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Categorified Young symmetrizers and
stable homology of torus links

MATTHEW HOGANCAMP

We show that the triply graded Khovanov–Rozansky homology of the torus link Tn;k

stabilizes as k!1 . We explicitly compute the stable homology, as a ring, which
proves a conjecture of Gorsky, Oblomkov, Rasmussen and Shende. To accomplish
this, we construct complexes Pn of Soergel bimodules which categorify the Young
symmetrizers corresponding to one-row partitions and show that Pn is a stable limit
of Rouquier complexes. A certain derived endomorphism ring of Pn computes the
aforementioned stable homology of torus links.
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1 Introduction

Over the past several years, there have appeared a number of fascinating conjectures of
E Gorsky, A Negut,, A Oblomkov, J Rasmussen and V Shende [28; 29; 16; 17; 14; 15]
relating certain link invariants with certain Hilbert schemes and rational Cherednik
algebras. Conceptually, these conjectures can be thought of as concrete manifestations
of a deep connection between the known, mathematically rigorous constructions of link
homology and physical approaches to link homology; see Cherednik [6] and Nawata
and Oblomkov [27]. One such conjecture — see Gorsky, Oblomkov, Rasmussen and
Shende [17] — states that Khovanov–Rozansky homology of the .n; k/ torus link Tn;k
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can be computed from the Hilbert scheme of points on the complex curve f .z; w/D 0,
where f .z; w/ WD znCwk . From the definition of Khovanov–Rozansky homology, it
is not at all clear that there should be such a connection.1 Nonetheless, this and many
other conjectures are firmly supported by the experimental evidence.

In this paper, we show that the Khovanov–Rozansky homology HKR.Tn;k/ stabilizes
as k!1, and prove a limiting version of the above quoted conjecture:

Theorem 1.1 The integral triply graded Khovanov–Rozansky homology of the torus
links Tn;k , after an overall shift in the trigrading, approach the following limit as k!1:

HKR.Tn;1/Š ZŒu1; : : : ;un; �1; : : : ; �n�:

This is an isomorphism of triply graded rings, where uk is an even indeterminate of
degree deg.uk/D q2k t2�2k and �k is an odd indeterminate of degree q2k�4at2�2k .

Our conventions for writing degrees is discussed more in Section 1.6. Note that
the �k , being odd variables, are assumed to anticommute and square to zero. The
algebra structure on HKR.Tn;1/ comes from its being identified with a certain derived
endomorphism ring of the categorified Young idempotent Pn , which is discussed below.

To prove this theorem, we adopt the approach of Khovanov [21],2 which constructs triply
graded link homology from Hochschild homology — equivalently, Hochschild coho-
mology — of Soergel bimodules. Below, we let SBimn denote the category of Soergel
bimodules (over Z) associated to the symmetric group Sn . Associated to each n–strand
braid ˇ one has the Rouquier complex F.ˇ/ 2 Ch.SBimn/, which is a chain complex
of Soergel bimodules, well defined up to canonical -omotopy equivalence. Hochschild
cohomology of bimodules gives a functor HHHW K.SBimn/! Z–modZ�Z�Z from the
homotopy category of Soergel bimodules to the category of triply graded abelian groups.
In [21], Khovanov proves that HHH.F.ˇ// is a well-defined invariant of the braid-
closure y̌, up to isomorphism and an overall shift in tridegree. The shift can be fixed
by a normalization.3 The resulting link invariant is isomorphic to Khovanov–Rozansky
homology [23].

1It should be noted that D Maulik [26] has proven the decategorified version of this conjecture, as well
as its generalization to algebraic links. Maulik’s proof uses skein theory techniques which are currently
unavailable in the categorical context.

2For Khovanov–Rozansky homology over the integers, see Krasner [24].
3See our Corollary 3.13.
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Let xD�n�1 � � � �2�1 denote the positive braid lift of the n–cycle .n; n�1; : : : ; 1/, and
let X DF.x/ denote the corresponding Rouquier complex. Note that the closure of xm

is the .n;m/ torus link. Let 1DR denote the trivial Soergel bimodule. Motivated by
work of Rozansky [33], we show that powers X˝k approach a well-defined limit:

Theorem 1.2 There is a family of chain maps ffk W X
˝k ! X˝kC1g1

kD0
whose

homotopy colimit Pn 2 Ch�.SBimn/ satisfies:

(P1) Pn kills Bott–Samelson bimodules.

(P2) Cone.�/ is constructed from Bott–Samelson bimodules, where �W 1DX˝0!Pn

is the structure map associated to homotopy colimits.

Furthermore, the pair .Pn; �/ is uniquely characterized by (P1) and (P2) up to canonical
equivalence: if .P 0n; �

0/ is another pair satisfying (P1) and (P2) then there is a unique
chain map 'W Pn! P 0n up to homotopy such that ' ı �' �0, and this map is a chain
homotopy equivalence.

This theorem is restated and proven in Section 2. Axiom (P1) means that Pn˝Bi '

0 ' Bi ˝ Pn for each Bott–Samelson bimodule B1; : : : ;Bn�1 , while axiom (P2)
means that Cone.�/ is homotopy equivalent to a complex whose chain bimodules
are direct sums of tensor products of the Bi with grading shifts. The axioms ensure
that Pn˝Cone.�/ ' 0 ' Cone.�/˝Pn , which implies that �W 1! Pn becomes a
homotopy equivalence after tensoring on the left or right with Pn . We call a morphism
�W 1! P with this property a unital idempotent. We develop some theory of such
idempotents in a separate note [20]. There is a dual object P_n 2 ChC.SBimn/ which
is supported in nonnegative homological degrees. This complex is equipped with a map
�_W P_n ! 1 which makes P_n into a counital idempotent. The general theory of such
idempotents implies that Pn is a unital algebra in the homotopy category of Soergel
bimodules, while P_n is a coalgebra. We prefer algebras to coalgebras, hence we prefer
Pn to P_n . The two complexes are related by the application of a contravariant duality
functor.

The idempotent complex constructed here categorifies the Young idempotent p.n/ 2Hn

labeled by the 1–row partition .n/, which is the Hecke algebra lift of the Jones–
Wenzl projector. Thus, this theorem lifts previous categorifications of the Jones–Wenzl
projector to the setting of Soergel bimodules. See Section 1.3 for more.
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Given Theorem 1.2, it follows that HHH.Pn/ is a colimit of triply graded homologies of
the .n; k/–torus links up to shifts (see also Corollary 3.15). In Section 3.1 we introduce
the triply graded hom space DHom.C;D/ between complexes of Soergel bimodules,
and we show that HHH.C /ŠDHom.1;C /. This reformulation of HHH will be quite
useful, and is our main reason for preferring Hochschild cohomology over homology.
Indeed, some general arguments — see Hogancamp [20] — show that if �W 1! P is
a unital idempotent in a monoidal category A, then EndA.P / Š HomA.1;P / is a
commutative EndA.1/–algebra. Our main theorem is:

Theorem 1.3 There are isomorphisms of triply graded algebras

HHH.Pn/Š DEnd.Pn/Š ZŒu1; : : : ;un; �1; : : : ; �n�;

where the degrees are deg.uk/D q2k t2�2k and deg.�k/D q2k�4t2�2ka.

Remark 1.4 In particular, the stable triply graded homology of torus links with Z

coefficients has no torsion. In contrast, the stable slN homology is expected to have
p–torsion for all sufficiently large p , depending on N (see Section 2.5 of Gorsky,
Oblomkov and Rasmussen [16]).

1.1 The main idea

Theorem 4.1 says that Pn is acted on by a polynomial ring. We will construct Pn in
such a way that this structure is evident: the action of the variable un represents a
certain periodicity in an expression of Pn in terms of Pn�1 .

To motivate the basic idea, we comment first on the decategorified Young symmetrizers.
Fix an integer n� 1, and let jk 2 Brn denote the braid obtained by winding a single
strand around k � 1 parallel strands. That is to say,

jk D �k�1�k�2 � � � �1�1 � � � �k�2�k�1:

We will refer to the j2; : : : ; jn 2 Brn as Jucys–Murphy braids; they generate an
abelian subgroup of Brn . Note that the full twist can be written as j2j3 � � � jn . The
Young symmetrizers pT 2Hn (see Section 1.3) can be defined as projections onto
simultaneous eigenspaces of the action of j2; : : : ; jn on jk 2Hn . A special case of
this construction yields the idempotents pn of interest to us here:
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Proposition 1.5 There is a unique family of elements pn 2Hn for n� 1 satisfying
p1 D 1 together with

.jn� q2n/.jn� 1/pn�1 D 0;(1-1a)

pn D
jn� q2n

1� q2n
pn�1(1-1b)

for n� 2. Here, we are regarding pn�1 as an element of Hn via the standard inclusion
Hn�1 �Hn . In other words, these equations state that left multiplication by jn acts
diagonalizably on pn�1Hnpn�1 with eigenvalues q2n and 1, and pn is the projection
onto the 1 eigenspace.

A proof of the above can be obtained by a “decategorification” of arguments in this
paper. In the author’s joint work with B Elias [11], we construct a categorification
of all of the Young symmetrizers by analyzing the categorical spectral theory of the
Jucys–Murphy braids acting on the Soergel category. The construction below is a
special case of that story.

Next we state our categorical analogue of Proposition 1.5. Regard Pn�1 as an object of
Ch�.SBimn/ by extending scalars, and let Jn denote the Rouquier complex associated
to the Jucys–Murphy braid jn . We will denote tensor product ˝R by ˝, or sometimes
simply by juxtaposition. Introduce the diagram notation

Pn�1 D ; Pn�1Jn D :

In Section 4 we show that there are chain maps ˇ0
.n�1;1/

; ˇ0
.n/
2 Hom.Pn�1;Pn�1Jn/

of degree (see Section 1.6 for grading conventions) q2nt2�2n and q0t0 , respectively,
such that the mapping cones satisfy:

� Cone.ˇ0
.n�1;1/

/ kills Bott–Samelson bimodules, up to homotopy equivalence.

� Cone.ˇ0
.n/
/ is constructed from Bott–Samelson bimodules, up to homotopy

equivalence.

These properties imply that

(1-2) Cone.ˇ0.n�1;1//˝Cone.ˇ0.n//' 0' Cone.ˇ0.n//˝Cone.ˇ0.n�1;1//:

This is the categorical analogue of (1-1a). Now, how do we recover the categorified
projection from its categorified minimal polynomial? Expanding the right-hand side
of (1-1b) into a power series in positive powers of q suggests we should consider the
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following semi-infinite diagram of chain complexes and chain maps:

(1-3)

.2n/h2� 2ni .0/h0i

.4n/h4� 4ni .2n/h2� 2ni

.6n/h6� 6ni .4n/h4� 4ni

:::
:::

where .k/hli is our notation for a shift in q–degree and homological degree by Ck

and Cl , respectively. The horizontal arrows above are given by ˇ0
.n�1;1/

and the
diagonal arrows are ˇ0

.n/
, with the appropriate shift functors applied. This diagram

defines a chain map

‰W ZŒun�˝Pn�1.2n/h2� 2ni ! ZŒun�˝Pn�1Jn;

where un is a formal indeterminate of bidegree q2nt2�2n . Explicitly,

‰ WD 1˝ˇ0.n�1;1/�un˝ˇ
0
.n/:

In Section 4 we prove that Pn ' Cone.‰/. This is the categorical analogue of (1-1b).

Since Pn kills Bott–Samelson bimodules, it follows that Pn absorbs Rouquier com-
plexes up to homotopy. Thus, we may tensor our description above on the right with the
Rouquier complex associated to ��1

n�1
� � � ��1

2
��1

1
, obtaining an equivalent expression

for Pn in terms of the complexes

Pn�1Yn D ; Pn�1Xn D :

The calculation of HHH.Pn/ is then proven by induction, with the inductive step
provided by the Markov move. A key component of the computation is the fact that
HHH.Pn�1/ is supported in even homological degrees, which is a consequence of the
induction hypothesis. The parity of HHH.Pn�1/ implies the splitting of a certain long
exact sequence which computes HHH.Pn/. See Section 4.4.
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1.2 Colored HOMFLYPT homology

The colored HOMFLYPT polynomial is an invariant of oriented links whose components
are colored by partitions or, equivalently, irreducible slN representations for some N .
Our projector Pn 2 K�.SBimn/ slides over and under crossings (Proposition 2.29),
hence can be used to define a �–colored triply graded link homology, where � is a
one-row partition (corresponding to the representations Symn.CN /). This is the first
such construction, though it should be mentioned that a ƒn –colored triply graded link
homology was constructed by Webster and Williamson in [35], and S Cautis [4] has
constructed colored slN –link homology for all colors.

Let L�S3 be a link whose components are labeled by nonnegative integers l1; : : : ; lr ,
called the colors. Choose a presentation of L as the closure of an n–stranded braid,
and let k1; : : : ; kn be the colors as one reads from left to right along, say, the bottom
of the braid diagram. Then replace the i th strand by ki parallel copies, and insert an
idempotent Pki

. The result is a chain complex in K�.SBimm/, where mDk1C� � �Ckn .
Evaluating HHH.�/ on this complex defines the colored homology H.LI l1; : : : ; lr /,
up to an overall shift in tridegree, depending on the braid index, the colors and the
writhe of the braid.

The value of the n–colored unknot is HHH.Pn/ Š ZŒu1; : : : ;un; �1; : : : ; �n� with
degrees as in Theorem 1.1. The homology H.LI l1; : : : ; lr / is a module over the
homology of an unlink H.U I l1/˝Z � � �˝ZH.U I lr /, by general arguments. This action
does not depend on any choices, up to nonzero scalars. Thus, ZŒu1; : : : ;un; �1; : : : ; �n�

acts as cohomology operations on our Symn –colored link homology. We omit the
details in the interest of length, and also since they are similar to results in our earlier
work [19].

1.3 Young idempotents, Jones–Wenzl projectors and slN homology

Within the Hecke algebra Hn one has a canonically defined, complete set of central
idempotents p� , indexed by partitions of n. A standard tableau T on n boxes can be
thought of as a sequence of Young diagrams (equivalently, partitions) ¿; �1; : : : ; �n ,
in which each �i differs from �i�1 in the addition of a single box. By multiplying
the corresponding idempotents p�i

2Hi �Hn together, one obtains an idempotent
pT 2Hn . The pT are primitive, and p�D

P
T pT , where the sum is over all standard

tableaux with shape �. The idempotents pT are q–analogues of the classical Young
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symmetrizers; see Gyoja [18]. In this paper we are concerned with the categorification
of p.n/ , where .n/ is the one-row partition of n.

For each integer N � 1, one may consider the quotient of the Hecke algebra Hn

by the ideal generated by the p� , where � has more than N parts. We call this
the slN quotient of Hn , since it is isomorphic to EndUq.slN /.V

˝n/, where V is a
q–version of the N –dimensional standard representation of slN . In the case N D 2,
the endomorphism ring is the Temperley–Lieb algebra TLn . The image of p.n/ in
EndUq.slN /.V

˝n/ is called the Jones–Wenzl projector. The Jones–Wenzl projector can
also be defined as the projection operator of the Uq.slN /–representation V ˝n onto
the q–symmetric power Symn.V /. The Jones–Wenzl projectors play an important role
in quantum topology, where they can be used to define the Symn.V /–colored slN link
polynomial in terms of the uncolored polynomial.

The idempotent complex Pn of Soergel bimodules which we construct here is a lift
of the categorified Jones–Wenzl projectors constructed by Cooper and Krushkal [7]
and Rozansky [33] for sl2 , D Rose [32] for sl3 , and later Cautis [4] for all slN . More
precisely, for any integer N � 1, there is a monoidal functor (see Becker [2]) from
Soergel bimodules to the category of slN matrix factorizations (see Khovanov and
Rozansky [22] and Rasmussen [31]), or slN foams; see Queffelec and Rose [30]. The
image of our Pn under these functors is homotopy equivalent to the corresponding
categorified Jones–Wenzl projectors. The simplifications in this paper go through in
the slN specializations, and we obtain:

Theorem 1.6 There is some ZŒu1; : : : ;un�–equivariant differential dN on the algebra
ZŒu1; : : : ;un; �1; : : : ; �n� which computes the limiting slN homology of the .n; k/
torus links as k ! 1. The degrees of the generators are obtained from those in
Theorem 1.1 by specializing a 7! t�1q2NC2 .

The following is conjectured by Gorsky, Oblomkov and Rasmussen [16]:

Conjecture 1.7 The differential dN is determined by dN .�k/D
P

ui1
� � �uik

, where
the sum is over sequences of integers 1� i1; : : : ; ik � n which sum to kCN �1. This
differential is extended to all of ZŒu1; : : : ;un; �1; : : : ; �n� by the graded Leibniz rule
with respect to the standard multiplication.

We do not pursue the connections to slN homology in this paper, so we omit the proof
of Theorem 1.6.
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1.4 Relation to other work

This paper extends our previous work [19] from the sl2 setting to the HOMFLYPT

setting. Decategorified, this means working with the Hecke algebra Hn instead of its
quotient TLn . Categorified, this means working with Soergel bimodules rather than
the Bar-Natan/Khovanov category of tangles and cobordisms. In the setting of Soergel
bimodules, we are able to give a clean formula for the homology of Pn .

The one column projector In a sequel to this paper (joint with M Abel [1]), we
construct an idempotent complex P1n 2K�.SBimn/ corresponding to the one-column
partition 1C � � � C 1 D n, and we study the corresponding colored homology. Both
projectors are homotopy colimits of directed systems R! FTn! FT˝2

n !� � � (degree
shifts omitted), but using different maps. One may think of Pn as the “head” and P1n

as the “tail”; we won’t attempt to make these terms precise, but instead direct the reader
to Abel and Hogancamp [1] for an explanation of the relationship between the two
projectors. There are many important differences between the two stories. Firstly, the
projector P1n admits an explicit combinatorial description, whereas the construction of
Pn is quite mysterious. Secondly, there are polynomial subalgebras ZŒU2; : : : ;Un��

End.P1n/ and ZŒu2; : : : ;un� � End.Pn/ which exhibit n�1–fold periodicity in our
descriptions of these complexes. The variables Uk have homological degree 2, and
the resulting 2–periodicity of P1n is a manifestation of a standard phenomenon in
commutative algebra; see Eisenbud [8]. On the other hand, the variables uk have
homological degree 2�2k , and the resulting periodicity is a bit more surprising. Finally,
P1n is not invariant under the operation of tensoring with a Rouquier complex F.ˇ/,
though F.ˇ/˝P1n depends only on the permutation represented by ˇ up to homotopy.
Thus, we obtain a family of twisted projectors w.P1n/, indexed by permutations
w 2 Sn .

Categorical diagonalization The projectors Pn constructed here play an essential
role in Elias and Hogancamp [9], where they give a method of computing the triply
graded Khovanov–Rozansky homology of several infinite families of links, including the
.n; n/ torus links. This work, in turn, plays an important role in an eigendecomposition
of the Soergel category SBimn , developed in joint work with Elias [10; 11], which
gives rise to complexes PT 2 K�.SBimn/, indexed by standard Young tableaux on
n boxes, which categorify the Young symmetrizers.

The flag Hilbert scheme Even though the PT have not yet appeared in the literature,
Gorsky, Negut, and Rasmussen [15] have a beautiful series of conjectures regarding
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the triply graded homologies DEnd.PT /, coming from flag Hilbert schemes. Together
with explicit computations in [15], our work here proves a conjecture in loc. cit. in
a special case. The computations in Abel and Hogancamp [1] prove the conjecture
in the case of the one-column projector. One aspect of the conjectures in [15] is that,
up to regrading, there should be an isomorphism between DHom.PT ;X ˝PT / and
DHom.PT � ;X ˝PT �/ up to regrading, where T is a standard tableau on n boxes,
T � is the transposed tableau and X D �n�1 � � � �2�1 is the positive braid lift of a
Coxeter element of Sn . The results of this paper and [1] demonstrate this duality in
the case of the one-column and one-row partitions.

For the interested reader, we state the precise regrading. Introduce new variables
xq D q2 , Nt D t2q�2 and xaD aq�2 . Note for example that the variables in Theorem 1.1
have degrees deg.uk/D xq Nt

1�k and deg.�k/D xaNt1�k . The regrading involved in the
transposition symmetry is xq$ Nt and xa 7! xa. Indeed, the computations in [1] involve
even variables of degree Ntxq1�k and odd variables of degree xaxq1�k , as predicted.

1.5 Outline of the paper

Section 2.1 begins our story with some relevant background on the Hecke algebra and
Soergel category (associated to Sn ). In Section 2.2 we recall some basics regarding
complexes and mapping cones. In Section 2.3 we give axioms which characterize
our categorified Young idempotent Pn and deduce some basic consequences, such
as uniqueness and centrality of Pn . In Section 2.6 we recall Rouquier complexes.
Section 2.7 constructs Pn as a homotopy colimit of Rouquier complexes, proving
Theorem 1.2 of the introduction.

Section 3 establishes the relevant theory concerning Hochschild cohomology and
triply graded homology. First, Section 3.1 introduces derived categories and gives a
categorical reformulation of the functor HHH. In Section 3.2 we study the “partial
Hochschild cohomology” functor, or “partial trace” Tr, and proves an important ad-
junction isomorphism. Then Section 3.3 establishes the Markov relations for Tr. In
Section 3.4 we formulate a precise statement regarding the stabilization of triply graded
homology of torus links.

Section 4 studies the structure of Pn , and is the technical heart of this paper. In
Section 4.1 we state our main structural theorems (Theorems 4.1 and 4.5). Section 4.3
contains our inductive construction of Pn as outlined in Section 1.1 of the introduction.
In Section 2.5 we recall some general results on the endomorphism rings of unital
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idempotents and apply them to Pn . It is here that we state the isomorphism between
HHH.Pn/ and DEnd.Pn/. In Section 4.4 we deduce Theorem 4.1 from Theorem 4.5,
using the aforementioned construction of Pn . In Section 4.5 we complete the proofs
of Theorems 4.1 and 4.5. Finally, in Section 4.6 we establish properties of the complex
Qn ' Cone.Pn

un
�!Pn/, which will be useful in future work.

1.6 Notation

Let A denote an additive category. Throughout this paper we use Ch.A/ to denote the
category of chain complexes over A, and K.A/ its homotopy category. Differentials
will be homogeneous of homological degree C1. We use superscripts C, � and b

to denote the full subcategories consisting of complexes which are bounded from
below, above, and above and below, respectively, in homological degree. We denote
isomorphism in Ch.A/ by Š and isomorphism in K.A/ (that is to say, homotopy
equivalence) by '.

If A is a chain complex, we let AŒ1� denote the usual suspension: AŒ1�i DAiC1 . We
let Ah1iDAŒ�1� denote the complex obtained by shifting A up in homological degree.
By convention Œ1� and h1i also negate the differential. Most of the complexes in this
paper will be equipped with an additional grading, which we call q–degree. We denote
the upward grading shift in q–degree by .1/, so that .A.a/hbi/i;j D Ai�a;j�b . A
chain map f W A.i/hj i ! B may be regarded as a map A! B of bidegree .i; j /.

We will also consider triply graded complexes. This third grading typically appears
in the following way: Let S be a graded ring, and let C D D.S–gmod/ be the
derived category of graded left S –modules. The grading on S –modules will be called
the quantum grading, or q–grading, and the homological degree in C will be called
the derived grading, Hochschild grading or a–grading. Since C is, in particular, an
additive category, we may form the homotopy category of complexes over C, obtaining
D WD K.C/. The homological grading in D will be called the homological grading, or
t –grading. For each triple of integers i; j ; k 2Z and each X 2D, we have the grading
shift X.i; j /hki which shifts X up by i , j and k in the q–grading, a–grading and
t –grading, respectively. Note that S–mod embeds in C, which induces an embedding
of K.S–mod/ into D. The shifts in q–degree and homological degree in K.S–mod/
are related to the shifts in D by

X.i; 0/h0i DX.i/; X.0; 0/hki DX hki:
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Given X;Y 2D, we have the enriched hom space

DHomD.X;Y / WD
M
i;j ;k

HomD.X.i; j /hki;Y /:

The Poincaré series of this triply graded abelian group is

PX ;Y .q; a; t/ WD
X

i;j ;k2Z

qiaj tk rankZ HomD.X.i; j /hki;Y /:

The degree of a homogeneous element f 2 DHomD.X;Y / will often be written
multiplicatively as deg.f /D qiaj tk .

We also utilize various “internal homs” throughout the paper. As an example, let S be
a graded ring. Suppose A and B are complexes of graded S –modules; then we let
HomS .A;B/ denote the bigraded complex such that Homi;j

S
.A;B/ is the abelian group

of bihomogeneous S –linear maps A! B of q–degree i and homological degree j .
That is to say Homi;j

S
.A;B/ WD

Q
k2Z HomS .A.i/k ;BkCj /. There is a differential

on HomS .A;B/ defined by f 7! dB ıf � .�1/jf ıdA for each f 2Homi;j
S
.A;B/.

Remark 1.8 The homology of HomSBimn
.A;B/ is the a–degree zero part of the hom

space DHomDn
.A;B/.

The usual adjunction isomorphism takes the following form: Let S and R be non-
negatively graded rings. Let M, K and N be complexes of graded left S –modules,
.R;S/–bimodules and left R–modules, respectively. Then

HomCh.R–mod/.K˝S M;N /Š HomCh.S–mod/.M;HomS .K;N //:

Finally, we often abbreviate tensor products M ˝N simply by writing MN . We also
let M denote the identity endomorphism of M, so expressions such as Mf and fM

will denote IdM ˝f and f ˝ IdM .
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2 A categorified Young symmetrizer

In this section we introduce the category of Soergel bimodules, and give a set of axioms
which characterizes a unique complex Pn of Soergel bimodules, up to canonical
equivalence. This complex categorifies a certain idempotent in the Hecke algebra.

2.1 Soergel’s categorification of the Hecke algebra

Fix throughout this section an integer n� 1. Two simple transpositions s D .i; i C 1/

and t D .j ; j C 1/ are adjacent if i D j ˙ 1 and distant if ji � j j � 2. The Hecke
algebra Hn for Sn is the Q.q/–algebra generated by elements T1; : : : ;Tn�1 with
defining relations:

(1) .Ti C q2/.Ti � 1/D 0 for 1� i � n� 1.

(2) TiTiC1Ti D TiC1TiTiC1 for 1� i � n� 2.

(3) TiTj D Tj Ti when ji � j j � 2.

The Hecke algebra is a q–deformation of the group algebra QŒSn� in the sense that
setting q D 1 recovers the defining relations in QŒSn�. It will be convenient to work
with a different set of generators fbi WD q�1.1�Ti/g, with respect to which the defining
relations become:

(1) b2
i D .qC q�1/bi for 1� i � n� 1.

(2) bibiC1bi � bi D biC1bibiC1� biC1 for 1� i � n� 2.

(3) bibj D bj bi when ji � j j � 2.

Our q is denoted by v�1 , for instance in [13]. We often abuse notation and write bs

when we mean bi , where s is the simple transposition .i; i C 1/.

Now we describe a categorification of the Hecke algebra; the algebra Hn gets replaced
by a certain monoidal category SBimn , the generators bi get replaced by objects Bi ,
and the defining relations lift to isomorphisms in SBimn . More precisely, Hn is
isomorphic to the split Grothendieck group (actually a ring) of SBimn . For this and
further background on Soergel bimodules, we refer the reader to [12].

Put Rn WD ZŒx1; : : : ;xn�, graded by placing each xi in degree 2. We call this the
q–degree, to distinguish it from the homological degree of complexes, and we write
degq.xi/ D 2. We let .1/ denote the functor which shifts graded objects up by one
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unit in q–degree: .M.1//i DMi�1 . When the index n is understood, we simply write
Rn DR.

Set W WD Sn . Below, letters such as s , t and u will denote simple transpositions
.i; i C 1/ 2W . There is a left action of W on R given by permuting variables. Let
Rs �R denote the subring of polynomials which are fixed points for the action of s .
Let Bs denote the graded R bimodule Bs WDR˝Rs R.�1/. We also write Bi when
we mean Bs , where s D .i; i C 1/.

Notation 2.1 We often write A˝R B as A˝B or simply AB .

Bimodules of the form BsBt � � �Bu.k/ are called Bott–Samelson bimodules. Let
SBimn denote the smallest full subcategory of finitely generated, graded .R;R/–
bimodules which contains the Bott–Samelson bimodules and which is closed under
˝R , ˚, .˙1/ and taking direct summands. An object of SBimn is called a Soergel
bimodule, and SBimn is called the Soergel category. We will not need much background
regarding Soergel bimodules. Everything we need to know is summarized below, and
in the sequel we will assume familiarity with the remainder of this section.

Let s D .i; i C 1/ 2 Sn be a simple transposition. Then there is a canonical map
Bs DR˝Rs R.�1/!R.�1/ sending 1˝1 7! 1. There is also a canonical bimodule
map R.1/! Bs sending 1 7! xi ˝ 1� 1˝ xiC1 These maps will be referred to as
the dot maps.

The following facts ensure that the defining relations in Hn (in terms of the bi ) lift to
isomorphisms in SBimn .

(1) For any simple transposition s 2 Sn , we have BsBs ŠBs.1/˚Bs.�1/. In fact,
if  W Bs!R.�1/ is the dot map, then Bs and  Bs are projections onto a
Bs.�1/–summand of BsBs .

(2) If s; t 2 Sn are adjacent simple transpositions, then there is a Soergel bimodule
Btst D Bsts such that BsBtBs Š Bsts ˚Bs . See equations (4), (5) and (7)
in [24].

(3) If s;u 2 Sn are distant, then BsBu Š BuBs .

One more fact we will need is that the bimodules Bs are self-biadjoint. That is to say,

Hom.MBs;N /Š Hom.M;NBs/ and Hom.BsM;N /Š Hom.M;BsN /

for all M;N 2 SBimn .

We conclude this subsection by collecting some standard definitions and notations:
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Definition 2.2 Let Rk DZŒx1; : : : ;xk �. Note that Ri˝Z Rj ŠRiCj . Thus, we have
bilinear functors .�/t .�/W SBimi �SBimj ! SBimiCj given by tensoring over Z.
The functor .�/t1n�k W SBimk! SBimn will be denoted by the letter I. Sometimes
we let 1n DRn denote the trivial bimodule. When n is obvious from the context, we
will omit it from the notation.

2.2 Complexes and mapping cones

In this section we recall some basics of mapping cones that will be used throughout. Let
C be an additive category. Associated to any chain map f W A! B in Ch.C/, one has
the mapping cone Cone.f / 2 Ch.C/. The chain groups are Cone.f /i DAiC1˚Bi ,
and the differential is by definition

dCone.f / D

�
�dA

f dB

�
:

If f W A ! B is a chain map, then there is a canonical map B ! Cone.f / (the
inclusion of a subcomplex). Recall that AŒ1� is the chain complex AŒ1�i DAiC1 with
differential �dA . The sign ensures that the projection Cone.f /!AŒ1� is a chain map.
The sequence of chain maps

(2-1) A
f
�!B! Cone.f /!AŒ1�

is called a distinguished triangle in K.C/. More generally,

A0
f 0
�!B0

g0
�!C 0 ı

0

�!A0Œ1�

is called a distinguished triangle if there are homotopy equivalences A'A0, B ' B0

and Cone.f /' C 0 such that the following diagram commutes up to homotopy:

A

'

��

f
// B

'

��

�
// Cone.f /

'

��

�
// AŒ1�

'

��

A0
f 0
// B0

g0
// C 0

ı0
// AŒ1�

The power of mapping cones is that many statements about morphisms can be translated
into statements about objects, for example:

Proposition 2.3 A chain map f W A! B is a homotopy equivalence if and only if
Cone.f / ' 0. Thus, in the distinguished triangle A

f
�! B ! C ! AŒ1�, f is a

homotopy equivalence if and only if C ' 0.

Proof This is standard, and can be found in Spanier [34].
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2.3 Characterization of Pn

Recall the generators bi D q�1.1 � Ti/ 2 Hn of the Hecke algebra, described in
Section 2.1. The Young symmetrizer p.n/ is uniquely characterized by:

Definition/Theorem 2.4 There is a unique p.n/ 2Hn such that:

(p1) p.n/bi D 0D bip.n/ for 1� i � n� 1.

(p2) p.n/� 1 lies in the (nonunital) subalgebra generated by fb1; : : : ; bn�1g.

We encourage the reader to compare this with the definition of the Jones–Wenzl
projectors, for instance in Chapter 13 of [25]. The proof that (p1) and (p2) characterize
p.n/ uniquely is easy, and the proof that p.n/ exists follows along the same lines as
existence of the Jones–Wenzl projector. In any case, we will explicitly construct a
categorified version of pn . Note that the standard generators Ti satisfy Tip.n/ D p.n/ .
Thus, the left Hn module Hnp.n/ is a q–analogue of the trivial representation.

Remark 2.5 One often considers a different set of generators Hi D �q�1Ti . In
terms of these generators we have Hip.n/ D �q�1p.n/ , so that Hnp.n/ can also be
considered as a q–analogue of the sign representation, depending on one’s tastes.

In the remainder of this subsection we characterize a complex P.n/ 2 K�.SBimn/ by
a similar set of axioms, and we note some consequences of our definitions. For the
remainder of the paper, we write Pn rather than P.n/ , so that our notation is reminiscent
of that for categorified Jones–Wenzl projectors [7; 19].

Definition 2.6 Fix an integer n � 1, and let Nn � K�.SBimn/ denote the smallest
full subcategory which is closed under homotopy equivalences and contains com-
plexes N 2 K�.SBimn/ such that 1.k/ does not appear as a direct summand of any
chain bimodule for any k 2 Z. Let Nn? and ?Nn denote the full subcategories of
K�.SBimn/ consisting of complexes A such that NA' 0 and AN ' 0, respectively,
for all N 2Nn . When the index n is understood, we will omit it.

No nontrivial Bott–Samelson bimodule contains the trivial bimodule 1, or any of
its shifts, as a direct summand. Conversely, any nontrivial Soergel bimodule can be
resolved by nontrivial Bott–Samelson bimodules.

Example 2.7 Let s; t 2 S3 denote the transpositions s D .1; 2/ and t D .2; 3/. Then
the longest element of S3 is sts . We have BsBtBs Š Bs˚Bsts , which implies that
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Bsts is chain homotopy equivalent to the complex 0! Bs ! BsBtBs ! 0, where
the differential is the inclusion of a direct summand.

Thus, we have the following equivalent description of Nn :

Proposition 2.8 The subcategory Nn � K�.SBimn/ is the smallest full subcategory
which is closed under homotopy equivalences and contains those complexes N whose
chain bimodules are direct sums of shifts of bimodules of the form Bs1

� � �Bsr
with r �1.

Thus, the full subcategory Nn � K�.SBimn/ is a two-sided tensor ideal.

The following is proven by a straightforward limiting argument (see Proposition 2.34).

Proposition 2.9 A complex D 2 K�.SBimn/ lies in ?Nn \ Nn? if and only if
BiD ' 0'DBi for all 1� i � n� 1.

Proof Clearly an object of ?Nn \Nn? kills Bi on the left and right. Conversely,
suppose D 2 K�.SBimn/ kills Bi on the left and right, and let C 2 Nn be given.
Without loss of generality, we may assume each chain bimodule Ci is a sum of
shifts of Bott–Samelson bimodules Bi1

� � �Bir
. Thus, DCi ' 0 ' CiD for all i . A

straightforward limiting argument (see Proposition 2.34) shows that DC ' 0' CD.
This completes the proof.

A priori it is not obvious whether or not the categories N? and ?N are nonzero.
Nonetheless, it will turn out that ?Nn DNn? is nontrivial and has the structure of a
monoidal category, with identity given by Pn , defined below:

Definition/Theorem 2.10 There exist a chain complex Pn 2K�.SBimn/ and a chain
map �W 1! Pn such that:

(P1) Pn˝Bi ' 0' Bi ˝Pn for all 1� i � n� 1.

(P2) Cone.�/ 2Nn .

The pair .Pn; �/ is unique up to canonical equivalence: if .P 0n; �
0/ is another pair

satisfying (P1) and (P2), then there is a unique chain map 'W Pn!P 0n up to homotopy
such that 'ı�'�0. This map is a chain homotopy equivalence. We will call �W 1!Pn

the unit of Pn .

The existence of Pn will be proven in Section 2.7. The axioms (P1) and (P2) should
be compared with the axioms that define the universal projectors in [7]. See also [19].
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Example 2.11 Let P2 2 K�.SBimn/ denote the complex

� � �
'�
�!B1.5/

'C
�!B1.3/

'�
�!B1.1/!R! 0;

where the map B1.1/!R is the dot map, 'C is the map sending 1˝1 7!x1˝1�1˝x2 ,
and '� is the map sending 1˝ 1 7! x2˝ 1� 1˝x2 . As usual, we place an underline
underneath the term of homological degree zero. The inclusion R! P2 defines a
chain map �W R! P2 with Cone.�/ 2N2 .

Proposition 2.12 The complex P2 and chain map �W R! P2 satisfy the axioms of
Definition/Theorem 2.10.

Proof We prove that P2B1 ' 0. Let Rs denote the bimodule which equals R as a
left R–module, but whose right R–action is twisted by s . That is, f �g � hD fgs.h/

for f; h 2R, g 2Rs . Then the dot maps fit into short exact sequences

0!Rs.1/
1 7!xiC1˝1�1˝xiC1

���������������! Bs!R.�1/! 0;(2-2)

0!R.1/! Bs
1˝1 7!1
�����!Rs.�1/! 0:(2-3)

Note that P2 is the concatenation of infinitely many copies of (2-3) and (2-2), hence
P2 is acyclic. The bimodule B1 is free as a left (or right) R–module, hence the functor
.�/˝R B1 is exact. It follows that P2B1 has zero homology as well. On the other
hand, P2B1 is free as a complex of R˝Rs R–modules. Thus, P2B1 is an exact
sequence of free modules, hence splits. The splitting implies that P2B1 is contractible
via a R˝Rs R–equivariant homotopy. Since the bimodule action factors through
the R˝Rs R–action, this means that P2B1 ' 0, as claimed. The case of B1P2 is
similar.

Thus, P2 is a unital idempotent. The complementary idempotent is the “tail”

� � �
'�
�!B1.5/

'C
�!B1.3/

'�
�!B1.1/! 0:

2.4 Some general theory of categorical idempotents

The existence of Pn will be established in Section 2.7. In this section we assume the
existence of Pn and state some important properties of Pn that follow from general
arguments. All of the relevant facts about categorical idempotents are stated and proven
in a separate note [20]. Throughout this section, let C be an additive, monoidal category,
and set A WDK�.C/ (or more generally, A can be any triangulated monoidal category).
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For us our focus will be on the case CD SBimn . Recall, isomorphism in A is denoted
by '.

Definition 2.13 A pair of complementary idempotents in A is a pair of objects .C ;U /
such that U ˝C 'C ˝U ' 0, together with a distinguished triangle

(2-4) C
"
�! 1 �

�!U
ı
�!C Œ1�:

A unital idempotent is an object U together with a morphism �W 1! U such that
U ˝Cone.�/ ' 0 ' Cone.�/˝U . A counital idempotent is an object C together
with a map "W C ! 1 such that Cone."/˝C ' 0 'Q˝Cone."/. Oftentimes we
refer to � and " as a unital and counital idempotent, respectively.

It is clear that if �W 1! U is a unital idempotent, then .Cone.�/h1i;U / is a pair of
complementary idempotents. Similarly, if "W C ! 1 is a counital idempotent, then
.C ;Cone."// is a pair of complementary idempotents. Conversely, if .C ;U / is a pair
of complementary idempotents, then C and U are counital and unital idempotents,
respectively, with structure maps given by (2-4). We remark that unital and counital
idempotents would be called closed and open idempotents in [3], respectively.

Note that .Pn; �/ from Definition/Theorem 2.10 is a unital idempotent in K�.SBimn/.
Many important properties of Pn follow from general arguments.

Definition 2.14 Let im Pn and ker Pn denote the full subcategories of K�.SBimn/

consisting of complexes C such that Pn˝C ' C and Pn˝C ' 0, respectively.

Proposition 2.15 Recall Definition 2.6. The uniqueness part of Definition/Theorem
2.10 follows from the existence part. Assuming Pn exists, we have:

(1) Pn is central: for any C 2 K�.SBimn/, there is a homotopy equivalence
C ˝Pn ' Pn˝C which is natural in C.

(2) ?N DN? D im Pn .

(3) N D ker Pn .

Proof This is an immediate consequence of Corollary 4.29 in [20].

Once we prove the existence of Pn in Section 2.7, we will exclusively use the notation
im Pn and ker Pn , instead of N? D ?N and N .

In the remainder of this section we discuss the notion of relative unital idempotents.
The following is Theorem 4.24 in [20].
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Theorem 2.16 Let I 2A and P 2A be unital idempotents with unit maps �I W 1!I

and �P W 1!P. Then the following are equivalent:

(1) I ˝P 'P.

(2) P ˝ I 'P.

(3) There exists a map �W I!P such that �P D � ı �I .

If either of these equivalent conditions is satisfied then � is unique, and IdP ˝ � and
�˝ IdP are isomorphisms in A.

There is a similar statement for counital idempotents.

Definition 2.17 If either of the equivalent conditions of Theorem 2.16 are satisfied,
then we say that �W I!P gives P the structure of a unital idempotent relative to I.
One defines the notion of a counital idempotent relative to E in a similar way.

In the next proposition we assume that Pn has been constructed for all n� 1.

Proposition 2.18 Fix integers a; b; c � 0 and let �W K�.SBimb/!K�.SBimaCbCc/

denote the functor �.C / D 1a tC t 1c . Then PaCbCc has the structure of a unital
idempotent relative to �.Pb/.

Proof Note that � is a monoidal functor, �.�b/W �.1b/Š 1aCbCc! �.Pb/ is a unital
idempotent. Note that Cone.�.�b// is homotopy equivalent to a complex built from
�.B1/; : : : ; �.Bb�1/, and tensoring with PaCbCc annihilates each of these. Thus,
Cone.�.�b//˝PaCbCc ' 0, which implies that �.Pb/˝PaCbCc ' PaCbCc .

In the next section we state some important implications of this relationship between
Pn and Pk for 1� k � n.

2.5 Generalities on endomorphism rings of idempotents

In this section we discuss some results regarding the endomorphism rings of unital
idempotents. These will be used quite heavily in Section 4.4.

Let .A;˝; 1/ be a triangulated monoidal category (for example A D K�.SBimn/).
Let �P W 1!P be a unital idempotent.
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Proposition 2.19 For any X 2A and any Y 2A such that P˝Y ŠY , precomposing
with �P ˝ IdX gives an isomorphism

HomA.P ˝X;Y /Š HomA.1˝X;Y /:

In particular, precomposing with �P gives an isomorphism End.P /! Hom.1;P /.

Compare with Proposition 4.16 in [20]. Let’s deduce some consequences of this
proposition. We may regard �P˝IdP and IdP˝�P as elements of Hom.P ;P˝P /.
Precomposing with �P gives an isomorphism

��W Hom.P ;P ˝P /! Hom.1;P ˝P /:

Then �P ˝ IdP D IdP ˝ �P , since they both become �P ˝ �P upon applying ��
P

.

Proposition 2.20 We have f ˝ IdP D IdP ˝f 2 End.P ˝P / for all f 2 End.P /.

Proof By definition of unital idempotent, IdP ˝�P is invertible. We have an isomor-
phism End.P ˝P /! End.P / sending g 7! .�P ˝ IdP/

�1 ı g ı .�P ˝ IdP/. We
show that Id˝f and f ˝ Id have the same image under this isomorphism. The image
of IdP ˝f under this isomorphism is

.�˝ IdP/
�1
ı .IdP ˝f / ı .�P ˝ IdP/D .�˝ IdP/

�1
ı .�˝ IdP/ ı .Id1˝f /;

which equals f . Since �˝ IdP D IdP ˝ �, a similar argument shows that f ˝ IdP

also has image f under the above isomorphism. This completes the proof.

Proposition 2.21 The algebra End.P / is commutative. There is an algebra structure
on Hom.1;P / given by ˛ � ˇ WD ˛ ˝ ˇ 2 Hom.1˝2;P˝2/ Š Hom.1;P /. Pre-
composing with � gives an isomorphism of algebras End.P /Š Hom.1;P /.

Proof Let f;g 2 End.P / be arbitrary. Observe

.f ˝ IdP/ ı .IdP ˝g/D .IdP ˝g/ ı .f ˝ IdP/:

Since f ˝ IdP D IdP˝f , the left-hand side is IdP˝ .f ıg/ and the right-hand side
is IdP ˝ .g ıf /. Tensoring with P gives an isomorphism End.P /! End.P ˝P /,
hence it follows that f ıg D g ıf , as claimed.

Proposition 2.19 says that precomposing with � gives an isomorphism End.P /!
Hom.1;P /. To see that the induced algebra structure is as claimed, observe that

.f ˝g/ ı .�˝ �/D .IdP ˝ .f ıg// ı .�˝ �/D .�˝ IdP/ ı .Id1˝ .f ıg ı �//
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and also
.f ˝g/ ı .�˝ �/' .f ı �/˝ .g ı �/:

Postcomposing with the equivalence .�˝ IdP/
�1W P ˝P ! 1˝P, we see that

.�˝ IdP/
�1
ı ..f ı �/˝ .g ı �//' Id1˝ .f ıg ı �/;

which implies that the induced algebra structure on Hom.1;P / is as in the statement.

Now, let �I W 1! I be a unital idempotent, and suppose �W I!P makes P into a
unital idempotent relative to I (Definition 2.17). The main example to have in mind is
the following:

Example 2.22 We could take P D Pn and I D Pn�1 t 11 .

We wish to understand End.P / as an algebra over End.I/, using the theory above. First,
let IAI �A denote the full subcategory of objects C such that I˝C Š C Š C ˝ I.
Then IAI has the structure of a triangulated monoidal category with monoidal iden-
tity I, and �W I!P makes P into a unital idempotent in IAI. Thus, Proposition 2.19
says that precomposing with � gives an isomorphism End.P /! Hom.I ;P /.

Definition 2.23 Retain notation as above. Let �W EndA.I/! EndA.P / denote the
unique map satisfying

(2-5) �.f / ı � D � ıf

for all f 2 EndA.I/.

Proposition 2.24 The map �W EndA.I/! EndA.P / is an algebra map. Furthermore,

f ˝IdP D IdI˝�.f /2EndA.I˝P / and ıP˝f D �.f /˝IdI 2EndA.P˝I/

for all f 2 EndA.I/.

Proof Clearly, IdP ı � D � ı IdI, hence �.IdI /D IdP. Moreover, �.f / ı�.g/ ı � D
� ı f ı g , hence �.f ı g/ D �.f / ı �.g/ for all f;g 2 End.I/, by definition of � .
This proves the first statement.

Now let f 2 End.I/ be arbitrary. Proposition 2.19 implies that precomposing with
IdI ˝ � is an isomorphism End.I ˝ P / ! Hom.I ˝ I ; I ˝ P /. To show that
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f˝IdP�IdI˝�.f / is zero, it suffices to show that it becomes zero upon precomposing
with IdI ˝ � . Compute

.f ˝ IdP � IdI ˝ �.f // ı .IdI ˝ �/D f ˝ � � IdI ˝ .�.f / ı �/

D f ˝ � � IdI ˝ .� ıf /

D .IdI ˝ �/ ı .f ˝ IdI � IdI ˝f /;

which is zero by Proposition 2.20.

2.6 Rouquier complexes

We recall Rouquier’s categorification of the group homomorphism Brn!H �n . Rouquier
complexes play an important role in our construction of Pn . Certain expressions will
look nicer if we use a slightly different normalization for Rouquier complexes than is
standard.

Definition 2.25 Let �i denote the i th generator in the n–strand braid group. That is,
�i is a positive crossing between the i and i C 1 strands. Let ��1

i denote the inverse
crossing. Define the Rouquier complexes

F.�i/ WD
�
0! Bi.1/!R! 0

�
;

F.��1
i / WD

�
0!R! Bi.�1/! 0

�
;

where we have underlined the degree zero chain bimodules and the maps are the dot
maps. If ˇ D �"1

i1
� � � �

"r

ir
is expressed as a product in the generators (on n strands),

then we will let F.ˇ/ D F.�
"1

i1
/˝R � � � ˝R F.�

"r

ir
/ denote the Rouquier complex

associated to ˇ . It is well known that F.ˇ/ depends only on the braid ˇ (and not on
the expression of ˇ in terms of generators) up to canonical isomorphism in K.SBimn/

(see [12] for details).

Remark 2.26 The bimodule R and its shifts do not appear as a direct summand of any
nontrivial tensor product Bi1

� � �Bir
. Thus, our normalization for Rouquier complexes

ensures that F.ˇ/ has a unique copy of R appearing with grading shift .0/h0i for
each braid ˇ . If ˇ is a positive braid, then the inclusion R! F.ˇ/ is a chain map. If,
instead, ˇ is a negative braid, then the projection F.ˇ/!R is a chain map. In either
case, the cone on the map F.ˇ/$R lies in Nn D ker Pn .

In the remainder of this section we include some assorted basic results that will be used
later.
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Proposition 2.27 Let s 2 Sn be the permutation that swaps k and k C 1. Then
left multiplication by xi 2R is chain-homotopic to right multiplication by s.xi/, as
endomorphisms of F.�k/.

Proof If i 62 fk; k C 1g, then the claim is obvious from the fact that F.�k/ is
obtained from F.�1/ by extension of scalars from ZŒxk ;xkC1� to ZŒx1; : : : ;xn�. In
the remaining two cases, we have a homotopy

0 // Bk.3/

��

// R.2/

h1

||

// 0

��

0 // Bk.1/ // R.0/ // 0

The top row is F.�k/.2/, the bottom row is F.�k/, and the diagonal arrows indicate
the homotopy whose only nonzero component h1 is the dot map. An easy calculation
shows that dhC hd sends c 7! x1c � cx2 D cx1�x2c . This proves the claim.

Proposition 2.28 FuBs ' BsFu when u and s are distant. If s and t are adjacent,
then FstBs D BtFst .

Proof The first statement is clear. The second can be checked by direct computation,
and we leave this as an exercise. In any case, this calculation is implicit in the proof of
invariance of Rouquier complexes under the braid relation FsFtFs ' FtFsFt .

The fact that FstBs 'BtFst will be referred to by saying that Bs slides past crossings.

Proposition 2.29 Set X WDF.�n � � � �2�1/ and Y WDF.��1
n � � � �

�1
2
��1

1
/. These are

objects in K�.SBimnC1/. Then

X.Pn t 11/' .11 tPn/X and Y .Pn t 11/' .11 tPn/Y:

This proposition implies that Pn can be used to define a link homology theory (in fact,
Symn –colored Khovanov–Rozansky homology; see Section 1.2).

Proof We prove only the first of these; the second is similar. Since Bi slides through
crossings, we have XBi 'Bi�1X for 2� i � n. Since .Pnt11/ kills B1; : : : ;Bn�1

it follows that .Pn t 11/XBi ' 0 for 2� i � n, hence

.Pn t 11/X.11 tPn/' .Pn t 11/X
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by Proposition 2.18. A similar argument shows that

.Pn t 11/X.11 tPn/'X.11 tPn/;

from which the lemma follows.

Finally, we have two absorption properties which will be useful:

Proposition 2.30 (projectors absorb Rouquier complexes) The complex Pn absorbs
Rouquier complexes: F.ˇ/Pn ' Pn ' PnF.ˇ/ for all braids ˇ .

Proof Immediately follows from the fact that PnBi ' 0'BiPn for all 1� i � n�1

and the definition of the elementary Rouquier complexes F.�˙i / (Definition 2.25).

Proposition 2.31 (Bott–Samelsons absorb Rouquier complexes)

BsFs ' Bs.2/h�1i ' FsBs:

Proof Recall that Fs is the complex .Bs.1/ ! 1/. A basic property of Soergel
bimodules states that BsBs Š Bs.1/˚ .�1/. In fact, the dot map 'W Bs.1/! R is
such that ' ˝ IdBs

W BsBs.1/! Bs is the projection onto a direct summand. Thus,
tensoring Fs on the right with Bs gives a complex of the form

BsFs D Bs.2/˚Bs.0/
Œ� Id�
���!Bs.0/:

The contractible summand .Bs
Id�!Bs/ can be canceled from the complex by Gaussian

elimination. The result is FsBs ' Bs.2/h�1i, as claimed. A similar argument takes
care of BsFs .

2.7 The projector as an infinite Rouquier complex

In this section we complete the proof of Definition/Theorem 2.10 by constructing Pn

as the homotopy colimit of Rouquier complexes. The idea that categorified idempotents
can be realized as infinite braids is due to Rozansky [33], and was utilized by Rose [32]
in constructing the sl3 categorified idempotents and by Cautis [5] in categorifying all
of the slN idempotents.

In Section 3 we define triply graded link homology in terms of Rouquier complexes.
The results of this section imply that the triply graded link homology of the .n;m/
torus links stabilizes as m!1, and that the stable limit can be computed from Pn .

We first recall the notion of homotopy colimit, or mapping telescope. Recall the shift
in homological degree Œ1�D h�1i.
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Definition 2.32 Let fAi j i 2 Z�0g be chain complexes over an additive category C,
and fi W Ai!AiC1 chain maps. Suppose that the infinite direct sum

L
k�0 Ak exists

in K.C/. The homotopy colimit of the directed system fAk ; fkgi2Z�0
is the mapping

cone
hocolim Ak WD Cone

�M
k�0

Ak
S�Id
��!

M
k�0

Ak

�
;

where S is the shift map, whose components are given by the fi .

Below, we will find it convenient to represent certain kinds of total complexes diagram-
matically. For instance, we will denote the homotopy colimit hocolim Ak by

(2-6)

0BB@
A0Œ1�

�Id
��

f0

##

A1Œ1�

�Id
��

f1

##

A2Œ1�

�Id
��

f2

##

A3Œ1�

�Id
��

f3

""

� � �

A0 A1 A2 A3 � � �

1CCA
˚

:

Note that each arrow is homogeneous of homological degree C1. The complex
hocolim Ak is obtained by taking the direct sum of all of the complexes in the above
diagram. The differential on C is by definition given by the differentials internal to
each term (with the differential on Ai Œ1� being �dA by convention), as well as by the
labeled arrows.

As another example of the diagram notation, let C be an additive category and
Ak 2 K.C/ complexes such that the direct sum

L
k2Z Ak exists. We will write

(2-7) C D . � � �
Œ1�
�!Ai

Œ1�
�!AiC1

Œ1�
�!� � � /˚

whenever C 2 K.C/ is a chain complex which equals
L

k2Z Ak as a graded object,
and whose differential is represented by a Z�Z–lower-triangular matrix with dAk

’s
along the diagonal. The shifts Œ1� are there to remind us that all arrows are actually
chain maps Ai!Aj Œ1� for i � j .

Remark 2.33 The homotopy colimit hocolim Ak of a directed system fAk ; fkg is
isomorphic to a complex of the form

(2-8) hocolim Ak Š
�
� � �

Œ1�
�!Cone.f2/

Œ1�
�!Cone.f1/

Œ1�
�!Cone.f0/

Œ1�
�!A0

�˚
:

This is simply a reassociation of the complex represented by the diagram (2-6), in which
each pair of terms connected by a diagonal arrow is rewritten as a copy of Cone.fk/.
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Proposition 2.34 Suppose we are given complexes Ai and Bi , and homotopy equiva-
lences fi W Ai ' Bi for i 2 Z. If Ai D Bi D 0 for i � 0, then any complex (2-7) is
homotopy-equivalent to a complex of the form

C ' . � � �
Œ1�
�!Bi

Œ1�
�!BiC1

Œ1�
�!� � � /˚:

Proof This follows from the homotopy-invariance of mapping cones together with a
straightforward colimit argument.

We have similar notions with direct sum replaced everywhere by direct product. Corre-
spondingly, if we have two families of complexes Ai and Bi such that Ai ' Bi and
Ai D Bi D 0 for i � 0, then any complex

. � � �
Œ1�
�!Ai

Œ1�
�!AiC1

Œ1�
�!� � � /…

is homotopy-equivalent to a complex of the form

. � � �
Œ1�
�!Bi

Œ1�
�!BiC1

Œ1�
�!� � � /…:

We will make such infinite simplifications throughout this subsection.

Proposition 2.35 Let C be an additive category, and fAk ; fkg
1
kD0

a directed system
of complexes Ai 2 K�.C/. Assume that Cone.fk/ ' Ck , where Ck is a complex
which is supported in homological degrees ck for some sequence such that ck !�1

as k!1. Then hocolim Ak is an object of K�.C/, up to equivalence.

The content here is that one need not postulate the existence of infinite direct sums, and
one need not leave the world of semi-infinite complexes in order to have a well-defined
hocolim, in this situation.

Proof We can include C (fully faithfully) into a category C˚ which contains infinite
direct sums. Then hocolim Ak exists as an object of K.C˚/. Each term Cone.fk/ in
(2-8) can be replaced by Ck up to homotopy equivalence, and we obtain a complex
L ' hocolim Ak 2 K�.C˚/. The hypotheses ensure that the infinite direct sumL1

kD0 Ck is finite in each homological degree, hence L is isomorphic to an object
of K�.C/.

The directed system of interest to us is the following: Let x D �n�1 � � � �2�1 be the n–
stranded braid which is the positive lift of the standard n–cycle .n; n�1; : : : ; 2; 1/2Sn

(written in cycle notation). Note that the braid closure of xk is the .n; k/–torus link.
Let X D F.x/ denote the associated Rouquier complex. We claim that the X˝k can
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be made into a direct system with homotopy colimit Pn . So set Ak WD X˝k and
A0 WD 1. We have a map f0W 1!X which is the inclusion of the 1–summand of X

(see Remark 2.26). Set fk WD f0˝X˝k W Ak !AkC1 . We wish to prove:

Theorem 2.36 The homotopy colimit Pn of the directed system fAk ; fkgk2Z�0
lies

in K�.SBimn/. If �W 1 D A0 ! Pn is the structure map, then .Pn; �/ satisfy the
axioms of Definition/Theorem 2.10.

We first need two lemmas:

Lemma 2.37 If C 2N (Definition 2.6) is supported in homological degrees � l , then
X˝n˝ C is homotopy-equivalent to a complex which is supported in homological
degrees � l � 2.

Proof The complex X˝n is the Rouquier complex associated to the full twist braid xn.
For each 1� i � n� 1, the full twist can be factored as xn D �2

i y for some positive
braid y . Thus, the corresponding Rouquier complex factors as X˝n'F2

i F.y/, where
F.y/ is supported in nonpositive homological degrees. Thus, the fact that Bi absorbs
Fi up to a shift of the form .2/h�1i (Proposition 2.31) implies that X˝n ˝Bi is
homotopy-equivalent to a complex supported in homological degrees � �2 for each
1� i � n� 1.

Now suppose C 2Nn is supported in homological degrees � l . Up to equivalence we
may assume that the chain bimodules Ci are direct sums of shifts of bimodules of the
form Bi1

� � �Bir
, and Ci D 0 for i > l by hypothesis. The lemma follows by applying

the above simplification to each term X˝nCihii of X˝nC.

Lemma 2.38 Let fAk ; fkg
1
kD0

be a directed system of complexes over an additive
category C and let ck 2 Z be such that Ak is supported in homological degrees � ck ,
and ck !�1 as k!1. Then hocolim Ak exists in K.C/, and is contractible by a
dual version of Proposition 2.34.

Proof Let fAk ; fkg and ck be as in the hypotheses. Then the infinite direct sumL1
kD0 Ak is finite in each homological degree, hence is equal to the categorical direct

product
Q1

kD0 Ak in K.C/ by standard arguments. This shows that hocolim Ak exists,
and is given by same diagram as in (2-6), with ˚ replaced by direct product. Then

hocolim Ak D
�
Cone.IdA0

/! Cone.IdA1
/! Cone.IdA2

/! � � �
�…
;

which is contractible.
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Proof of Theorem 2.36 By definition, X is the tensor product of complexes Fs WD

.Bs! 1/, hence can be written as a mapping cone

X D Cone.D0! 1/;

where D0 2 N is some complex which is supported in nonpositive homological
degrees. By definition, f0W 1! X is the inclusion of the degree 0 chain bimodule,
hence Cone.f0/'D0Œ1�. Recall that fk W X

˝k ! X˝kC1 is obtained by tensoring
f0 on the left with X˝k . Thus,

Cone.fk/ŠX˝k
˝Cone.f0/'X˝k

˝D0Œ1�:

By Lemma 2.37, we can find complexes Dk 'X˝k ˝D0 supported in homological
degrees dk such that dkC2n � dk � 2 for all k � 0. Since Cone.fk/ ' Dk Œ1�,
Proposition 2.35 says there is a well-defined complex Q' hocolimk Ak 2K�.SBimn/

of the form
QD

�
� � � !D�2Œ1�!D�1Œ1�!D0Œ1�! 1

�˚
:

Let �W 1!Q denote the inclusion of the 1–summand above. We claim that .Q; �/'
.Pn; �n/. Clearly Cone.�/ 2 N since Dk 2 N for all k . It remains to check that
Q kills Bs for each simple transposition s 2 Sn . For this, note that Q˝Bs is the
homotopy colimit of the directed system X˝k˝Bs . Iterated application of Lemma 2.37
says that X˝k ˝Bs is equivalent to a complex Ck which is supported in homological
degrees � ck such that ck!�1 monotonically as k!1. Thus, Lemma 2.38 yields

Q˝Bs ' hocolim X˝k
˝Bs ' hocolim Ck ' 0:

Therefore, .Q; �/ satisfy the axioms of Definition/Theorem 2.10, as claimed.

3 Derived categories and triply graded homology

Khovanov–Rozansky homology is defined in terms of Rouquier complexes, together
with a functor HHHW K�.SBimn/! Z–modZ�Z�Z , where this latter category is the
category of triply graded Z–abelian groups. The purpose of this section is to intro-
duce, for each pair of complexes C;D 2 K.SBimn/, a triply graded space of homs
DHom.C;D/ which contains the usual group of chain maps mod homotopy as the
degree .0; 0; 0/ part. We then show that HHH.Pn/ is isomorphic to the triply graded
ring of endomorphisms DEnd.Pn/. We establish some techniques which will be used
in Section 4 to compute DEnd.Pn/. Our main tools are an adjunction isomorphism
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(Proposition 3.6) and a Markov relation for HHH (Proposition 3.10). Although the
proofs use facts about derived categories, it does not require much background to
understand and use these tools.

3.1 Derived categories

Whenever the index n is understood, we will let x denote the list of variables
x1; : : : ;xn , and similarly for y . We will write R D ZŒx�, and we will identify
Re D R˝Z R with ZŒx;y � via xi ˝ 1 7! xi and 1˝ xi 7! yi . We will regard
graded .R;R/–bimodules as graded Re –modules. Let Cn denote the bounded derived
category of graded Re –modules, which is equivalent to the homotopy category of finite
complexes of free graded Re –modules, the equivalence being given by free resolution.
For each X 2 Cn , let X.i; j / denote the result of shifting X up by i in q–degree and
up by j in derived (homological) degree.

Observe that Cn is a monoidal category in the usual way, via the derived tensor
product ˝L. There is a fully faithful inclusion SBimn! Cn . Since Soergel bimodules
are free as right (or left) R–modules (see [12]), the tensor product of Soergel bimodules
M ˝N coincides with the derived tensor product up to isomorphism in Cn . Thus, the
inclusion SBimn! Cn is a monoidal functor. By abuse of notation, we sometimes
denote triangulated closure of SBimn in Cn by Db.SBimn/.

Definition 3.1 If M is a graded .R;R/–bimodule, let HH�;�.M / denote the bi-
graded abelian group HH�;�.M /D

L
i;j2Z HomCn

.R.i; j /;M /. Note that HHi;j
Š

Extj
Re .R;M.�i// is the usual Hochschild cohomology group of R with coefficients

in M.�i/. When we wish to emphasize the index n, we will write HH�;�.RnIM /. In
this paper, we exclusively use Hochschild cohomology (never Hochschild homology),
so we will drop the superscripts from HH�;� , writing only HH.

Now, let Dn WDK�.Cn/ denote the homotopy category of complexes over Cn . The inclu-
sion SBimn! Cn extends to a fully faithful, monoidal functor K�.SBimn/!K�.C/.
Henceforth, we will regard objects of K�.SBimn/ also as objects of Dn .

Note that an object C 2Dn is triply graded: C D
L

i;j ;k2Z Ci;j ;k . The first grading i

is the bimodule degree, also called q–degree. The grading j will be called derived or
Hochschild grading, and is the homological grading in Cn . The grading k is called
homological grading, as it is the homological grading in K�.Cn/. We let .a; b/hci
denote the shift in tridegree, so that .C.a; b/hci/i;j ;k DCi�a;j�b;k�c . See Section 1.6
for more.
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Definition 3.2 For objects A;B 2 K�.SBimn/, let DHomn.A;B/ denote the triply
graded abelian group

DHomi;j ;k
n .A;B/ WD HomDn

.A.i; j /hki;B/:

For f 2 DHomi;j ;k.A;B/, let jf j D j C k denote the total homological degree.
Similarly, DEndn.A/D DHomn.A;A/. As always, when the index n is understood,
we will drop it from the notation.

Definition 3.3 If C is a complex of graded .R;R/–bimodules, let HH.C / denote
the complex of bigraded abelian groups obtained by applying the functor HH to the
chain bimodules of C. Set HHH.C / WDH.HH.C //.

It is clear from the definitions that HHH.C /Š DHom.R;C /.

Remark 3.4 If C;D;2 K�.SBimn/, then the usual space of chain maps C ! D

modulo homotopy can be recovered as the subspace of DHom.C;D/ consisting of
elements of degree .0; 0; 0/. In general, an element f 2 DHom0;j ;0.C;D/ should be
thought of as a chain map whose components are higher exts: fm 2 Extj .Cm;Dm/.
These are to be regarded modulo homotopies h whose components are exts of the same
degree: hm 2 Extj .Cm;Dm�1/.

Let ˇ be an n–stranded braid, and LD y̌�R3 the oriented link obtained by connecting
the strands of ˇ (in a planar fashion). In [21], Khovanov showed that HHH.F.ˇ//
depends only on the isotopy class of L, up to isomorphism and overall grading shift,
and coincides with Khovanov–Rozansky homology [22] up to regrading. This fact,
together with Theorem 2.36, says that HHH.Pn/ is a limit of triply graded homologies
of .n; k/ torus links. See Corollary 3.13 for the precise normalization of HHH that
yields a link invariant, and see Corollary 3.15 for the precise statement regarding the
stabilization of triply graded homology of torus links.

In Section 2.5 we show that HHH.Pn/ŠDHom.R;Pn/ŠDEnd.Pn/, hence HHH.Pn/

has the structure of a triply graded ring, which is in fact graded commutative. We will
compute this ring in Section 4.4, using tools developed here and in subsequent sections.

3.2 An adjunction isomorphism

The point of the next few subsections is to take the first steps toward the computation
of DEnd.Pn/. In this section we construct a pair of adjoint functors I W Dn�1!Dn
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and TrW Dn ! Dn�1 . The functor Tr should be thought of as “partial Hochschild
cohomology,” in that HHH.C / Š DHomDn

.R;C / Š DHomD0
.Z;Trn.C // for all

C 2Dn .

Definition 3.5 Define a pair of functors I W Cn�1!Cn and TrW Cn!Cn�1 as follows.
For any graded Re

n�1
–module M, let I.M /Š C Œxn� denote the graded Re

n module
obtained by extending scalars. More precisely,

I.M /D .Re
n=.xn�yn//˝Re

n�1
M:

Since Re
n=.xn � yn/ is free as an Re

n�1
–module, I gives a well-defined functor

Cn�1! Cn . For any N 2 Cn , let Tr.N / denote the total complex:

Tr.N /Š Tot
�
0!N

xn�yn
���!N.�2/! 0

�
;

The grading shifts involved above are characterized by the fact that forgetting the
differential on Tr.N / yields N ˚N.�2/Œ1�. We call Tr the partial trace or partial
Hochschild cohomology.

Proposition 3.6 The functors .I;Tr/ from Definition 3.5 form an adjoint pair. In
other words, there is an isomorphism

HomCn
.I.M /;N /Š HomCn�1

.M;Tr.N //

which is natural in N 2 Cn and M 2 Cn�1 .

Proof Let ƒ denote the complex

0!Re
n.2/

xn�yn
���!Re

n! 0:

Clearly, ƒ is homotopy-equivalent to Re
n�1

Œxn� (as a complex of graded Re
n�1

–
modules), which implies that I.M /Šƒ˝Re

n�1
C for all M 2 Cn�1 . Dually, we have

Tr.N /Š HomRe
n
.ƒ;N / for all N 2 Cn , where the notation Hom is as explained in

Section 1.6. The proposition follows from the usual Hom tensor adjunction.

Extending I and Tr to complexes gives functors Dn�1$Dn , and naturality of the
adjunction isomorphism gives:

Corollary 3.7 There is an isomorphism DHomn.I.C /;D/ Š DHomn�1.C;Tr.D//
which is natural in C 2Dn�1 and D 2Dn . In particular,

HHH.D/Š DHom0.Z;Trn.D//

for all D 2Dn .
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Proof Note that Rn D In.Z/. Repeated application of the adjunction isomorphism
gives DHomn.I

n.Z/;D/Š DHom0.Z;Trn.Z//, as claimed.

The following is immediate:

Lemma 3.8 The partial trace TrW Dn ! Dn�1 is “Dn�1 –bilinear”. That is to say,
there is a natural isomorphism

Tr.I.M /˝C ˝ I.N //ŠM ˝Tr.C /˝N

for all complexes M;N 2Dn�1 and C 2Dn .

In Section 4.4 we use the setup of this section to study DEnd.Pn/.

3.3 The Markov move

Now we introduce the tools which will be used in simplifying Tr.C / for certain
complexes C 2Dn (particularly Pn ). It will be helpful below to visualize an object
M 2Dn as a labeled box with n strands attached to the top and bottom, and HHH.M /

as the diagram obtained by connecting all the loose strands in a planar fashion:

M D M ; HHH.M /D M :

Then the tensor product ˝R corresponds to vertical stacking, and the external tensor
product ˝ZW SBimi�SBimj!SBimiCj corresponds to horizontal juxtaposition. The
identity bimodule Rn is denoted by n parallel strands, and the objects Bi ;Fi ;F

�1
i 2Dn

will be denoted diagrammatically by

Fi D ; F�1
i D ; Bi D ;

pictured in the case nD 7 and i D 3.

The functors I.M / and Tr.N / are indicated diagrammatically by

I.M /D M ; Tr.N /D N :

Then Lemma 3.8 can be stated diagrammatically as

N

C

M

Š

N

C

M

:
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Definition 3.9 For any complex C 2Dn , set qiaj tkC WD C.i; j /hki. If f .q; a; t/
is a Laurent power series in q , a and t with positive integer coefficients, then let
f .q; a; t/C denote the corresponding direct sum of shifted copies of C.

In this section we prove the following diagram relations, which we refer to loosely as
Markov moves:

Š
1C q�2a

1� q2
;(3-1a)

Š
qC q�3a

1� q2
;(3-1b)

' ;(3-1c)

' q�4at :(3-1d)

A more precise statement follows:

Proposition 3.10 (Markov move) Let F˙i DF.�˙i / denote the Rouquier complexes
associated to the elementary braid generators. For each n� 1, we have

Tr.Rn/ŠRn�1Œxn�˚Rn�1Œxn�.�2; 1/h0i;(3-2a)

Tr.Bn�1/ŠRn�1Œxn�.1; 0/h0i˚Rn�1Œxn�.�3; 1/h0i;(3-2b)

Tr.Fn�1/'Rn�1;(3-2c)

Tr.F�1
n�1/'Rn�1.�4; 1/h1i:(3-2d)

The first two are isomorphisms in Cn�1 , and the second two are isomorphisms in Dn�1 .
When used in combination with Lemma 3.8, these yield, for instance,

HHH.RnICFn/Š HHH.Rn�1IC /; HHH.RnICF�1
n /Š HHH.Rn�1IC /.4; 1/h1i

for all C 2 K�.SBimn�1/.

This follows from results in [23; 21]. For the reader’s convenience, and since the
precise grading shifts play an important role in this paper, it is worth including more
details.

Definition 3.11 Let r1; : : : ; rk 2Re a collection of elements. The Koszul complex
associated to r D .r1; : : : ; rk/ is the differential bigraded Re –algebra ƒŒ�1; : : : ; �k �

with differential d.�i/D ri . If R is graded and deg.ri/D qci , then make K bigraded
by deg.�i/D a�1qci , where a�1 signifies homological degree �1. We also use the
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notation ZŒx;y ; �1; : : : ; �k � for Koszul complexes, the understanding being that the
odd variables anticommute and square to zero.

If the sequence r1; : : : ; rk is regular, then the projection K ! Re=I is a quasi-
isomorphism of complexes of graded Re –modules, where I �Re is the ideal generated
by the ri . In some instances these quasi-isomorphisms can be regarded as homotopy
equivalences.

Lemma 3.12 Let K be the Koszul complex associated to the element y�x 2 ZŒx;y�.
Then there is a ZŒx�–equivariant homotopy equivalence K! ZŒx�.

Proof As an abelian group we have KDZŒx;y�˚ZŒx;y� with differential d.f;g/D

.0; .y � x/f /. Any element g 2 ZŒx;y� can be written uniquely as g.x;y/ D

.y � x/g1.x;y/C g2.x/, where g2.x/ D g.x;x/ 2 ZŒx�. Thus, the subcomplex
of K generated by elements of the form .f; 0/ and .0; .y�x/g/, with f;g 2 ZŒx;y�,
is a contractible summand. Contracting it yields K ' ZŒx�.

Proof of Proposition 3.10 First, note that (3-2a) follows easily from the definitions.

For the remainder of the proof, assume that nD 2. The result for arbitrary n reduces
immediately to this one. Let B D Bs D R˝Rs R.�1/ denote the nontrivial Bott–
Samelson bimodule. Let F D F.�1/ denote the elementary Rouquier complex, and
F�1 D F.��1

1
/ its inverse.

Let K denote the Koszul complex ƒŒ�1; �2�, where d.�1/D x1Cx2�y1�y2 and
d.�2/D x1x2�y1y2 . The degrees are necessarily deg.�1/D q2a�1 and deg.�2/D

q4a�1 . This complex is quasi-isomorphic to its homology, which is B.1; 0/. Let � be
an odd variable of degree q2a�1 with differential d.�/D x2�y2 . From the definition
of Tr it is clear that Tr.K/ŠK˝Re ƒŒ��.�2; 1/. In other words,

Tr.K/.2;�1/ŠƒŒ�1; �2; ��:

Let us change variables, introducing � 0
1
D �1 � � and � 0

2
D �2 � .x1 � y2/� � y2�1 .

Note that d.� 0
1
/D x1 � x2 , and d.�2/D 0. An application of Lemma 3.12 says we

may cancel � and set x2 D y2 , obtaining

Tr.K/.2;�1/Š ZŒx1;x2;y1; �
0
1; �
0
2�:

After factoring out the Koszul complex ZŒx1;y1; �
0
1
�ŠR1 , and recognizing that � 0

2

has degree q4a�1 , we see that Tr.K/.2;�1/ŠK.R1/˚K.R1/.4;�1/. Recalling
that K Š B.1; 0/, we have proven (3-2b).
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Now, for (3-2c) and (3-2d) we may appeal to the usual invariance of Khovanov–
Rozansky homology under the Reidemeister I move. Specifically, setting the formal
variable aD 0 in Propositions 4 and 5 in [23], we see that (3-2c) and (3-2d) hold, up
to some degree shift. To see that we have the correct degree shifts is a simple exercise,
using our computations above. For instance, F�1 is the complex 0! R.0; 0/!

B.�1; 0/! 0. Applying Tr, we obtain

Tr.F�1/'
�
0! .R2˚R2.�2; 1//! .R2˚R2.�4; 1//! 0

�
;

where R2 D ZŒx1;x2� (though we forget the action of x2 ). The component of the
differential R2!R2.�4; 1/ is zero since there are no negative degree exts between
Re –modules. In order to have Tr.F�1/'R1 up to a shift, it must be that the unshifted
R2 terms cancel one another. Up to isomorphism, the remaining component of the
differential has to be a unit multiple of x1�x2 , since multiplication by x1�y2'x1�x2

is a null-homotopic endomorphism of Tr.F�1/. Then an application of Lemma 3.12
says that the resulting complex is homotopy-equivalent to R1.�4; 1/. There is an
additional shift of h1i, because B.�1; 0/ is the degree 1 chain bimodule of F�1 . This
proves (3-2d). A similar argument proves (3-2c).

For any C 2 K�.SBimn/, let Pc.q; a; t/ denote the Poincaré series of HHH.C /. If
ˇ is a braid, let Pˇ.q; a; t/D PF.ˇ/.q; a; t/. We record the following for the sake of
posterity:

Corollary 3.13 If ˇ is a braid, let e.ˇ/ denote the braid exponent (signed number
of crossings). The normalized Poincaré series .t1=2a1=2q�2/e.ˇ/�nPˇ.q; a; t/ is an
invariant of the braid closure y̌. If we introduce a formal variable ˛ D t1=2a1=2q�1 ,
then the resulting link invariant assigns the value .˛�1C˛=t/=.q�1�q/ to the unknot.
In general, setting t D �1 recovers the usual, unnormalized HOMFLY invariant in
variables ˛ and q .

Thus, in order to properly normalize HHH.F.ˇ// to obtain an actual link invariant, it
is necessary to introduce half-integral homological and Hochschild degrees.

3.4 Stabilization

The results of this section will not be used elsewhere in this paper, but they may be
of independent interest. Recall the notation and results of Section 2.7. We now find a
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bound on the stable range of HHH.X˝k/. The maps of our directed system give rise
to fi;j W X

˝j !X˝i . By definition, fiCk;jCk is obtained from fi;j by tensoring on
the right with X˝k . Thus,

Cone.fiCk;i/Š Cone.fk;0/X
˝i :

Since fk;0W 1!X˝k is the inclusion of the unique 1–summand, Cone.fk;0/2ker Pn ,
and this complex is supported in homological degrees < 0 up to homotopy. Tensoring
with X˝i and using Lemma 2.37, we see that Cone.fiCk;i/ is supported in homological
degrees < �2d , where d D bi=nc. Thus, the “difference” between X˝iCk and X˝i

is small when i is large. That is, the X˝i form a categorical analogue of a Cauchy
sequence in the sense of Rozansky [33]. It follows that, up to equivalence, X˝iCk and
X˝i agree in homological degrees � �2d .

Proposition 3.14 The map fiC1;i induces a map HHH.X˝i/ ! HHH.X˝iC1/

which is an isomorphism through homological degrees > �2bi=nc.

Proof Consider the exact triangle

X˝i
!X˝iC1

! Cone.fiC1;i/!X˝i
h�1i:

The category Dn is triangulated, from which it follows that HHH.�/D DHom.R;�/
is a homological functor. Thus, there is a long exact sequence

HHH.X˝i/! HHH.X˝iC1/! HHH.Cone.fiC1;i//! HHH.X˝i
h�1i/:

The third term is zero in degrees � �2bi=nc, from which the proposition follows.

Considering the normalization of triply graded homology in Corollary 3.13 yields:

Corollary 3.15 The triply graded homology of the .n; k/ torus link is supported in
homological degrees i , where �nkC k � n � 2i � nk � k � n. The stable range is
those degrees i with nk � k � n� 4bn=kc< 2i � nk � k � n.

4 Structure of the projector

Our goal in this section is to prove that the triply graded ring of endomorphisms of Pn is
the superpolynomial ring ZŒu1; : : : ;un; �1; : : : ; �n�, and to interpret the endomorphisms
corresponding to the even generators uk . Essentially, uk captures the fact that Pk can
be constructed as a certain kind of periodic complex built out of Pk�1 .
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4.1 Statement of the theorems

We wish to prove:

Theorem 4.1 For each integer n � 1, the triply graded algebra of endomorphisms
(Definition 3.2) of Pn satisfies DEnd.Pn/ŠZŒu1; : : : ;un; �1; : : : ; �n�, where the tride-
grees are deg.uk/D q2k t2�2k and deg.�k/D q2k�4t2�2ka. This is an isomorphism
of triply graded algebras.

Here, the ui are even variables and the �i are odd variables (so the �i anticommute
and square to zero).

Remark 4.2 The image of the ground ring RDZŒx1; : : : ;xn� in DEnd.Pn/ under the
isomorphism from Theorem 4.1 is precisely ZŒu1�ŠR=J, where J �R is the ideal
generated by the differences xi�xiC1 (1� i � n�1). The fact that left multiplication
by xi is homotopic to left multiplication by xiC1 follows from Proposition 2.27 and
the fact that FiPn ' Pn . The fact that left multiplication by xi is homotopic to
right multiplication by xi follows from general facts about unital idempotents (see
Proposition 2.24 with P D Pn and I D 1n ).

Our computation of this endomorphism ring requires some insight into the structure
of Pn . This will be provided by Theorem 4.5. We first set up some notation:

Definition 4.3 Let XnDF.�n�1 � � � �2�1/ and YnDF.��1
n�1
� � � ��1

2
��1

1
/ denote the

Rouquier complexes associated to the positive and negative braid lifts of the n–cycle
.n; n� 1; : : : ; 2; 1/. These are objects of K�.SBimn/. Let Jn WDXnY �1

n denote the
Rouquier complex associated to the Jucys–Murphy braid.

Notation 4.4 For any 1�k�n, let Pk denote the complex Pkt1n�k 2K�.SBimn/,
by abuse of notation.

Theorem 4.5 There exist chain maps ˇ.n�1;1/; ˇ.n/ 2 Hom.Pn�1Yn;Pn�1Xn/ with
degrees

deg.ˇ.n�1;1//D q2nt2�2n; deg.ˇ.n//D q0t0

such that Cone.ˇ.n�1;1// 2 im Pn and Cone.ˇ.n// 2 ker Pn (Definition 2.6).

Remark 4.6 The reason for this notation will become clear in future work of the author
with Ben Elias. Specifically, it will be shown that for each partition � of n, there is a very

Geometry & Topology, Volume 22 (2018)



Categorified Young symmetrizers and stable homology of torus links 2981

special chain map ˛� 2Hom.1n;FTn/, where FTnDJ2 � � �Jn is the full twist complex.
Tensoring on the left with Pn�1t11 gives a family of maps ˛0

�
2Hom.Pn�1;Pn�1Jn/.

Tensoring on the right with Yn then gives maps ˇ� 2 Hom.Pn�1Yn;Xn/. The maps
in the above theorem are then special cases of this construction.

We do not know of a proof of Theorem 4.5 which does not rely on Theorem 4.1.
To avoid a circular argument, we have no choice but to prove Theorems 4.5 and 4.1
simultaneously, by induction on n� 1. This is accomplished in subsequent sections.

The organization of this section is as follows. Consider the following statements:

.En/ Theorem 4.1 holds for P1; : : : ;Pn .

.Mn/ Theorem 4.5 holds for P1; : : : ;Pn .

In Section 4.2 we construct ˇ.n/ from Theorem 4.5 explicitly. In Section 4.3 we assume
the existence of ˇ.n�1;1/ and use these maps to give a very useful expression of Pn

in terms of Pn�1Xn and Pn�1Yn . Assuming that ˇ.k�1;1/ has been constructed for
2 � k � n, in Section 4.4 we use the aforementioned expressions of P2; : : : ;Pn to
inductively prove Theorem 4.1 for P2; : : : ;Pn . This shows that .Mn/ implies .En/.
Then, in Section 4.5, we show that .Mn/ and .En/ implies .MnC1/. In fact for this
we only need that End.Pn/ is supported in even homological degrees, which certainly
is implied by Theorem 4.1.

The base cases .E1/, .M1/ and .M2/ are easily checked.

4.2 Pn–quasi-isomorphisms and ˇ.n/

In this section we show that ˇ.n/W Pn�1Yn! Pn�1Xn is easy to construct. First, we
introduce some terminology. Let us say that a morphism f W C !D in K�.SBimn/ is
a Pn –quasi-isomorphism if Pn˝f is a homotopy equivalence (equivalently, f ˝Pn

is a homotopy equivalence). It is straightforward to see that the tensor product and
composition of Pn –quasi-isomorphisms is a Pn –quasi-isomorphism.

Lemma 4.7 A chain map f W C ! D is a Pn –quasi-isomorphism if and only if
Cone.f / 2 ker.Pn/.

Proof Observe Pn˝Cone.f /Š Cone.Pn˝f /, which is contractible if and only if
Pn˝f is a homotopy equivalence from properties of triangulated categories.
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There is a canonical chain map 1 ! F.�i/ which includes 1 as the degree zero
chain group. For the negative crossing there is a canonical projection F.��1

i /! 1.
These maps are Pn –quasi-isomorphisms. Tensoring them gives canonical Pn –quasi-
isomorphisms 1! F.ˇ/ and F.ˇ�1/! 1 for any positive braid ˇ .

Similarly, for any aC bC c D n, let P 0 WD 1a tPb t 1c , and let �0W 1n! P 0 be the
unit map (induced from the unit map of Pk ). Then �0 is a Pn –quasi-isomorphism.

Now, Yn and Xn are Rouquier complexes associated to a negative braid and a positive
braid, respectively, so we have a canonical Pn –quasi-isomorphism Yn! 1n!Xn .

Definition 4.8 Let ˇ.n/W Pn�1Yn! Pn�1Xn be the map obtained by tensoring the
Pn –quasi-isomorphism X ! Y with Pn�1 .

Remark 4.9 Let "1W Y ! 1n and "2W 1n! X denote the canonical maps, so that
ˇ.n/ D .Pn�1"2/ ı .Pn�1"1/. Thus, the composition

PnPn�1

.PnPn�1"2/
�1

����������! PnPn�1Yn

Pnˇ.n/

����! PnPn�1Xn

.PnPn�1"1/
�1

����������! PnPn�1

is homotopic to the identity, hence ˇ.n/ is a Pn –quasi-isomorphism.

4.3 Constructing the projector

The main idea of our construction was outlined in Section 1.1 of the introduction. In
this section we assume Theorem 4.5 holds for Pn (using the map ˇ.n/ constructed
above).

Let un be a formal indeterminate of bidegree q2nt2�2n . If C 2 Dn is any chain
complex, then we will write

(4-1) C Œun�D C ˝Z ZŒun�D C ˚C.2n; 0/h2� 2ni˚C.4n; 0/h4� 4ni˚ � � � :

This is a convenient way of expressing certain direct sums. Note that for n>1 the above
countable direct sum is finite in each homological degree, hence is isomorphic to a direct
product in Dn . Any chain complex of this form comes equipped with an endomorphism
of degree .2n; 0; 2�2n/, given by multiplication by un . In terms of (4-1), multiplication
by un is simply the obvious inclusion C Œun�.2n; 0/h2� 2ni ! C Œun�.

Construction 4.10 Suppose that ˇ.n�1;1/; ˇ.n/ 2 DHom.Pn�1Yn;Pn�1Xn/ as in
Theorem 4.5 have been constructed. Consider the chain map

‰W ZŒun�˝Z Pn�1Yn.2� 2n/h2ni ! ZŒun�˝Z Pn�1Xn;
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defined by ‰ D 1 ˝ ˇ.n�1;1/ � un ˝ ˇ.n/ , which can also be represented by the
semi-infinite diagram of chain complexes and chain maps

(4-2)

.2n/h2� 2ni .0/h0i

.4n/h4� 4ni .2n/h2� 2ni

.6n/h6� 6ni .4n/h4� 4ni

:::
:::

in which the horizontal arrows are given by ˇ.n�1;1/ and the diagonal arrows are �ˇ.n/ ,
with the appropriate shift functors applied. The sign on ˇ.n/ is for later convenience
(see Proposition 4.22). Set Q WD Cone.‰/ 2 K�.SBimn/ and let �W R!Q denote
the inclusion R!Pn�1Xn , followed by the inclusion Pn�1Xn!Q (as the top-right
term in (4-2)).

Proposition 4.11 The pair .Q; �/ from Construction 4.10 satisfies the axioms for
.Pn; �n/ in Definition/Theorem 2.10.

Proof Recall the notation of Construction 4.10. Observe that QDCone.‰/ is built out
of shifted copies of Cone.ˇ.n�1;1//, hence is an object of im Pn since Cone.ˇ.n�1;1//

is, by hypothesis. Thus, Q satisfies axiom (P1) of Definition/Theorem 2.10.

Now we must show that .Q; �/ satisfies axiom (P2). We have Cone.ˇ.n// 2 ker.Pn/

by construction, hence the R–summands of Pn�1Yn and Pn�1Xn cancel one another
in Cone.ˇ.n//. After canceling all of these R–summands from Q D Cone.‰/, it
follows that there is a unique R–summand, in homological degree 0, coming from the
Pn�1Xn term in the top-right of (4-2). By definition, � is the inclusion of the degree
zero chain group R! Pn�1Xn , followed by the inclusion Pn�1Xn!Q. Thus, � is
the inclusion of the unique R–summand of Q. It follows that Cone.�/ 2 ker.Pn/, as
claimed.
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Example 4.12 Recall that F.�1/D .B.1/!R/ and F.��1
1
/D .R! B.�1//. We

define ˇ.1;1/W F.��1
1
/.4/h�2i ! F.�1/ in such a way that

Cone.ˇ.1;1//'R.4/! B1.3/
x2˝1�1˝x2
���������! B1.1/!R;

where the first and last maps are the canonical maps. The proof that Cone.ˇ.1;1//B1'0

follows along the same lines as in the case of P2 in Proposition 2.12.

Proposition 4.11 states that P2 can be reconstructed from infinitely many copies of this
four-term complex. Doing so explicitly is an easy exercise, and is left to the reader.

In subsequent sections we use this explicit description of Pn to compute HHH.Pn/.
But first recall some general arguments that will aid the computation.

4.4 The endomorphism ring of Pn

In this section we compute the triply graded ring DEnd.Pn/, assuming that ˇ.k�1;1/

has been constructed for 2 � k � n. Actually we will compute DEnd.Pn/ as a
DEnd.Pn�1/ algebra, utilizing the theory in Section 2.5, together with the Markov
move and the description of Pn from Construction 4.10.

Proposition 2.21 states that the endomorphism rings of unital idempotents are commu-
tative. The same considerations apply to DEnd.Pn/ with one important modification.
The shifts .0; j /h0i and .0; 0/hki are both of “homological type”, which means that
there are signs involved in the isomorphisms

A.0; j /h0i˝B ŠA˝B.0; j /h0i and A.0; 0/hki˝B ŠA˝B.0; 0/hki:

Thus, the overall sign in commuting f ˝ Id past Id˝ g is .�1/jf jjgj , where j � j is
the total homological degree, as described below. Consequently, DEnd.Pn/ is graded
commutative. See Section 3.1 in [20] for more on graded monoidal categories.

As a corollary, we obtain the following:

Proposition 4.13 HHH.Pn/ŠDHom.1n;Pn/ŠDEnd.Pn/ is a graded commutative
ring with unit Œ�n�, where �nW 1n! Pn is the unit map. Here, graded commutativity
means Œf �Œg�D .�1/jf jjgjŒg�Œf �, where jf j D j C k is the total homological degree
of an element f 2 HHHijk.Pn/.
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Proof Since the inclusion K�.SBimn/! Dn is a monoidal functor, .Pn; �n/ is a
unital idempotent in Dn . Thus, HomDn

.Pn.i; j /hki;Pn/ŠHomDn
.1n.i; j /hki;Pn/,

by Proposition 2.19. Thus, HHH.Pn/ŠDHom.1n;Pn/ŠDEnd.Pn/ as triply graded
abelian groups. Graded commutativity of DEnd.Pn/ also follows by the general
arguments above.

We will want to understand HHH.Pn/ not just as a ring, but as an algebra over
HHH.Pn�1/. For the remainder of the section, we set I.Pn�1/ WD Pn�1 t 11 .
Proposition 2.18 says that Pn is a unital idempotent relative to I.Pn�1/, and so
(a graded version of) Proposition 2.24 gives us an algebra map �W DEnd.I.Pn�1//!

DEnd.Pn/. On the other hand,

DEnd.I.Pn�1//Š DEnd.Pn�1/˝Z ZŒxn�:

We will restrict to DEnd.Pn�1/˝ 1, and we write the resulting algebra map

DEnd.Pn�1/! DEnd.Pn/

also by � , by abuse.

The goal of this section is to prove the following:

Proposition 4.14 If Theorem 4.5 holds for P1; : : : ;Pn�1 , then Theorem 4.1 holds
for Pn .

We will prove this by induction on n � 1. In the base case, P1 D ZŒx1� is the
trivial bimodule, and DEnd.P1/D HHH.P1/ is the ordinary Hochschild cohomology
of R D ZŒx1�, which is ZŒx1�˚ ZŒx1�.�2/Œ1� by Proposition 3.10. This is clearly
isomorphic to ZŒu1; �1�, as claimed. Now, let n� 2 be given and assume by induction
that:

Hypothesis 4.15 DEnd.Pk/ŠZŒu1; : : : ;uk ; �1; : : : ; �k � as triply graded algebras for
1� k � n�1. Assume also there exist maps ˇ.n�1;1/; ˇ.n/ 2Hom.Pn�1Yn;Pn�1Xn/

as in Theorem 4.5.

Before continuing, we set up some notation.

Definition 4.16 Let ŒUk �; Œ„k �2DEnd.Pn�1/ denote the classes corresponding to uk

and �k under the isomorphism from Hypothesis 4.15. Denote the image of ŒUk �; Œ„k �2

DEnd.Pn�1/ under the map � also by ŒUk �; Œ„k � 2DEnd.Pn/ for 1� k � n� 1. Let
ŒUn�2DEnd.Pn/ denote the periodicity endomorphism of Pn ; see also Proposition 4.22.
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Proposition 4.13 says that DEnd.Pn/ Š DHom.1n;Pn/ (the isomorphism is given
by precomposing with the unit map �nW 1n ! Pn ). This is a major simplification
indeed, since to compute DEnd.Pn/ from the definitions would require computing the
homology of a bi-infinite complex with uncountably generated chain groups, while
DHom.1n;Pn/ is the homology of a bounded-above chain complex, each of whose
chain groups is finitely generated as an Rn –module.

The adjunction isomorphism (Corollary 3.7) then applies, yielding

(4-3) DEnd.Pn/Š DHom.1n�1;Tr.Pn//:

Our next task is to compute Tr.Pn/, assuming Hypothesis 4.15. Our computation
is aided by the fact that DEnd.Pn�1/ is supported in even homological degrees (ie
t –degrees).

By induction, we assume that Theorem 4.5 holds for Pn . Thus, we can construct Pn

as in Construction 4.10. More precisely,

Pn D Cone
�
ZŒun�˝Pn�1Yn�1.2n; 0/h2� 2ni ! ZŒun�˝Pn�1Xn

�
;

in which the map is 1˝ˇ.n�1;1/�un˝ˇ.n/ .

Definition 4.17 Let Un 2 DEnd.Pn/ denote the endomorphism induced by multipli-
cation by un .

We may apply the linear functor Tr to the above description of Pn , obtaining

Tr.Pn/D Cone
�
ZŒun�˝Tr.Pn�1Yn�1/.2n; 0/h2� 2ni ! ZŒun�˝Tr.Pn�1Xn/

�
:

Now, observe that

(4-4)
Tr.Pn�1Y /D ' .�4; 1/h1i;

Tr.Pn�1X /D ' .0; 0/h0i:

We have used the Markov move (Proposition 3.10) to undo the curls, and then used
the fact that Pn�1 absorbs Rouquier complexes. Choose homotopy equivalences and
denote them by  Y W Tr.Pn�1Y /! Pn�1.�4; 1/h1i and  X W Tr.Pn�1X /! Pn�1 .
Tensoring with ZŒun� gives

1˝ Y W ZŒun�˝Z Tr.Pn�1Y / '�!ZŒun�˝Z Pn�1.�4; 1/h1i
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and
1˝ X W ZŒun�˝Z Tr.Pn�1X /! ZŒun�˝Z Pn�1:

The equivalences and the associated homotopies all commute with multiplication by un .
Thus, our description of Tr.Pn/ becomes

Tr.Pn/' Cone
�
ZŒun�˝Pn�1.2n� 4; 1/h3� 2ni ! ZŒun�˝Pn�1

�
;

in which the differential is

.1˝ X / ı .1˝Tr.ˇ.n�1;1//�un˝Tr.ˇ.n/// ı .1˝ 
�1
Y /D 1˝f1�un˝f0;

where f0D X ıTr.ˇ.n�1;1//ı 
�1
Y

and f1D X ıTr.ˇ.n//ı �1
Y

are closed elements
of DEnd.Pn�1/ of degree deg.f0/ D .2n� 4; 1; 3� 2n/ and deg.f1/ D .�4; 1; 1/.
By Hypothesis 4.15, DEnd.Pn�1/ is supported in even t –degrees, so we conclude that
f0 ' f1 ' 0. Thus, Tr.Pn/ splits as a direct sum of infinitely many copies of Pn�1 .
We can keep track of degrees in a convenient way:

(4-5) Tr.Pn/' ZŒun; �n�˝Pn�1:

We collect our findings below.

Proposition 4.18 Assuming Hypothesis 4.15, there is an equivalence of the form (4-5)
in Dn , where un is an even formal indeterminate of degree q2nt2�2n and �n is an
odd formal indeterminate of degree q2n�4t2�2na. This equivalence and the various
homotopies can all be chosen to be ZŒun�–equivariant.

Corollary 4.19 Under Hypothesis 4.15, we have an isomorphism

(4-6) ˆW DHom.1n�1;Tr.Pn//
Š
�!ZŒun; �n�˝DHom.1n�1;Pn�1/

as triply graded ZŒun�–modules. Consequently, DEnd.Pn/Š ZŒu1; : : : ;un; �1; : : : ; �n�

as triply graded ZŒun�–modules.

Proof This is obtained by applying DHom.1n�1;�/ to (4-5). Since 1n�1 is sup-
ported in a single homological degree, any homogeneous morphism 1n�1.a; b/hci !

ZŒun; �n� ˝ Pn�1 hits only finitely terms uk
n�

l
n ˝ Pn�1 , because un has negative

homological degree for n> 1. Thus,

HomDn�1
.1n�1.a; b/hci;ZŒun; �n�˝Pn�1/

Š HomDn�1
.1n�1.a; b/hci;ZŒun; �n�˝Pn�1/:

The last statement follows from DHom.1n�1;Pn�1/ŠDEnd.Pn�1/ together with the
induction hypothesis, Hypothesis 4.15.
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We must promote the statement of Corollary 4.19 to an isomorphism of rings. First,
we bring the DEnd.Pn�1/–action into the picture.

Lemma 4.20 For all g 2 DEnd.Pn�1/ we have

g˝ IdTr.Pn/ ' IdPn�1
˝Tr.�.g// 2 DEnd.Pn�1˝Tr.Pn//:

Proof Let g 2 DEnd.Pn�1/ be arbitrary. Consider the diagram

Pn�1 Tr.Pn/

g Tr.Pn/

��

Š
// Tr.I.Pn�1/Pn/

Tr.I.g/Pn/

��

Š
// Tr.I.Pn�1/Pn/

Tr.I.Pn�1/�.g//

��

Š
// Pn�1 Tr.Pn/

Pn�1 Tr.�.g//
��

Pn�1 Tr.Pn/
Š
// Tr.I.Pn�1/Pn/

Š
// Tr.I.Pn�1/Pn/

Š
// Pn�1 Tr.Pn/

The left and right squares commute by naturality of the isomorphism in Lemma 3.8.
The middle square commutes up to homotopy by Proposition 2.24. Commutativity of
the diagram gives the relation in the statement.

Lemma 4.21 The isomorphism (4-6) commutes with the DEnd.Pn�1/–action.

Proof Note that DEnd.Pn�1/ acts on Pn , via �W DEnd.Pn�1/! DEnd.Pn/. Thus,
DEnd.Pn�1/ acts on each of DEnd.Pn/, DHom.1n;Pn/ and DHom.1n�1;Tr.Pn//

via its action on the second arguments (applying the functor Tr in the case of the
latter hom space). Precomposition with �nW 1n! Pn commutes with postcomposition
with �.g/, hence the isomorphism

��nW DEnd.Pn/Š DHom.1n;Pn/

commutes with the DEnd.Pn�1/–actions. Naturality implies that the adjunction iso-
morphism

DHom.1n;Pn/Š DHom.1n�1;Tr.Pn//

commutes with the DEnd.Pn�1/–actions.

Now, consider the sequence of homotopy equivalences (and isomorphisms)

Tr.Pn/' Pn�1 Tr.Pn/' Pn�1.ZŒun; �n�˝Z Pn�1/Š ZŒun; �n�˝Z .Pn�1Pn�1/:

Lemma 4.20 implies that the first equivalence commutes with the DEnd.Pn�1/–actions
(up to homotopy). The second equivalence commutes with the DEnd.Pn�1/–action on
the first factor Pn�1 . The isomorphism is merely an application of the distributivity
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relation between ˝ and ˚; it commutes with the DEnd.Pn�1/–action. Finally, apply-
ing the equivalence Pn�1Pn�1'Pn�1 (which commutes with the DEnd.Pn�1/–action
up to homotopy by the proof of Proposition 2.20), we see that the equivalence (4-5)
commutes with the DEnd.Pn�1/–actions up to homotopy.

Applying the functor DHom.1n�1;�/, we find that the equivalence

DHom.1n�1;Tr.Pn//Š ZŒun; �n�˝Z DHom.1n�1;Pn�1/

commutes with the DEnd.Pn�1/–action. Putting all of this together proves the lemma.

We are ready to prove Proposition 4.14.

Proof of Proposition 4.14 To complete the proof we must show that the isomorphism
ˆ from (4-6) is an algebra map. Let us recap how ˆ is defined. Let f 2 DEnd.Pn/

be given. Let �nW 1n! Pn denote the unit map. First, form f ı �n 2 DHom.1n;Pn/.
Now apply the adjunction isomorphism AW DHom.1n;Pn/! DHom.1n�1;Tr.Pn//,
obtaining

A.f ı �/D Tr.f / ıA.�/ 2 DHom.1n�1;Tr.Pn//;

by naturality of A. Then postcompose with the simplification 'W Tr.Pn/'ZŒun�˝Pn�1 .
The result is

(4-7) ˆ.f / WD ' ıTr.f / ıA.�n/:

This is a morphism from 1n�1 to Pn�1˝ZŒun; �n� in Dn�1 . Such morphisms can be
thought of as elements of ZŒun; �n�˝DHom.1n�1;Pn�1/. This defines

ˆW DEnd.Pn/! ZŒun; �n�˝DHom.1n�1;Pn�1/:

Claim 1 ˆ.IdPn
/D 1˝ Œ�n�1�:

This is a straightforward verification. In any case this is forced for degree reasons.
The degree .0; 0; 0/ component of DEnd.Pn/ is isomorphic to Z as a ring, with
generator ŒIdPn

�. This is an easy consequence of Corollary 4.19, together with the fact
that there are only two unital ring structures on Z with its standard additive structure
(they are related by the automorphism x 7! �x ). Thus, ˆ.ŒIdPn

�/D˙1 since ˆ is a
group isomorphism, hence sends generators to generators. Up to replacing ˆ by �ˆ,
we may arrange that ˆ.ŒIdPn

�/DC1.

Claim 2 ˆ is ZŒun� equivariant.
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Compute

ˆ.Un ıf /D ' ıTr.Un/ ıTr.f / ıA.�n/D un ı' ıA.f ı �n/:

The second equality holds by naturality of the adjunction isomorphism A, and the
third holds since ' is equivariant with respect to the periodicity endomorphism
(Proposition 4.18).

Thus, ˆW DEnd.Pn/!ZŒun; �n�˝DHom.1n�1;Pn�1/ sends 1 7! 1 and is equivariant
with respect to the action of ZŒun�˝DEnd.Pn�1/ (equivariance with respect to the
DEnd.Pn�1/–action was proven in Lemma 4.21). On the other hand, the domain and
codomain of ˆ are free of rank 2 over ZŒun�˝DEnd.Pn�1/, so we are very nearly
done. To finish the proof, we will construct an algebra map

‰W ZŒun; �n�˝DHom.1n�1;Pn�1/! DEnd.Pn/

and show that ˆı‰D Id. First, let „n 2DEnd.Pn/ denote ˆ�1.�n/. Proposition 4.13
says that g 7! g ı �n�1 is an algebra isomorphism

DEnd.Pn�1/! DHom.1n�1;Pn�1/:

Thus, we have an algebra map DHom.1n�1;Pn�1/! DEnd.Pn/ uniquely charac-
terized by g ı �n�1 7! �.g/. We also have an algebra map ZŒun; �n� 7! DEnd.Pn/

characterized by un 7! ŒUn� and �n 7! Œ„n�. Tensoring these together defines ‰ .

Note that ˆ ı‰ acts as the identity on 1˝ Œ�n�1� and �n˝ Œ�n�1�, by construction.
Moreover, ˆ ı‰ is equivariant with respect to the ZŒun�˝DEnd.Pn�1/–action, and
the endomorphism ˆı‰�Id annihilates a set of generators. It follows that ˆı‰D Id,
which proves that ˆD‰�1 is an algebra isomorphism.

Thus, DEnd.Pn/Š ZŒun; �n�˝DEnd.Pn�1/Š ZŒu1; : : : ;un; �1; : : : ; �n� as algebras.

Before moving on, we collect some results regarding the action of ZŒu1; : : : ;un� on Pn .

Proposition 4.22 Assume Hypothesis 4.15, and let ŒU .k/
i � 2 DEnd.Pk/ denote the

class (and a chosen representative) corresponding to ui under the result of Theorem 4.1
for 1� i�k . Let �nk W DEnd.Pk/!DEnd.Pn/ be the canonical ring map (Proposition
4.13). Then �nk.U

.k/
i /' U

.n/
i for all 1� i � k � n. The map U

.n/
n is homotopic to

the map obtained by tensoring ˇ.n;n�1/ 2 Hom.Pn�1Yn;Pn�1Xn/ on the left with Pn

and simplifying.
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Proof The relations �nk.U
.k/
i /'U

.n/
i hold by definition (Definition 4.16). They are

consistent (up to homotopy) since �nk ı �ki ' �ni .

Now, to prove the relation between U
.n/
n and ˇ.n�1;1/ we first introduce some ab-

breviations. Let Un denote U
.n/
n which by definition is the periodicity map of Pn

(Definition 4.17). Let � W Hom.Pn�1Yn;Pn�1Xn/!End.Pn/ denote the map induced
by tensoring on the left with Pn and simplifying. Set U 0n WD �.ˇ.n�1;1//. Note that
�.ˇ.n//D IdPn

(Remark 4.9). We wish to prove that U 0n ' Un .

Proposition 2.20 says that any closed endomorphism g 2 End.Pn/ satisfies

gPn ' Png 2 End.PnPn/:

We will prove that U 0nPn ' PnUn , from which the proposition will follow. From
Construction 4.10 we have

Pn D Cone
�
Pn�1YnŒun�

ˇ.n�1;1/˝1�ˇ.n/˝un

���������������! Pn�1XnŒun�
�
;

omitting the grading shifts. Tensoring with Pn yields

PnPn D Cone
�
PnPn�1YnŒun�

Pnˇ.n�1;1/˝1�Pnˇ.n/˝un

�������������������! PnPn�1XnŒun�
�
:

Applying the homotopy equivalence PnPn�1Yn ' Pn and PnPn�1Xn ' Pn yields

PnPn ' Cone
�
PnŒun�

�.ˇ.n�1;1//˝1��.ˇ.n//˝un

�������������������! PnŒun�
�
:

Since �.ˇ.n�1;1//' U 0n and �.ˇ.n//' IdPn
, we obtain

PnPn ' Cone
�
PnŒun�

U 0n˝1�IdPn˝un

�����������! PnŒun�
�
:

All of the above equivalences (and the homotopies) commute with multiplication by un

(ie Un ). The proposition now follows from general arguments, as we now explain. Let
C 2 K.C/ be any complex over an additive category, let � be any grading shift functor
and let f W �C ! C be a chain map. Then, in terms of diagrams, we have

Cone
�
�C Œu�

f˝1�IdC˝u
���������! PnŒu�

�
D

0BBBBBBBBBBBBB@

�C h1i C

�2C h1i �C

:::
:::

f

�IdC

�f

�Id�C

1CCCCCCCCCCCCCA
:
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After Gaussian eliminations, this complex is homotopy-equivalent to C. It is a straight-
forward exercise to check that multiplication by u (which acts by shifting the above
diagram down) corresponds to f under this equivalence. Applying these considerations
to the above description of PnPn shows that U 0n ' Un , as claimed.

This justifies the sign on ˇ.n/ in our construction of Pn .

4.5 The map ˇ.n�1;1/

Throughout this section, we will abuse notation in the following way. If C 2K.SBimk/,
then we will denote C t 1n�k 2 K.SBimn/ also by C.

The following completes our inductive proof of Theorems 4.5 and 4.1.

Proposition 4.23 If Theorems 4.1 and 4.5 hold for P1; : : : ;Pn�1 , then Theorem 4.5
holds for Pn .

In particular, DEnd.Pn�1/ is supported in even homological degrees. We will use this
parity observation to construct ˇ.n�1;1/ .

In this section it will be useful to draw our chain complexes diagrammatically. For
instance, if A, B , C and D are chain complexes, then

(4-8)

0BBBBBB@ A B C D
dBA dCB dDC

dDA

dCA dDB

1CCCCCCA
will denote the chain complex

A˚B˚C ˚D with differential

2664
dA 0 0 0

dBA dB 0 0

dCA dCA dC 0

dDA dDB dDC dD

3775 :
Here, dYX are degree 1 elements of Hom.X;Y /, for X;Y 2 fA;B;C;Dg. The
equation d2 D 0 holds if and only if:

(1) d2
A
D d2

B
D d2

C
D d2

D
D 0.

(2) dCB ı dBA D�.dC ı dCAC dCA ı dA/, so that dCB ı dBA is null-homotopic
with homotopy �dCA .
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(3) Similarly, dDC ı dCB D�.dD ı dDBC dDB ı dB/.

(4) dDB ı dBAC dDC ı dCA D�.dD ı dDAC dDA ı dA/. The left-hand side is a
degree 2 cycle in Hom.A;D/, and this equation is interpreted as saying that this
cycle is null-homotopic with homotopy �dDA .

Note also that the chain complex (4-8) can be reassociated into a chain complex

..A! B/! .C !D//

which is the mapping cone on a map .A ! B/h1i ! .C ! D/. So, if we want
to construct chain maps between mapping cones, we may as well construct chain
complexes of the form (4-8). This will be our strategy. We begin with some observations.
First, note that the Rouquier complex associated to a crossing can be written in this
language as

F.�n�1/D .Bn�1.1/h�1i !R/;

where the map is the “dot” map. The shift h�1i on Bn�1 indicates that this term is in
homological degree �1. Tensoring on the right with F.�1 � � � �n�2/ gives

Xn '
�
Bn�1Xn�1.1/h�1i !Xn�1

�
:

Now, tensoring with Pn�1 gives

Pn�1Xn '
�
Pn�1Bn�1Xn�1.1/h�1i

dDC
��!Pn�1

�
since Pn�1 absorbs Rouquier complexes. We are denoting the horizontal component
of the differential by dDC for reasons that will become clear in a moment. Note that
dDC is simply the “dot” map Pn�1Bn�1Xn�1!Pn�1Xn�1 followed by a homotopy
equivalence. Similar considerations, starting from F.��1

n�1
/D

�
R! Bn�1.�1/h1i

�
,

yield
Pn�1Yn '

�
Pn�1

dBA
��!Pn�1Bn�1Yn�1.�1/h1i

�
:

We wish to construct a chain map Pn�1Yn.2n/h2� 2ni ! Pn�1Xn . By expanding
each term according to the observations above, and taking the mapping cone, we see
that we must construct a chain complex Qn of the form

(4-9)

0BBBBBBB@P .2n/h1�2ni PBY .2n�1/h2�2ni PBX.1/h�1i P
dBA dCB dDC

dDA

dCA
dDB

1CCCCCCCA
;

Geometry & Topology, Volume 22 (2018)



2994 Matthew Hogancamp

where we have abbreviated P D Pn�1 , X D Xn�1 , Y D Yn�1 and B D Bn�1 . We
must then show that Qn 2 ker.Pn/. We construct the differentials in Qn piece by
piece. The components dDC and dBA were constructed already. The most interesting
component is dCB , and we construct this next. The ideas are fairly simple; the biggest
challenge will be parsing notation.

Observe that

Pn�1Bn�1Pn�2Yn�1 ' Pn�1Pn�2Bn�1Yn�1 ' Pn�1Bn�1Yn�1

and
Pn�1Bn�1Pn�2Xn�1 ' Pn�1Pn�2Bn�1Xn�1 ' Pn�1Bn�1Xn�1;

since Pn�2 commutes past Bn�1 and gets absorbed by Pn�1 .

Let ˇ.n�1/; ˇ.n�2;1/ 2Hom.Pn�2Yn�1;Pn�2Xn�1/ be the morphisms from Theorem
4.5, so that Cone.ˇ.n�1// 2 ker.P / and Cone.ˇ.n�2;1// 2 im.P /. These exist by the
induction hypotheses.

Remark 4.24 The map ˇ.n�1/ is obtained from the composition Yn�1! 1!Xn�1

by tensoring on the left with Pn�2 . Thus, ˇ.n�1/ factors through Pn�2 . This fact will
be used in the proof of Proposition 4.29.

Tensoring
ˇ.n�2;1/W Pn�2Yn�1.2n� 2/h4� 2ni ! Pn�2Xn�1

on the left with Pn�1 and applying Pn�1Pn�2Yn�1 ' Pn�1 and Pn�1Pn�2Xn�1 '

Pn�1 gives a morphism Pn�1.2n�2/h4�2ni!Pn�1 , which we shall denote by un�1

(compare with Proposition 4.22). Tensoring

ˇ.n�1/W Pn�2Yn�1! Pn�2Xn�1

on the left with Pn�1 yields the identity morphism Pn�1! Pn�1 up to homotopy,
since ˇ.n�1/ restricts to the identity map on the unique 1–summands of Pn�2Yn�1

and Pn�2Xn�1 (see Remark 4.9).

Lemma 4.25 We have un�1ˇ.n�1/ ' Pn�1ˇ.n�2;1/ .

Proof Recall that for any closed morphism f 2End.Pn�1/ we have fPn�1'Pn�1f .
Thus, it suffices to show that

un�1Pn�1ˇ.n�1/�Pn�1Pn�1ˇ.n�2;1/

2 Hom.Pn�1Pn�1Pn�2Yn�1;Pn�1Pn�1Pn�2Xn�1/
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is null-homotopic. Let ' be the chosen homotopy equivalence Pn�1!Pn�1Pn�2Yn�1 ,
and let  denote the chosen homotopy equivalence Pn�1Pn�2Xn�1!Pn�1 . For any
f 2 Hom.Pn�2Yn�1;Pn�2Xn�1/, set �.f / WD  ı .Pn�1f / ı ' . By construction,
�.ˇ.n�1//' IdPn�1

and �.ˇ.n�2;1//' un�1 . Thus,

.P /ı.uPˇ.n�1/�PPˇ.n�2;1//ı.P'/'u�.ˇ.n�1//�P�.ˇ.n�2;1//'uP�Pu'0;

where P D Pn�1 and uD un�1 . This proves that

un�1Pn�1ˇ.n�1/�Pn�1Pn�1ˇ.n�2;1/ ' 0;

as claimed.

Definition 4.26 Let ı1 denote the composition

ı1W PBY .2n� 2/h4� 2ni '�!PBP 0Y .2n� 2/h4� 2ni
uBˇ.n�1/

������! PBP 0X '
�!PBX

and let ı2 denote the composition

ı2W PBY .2n�2/h4�2ni '�!PBP 0Y .2n�2/h4�2ni
PBˇ.n�2;1/

��������!PBP 0X '
�!PBX;

where P D Pn�1 , B D Bn�1 , P 0 D Pn�2 and uD un�1 . Set dCB WD ı2� ı1 .

Lemma 4.27 With the definitions of dBA , dCB and dDC above, there exists a com-
plex Qn as in diagram (4-9).

Proof We will show that dCB ı dBA and dDC ı dCB are null-homotopic, which
implies the existence of homotopies dCA and dDB . Assuming this is done, it is trivial
to check that the expression

(4-10) dDB ı dBAC dDC ı dCA 2 Hom2..Pn�1 t11/.2n/h1� 2ni;Pn�1 t 11/

is a cycle. This cycle corresponds to a degree .2n/h3� 2ni cycle of End.Pn�1 t11/.
But notice that

End.Pn�1 t11/Š End.Pn�1/˝Z ZŒxn�;

whose homology is supported in even homological degrees by Proposition 4.14. In
particular, there are nonzero elements of homological degree 3� 2n. This shows that
the cycle (4-10) is null-homotopic, which then proves the existence of dDA .

It remains to prove that dCB ı dBA ' 0 and dDC ı dCB ' 0. We prove the second of
these; the first is similar. Recall that ı2 is obtained from

Pn�1Bn�1Pn�2Yn�1

IdPn�1
IdBn�1

ˇ.n�2;1/�un�1IdBn�1
ˇ.n�1/

�����������������������������! Pn�1Bn�1Pn�2Xn�1
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by precomposing and postcomposing with some homotopy equivalences. We are
omitting shifts for brevity. Now, if the Bn�1 factor were not there, then the resulting map
would be null-homotopic by Lemma 4.25. Thus, dCB becomes null-homotopic upon
postcomposing (resp. precomposing) with the “dot” map Bn�1! 1 (resp. 1!Bn�1 ).
This implies that dCB ı dBA ' 0 and dDC ı dCB ' 0, as claimed.

Definition 4.28 Let ˇ.n�1;1/W Pn�1Yn.2n/h2 � 2ni ! Pn�1Xn be the chain map
whose mapping cone is the complex Qn constructed in Lemma 4.27.

Proposition 4.29 We have Qn D Cone.ˇ.n�1;1// 2 ker.Pn/.

Proof We must show that QnBk ' 0 for 1� k � n� 1. Recall that by construction
Qn is the mapping cone on a map Pn�1Yn! Pn�1Xn (shifts omitted). Tensoring on
the right with Bk (2� k � n� 1) yields

Pn�1YnBk Š Pn�1Bk�1Yn ' 0;

since Bk slides past Yn and is annihilated by Pn�1 . Similarly, Pn�1XnBk ' 0 for
2� k � n� 1. This shows that QnBk ' 0 for 2� k � n� 1.

The argument that QnB1 ' 0 depends on n. The case nD 1 is trivial, and the case
nD 2 is taken care of explicitly by Example 4.12. If n� 3, then Pn�1B1 ' 0. Thus,
the first and fourth terms of QnB1 (with respect to diagram (4-9)) are null-homotopic,
and we see that

QnB1 ' Cone.ı2� ı1/B1;

up to shift. Before going through the remaining details, we remark that Cone.ı2� ı1/
should be thought of as a “perturbed” version of Cone.ı2/. On the other hand, from
the definition of ı2 (Definition 4.26) we see that

Cone.ı2/' Pn�1Bn�1 Cone.ˇ.n�2;1//D Pn�1Bn�1Qn�1:

This complex is annihilated by .�/˝B1 up to homotopy, since Qn�1 2 im Pn�1 .
Alas, this does not prove that Cone.ı2� ı1/B1 ' 0. But it does give a clue as to how
to proceed.

Case n�4 Since ˇ.n�1/ factors through Pn�2 (Remark 4.24), it follows from the def-
inition that ı1 2 Hom.Pn�1Bn�1Yn�1;Pn�1Bn�1Xn�1/ factors through Pn�1Bn�1 ,
up to homotopy. Thus, ı1B1 is null-homotopic, since it factors through Pn�1Bn�1B1Š
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Pn�1B1Bn�1' 0 (we are using n� 4 in sliding B1 past Bn�1 ). Thus, .ı2�ı1/B1'

ı2B1 , and

Cone.ı2� ı1/B1 Š Cone..ı1� ı2/B1/Š Cone.ı2B1/Š Cone.ı2/B1 ' 0

by the above arguments.

Case n D 3 This case reduces to an explicit computation. We have Q3B1 '

Cone.ı2 � ı1/B1 up to shifts, where Cone.ı2 � ı1/ can be written (omitting the
homological shifts) as in the diagram0BB@

P2B2.4/ P2B2B1.3/ P2B2B1.1/ P2B2

�u2˝ IdB2

1CCA :
Note that, disregarding the long arrow, the resulting complex is just Cone.ı2/ D
P2B2Q2 , which becomes contractible on applying .�/˝B1 . The long arrow is the
contribution from ı1 D u2ˇ.2/ . Now, Cone.ı2� ı1/B1 is the complex0BB@

P2B2B1.4/ P2B2B1.4/˚P2B2B1.2/ P2B2B1.2/˚P2B2B1.0/ P2B2B1.0/

u2B2B1

1CCA:
The length 1 components of the differential are precisely the same as in Q2B1 , tensored
with the identity map of P2B2 . The long arrow does not interfere with the Gaussian
eliminations which realize the contractibility of Q2B1 , and so the above chain complex
is contractible. We leave the details to the reader.

Proof of Theorems 4.5 and 4.1 This is an induction on n. First, the maps ˇ.n/
are constructed in Definition 4.8. Theorems 4.1 and 4.5 hold for P1 trivially, and
Theorem 4.5 holds for P2 (the maps ˇ.2/ and ˇ.1;1/ are constructed in Example 4.12).
Assume by induction that Theorems 4.1 and 4.5 hold for P1; : : : ;Pn�1 . Then ˇ.n/
is constructed above, which proves Theorem 4.5 for Pn (see Proposition 4.29; this
holds assuming the induction hypotheses). Then Proposition 4.14 computes the algebra
DEnd.Pn/, which proves Theorem 4.1 for Pn . This concludes the inductive step in
our proof of Theorems 4.1 and 4.5.

4.6 Additional properties of Qn

The reader should compare the results here with similar results in [19].

Definition 4.30 Let Qn WD Cone.ˇ.n�1;1// 2 K�.SBimn/.
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Proposition 4.31 Let U
.n/

k
2 End.Pn/ denote chain maps which represent the classes

uk in homology, with respect to the isomorphism in Theorem 4.1. Then

(4-11) Cone.U .n/
n /'Qn; Cone.U .n/

k
/' .Qk t 1n�k/˝Pn:

Proof From Proposition 4.22 we know that U
.n/

k
'�nk.U

.k/

k
/. From Proposition 2.24

we have
.U

.k/

k
t Id1n�k

/˝ IdPn
' .IdPk

t Id1n�k
/˝U

.n/

k
:

Taking mapping cones gives .Qk t 1n�k/˝ Pn ' .Pk t 1n�k/˝Qn . But, since
Qn 2 im.Pn/ by construction, we have PnQn 'Qn , hence

.Pk t1n�k/Qn ' .Pk t 1n�1/PnQn ' PnQn 'Qn:

Now, recall the various symmetries of SBimn . Let � W SBimn!SBimn be the covariant
functor such that �.Bi/DBn�i and �.MN /D �.M /�.N / for all M;N 2SBimn . Let
!W SBimn! SBimn be the covariant functor such that !.Bi/D Bi and !.MN /D

!.N /!.M / for all M;N 2SBimn . Note that � comes from the Dynkin automorphism
of An�1 , and ! reflects all diagrams across a vertical axis in terms of the Elias–
Khovanov diagrammatics.

Note that
�..At1n�k/B/Š .1n�k t �.A//�.B/;

!..At 1n�k/B/Š !.B/.!.A/t 1n�k/;

� ı!..At 1n�k/B/Š � ı!.B/.1n�k t � ı!.A//:

Note that �.Pn/'Pn'!.Pn/ by the uniqueness statement in Definition/Theorem 2.10.
Thus, � and ! define algebra automorphisms of DEnd.Pn/ŠZŒu1; : : : ;un; �1; : : : ; �n�.
The degrees are

deg.ui/D .2i; 0; 2� 2i/; deg.�i/D .2i � 4; 1; 2� 2i/:

We collapse gradings by introducing degs D degqC degt C4 dega . It is easy to see
that the classes ui and �i for 1� i � n span the subgroup in homology consisting of
classes with degs D 2, and all other homogeneous classes other than 1 have degs > 2.
The classes ui and � are further distinguished from one another by dega and degt .
Thus, each ui and �i spans its corresponding homology group, which is isomorphic
to Z. Since these classes are unique up to unit scalar, any automorphism of DEnd.Pn/

must send ui 7! ˙ui and �i 7! ˙�i . As an easy corollary we obtain the following:
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Proposition 4.32 The object Qn has the symmetries of a rectangle: �.Qn/ ' Qn

and !.Qn/'Qn . Furthermore,

(4-12) .Qk t 1n�k/Qn 'Qn.Qk t 1n�k/' .1n�k tQk/Qn 'Qn.1n�k tQk/:

Proof We have �.Qn/ ' Cone.�.un// Š Cone.˙un/ Š Qn , since mapping cones
satisfy Cone.˙f /Š Cone.f /. This proves the first statement. Now, let us prove that

(4-13) .Qk t 1n�k/Pn ' .1n�k tQk/Pn:

Tensoring on the right with Qn'PnQn then gives the equivalence .Qkt1n�k/Qn'

.1n�ktQk/Qn . Given this, the remaining equivalences in (4-12) follow by applications
of � and ! . Thus, it suffices to prove (4-13).

Proposition 4.22 says that .Qk t 1n�k/Pn is homotopy-equivalent to the mapping
cone of Uk 2 End.Pn/. Applying the functor � gives

Cone.�.Uk//' .1n�k tQk/Pn;

since �.Qk/'Qk and �.Pn/'Pn . On the other hand, Uk generates the correspond-
ing homology group of DEnd.Pn/, which is isomorphic to Z. Thus, �.Uk/'˙Uk ,
and Cone.�.Uk//Š Cone.Uk/. This proves (4-13), and completes the proof.

It is possible to show that Qn is quasi-idempotent: Q˝2
n ' Qn˚Qn.2n/h1� 2ni.

We won’t prove this, since it will follow from later work of the author and Elias [11].
We collect some remaining properties together for later convenience.

Proposition 4.33 The chain complex Qn satisfies:

(1) F.ˇ/˝Qn 'Qn 'Qn˝F.ˇ/ for all braids ˇ 2 Brn .

(2) Pn�1Jn ' .Qn! Pn�1.2n/h2� 2ni/, ie there exists a distinguished triangle

Pn�1.2n/h2� 2ni ! Pn�1Jn!Qn! Pn�1.2n/h1� 2ni;

where Jn D F.�n�1 � � � �2�
2
1
�2 � � � �n�1/ is the Rouquier complex associated to

the Jucys–Murphy braid (Definition 4.3).

(3) Tr.Qn/' Pn�1˚Pn�1.2n� 4; 1/h2� 2ni.

Proof Statement (1) follows from the fact that Qn ' Pn˝Qn 'Qn˝Pn , and Pn

absorbs Rouquier complexes.
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By definition, Qn fits into a distinguished triangle of the form

(4-14) Pn�1Yn.2n/h2� 2ni ! Pn�1Xn!Qn! Pn�1Yn.2n/h1� 2ni:

Tensoring on the right with Y �1
n gives the distinguished triangle from (2), given that

QnY �1
n 'Qn .

For (3), apply Tr to the distinguished triangle (4-14) and use (4-4) to obtain a distin-
guished triangle

Pn�1.2n� 4; 1/h3� 2ni ! Pn�1! Tr.Qn/! Pn�1.2n� 4; 1/h2� 2ni:

Just as in the proof of Proposition 4.18, the first map is null-homotopic for degree
reasons, which forces Tr.Qn/ to split, as claimed.

Finally, we give an interesting alternative description of Qn .

Proposition 4.34 We have

(4-15) Qn D

0BBBB@P PBP PBP P
un�1BP �PBun�1

1CCCCA;
where P D Pn�1 , B D Bn�1 , and the degree shifts are the same as in (4-9). The first
and third maps are constructed from P ' PP and the “dot” maps.

Proof Tensor (4-9) on the right with P and simplify.

Note that in the case nD 2 we recover the expression for Q2 from Example 4.12.
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