant Conley index
I� D IS1.��;S�/. We must desuspend appropriately to make the stable homotopy
type independent of �:

SWF.Y; s;g/D†�W .��;0/

I�;

where W .��;0/ denotes the direct sum of the eigenspaces of l with eigenvalues in
the interval .��; 0/. As we vary the metric g , the spectrum SWF.Y; s;g/ varies
by suspending (or desuspending) with copies of the vector space C . In [33], this
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indeterminacy is fixed by introducing a quantity n.Y; s;g/ 2Q (a linear combination
of eta invariants), and setting

SWF.Y; s/D†�n.Y;s;g/C SWF.Y; s;g/;

where the desuspension by rational numbers is defined formally. We have:

Theorem 2.3 [33, Theorem 1] The S1 –equivariant stable homotopy type of the
spectrum SWF.Y; s/ is an invariant of the pair .Y; s/.

3 Covering spaces

In this section we prove Theorems 1.1 and 1.4, as well as Corollaries 1.5 and 1.6.

Suppose we are under the hypotheses of Theorem 1.1, with Y and zY being rational
homology spheres, and � W zY ! Y a pn –sheeted regular covering for p prime. Let s
be a Spinc structure on Y .

We equip Y with a Riemannian metric g . We use zg D ��g as our choice of metric
on zY . Furthermore, we pull back the spinor bundle S from Y to zY . We fix a flat
Spinc connection A0 on Y and consider its pullback zA0 on zY . In general, we will
decorate an object with a tilde to mean the associated object for zY . Let G denote the
deck transformation group on zY . The main idea is that we can follow the constructions
of the Seiberg–Witten Floer spectrum for zY such that it is a G –spectrum and, at each
step, the fixed points correspond exactly to the pullbacks of the corresponding objects
on Y . We can then use this to compare the Seiberg–Witten Floer spectra of zY and Y .

Let �W denote the Coulomb slice of the configuration space on . zY ; ��s/. The group G

acts on �W by pullback. Furthermore, since the flat connection A0 on Y pulls back
to the flat connection zA0 on zY , we have that �� gives an inclusion of W into �W
such that W D �W G ; being in Coulomb gauge is also preserved under pullbacks. We
do point out that �� does not induce an isometric embedding from W into �W . This
is because if .a; �/ has L2 norm 1 in W , then .��.a/; ��.�// has L2 norm jGj
in �W . In particular, this shows that BW .R/, the ball in W of radius R, is precisely
B �W .jGj �R/G. We then extend this to identify the Sobolev completion Wk with �W G

k
.

Again, pullback dilates the L2
k

norms by jGj.

The linear Fredholm map Ql on �W is G–equivariant. The map Ql can have more
eigenvalues than l , but in any case any eigenvector of l pulls back to an eigenvector
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of Ql for the same eigenvalue. Thus, for all �, we have that W � D . �W �/G. We also
have that zc is G–equivariant. In particular, the pullback of a finite-type Seiberg–
Witten trajectory on Y in Wk gives a G –invariant finite-type Seiberg–Witten trajectory
on zY in �Wk . Similarly, the trajectories of l C p�c on Y pull back to approximate
Seiberg–Witten trajectories on zY .

Recall that for sufficiently large radius RY , all finite-type Seiberg–Witten trajectories
on Y are inside of BY .RY /. By choosing each radius large enough, we can arrange
that RY DR zY =jGj. In particular, we have that

. �W �
\B zY .2R zY //

G
DW �

\BY .2RY /:

We choose � large enough such that Proposition 2.1 applies to each of RY and R zY on
the respective manifold. To obtain a well-defined flow on W � , we multiply lCp�c by
a bump function zu� on B zY .3R zY / which is radially symmetric in the L2

k
norm. Note

that the L2
k

norm on �Wk is G –invariant by construction, and thus zu� is G –invariant.
We induce a corresponding bump function on BY .3RY / by restriction. The truncated
gradients induce the associated flows �� and z�� on W � and �W � , respectively.

Recall that the invariant set that we use for the Conley index on W � is S � , the union
of all finite-type trajectories of �� in W � \ B.2RY /. On �W � we have a similar
isolated invariant set zS � . Clearly, . zS �/G DS � .

The flow z�� is not only S1 –equivariant, but also equivariant with respect to the action
of G. Thus, we can choose an .S1�G/–equivariant index pair .N;L/ for zS � . The
fixed-point sets .N G ;LG/ of the G –action form an S1 –invariant index pair for S � .
This implies that

(11) IS1�G. zS
�; z��/G ' IS1.S �; ��/:

To summarize, we can find based, compact S1 –spaces

X D IS1.S �; ��/ and zX D IS1�G. zS
�; z��/

such that SWF.Y; s/ and SWF. zY ; ��s/ are suitable (de)suspensions of X and zX,
respectively; and moreover, zX comes with an action of the group G (commuting with
the S1 –action) such that the G –fixed-point set is X.

Proof of Theorem 1.1 This follows by applying the classical Smith inequality (1) to
the spaces X and zX.
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Proof of Theorem 1.4 All homologies below will be taken with coefficients in Z=pZ.

The variant HFred of Heegaard Floer homology [39] can be described as the quotient
HF�=U N HF� for N � 0. Using the Floer spectrum/monopole Floer/Heegaard Floer
equivalences from (3) and (5), we see that HFred.Y; s/ is isomorphic (ignoring absolute
gradings) to

zH S1

� .X /=.U
N
� zH S1

� .X //; N � 0:

Consider the long exact sequence in Borel homology associated to the pair

.X ^S.CN /C;X ^D.CN /C/:

Observe that:

� The space X ^S.CN /C has free S1 –action away from the basepoint, so its
(reduced) Borel homology is isomorphic to the ordinary (reduced) homology of
the quotient, zH�.X ^S1 S.CN /C/.

� The space X ^D.CN /C is S1 –equivalent to X.

� Smashing with .D.CN /C=S.CN /C/� .CN /C preserves Borel homology (up
to a degree shift by 2N ).

Thus, we can write the long exact sequence as

� � � ! zH�.X ^S1 S.CN /C/! zH S1

� .X /!
zH S1

��2N .X /! � � � :

The map zH S1

� .X /!
zH S1

��2N
.X / in this sequence is induced from the composition

X ,!X ^D.CN /C!X ^ .D.CN /C=S.C
N /C/!X ^ .CN /C Š†nCX:

Hence, on homology, the map is given by multiplication with the equivariant Euler
class of nC , which is U N 2H 2N

S1 .pt/.

For N large, multiplication by U N on zH S1

� .X / has kernel of dimension

N C dim HFred.Y; s/

and cokernel isomorphic to HFred.Y; s/. Therefore,

(12) dim zH�.X ^S1 S.CN /C/DN C 2 dim HFred.Y; s/:

Similar arguments apply to zY and zX, giving

(13) dim zH�. zX ^S1 S.CN /C/DN C 2 dim HFred. zY ; s/:
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Note that the G–fixed-point set of zX ^ S.CN /C is X ^ S.CN /C . Applying the
classical Smith inequality to these spaces, together with (12) and (13), yields the
desired inequality between the dimensions of HFred for Y and zY .

Proof of Corollary 1.5 This follows from Theorem 1.4, using the characterization of
Z=pZ–L–spaces in terms of the vanishing of HFred with Z=pZ coefficients.

Proof of Corollary 1.6 This is immediate from Corollary 1.5 and the universal
coefficient theorem.

Remark 3.1 Apart from Smith-type inequalities, the use of the Seiberg–Witten Floer
spectrum allows us to define equivariant Seiberg–Witten Floer homologies for cov-
ering spaces. Indeed, given a regular cover � W zY ! Y between rational homology
spheres, with any deck transformation group G and equipped with a G –invariant Spinc

structure s, we set

SWFHG
� .
zY ; s/D zH G

� .SWF. zY ; s// and SWFHG�S1

� . zY ; s/D zH S1�G
� .SWF. zY ; s//:

These invariants are modules over the rings

H�.BG/ and H�.B.G �S1//DH�.BG/ŒU �;

respectively.

4 Applications

It is clear that when combined with the following, Corollary 1.3 proves Theorem 1.12.

Proposition 4.1 Let K be a nontrivial knot in S3 and let p , q , p0 and q0 be positive,
relatively prime integers. If p=q � 1 and dq=pe< bq0=p0c, then for all primes r and
for all s 2 Spinc.S3

p=q
.K// and s0 2 Spinc.S3

p0=q0
.K//, we have

(14) dimbHF.S3
p=q.K/; sIZ=rZ/ < dimbHF.S3

p0=q0.K/; s
0
IZ=rZ/:

We will establish the desired inequality by applying the formula of Jabuka [18] (based
on that of Ozsváth and Szabó [43]) for the Heegaard Floer homology of p=q–surgery
on a knot K in S3 . We first recall his notation. The formula will be expressed in terms
of the following objects: H�. yAs/, defined in [42], which represent the Heegaard Floer
homology of large surgeries on K in certain Spinc structures, and �.K/, a Z–valued
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invariant defined in [43]. While Jabuka’s results are stated with Z–coefficients, the
arguments also work for Z=rZ–coefficients for any prime r ; we will omit the coef-
ficients from the notation. We do not need the definitions of either yAs or � , just the
following three facts:

(i) Either �.K/ or �.�K/ is nonnegative (where �K denotes the mirror of K ).

(ii) dim H�. yAs/� 1 for all s .

(iii) dim H�. yAs/D 1 for all s implies that � > 0 for any nontrivial knot.

For Œi � 2 Z=pZ and s 2 Z, let �p=q

Œi�
.s/D #fn 2 Z j b.i Cp � n/=qc D sg. Here, we

also allow p < 0. It is straightforward to verify that

(15)
jˇ̌̌

q

p

ˇ̌̌k
� �

p=q

Œi�
.s/�

lˇ̌̌
q

p

ˇ̌̌m
:

Further, let
Sp=q

Œi�
D

X
s2Z

�
p=q

Œi�
.s/.dim H�. yAs/� 1/:

Theorem 4.2 (Jabuka [18]) Fix relatively prime integers p and q with q > 0 and a
knot K in S3 . After possibly mirroring K , we can arrange that � D �.K/� 0 and if
� > 0,

dimbHF.S3
p=q.K/; Œi �/D

8̂<̂
:

1CSp=q

Œi�
if 0< .2� � 1/q � p;

�1C 2
P
jsj<� �

p=q

Œi�
.s/CSp=q

Œi�
if 0< p � .2� � 1/q;

1C 2
P
jsj<� �

p=q

Œi�
.s/CSp=q

Œi�
if p < 0;

while if � D 0,
dimbHF.S3

p=q.K/; Œi �/D 1CSp=q

Œi�
:

Proof of Proposition 4.1 To prove the proposition, it suffices to mirror the knot K

so as to be in the setting of Theorem 4.2, provided that we additionally prove the
inequality

(16) dimbHF.S3
�p=q.K/; sIZ=rZ/ < dimbHF.S3

�p0=q0.K/; s
0
IZ=rZ/:

From now on, we assume the formulas in Theorem 4.2 hold for the knot K .

We begin with the following observation. If dq=pe< bq0=p0c, we have that �p=q

Œi�
.s/ <

�
p0=q0

Œi0�
.s/ and ��p=q

Œi�
.s/ < �

�p0=q0

Œi0�
.s/ for all Œi �, Œi 0� and s by (15).

We first consider the case that � D 0. As discussed, this implies that dim H�. yAs/ > 1

for some s . Since �p=q

Œi�
.s/<�

p0=q0

Œi0�
.s/ for all Œi �, Œi 0� and s , we see that Sp=q

Œi�
<Sp0=q0

Œi0�
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for all Œi � and Œi 0�. Theorem 4.2 now establishes (14). The same argument applies to
show that S�p=q

Œi�
< S�p0=q0

Œi0�
, and hence we obtain (16).

Next, consider the case that � > 0. We first analyze the positive surgeries .p=q;p0=q0/.
Since �p=q

Œi�
.s/ < �

p0=q0

Œi0�
.s/ for all Œi �, Œi 0� and s , we have that Sp=q

Œi�
� Sp0=q0

Œi0�
for all

Œi � and Œi 0�. Observe that we cannot have .2� � 1/q0 � p0 , since bq0=p0c> dq=pe by
assumption, and hence bq0=p0c � 2. Therefore, by Theorem 4.2, in order to prove (14),
it suffices to prove the inequalities

1� �1C 2
X
jsj<�

�
p=q

Œi�
.s/ < �1C 2

X
jsj<�

�
p0=q0

Œi0�
.s/

for any Œi � and Œi 0�. These follow from (15), since p=q � 1 and � > 0.

Now we consider the case of negative surgeries when � > 0. As before, we have
that S�p=q

Œi�
� S�p0=q0

Œi0�
for all Œi � and Œi 0�. By Theorem 4.2 it suffices to establish the

inequality
1C 2

X
jsj<�

�
�p=q

Œi�
.s/ < 1C 2

X
jsj<�

�
�p0=q0

Œi0�
.s/

for any Œi � and Œi 0�, which again follows from (15), since p=q � 1 and � > 0.

Remark 4.3 If K is hyperbolic, a variant of Theorem 1.12 can be obtained for generic
p , q , p0 and q0 via classical methods as follows. The following argument was shown
to us by John Luecke. First, fix p=q 2 Q (not necessarily between 0 and 1). For
generic p0=q0, we will have that S3

p0=q0
.K/ is hyperbolic by Thurston’s hyperbolic

Dehn surgery theorem. Thus, if S3
p=q

.K/ is not hyperbolic, then it cannot cover
S3

p0=q0
when the latter is hyperbolic. If instead, S3

p=q
.K/ is hyperbolic, then we have

vol.S3
p=q

.K// < vol.K/. Further, for fixed � > 0, for p0 and q0 large enough, we
have vol.S3

p0=q0
.K//� vol.K/� � ; see [35, Theorem 1A] for explicit bounds in terms

of p0 and q0. In particular, we have vol.S3
p=q

.K// < vol.S3
p0=q0

.K//. Recall that
for hyperbolic manifolds, if zY covers Y , then vol. zY /� vol.Y /. Thus, we have that
S3

p=q
.K/ cannot cover S3

p0=q0
.K/.

Alternatively, we could fix p0=q0 and allow p=q to vary. Fix ı > 0. For generic p=q ,
the length of the shortest geodesic in S3

p=q
.K/ is at most ı [35, Proposition 4.3].

We thus choose p=q such that the length of the shortest geodesic in S3
p=q

.K/ is
less than the length of the shortest geodesic in S3

p0=q0
.K/. We see that in this case

S3
p=q

.K/ cannot cover S3
p0=q0

.K/, since if 
 was the shortest geodesic, its projection
to S3

p0=q0
.K/ determines a geodesic in S3

p0=q0
.K/ with the same length. Thus, we
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would have that the length of the shortest geodesic in S3
p0=q0

.K/ is at most that of
S3

p=q
.K/, which is a contradiction.

Note that in either setting, we did not need any assumptions on the type of covering.

Using a similar argument to the one for Theorem 1.12, we can also prove Theorem 1.16.

Proof of Theorem 1.16 If p=q � 2g.K/� 1, then S3
p=q

.K/ is a Z=rZ–L–space
by [17]. Since K is nontrivial, we have

1� 2g.K/� 1D .2g.K/� 1/
l

q

p

m
< .2g.K0/� 1/

�
q

p0

0
�
< .2g.K0/� 1/

q

p0

0

;

and thus p0=q0 < 2g.K0/�1. Therefore, S3
p0=q0

.K0/ is not a Z=rZ–L–space by [21].
The result now follows from Corollary 1.5. Therefore, we now assume that 0< p=q <

2g.K/� 1.

It is well known that for a nontrivial Z=rZ–L–space knot, dim H�. yAs/D 1 for all s .
In this case, � D g.K/ [43, Proposition 9.7]. Therefore, since K and K0 are L–space
knots, we have Sp=q

Œi�
D Sp0=q0

Œi0�
D 0 for both K and K0. Therefore, by Theorem 4.2, to

establish the result it suffices to show thatX
jsj<g.K /

�
p=q

Œi�
.s/ <

X
jsj<g.K 0/

�
p0=q0

Œi0�
.s/:

By our assumptions on p=q , p0=q0, g.K/ and g.K0/, and, by (15), we haveX
jsj<g.K /

�
p=q

Œi�
.s/� .2g.K/�1/

l
q

p

m
< .2g.K0/�1/

�
q

p0

0
�
�

X
jsj<g.K 0/

�
p0=q0

Œi0�
.s/:

We end with another application of the same techniques.

Corollary 4.4 Let K be any alternating or Montesinos knot other than the pretzel
knots ˙P .�2; 3; 2sC1/ for any positive s�3 or a torus knot. Then, for any p0=q0�9,
S3

p0=q0
.P .�2; 3; 7// is not an rn –sheeted regular cover of S3

p=q
.K/ for any p=q 2Q

and prime r .

Proof By [2; 30], the conditions on K guarantee that S3
p=q

.K/ is not a Z=rZ–L–
space-knot.1 On the other hand, S3

p0=q0
.P .�2; 3; 7// is an L–space for p0=q0 � 9.

Now apply Theorem 1.16.

1The arguments in [2] for nonpretzel Montesinos knots work for any coefficients. The arguments
in [30] for pretzel knots are given over Z=2Z , because for one knot, the knot Floer homology needs to be
computed over Z=2Z . However, one can deduce from the calculation using universal coefficients and [40]
that that knot cannot be a Z=rZ–L–space knot for any r .
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Center Publ. 47, Polish Acad. Sci. Inst. Math., Warsaw (1999) 193–217 MR

[46] P Seidel, I Smith, Localization for involutions in Floer cohomology, Geom. Funct.
Anal. 20 (2010) 1464–1501 MR

[47] P A Smith, Transformations of finite period, Ann. of Math. 39 (1938) 127–164 MR

[48] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, I,
Geom. Topol. 14 (2010) 2497–2581 MR

[49] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, II,
Geom. Topol. 14 (2010) 2583–2720 MR

[50] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, III,
Geom. Topol. 14 (2010) 2721–2817 MR

[51] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, IV ,
Geom. Topol. 14 (2010) 2819–2960 MR

Geometry & Topology, Volume 22 (2018)

http://dx.doi.org/10.2140/pjm.1971.38.737
http://msp.org/idx/mr/0383406
http://dx.doi.org/10.1016/0040-9383(85)90004-7
http://msp.org/idx/mr/815482
http://dx.doi.org/10.1515/crelle-2013-0067
http://msp.org/idx/mr/3393360
http://dx.doi.org/10.2140/gt.2004.8.311
http://msp.org/idx/mr/2023281
http://dx.doi.org/10.4007/annals.2004.159.1159
http://dx.doi.org/10.4007/annals.2004.159.1159
http://msp.org/idx/mr/2113020
http://dx.doi.org/10.4007/annals.2004.159.1027
http://dx.doi.org/10.4007/annals.2004.159.1027
http://msp.org/idx/mr/2113019
http://dx.doi.org/10.1016/j.top.2005.05.001
http://msp.org/idx/mr/2168576
http://dx.doi.org/10.1016/j.aim.2004.05.008
http://msp.org/idx/mr/2141852
http://dx.doi.org/10.2140/agt.2008.8.101
http://msp.org/idx/mr/2377279
http://dx.doi.org/10.2140/agt.2011.11.1
http://msp.org/idx/mr/2764036
http://msp.org/idx/arx/0903.4495
http://msp.org/idx/mr/1692371
http://dx.doi.org/10.1007/s00039-010-0099-y
http://msp.org/idx/mr/2739000
http://dx.doi.org/10.2307/1968718
http://msp.org/idx/mr/1503393
http://dx.doi.org/10.2140/gt.2010.14.2497
http://msp.org/idx/mr/2746723
http://dx.doi.org/10.2140/gt.2010.14.2583
http://msp.org/idx/mr/2746724
http://dx.doi.org/10.2140/gt.2010.14.2721
http://msp.org/idx/mr/2746725
http://dx.doi.org/10.2140/gt.2010.14.2819
http://msp.org/idx/mr/2746726


2838 Tye Lidman and Ciprian Manolescu

[52] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, V ,
Geom. Topol. 14 (2010) 2961–3000 MR

[53] D T Wise, The structure of groups with a quasiconvex hierarchy, preprint (2011)
Available at http://www.math.mcgill.ca/wise/papers.html

Department of Mathematics, North Carolina State University
Raleigh, NC, United States

Department of Mathematics, UCLA
Los Angeles, CA, United States

tlid@math.ncsu.edu, cm@math.ucla.edu

Proposed: András I Stipsicz Received: 12 February 2017
Seconded: Peter Ozsváth, Ian Agol Accepted: 5 November 2017

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.2140/gt.2010.14.2961
http://msp.org/idx/mr/2746727
http://www.math.mcgill.ca/wise/papers.html
mailto:tlid@math.ncsu.edu
mailto:cm@math.ucla.edu
http://msp.org
http://msp.org

	1. Introduction
	2. The Seiberg–Witten Floer spectrum
	2.1. The Seiberg–Witten equations in global Coulomb gauge
	2.2. Finite-dimensional approximation
	2.3. The Conley index and the Seiberg–Witten Floer spectrum

	3. Covering spaces
	4. Applications
	References

