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Moduli stacks of semistable sheaves and
representations of Ext–quivers

YUKINOBU TODA

We show that the moduli stacks of semistable sheaves on smooth projective varieties
are analytic locally on their coarse moduli spaces described in terms of representations
of the associated Ext–quivers with convergent relations. When the underlying variety
is a Calabi–Yau 3–fold, our result describes the above moduli stacks as critical loci
analytic locally on the coarse moduli spaces. The results in this paper will be applied
to the wall-crossing formula of Gopakumar–Vafa invariants defined by Maulik and
the author.

14D22, 14D23; 14D15

1 Introduction

1.1 Motivation

The purpose of this paper is to give descriptions of moduli stacks of semistable sheaves
on smooth projective varieties in terms of quivers with (formal but convergent) relations,
analytic locally on their coarse moduli spaces. The relevant quiver is the Ext–quiver
associated to the simple collection of coherent sheaves, determined by a polystable
sheaf corresponding to a point of the coarse moduli space. Probably the main results
have been folklore for experts of moduli of sheaves (at least on formal neighborhoods
at closed points of the coarse moduli space), but we cannot find any reference and our
purpose is to give precise statements and details of the proofs. The main results in
this paper will be used in the companion paper [33] in the proof of the wall-crossing
formula of Gopakumar–Vafa invariants introduced by Maulik and the author [25].

1.2 Results

Let X be a smooth projective variety over C and ! an ample divisor on it. Let M! be
the moduli stack of !–Gieseker semistable sheaves on X, and M! the coarse moduli
space of their S–equivalence classes. There is a natural morphism

pM WM!!M!
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sending a semistable sheaf to its S–equivalence class. A closed point of M! corre-
sponds to a polystable sheaf, ie a direct sum

(1-1) E D

kM
iD1

Vi ˝Ei ;

where each of the E1; : : : ;Ek are mutually nonisomorphic !–Gieseker stable sheaves
with the same reduced Hilbert polynomials.

The Ext–quiver Q associated to the collection .E1; : : : ;Ek/ is defined by the quiver
whose vertex is f1; : : : ; kg and the number of arrows from i to j is the dimen-
sion of Ext1.Ei ;Ej /. We denote by MQ the moduli stack of finite-dimensional
Q–representations with dimension vector .dim Vi/1�i�k , and MQ the coarse moduli
space of semisimple Q–representations with dimension vector as above. We have the
natural morphism

pQWMQ!MQ

sending a Q–representation to its semisimplification. There is a point 0 2MQ rep-
resented by the semisimple Q–representation

Lk
iD1Vi ˝ Si , where Si is a simple

Q–representation corresponding to the vertex i . The following is our main result.

Theorem 1.1 (Theorem 3.2) For p 2M! represented by a polystable sheaf (1-1),
let Q be the Ext–quiver associated to .E1; : : : ;Ek/. Then there exist analytic open
neighborhoods p 2U �M! and 02V �MQ , a closed analytic substack Z�p�1

Q
.V /

with the natural morphism to its coarse moduli space pQW Z!Z and the commutative
isomorphisms

Z

pQ

��

Š
// p�1

M
.U /

pM

��

Z
Š

// U

Indeed we can define the (formal but convergent) relation I of the Ext–quiver Q using
the minimal A1–structure of the dg-category generated by .E1; : : : ;Ek/. The conver-
gence of I will be proved by generalizing the gauge theory arguments of Fukaya [11]
and Tu [34] for deformations of vector bundles to the case of resolutions of coherent
sheaves by complexes of vector bundles. The substack Z � p�1

Q
.V / is then defined to

be the stack of Q–representations satisfying the relation I .

When X is a smooth projective Calabi–Yau (CY) 3–fold, we can take the relation I

to be the derivation of a convergent superpotential of the quiver Q. So we have:
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Corollary 1.2 (Corollary 5.7) In the situation of Theorem 1.1, suppose that X is a
smooth projective CY 3–fold. Then there is a morphism of complex analytic stacks
W W p�1

Q
.V /!C such that

Z D fdWD0g Š�! p�1
M .U /:

A similar result was already proved by Ben-Bassat–Brav–Bussi–Joyce [3] and Joyce–
Song [17], where the stack M! is described as a critical locus locally on M! . Our
description is more global, as we describe the stack M! as a critical locus on the
preimage of an open subset of the coarse moduli space M! . The result of Corollary 5.7
is also compatible with the d–critical structure introduced by Joyce [16]. By Pantev–
Toën–Vaquié–Vezzosi [28], the stack M! is a truncation of a derived scheme with a
.�1/–shifted symplectic structure. Using this fact, it is proved in [3] that the stack M!

has a canonical d–critical structure. From the construction of W in Corollary 1.2,
the data .p�1

M
.U /;p�1

Q
.V /;W / is shown to give a d–critical chart of the d–critical

stack M! ; see [33, Appendix A].

In the case of moduli spaces of one-dimensional sheaves, we also investigate the wall-
crossing phenomena of these moduli spaces with respect to the twisted stability. Let
A.X /C be the complexified ample cone of X, and take an element

� D BC i! 2A.X /C:

Let M� be the coarse moduli space of one-dimensional B–twisted !–semistable
sheaves on X. We will see that the result of Theorem 1.1 is also applied for the moduli
space M� of twisted semistable sheaves. If we take �C 2A.X /C to be sufficiently
close to � , we have the natural projective morphism

(1-2) qM W M�C !M� :

Theorem 1.3 (Theorem 7.7) For p 2 M� , let an open subset p 2 U � M� , a
quiver Q, and an analytic space Z be as in Theorem 1.1. Then there is a stability
condition � on the category of Q–representations such that we have the commutative
diagram of isomorphisms

(1-3)

Z�
Š
//

��

q�1
M
.U /

qM

��

Z
Š

// U

Here Z� is the coarse moduli space of �–semistable Q–representations satisfying the
relation I .
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When X is a K3 surface, the morphism (1-2) was studied by Arbarello–Saccà [2]. In
this case, they showed that the morphism (1-2) is analytic locally on M� described
as a symplectic resolution of singularities of Nakajima quiver varieties via variation
of stability conditions of representations of quivers. One can check that the result of
Theorem 1.3 gives the same description of the morphism (1-2) as in [2], if we know
the formality of the dg-algebra RHom.E;E/ for a polystable sheaf ŒE� 2M� .

The results of Corollary 1.2 and Theorem 1.3 will be used in [33] to show the wall-
crossing formula of (the generalization of) Gopakumar–Vafa (GV) invariants introduced
by Maulik and the author [25]. Roughly speaking, the idea is as follows. In [33],
we construct some perverse sheaves �M

�C
, �M�

on the moduli spaces M�C , M�

in (1-2), respectively, following the analogy of BPS sheaves introduced by Davison–
Meinhardt [7]. It turns out that there is a natural morphism

(1-4) �M�
! RqM��M

�C
;

and we want to show that this is an isomorphism. The results of Corollary 1.2 and
Theorem 1.3 enable us to reduce to the case of quivers with convergent superpotentials.
In the case of quivers with superpotentials, the similar question was addressed and
solved in [7], and we can use the results and arguments therein to show that (1-4) is an
isomorphism.

In a similar way, using the result of Corollary 1.2, it should be possible to reduce several
problems in Donaldson–Thomas (DT) theory on CY 3–folds to the case of representa-
tions of quivers with convergent superpotentials, which is easier in many cases. For
example it was recently announced by Davison–Meinhardt that the integrality conjecture
of generalized DT invariants (see Joyce–Song [17] and Kontsevich–Soibelman [21])
on CY 3–folds can be proved using the result of Corollary 1.2.

1.3 Plan of the paper

The organization of this paper is as follows. In Section 2, we introduce the notion of
quivers with convergent relations and construct the moduli spaces of their representa-
tions. In Section 3, we fix some notation on the moduli spaces of semistable sheaves
and state the precise form of Theorem 1.1. In Section 4, we describe deformation theory
of coherent sheaves in terms of minimal A1–structures. In Section 5, we complete the
proof of Theorem 1.1. In Section 6, we recall NC deformation theory and relate it with
the result of Theorem 1.1. In Section 7, we prove Theorem 1.3.
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2 Quivers with convergent relations

In this section, we recall some basic notions on quivers, their representations and
moduli spaces. We also introduce the concept of convergent relations of quivers, and
moduli spaces of quiver representations satisfying such relations.

2.1 Representations of quivers

Recall that a quiver Q consists data

QD .V .Q/;E.Q/; s; t/;

where V .Q/ and E.Q/ are finite sets, and s and t are maps

s; t W E.Q/! V .Q/:

The set V .Q/ is the set of vertices and E.Q/ is the set of edges. For e 2E.Q/, the
vertex s.e/ is the source and t.e/ is the target. For i; j 2 V .Q/, we use the notation

(2-1) Ei;j :D fe 2E.Q/ W s.e/D i; t.e/D j gI

ie Ei;j is the set of edges from i to j .

A Q–representation consists of the data

(2-2) V D f.Vi ;ue/ W i 2 V .Q/; e 2E.Q/; ueW Vs.e/! Vt.e/g;

where Vi is a finite-dimensional C–vector space and ue is a linear map. For a Q–
representation (2-2), the vector

(2-3) �!
mD .mi/i2V .Q/; mi D dim Vi ;

is called the dimension vector.

Geometry & Topology, Volume 22 (2018)
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Given a dimension vector (2-3), let Vi be a C–vector space with dimension mi . Set

G :D
Y

i2Q.V /

GL.Vi/ and RepQ.
�!
m/ :D

Y
e2E.V /

Hom.Vs.e/;Vt.e//:

The algebraic group G acts on RepQ.
�!
m/ by

(2-4) g �uD fg�1
t.e/ ıue ıgs.e/ge2E.Q/

for g D .gi/i2V .Q/ 2 G and u D .ue/e2E.Q/ . A Q–representation with dimension
vector �!m is determined by a point in RepQ.

�!
m/ up to G–action. The moduli stack of

Q–representations with dimension vector �!m is given by the quotient stack

MQ.
�!
m/ :D ŒRepQ.

�!
m/=G�:

It has the coarse moduli space given by

(2-5) pQWMQ.
�!
m/!MQ.

�!
m/ :D RepQ.

�!
m/�G:

Here in general, if a reductive algebraic group G acts on an affine scheme Y D Spec R,
then its affine GIT quotient is given by

Y �G :D Spec RG :

For two points in x1;x2 2 Y , they are mapped to the same point in Y �G if and only
if their G–orbit closures intersect, ie

G �x1\G �x2 ¤∅:

In the case of G–action on RepQ.
�!
m/, the above condition is also equivalent to that

the corresponding Q–representations have the isomorphic semisimplifications. The
quotient space MQ.

�!
m/ parametrizes semisimple Q–representations with dimension

vector �!m, and the map (2-5) sends a Q–representation to its semisimplification;
see [26, Section 5; 19, Section 3] for details.

For i 2 V .Q/, let Si be the simple Q–representation corresponding to the vertex i ; ie
it is the unique Q–representation with dimension vector mi D 1 and mj D 0 for j ¤ i .
The point 0 2 RepQ.

�!
m/ and its image 0 2MQ.

�!
m/ by the map (2-5) correspond to

semisimple Q–representation
L

i2V .Q/ Vi ˝Si . A Q–representation (2-2) is called
nilpotent if any sufficiently large number of compositions of the linear maps ue becomes
zero. It is easy to see that a Q–representation is nilpotent if and only if it is an iterated
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extensions of simple objects fSigi2V .Q/ . In particular, the fiber

p�1
Q .0/�MQ.

�!
m/

for the morphism (2-5) consists of nilpotent Q–representations with dimension vec-
tor �!m.

2.2 Quivers with convergent relations

Recall that a path of a quiver Q is a composition of edges in Q:

e1e2 � � � en; with ei 2E.Q/ and t.ei/D s.eiC1/:

The number n above is called the length of the path. The path algebra of a quiver Q

is a C–vector space spanned by paths in Q:

CŒQ� :D
M
n�0

M
e1;:::;en2E.Q/
t.ei /Ds.eiC1/

C � e1e2 � � � en:

Here a path of length zero is a trivial path at each vertex of Q, and the product on CŒQ�

is defined by composition of paths. By taking the completion of CŒQ� with respect to
the length of the path, we obtain the formal path algebra

CŒŒQ�� :D
Y
n�0

M
e1;:::;en2E.Q/
t.ei /Ds.eiC1/

C � e1e2 � � � en:

Note that an element f 2CŒŒQ�� is written as

(2-6) f D
X
n�0

 W f1;:::;nC1g!V .Q/

X
ei2E .i/; .iC1/

a ;e� � e1e2 � � � en:

Here a ;e� 2C , e� D .e1; : : : ; en/ and E .i/; .iC1/ is defined as in (2-1). The above
element f lies in CŒQ� if and only if a ;e� D 0 for n� 0.

Definition 2.1 We define the subalgebra

CfQg �CŒŒQ��

to be elements (2-6) such that ja ;e� j < C n for some constant C > 0 which is
independent of n.
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Note that CfQg contains CŒQ� as a subalgebra. For an element f 2 CfQg, we
write it as (2-6) and consider the following Hom.Va;Vb/–valued formal function of
uD .ue/e2E.Q/ 2 RepQ.

�!
m/:

f .a; b;
�!
m/ :D

X
n�0

 W f1;:::;nC1g!V .Q/
 .1/Da;  .nC1/Db

X
ei2E .i/; .iC1/

a ;e� �uen
ı � � � ıue2

ıue1
:(2-7)

By the definition of CfQg, the above Hom.Va;Vb/–valued formal function on RepQ.
�!
m/

has a convergent radius. So there is an analytic open neighborhood

(2-8) 0 2 U � RepQ.
�!
m/

such that the function (2-7) absolutely converges on it and determines the complex
analytic map

f .a; b;
�!
m/W U ! Hom.Va;Vb/:

In particular, the equations f .a; b; �!m/D 0 for all a; b 2 V .Q/ determines the closed
complex analytic subspace of U .

2.3 Saturated open subsets

We will extend the arguments in the previous subsection to a preimage of an open
subset in RepQ.

�!
m/� G . Before doing this, we prepare some general definitions

and lemmas for the action of a reductive algebraic group on affine schemes or ana-
lytic spaces.

Definition 2.2 Let G be a reductive group acting on an affine algebraic C–scheme Y .
Then an analytic open set U � Y is called saturated if for any x 2 U, the orbit closure
G �x � Y is contained in U.

Note that a saturated open subset is in particular G–invariant. Let

(2-9) �Y W Y ! Y �G

be the quotient map and V �Y�G an analytic open subset. Then ��1
Y
.V / is obviously

saturated. Indeed, the converse is also true. In order to see this, we recall the following
fact on the topology of affine GIT quotient Y �G .
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Theorem 2.3 [27; 31] In the situation of Definition 2.2, let K � G be a maximal
compact subgroup of G . Then there is a K–invariant closed subset S � Y in analytic
topology, called a Kempf–Ness set, satisfying the following: for any x 2S the G–orbit
G �x is closed in Y and the inclusion S � Y induces the homeomorphism

(2-10) �W S=K Š
�! Y �G:

Here the topology of S=K is a quotient topology induced from the analytic topology
of S , and that of Y �G is the analytic topology. In particular, the analytic topology of
Y �G is the quotient topology induced from the analytic topology of Y .

The following lemma follows from the above theorem:

Lemma 2.4 In the situation of Definition 2.2, an analytic open subset U � Y is
saturated if and only if there is an analytic open set V � Y �G such that U D ��1

Y
.V /,

where �Y W Y ! Y �G is the quotient morphism.

Proof For x 2 U and y 2 Y , suppose that �Y .x/D �Y .y/, ie that G �x and G �y

intersect. Since U is saturated, we have G �x �U. Then we have G �y\U ¤∅, and
since U is open there is g 2 G such that g � y 2 U. Therefore we have y 2 U. This
implies that there is a subset V � Y �G such that U D ��1

Y
.V /. By Theorem 2.3, the

subset V is analytic open, hence the lemma holds.

We also have the following lemma.

Lemma 2.5 In the situation of Definition 2.2, let y 2Y be a G–fixed point and U �Y

a G–invariant analytic open subset with y 2 U. Then there is an analytic open subset
U 0 � Y which is saturated and satisfies 0 2 y 2 U 0 � U.

Proof Let S � Y be the Kempf–Ness set as in Theorem 2.3. Since y 2 Y is G–fixed,
we have y 2 S by the homeomorphism (2-10). Then we have y 2 S \U, and S \U

is a K–invariant open subset in S . Therefore we have S \U D ��1
S
.V / for some

open subset V �S=K , where �S W S!S=K is the quotient map. Since the map � in
(2-10) is a homeomorphism, the subset �.V /� Y �G is open. We set a saturated open
subset U 0 � Y to be U 0 D ��1

Y
.�.V // for the quotient map (2-9). Since �S .y/ 2 V ,

we have y 2 U 0 . It is enough to check that U 0 � U. By the construction of U 0 , for
x 2U 0 there is z 2 S \U such that �Y .x/D �Y .z/, ie the closures of G �x and G �z

intersect. Since G � z is closed, we have z 2G �x . Therefore there is g 2G such that
g �x 2 U. Since U is G–invariant, we have x 2 U, hence the lemma is proved.
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2.4 Analytic Hilbert quotients

Later we will take GIT-type quotients for nonalgebraic complex analytic spaces. Here
we recall the basic notions for such quotients. The following definition appears in
[14; 12] for reduced complex analytic spaces.

Definition 2.6 Let G be a reductive algebraic group acting on a complex analytic
space Z . Then a complex analytic space Z�G together with a morphism

(2-11) �Z W Z!Z�G

is called an analytic Hilbert quotient if the following conditions hold:

(1) �Z is a locally Stein map; ie there is an open cover Z�G D
S
� U� by Stein

open subsets U� such that ��1
Z
.U�/ is Stein.

(2) We have .�Z�OZ /
G DOZ�G .

An analytic Hilbert quotient is known to exist when Z is a reduced Stein space, which
is unique up to isomorphism [13]. In [14; 12], analytic Hilbert quotients are discussed
under the assumption that Z is reduced. It seems that such quotients for nonreduced
analytic spaces are not available in the literature. We don’t develop generality of such
quotients for nonreduced analytic spaces, but show the existence of such quotients in
some special cases discussed below, and their universality.

We show the following lemma on the existence of analytic Hilbert quotients, which
may be well known, but we include it here as we cannot find a reference.

Lemma 2.7 Let Y be an affine algebraic C–scheme with G–action. Then for the
affine GIT quotient �Y W Y ! Y �G , its analytification

�an
Y W Y

an
! .Y �G/an

is an analytic Hilbert quotient.

Proof The condition Definition 2.6(1) is obvious as Y an and .Y �G/an are Stein, so
we only prove (2). First suppose that Y D Cn and the G–action on it is linear. In
this case, Definition 2.6(2) is proved in [24]. In general, there is a G–invariant closed
embedding Y �Cn, where G acts on Cn linearly, and the commutative diagram

(2-12)

Y �
�

//

�Y

��

Cn

�Cn

��

Y �G �
�

// Cn�G
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Since G is reductive, the functor .�/G sending a G–representation to its G–invariant
part is exact. So the natural map �.OCn/G ! �.OY /

G is surjective, so the bottom
arrow of (2-12) is a closed embedding.

By taking the analytification of (2-12), we obtain the commutative diagram of analytic
sheaves on .Cn�G/an :

(2-13)

O.Cn�G/an
Š
//

��

.�an
Cn�

O.Cn/an/G

��

O.Y�G/an // .�an
Y �

OY an/G

Since �an
Cn is locally Stein, and the functor .�/G is exact, the vertical arrows of

(2-13) are surjections. Therefore the bottom arrow of (2-13) is surjective. Also as
OY�G D .�Y �OY /

G for Zariski sheaves, we have an injection OY�G ,! �Y �OY ,
which is also injective after taking completions at each closed point of OY�G . Hence
the bottom arrow of (2-13) is also injective, so it is an isomorphism; ie �an

Y
satisfies

Definition 2.6(2).

By Lemma 2.7, for an analytic open subset U � Y �G the map

(2-14) �Y W �
�1
Y .U /! U

is an analytic Hilbert quotient of ��1
Y
.U /. We also have the following lemma:

Lemma 2.8 Let Z � ��1
Y
.U / be a G–invariant closed analytic subspace. Then

there is a closed analytic subspace Z� G ,! U and an analytic Hilbert quotient
�Z W Z!Z�G .

Proof Since (2-14) is an analytic Hilbert quotient and the functor .�/G is exact, we
have the surjection

OU D .�Y �O��1
Y
.U //

G� .�Y �OZ /
G :

Thus by setting Z�G to be the complex analytic subspace of U defined by the ideal of
the above kernel, we obtain the analytic Hilbert quotient �Z D �Y jZ W Z!Z�G .

By gluing the above construction, we have the following lemma:

Geometry & Topology, Volume 22 (2018)
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Lemma 2.9 Let Y be an algebraic C–scheme with G–action and �Y W Y ! Y 0 a
G–invariant morphism of algebraic C–schemes, where G acts on Y 0 trivially. Suppose
that Y 0 D

S
i2I V 0i is an affine open cover such that Vi D ��1

Y
.V 0i / is affine and

�jVi
W Vi! V 0i is isomorphic to Vi! Vi�G . Then for an analytic open subset U � Y 0

and a G–invariant closed analytic subspace Z � ��1
Y
.U /, the analytic Hilbert quotient

Z�G exists as a closed analytic subspace of U.

Proof Let UiDU\V 0i and ZiDZ\Vi . Applying Lemma 2.8 to Zi��
�1
Y
.Ui/�Vi ,

we obtain the analytic Hilbert quotient Zi�G � Ui . By the construction, they glue to
give a desired analytic Hilbert quotient Z�G � U.

Remark 2.10 The situation of Lemma 2.9 happens for a GIT quotient of semistable
locus with respect to a G–linearization on a quasiprojective scheme.

We next discuss the universality of analytic Hilbert quotients:

Definition 2.11 An analytic Hilbert quotient (2-11) satisfies the universality if for any
G–invariant analytic map hW Z!Z0 to a complex analytic space Z0 , there is a unique
factorization

(2-15) hW Z
�Z
��!Z�G!Z0:

The above universality is proved in [13, Corollary 4] when Z is a reduced Stein space
and Z0 DCn. Below we show the universality for the analytic Hilbert quotients given
in Lemma 2.9. We prepare for this with the following lemma:

Lemma 2.12 Let �Z W Z!Z�G be the analytic Hilbert quotient given in Lemma 2.9.
Then for any family of G–invariant closed (not necessary analytic) subsets fW�g�2ƒ

in Z , the image �Z .W�/ is closed in Z�G , and we have the identity

(2-16) �Z

�\
�2ƒ

W�

�
D

\
�2ƒ

�Z .W�/:

Proof The question is local on Z � G , so we may assume that Y is affine and
Y 0 D Y �G . Since Z and Z�G are closed in ��1

Y
.U / and U, we may also assume

that ZD��1
Y
.U / and Z�GDU. Let S � Y be a Kempf–Ness set as in Theorem 2.3.

Then for S 0 :D��1
Y
.U /\S , we have the homeomorphism S 0=K Š

�!U. Therefore for
W 0
�

:DS 0\W� , we have �Z .W
0
�
/D�Z .W�/. Since each W 0

�
is a K–invariant closed

subset of S 0 , its image �Z .W
0
�
/ is a closed subset of U and the identity (2-16) holds.
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The desired universality is proved in the following lemma:

Lemma 2.13 The analytic Hilbert quotient �Z W Z!Z�G in Lemma 2.9 satisfies
the universality in Definition 2.11.

Proof Let hW Z!Z0 be a G–invariant analytic map to a complex analytic space Z0 .
We take an open cover Z0 D

S
�2ƒ U 0

�
such that U 0

�
is a closed analytic subspace of

an open subset in Cn. Let W 0
�

:D Z0 n U 0
�

and W� :D h�1.W 0
�
/. Then each W� is

a G–invariant closed subset of Z . By Lemma 2.12, the image �Z .W�/ �Z�G is
closed, and \

�2ƒ

�Z .W�/D �Z

�\
�2ƒ

W�

�
D �Z ı h�1

�\
�2ƒ

W 0�

�
D∅:

Here the last identity follows because fU 0
�
g�2ƒ is an open cover of Z0 . It follows that

by setting U� :D .Z�G/ n�Z .W�/, we have an open cover Z�G D
S
�2ƒ U� and

the diagram

��1
Z
.U�/ �

�
//

�Z

��

h�1.U 0
�
/

h
��

U� // U 0
�
� � // Cn

Here the top horizontal arrow is an open immersion, and the right horizontal arrow is a
locally closed embedding. By the property Definition 2.6(2), there is a unique analytic
map U�! U 0

�
which makes the above diagram commutes. By the uniqueness, they

glue to give a desired factorization (2-15).

2.5 Moduli spaces of representations of quivers with convergent relations

We return to the situation of Section 2.2.

Definition 2.14 A convergent relation I of a quiver Q is a collection of finite number
of elements

I D .f1; : : : ; fl/; fi 2CfQg:

Using the lemmas in the previous subsection, we have the following:

Lemma 2.15 Given a convergent relation I D .f1; : : : ; fl/ of a quiver Q and its
dimension vector �!m, there is an analytic open neighborhood of 0

0 2 V �MQ.
�!
m/
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such that each Hom.Va;Vb/–valued formal function fi.a; b;
�!
m/ defined by (2-7) for

f D fi absolutely converges on ��1
Q
.V /. Here �Q is the quotient map

�QW RepQ.
�!
m/!MQ.

�!
m/:

Proof Let U be an open neighborhood of 0 2 RepQ.
�!
m/ as in (2-8), where each

fi.a; b;
�!
m/ absolutely converges on U . Since for g D .gi/i2V .Q/ 2 G and u D

.ue/e2E.Q/ , we have

fi.a; b;
�!
m/.g �u/D g�1

b ıfi.a; b;
�!
m/.u/ ıga:

The Hom.Va;Vb/–valued function fi.a; b;
�!
m/ absolutely converges on G � U . By

Lemma 2.5, there is a saturated open subset 0 2 V � G � U . Then by Lemma 2.4,
V D ��1

Q
.V / for an open subset 0 2 V �MQ.

�!
m/.

For a quiver Q with a convergent relation I D .f1; : : : ; fl/, let �!m be its dimension
vector and take an open subset V �MQ.

�!
m/ as in Lemma 2.15. By that lemma, we

have the G–invariant closed analytic subspace of ��1
Q
.V /

(2-17) Rep.Q;I /.
�!
m/jV � �

�1
Q .V /

whose structure sheaf is given by

O
Rep.Q;I/.

�!
m/jV
DO��1

Q
.V /=.fi.a; b;

�!
m/jk ; a; b 2 V .Q//:

Here fi.a; b;
�!
m/jk is the matrix component of the analytic map

fi.a; b;
�!
m/W ��1

Q .V /! Hom.Va;Vb/:

By taking the quotient by G , we have the following definition:

Definition 2.16 Let Q be a quiver with a convergent relation I , and �!m its dimension
vector. Then for a sufficiently small analytic open neighborhood 0 2 V �MQ.

�!
m/,

we define the complex analytic stack M.Q;I /.
�!
m/jV and complex analytic space

M.Q;I /.
�!
m/jV by

M.Q;I /.
�!
m/jV :D ŒRep.Q;I /.

�!
m/jV =G�;

M.Q;I /.
�!
m/jV :D Rep.Q;I /.

�!
m/jV �G:

Here Rep.Q;I /.
�!
m/jV �G is the analytic Hilbert quotient of Rep.Q;I /.

�!
m/jV , given in

Lemma 2.8.
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2.6 Convergent superpotential

For a quiver Q, its convergent superpotential is defined as follows.

Definition 2.17 A convergent superpotential of a quiver Q is an element

W 2CfQg=ŒCfQg;CfQg�:

A convergent superpotential W of Q is represented by a formal sum

W D
X
n�1

X
 W f1;:::;nC1g!V .Q/
 .nC1/D .1/

X
ei2E .i/; .iC1/

a ;e� � e1e2 � � � en

with ja ;e� j< C n for a constant C > 0.

For i; j 2 V .Q/, let Ei;j be the C–vector space spanned by Ei;j . We set

(2-18) E_i;j :D fe_ W e 2Ei;j g �E_i;j :

Here for e 2 Ei;j , the element e_ 2 E_i;j is defined by the condition e_.e/ D 1

and e_.e0/ D 0 for any e ¤ e0 2 Ei;j ; ie E_i;j is the dual basis of Ei;j . For a map
 W f1; : : : ; nC 1g ! V .Q/ with  .1/ D  .nC 1/ and elements ei 2 E .i/; .iC1/

and e 2E.Q/, we set

@e_.e1 � � � en/D

nX
aD1

e_.ea/eaC1 � � � ene1 � � � ea�1:

Here e_.ea/D 0 if .s.ea/; t.ea//¤ .s.e/; t.e//. The above partial differential extends
to a linear map

@e_ W CfQg=ŒCfQg;CfQg�!CfQg:

For a convergent superpotential W , the set of elements in CfQg

@W :D f@e_W W e 2E.Q/g

is a convergent relation of Q.

For a dimension vector �!m of Q, let tr W be the formal function of uD .ue/e2E.Q/ 2

RepQ.
�!
m/ defined by

tr W .u/ :D
X
n�1

X
 W f1;:::;nC1g!V .Q/
 .nC1/D .1/

X
ei2E .i/; .iC1/

a ;e� � tr.uen
ıuen�1

ı � � � ıue1
/:
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This formal function on RepQ.
�!
m/ is G–invariant. By the argument of Lemma 2.15,

there is an analytic open neighborhood 0 2 V �MQ.
�!
m/ such that the formal function

tr W absolutely converges on ��1
Q
.V / to give a G–invariant holomorphic function

tr W W ��1
Q .V /!C:

Then for the relation I D @W , it is easy to see (and well known when W is a typical
superpotential of Q) that the analytic subspace (2-17) equals to the critical locus of
tr W in ��1

Q
.V /:

Rep.Q;@W /.
�!
m/jV D fd.tr W /D0g:

In particular, we have

M.Q;@W /.
�!
m/jV D Œfd.tr W /D0g=G� :

3 Moduli stacks of semistable sheaves

In this section, we recall some basic notions and facts on moduli spaces of semistable
sheaves, whose details are available in [15]. Then we state the precise form of
Theorem 1.1 in Theorem 3.2. In what follows, we always assume that the varieties or
schemes are defined over C .

3.1 Gieseker semistable sheaves

Let
.X;OX .1//

be a polarized smooth projective variety with ! D c1.OX .1//. For a coherent sheaf E

on X, its Hilbert polynomial is defined by

�.E˝OX .m//D admd
C ad�1md�1

C � � � ;

where d D dim Supp.E/ and ad is a positive rational number. The reduced Hilbert
polynomial is defined by

x�.E;m/ :D
�.E˝OX .m//

ad

2QŒm�:

For polynomials pi.m/ 2QŒm� with i D 1; 2, we write p1.m/� p2.m/ if deg p1 <

deg p2 , or if deg p1D deg p2 and p1.m/ > p2.m/ for m� 0. Then .QŒm�;�/ is an
ordered set.
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By definition, a coherent sheaf E on X is said to be !–Gieseker (semi)stable if for
any nonzero subsheaf E0 ¨E , we have the inequality

x�.E0;m/� .�/ x�.E;m/:

For any Gieseker semistable sheaf E on X, it has a filtration (called Jordan–Hölder
(JH) filtration)

0D F0 � F1 � F2 � � � � � Fk DE

such that each Fi=Fi�1 is !–Gieseker stable whose reduced Hilbert polynomial
coincides with x�.E;m/. The JH filtration is not necessary unique, but its subquotient

gr.E/ :D
kM

iD1

Fi=Fi�1

is uniquely determined up to isomorphism. For two !–Gieseker semistable sheaves E

and E0 on X, they are called S-equivalent if gr.E/ and gr.E0/ are isomorphic.

3.2 Moduli spaces of semistable sheaves

Let M be the 2–functor

(3-1) MW Sch=C! Groupoid

which sends a C–scheme S to the groupoid of S–flat coherent sheaves on X � S .
The stack M is an algebraic stack locally of finite type over C . Let � be the image of
the Chern character map

� :D Im.chW K.X /!H�.X;Q//:

For each v 2 � , we have an open substack of finite type

M!.v/�M

consisting of flat families of !–Gieseker semistable sheaves with Chern character v .

The stack M!.v/ is constructed as a global quotient stack of a quasiprojective scheme.
For ŒE� 2M!.v/, we take m� 0 and a vector space V satisfying

dim V D �.E.m//D dim H 0.E.m//:

The above condition depends only on v , and independent of E for m � 0. Let
Quot.V ; v/ be the Grothendieck Quot scheme parametrizing quotients

(3-2) sW V ˝OX .�m/�E
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in Coh.X / with ch.E/D v . Then there is an open subscheme

Quotı.V ; v/� Quot.V ; v/

parametrizing quotients (3-2) such that E is !–Gieseker semistable and the induced
linear map V !H 0.E.m// is an isomorphism. The algebraic group GL.V / acts on
Quotı.V ; v/ by

g � .V ˝OX .�m/
s�E/D .V ˝OX .�m/

sıg
��E/;

and the stack M!.v/ is described as

M!.v/D ŒQuotı.V ; v/=GL.V /�:

The above construction is compatible with the geometric invariant theory (GIT). If we
take the closure of Quotı.V ; v/

Quotı.V ; v/� Quot.V ; v/;

then there is a GL.V /–linearized polarization on Quotı.V ; v/ such that its open locus
Quotı.V ; v/ is the GIT semistable locus with respect to the above GL.V /–linearized
polarization. In particular, we have the good quotient morphism (which is in particular
a good moduli space in the sense of [1])

pM WM!.v/!M!.v/ :D Quotı.V ; v/�GL.V /:

Namely, there is a GL.V /–invariant affine open cover

Quotı.V ; v/D
[

i

Ui ; Ui D Spec Ri

such that M!.v/ has the following affine open cover

M!.v/D
[

i

Ui�GL.V /; Ui�GL.V /D Spec R
GL.V /
i :

By the GIT construction of M!.v/, two points x1;x2 2 Quotı.V / are mapped to the
same point by pM if and only if their orbit closures intersect, ie

GL.V / �x1\GL.V / �x2 ¤∅:

It is also known that the above condition is equivalent to that, if xi corresponds to
a !–Gieseker semistable sheaf Ei , then E1 and E2 are S–equivalent. In fact, the
projective scheme M!.v/ is the coarse moduli space of S–equivalence classes of
!–Gieseker semistable sheaves with Chern character v . So every point p 2M!.v/ is
represented by a direct sum of !–Gieseker stable sheaves E (called a polystable sheaf ),
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written as

(3-3) E D

kM
iD1

Vi ˝Ei :

Here each Vi is a finite-dimensional vector space, Ei is a !–Gieseker stable sheaf
with x�.Ei ;m/D x�.E;m/ for all i .

3.3 Ext–quiver

Suppose that E 2 Coh.X / is of the form (3-3). Then the collection of the sheaves
.E1; : : : ;Ek/ forms a simple collection, defined as follows:

Definition 3.1 A collection of coherent sheaves .E1; : : : ;Ek/ is called a simple
collection if Hom.Ei ;Ej /DC � ıij .

Let E� D .E1; : : : ;Ek/ be a simple collection of coherent sheaves on X. For each
1� i; j � k , we fix a finite subset

(3-4) Ei;j � Ext1.Ei ;Ej /
_

giving a basis of Ext1.Ei ;Ej /
_. We define the quiver QE� as follows. The set of

vertices and edges are given by

V .QE�/D f1; 2; : : : ; kg; E.QE�/D
a

1�i;j�k

Ei;j :

The maps s; t W E.QE�/! V .QE�/ are given by

sjEi;j
D i; t jEi;j

D j:

The resulting quiver QE� is called the Ext–quiver of E� .

We can now give the precise statement of Theorem 1.1:

Theorem 3.2 Let X be a smooth projective variety, and let M!.v/ be the moduli
stack of !–Gieseker semistable sheaves on X with Chern character v . We have the
natural morphism to its coarse moduli space

pM WM!.v/!M!.v/:

For p 2M!.v/, it is represented by a sheaf E of the form

E D

kM
iD1

Vi ˝Ei ;
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where E� D .E1; : : : ;Ek/ is a simple collection. Let QE� be the corresponding
Ext–quiver and �!

m its dimension vector given by �!
m D .m1; : : : ;mk/, where mi D

dim Vi . Then there is a convergent relation IE� of QE� , analytic open neighborhoods
p 2 U �M!.v/ and 0 2 V �MQE�

.
�!
m/, and commuting isomorphisms

(3-5)

M.QE�;IE�
/.
�!
m/jV

Š
//

pQ

��

p�1
M
.U /

pM

��

M.QE�;IE�
/.
�!
m/jV

Š
// U

Here the bottom arrow sends 0 to p .

The proof of Theorem 3.2 will be completed in Proposition 5.4 below.

4 Deformations of coherent sheaves

In this section, we describe deformation theory of coherent sheaves via dg-algebras
and their minimal A1–models. The arguments are already known for vector bundles
[11; 34], and we apply similar arguments for resolutions of coherent sheaves by vector
bundles.

The above description will give local atlas of the moduli stack M in Section 3.2 via
finite-dimensional A1–algebras. More precisely for a given coherent sheaf E on
a smooth projective variety X, we compare the following three descriptions of the
deformation space of E :

(1) An open neighborhood of the algebraic stack M given in Section 3.2 at the
point ŒE� 2M.

(2) The Maurer–Cartan locus associated with the infinite-dimensional dg-algebra
RHom.E;E/.

(3) The Maurer–Cartan locus associated with the finite-dimensional minimal A1–
algebra Ext�.E;E/.

We will compare the above descriptions by first constructing the map .3/D) .2/ in
Lemma 4.2. Then we will construct a map .2/D) .1/, and then composing we get the
desired atlas .3/D) .1/ in Proposition 4.3.
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4.1 Deformations of vector bundles

We recall some basic facts on the deformation theory of vector bundles via gauge
theory, and fix some notation; see [11] for details. For a holomorphic vector bundle
E!X on a smooth projective variety X, we denote by Ap;q.E/ the sheaf of E–valued
.p; q/–forms on X, and we set

Ap;q.E/ :D �.X;Ap;q.E//:

The holomorphic structure on E is given by the Dolbeault connection

@E W A0;0.E/!A0;1.E/:

The Dolbeault connection extends to the Dolbeault complex

0!A0;0.E/!A0;1.E/! � � � !A0;i.E/!A0;iC1.E/! � � �

giving a resolution of E . The complex A0;�.E/ is an elliptic complex (see [35, Chap-
ter IV, Section 5]), whose global section computes H�.X; E/, ie

H k.X; E/DHk.A0;�.E//:

Any other holomorphic structure on E is given by the Dolbeault connection of the form

@E CAW A0;0.E/!A0;1.E/

for some A 2 A0;1.End.E//. Conversely given A 2 A0;1.End.E//, the connection
@E CA gives a holomorphic structure on E if and only if its square is zero, ie

ad.@E/.A/CA ıAD 0:

The above equation is the Maurer–Cartan (MC) equation of the dg-algebra

(4-1) g�E :DA0;�.End.E//:

The quotient of the solution space of the MC equation of g�E by the gauge group of
C1–automorphisms of E describes the deformation space of E as holomorphic vector
bundles.

4.2 Deformations of complexes

We have a similar deformation theory for complexes of vector bundles. Let

(4-2) E� D .� � � ! 0! E i d i

��! E iC1
! � � � ! Ej

! 0! � � � /
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be a bounded complex of holomorphic vector bundles on X. By taking the Dolbeault
complex A0;�.E i/ for each E i, we obtain the double complex A0;�.E�/. Let Tot.�/
means the total complex of the double complex. We set

(4-3) A0;�.E�/ :D Tot.�.X;A0;�.E�///:

Similarly to the vector bundle case, the complex Tot.A0;�.E�// is elliptic, and its global
section computes the hypercohomology of E�

(4-4) Hk.R�.X; E�//DHk.A0;�.E�//:

Applying the construction (4-3) to the inner Hom complex Hom�.E�; E�/, we obtain
the complex

g�E� :DA0;�.Hom�.E�; E�//:

Its degree-k part is given by

(4-5) gk
E� D

M
pCqDk

Y
i

A0;q.Hom.E i ; E iCp//;

and the differential dg is induced by the Dolbeault connections @Ei
on each Ei together

with the differentials d� in (4-2). Also the composition

A0;q.Hom.E i; E iCp//�A0;q0.Hom.E iCp; E iCpCp0//!A0;qCq0.Hom.E i; E iCpCp0//

defines the product structure � on g�E� . Then it is straightforward to check that the data

(4-6) .g�E� ; dg; � /

is a dg-algebra.

Let mc be the map defined by

mcW g1
E� ! g2

E� ; ˛ 7! dg.˛/C˛ �˛:

Its zero set

(4-7) MC.g�E�/D f˛ 2 g
1
E� Wmc.˛/D 0g

is the solution of the Maurer–Cartan equation of the dg-algebra g�E� . Note that an
element ˛ 2 g1

E� satisfies the MC equation if and only if

.dA0;�.E�/C˛/
2
D 0
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on A0;�.E�/. In this case, the data

(4-8) .A0;�.E�/; dA0;�.E�/C˛/

determines a dg-A0;�.OX /–module. Then (4-8) is a bounded complex of OX –modules
whose cohomologies are coherent (see [4, Lemma 4.1.5]), giving a deformation of the
complex (4-2) in the derived category.

More explicitly, by (4-5) an element ˛ 2 g1
E� consists of data

(4-9) ˛ D .˛i
0; ˛

i
1; ˛

i
2; : : :/; ˛i

j 2A0;j .Hom.E i ; E i�jC1//:

Suppose that the above ˛ satisfies the MC equation mc.˛/D 0. Then the diagram

� � � // A0;0.E i�1/ //

��

A0;0.E i/
d iC˛i

0
//

@EiC˛
i
1
��

A0;0.E iC1/ //

��

� � �

� � � // A0;1.E i�1/ //

��

A0;1.E i/ //

@EiC˛
i
1
��

A0;1.E iC1/ //

��

� � �

� � � // A0;2.E i�1/ // A0;2.E i/ // A0;2.E iC1/ // � � �

is a complex in the horizontal direction, each square is commutative, and the composi-
tions of vertical arrows are homotopic to zero with homotopy given by ˛i

2
.

In particular if ˛i
j D 0 for j � 2, then the above diagram extends to a double complex.

In this case,
E i
˛ D .A

0;0.E i/; @Ei C˛i
1/

is a holomorphic structure on E i. By setting

d i
˛ D d i

C˛i
0W A

0;0.E i/!A0;0.E iC1/;

we have the bounded complex of holomorphic vector bundles on X

(4-10) � � � ! 0! E�n
˛

d�n
˛
���! � � � ! E�1

˛
d�1
˛
���! E0

˛ ! 0! � � �

giving a deformation of E� as complexes. Conversely given a deformation of E� as a
complex, it gives rise to the solution of MC equation of the form ˛ D .˛i

0
; ˛i

1
; 0; : : : /.

For ˛; ˛0 2MC.g�E�/, ˛ and ˛0 are called gauge-equivalent if there exist


 D f.
 i
0; 


i
1; 


i
2; : : : /gi 2 g

0
E� ; 
 i

j 2A0;j .Hom.E i ; E i�j //;
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where 
 i
0

gives an isomorphism E i Š�! E i as C1–vector bundles, such that we have

(4-11) 
 ı .dA0;�.E�/C˛/ ı 

�1
D dA0;�.E�/C˛

0:

In this case, we have the isomorphism of the dg-A0;�.OX /–modules


 W .A0;�.E�/; dA0;�.E�/C˛/
Š
�! .A0;�.E�/; dA0;�.E�/C˛

0/

giving isomorphic deformations of (4-2) in the derived category.

Suppose that the complex (4-2) is quasi-isomorphic to a coherent sheaf E . Let DefE

be the deformation functor

DefE W Art! Set

sending a finite-dimensional commutative local C–algebra .R;m/ to the set of isomor-
phism classes of R–flat deformations of E to X � Spec R. Then it is shown in [10,
Section 8] that we have the functorial isomorphism

MC.g�E� ˝m/=.gauge equivalence/ Š�! DefE.R/

by sending a solution of the MC equation to the cohomology of the corresponding
deformation (4-8).

4.3 Resolutions of coherent sheaves

For a smooth projective variety X, we consider the deformation theory of a sheaf

E 2 Coh.X /

in terms of the dg-algebra. As we recalled in Section 4.1, when E is a vector bundle
its deformation theory is described in terms of the dg-algebra (4-1). In general, we take
a resolution of E by vector bundles and consider the associated dg-algebra (4-6).

We first fix a resolution of E by vector bundles in the following way. Let OX .1/ be
an ample line bundle on X. Then for m0� 0 we have the surjection

H 0.E.m0//˝OX .�m0/�E:

Applying this construction to the kernel of the above morphism and repeating, we
obtain the resolution of E of the form

� � �!W i
˝OX .�mi/

d i

��!W iC1
˝OX .�miC1/!� � �!W 0

˝OX .�m0/!E! 0
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for finite-dimensional vector spaces W i. Since X is smooth, the kernel of d i for
i D �N with N � 0 is a vector bundle on X. Therefore we obtain the bounded
resolution of E

(4-12) 0! E�N d�N

����! � � � ! E�1 d�1

���! E0
!E! 0;

where E�N D Ker.d�N / and E i DW i ˝OX .�mi/ for �N < i � 0.

By replacing mi and n if necessary, the above construction can be extended to local
universal family of deformations of E . Let M be the stack (3-1), and take its local atlas

(4-13) .A;p/! .M; ŒE�/

at ŒE�2M such that A is a finite-type affine scheme and a point p2A is sent to ŒE�. Let

EA 2 Coh.X �A/

be the universal family. Let OX�A.1/ be the pull-back of OX .1/ to X�A. For m0�0,
the OA–module H 0.EA.�m0// is locally free of finite rank and we have the surjection

H 0.EA.m0//˝OA
OX�A.�m0/�EA:

Similarly as above, we obtain the resolution of EA of the form

� � � !W i
˝OA

OX�A.�mi/!W iC1
˝OA

OX�A.�miC1/! � � �

!W 0
˝OA

OX�A.�m0/!EA! 0

for locally free OA–modules W i of finite rank. By taking the kernel at i D�N for
N � 0, we obtain the resolution of EA

(4-14) 0! E�N
A ! � � � ! E�1

A ! E0
A!EA! 0:

For N � 0, each E i
A

is a vector bundle on X �A, since EA is a A–flat perfect object.
By restricting it to X � fpg, we obtain the resolution (4-12).

4.4 Minimal A1–algebras

For a coherent sheaf E on X, we fix a resolution E� as in (4-12) and consider the
dg-algebra (4-6)

(4-15) g�E :D g�E� :
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When E is a vector bundle, we just take the dg-algebra (4-1) in the argument below.
By (4-4) we have

Extk.E;E/DHk.g�E/:

By the homological transfer theorem, there exists a minimal A1–algebra structure
fmngn�2 on Ext�.E;E/, and a quasi-isomorphism

(4-16) I W .Ext�.E;E/; fmngn�2/! .g�E ; dg; � /

as A1–algebras. Here the A1–structure on Ext�.E;E/ consists of linear maps

(4-17) mnW Ext�.E;E/! Ext�C2�n.E;E/; n� 2;

and the quasi-isomorphism (4-16) is a collection of linear maps

InW Ext�.E;E/˝n
! g�C1�n

E
:

Both of mn and In satisfy the A1–constraints. The maps mn and In are explicitly
described in terms of Kontsevich–Soibelman’s tree formula [20] given as follows.

Let us choose a Kähler metric on X, Hermitian metrics on vector bundles E i, and
fix them. A standard argument in Hodge theory for elliptic complexes (for example,
see [35]) yields a linear embedding

i W Ext�.E;E/ ,! g�E

which identifies Ext�.E;E/ with �D 0, where � is the Laplacian operator

�D dgd
�
g C d�g dgW g

�
E! g�E :

Here d�g is the adjoint map of dg with respect to the above chosen Kähler metric on X

and Hermitian metrics on E i. Moreover we have linear operators

(4-18) pW g�E� Ext�.E;E/; hW g�E! g��1
E

satisfying the relations

(4-19) p ı i D id; i ıp D idC dg ı hC h ı dg:

The homotopy operator h is given by

(4-20) hD�d�g ıG;

where G is the Green’s operator, which is an operator of order �2 (see [35, Chapter IV]),
hence h is of order �1.
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The A1–product (4-17) is described by Kontsevich–Soibelman’s tree formula as

(4-21) mn D

X
T2O.n/

˙mn;T ;

where O.n/ is the set of isomorphism classes of binary rooted trees with n leaves.
Here mn;T is the operation given by the composition associated to T , by putting i

on leaves, the product map � of g�
E

on internal vertices, the homotopy h on internal
edges, and the projection p on the root of T . For example, m3 is given by

m3.x1;x2;x3/D˙p
�
h.i.x1/ � i.x2// � i.x3/

�
˙p

�
i.x1/ � h.i.x1/ � i.x2//

�
:

The operation In is similarly given by

(4-22) In D

X
T2O.n/

˙In;T ;

where In;T is defined by replacing p by h in the construction of mn;T . For example,
I3 is given by

I3.x1;x2;x3/D˙h
�
h.i.x1/ � i.x2// � i.x3/

�
˙ h

�
i.x1/ � h.i.x1/ � i.x2//

�
:

By [34, Appendix A], there exists another A1–homomorphism

(4-23) P W .g�E ; dg; � /! .Ext�.E;E/; fmngn�2/

which is a homotopy inverse of I , ie

P ı I D id; I ıP
homotopic
� id:

Here two A1–morphisms f1; f2W A1!A2 between A1–algebras A1 , A2 are called
homotopic if there is an A1–homomorphism

H W A1!A2˝�
�
Œ0;1�

such that H.0/Df1 and H.1/Df2 , where ��
Œ0;1�

is the dg-algebra of C1–differential
forms on the interval Œ0; 1�. The A1–homomorphism P consists of linear maps

PnW .g
�
E/
˝n
! Ext�C1�n.E;E/

which are also described in terms of the tree formula, whose details we omit (see [34,
Appendix A] for details).

Later we will use some boundedness properties of linear maps mn , In and Pn . Let us
take an even number l�0, eg l >2 dim X, and consider the Sobolev .l; 2/–norm k�kl
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on g�
E

. It also induces a norm k�kl on Ext�.E;E/ by the embedding i in (4-18).
We denote by

g�E � yg
�
E;l

the completion of g�
E

with respect to the Sobolev norm k�kl .

Lemma 4.1 There is a constant C > 0 independent of n such that

kmnkl < C n; kInkl < C n; kPnkl < C n:

Here k�kl for linear maps mean the operator norm with respect to the norm k�kl
on g�

E
or Ext�.E;E/.

Proof When E is a vector bundle, the lemma is proved in [11, Proposition 2.3.2]
and [34, Lemmas A.1.1, A.1.2 and A.1.5]. The key ingredient of the proof is that the
maps mn , In and Pn are constructed as in (4-21) using rooted trees, whose cardinality
is bounded as

#O.n/D
.2n� 2/!

.n� 1/!n!
< 4n�1;

and the fact that the homotopy operator h, the product map on g�
E

are extended to
bounded operators

yg�E;l
h
�! yg�E;l ; yg

�
E;l �yg

�
E;l

�
�! yg�E;l :

When E is a coherent sheaf which is not necessary a vector bundle, the above property
still hold for the complex (4-12) without any modification: the boundedness of h is
a general fact for elliptic complexes (see [35, Theorem 4.12]), as it is an operator of
degree �1 given by (4-20), and that of the product � follows from our choice of l� 0

and a standard result of Sobolev spaces (for example, see [36, Theorem 25]). Therefore
the same argument for the vector bundle case proves the lemma.

4.5 Deformations by A1–algebras

For x 2 Ext1.E;E/, we consider the infinite series

(4-24) �.x/ :D
X
n�2

mn.x; : : : ;x/

where each term mn.x; : : : ;x/ is an element of Ext2.E;E/. By Lemma 4.1, there is
an analytic open neighborhood

(4-25) 0 2 U � Ext1.E;E/
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such that the series (4-24) absolutely converges on U to give a complex analytic
morphism

(4-26) �W U ! Ext2.E;E/:

The equation �.x/D 0 is the Mauler–Cartan equation for the A1–algebra (4-17). We
set T to be

(4-27) T :D ��1.0/� U I

ie T is the closed complex analytic subspace defined by the ideal of zero of the map
(4-26).

On the other hand, for x 2 Ext1.E;E/ we also consider the infinite series

(4-28) I�.x/ :D
X
n�1

In.x; : : : ;x/;

where each term In.x; : : : ;x/ is an element of g1
E

. By Lemma 4.1, for a sufficiently
small open subset (4-25) the series (4-28) absolutely converges on U to give a morphism
of Banach analytic spaces

(4-29) I�W U !yg1
E;l :

Lemma 4.2 The morphism (4-29) restricts to the morphism of Banach analytic spaces

(4-30) I�W T !MC.g�E/:

Here MC.g�
E
/ is the solution of the Maurer–Cartan equation (4-7) of the dg-algebra g�

E
.

Proof The result is proved in [34, Section 2.2, Lemma A.1.3] when E is a vector
bundle, and the same argument applies for the complex (4-12). Since I� is an A1–
homomorphism, it preserves the MC locus, so it sends T to MC.yg�

E;l
/. For x 2 T ,

the smoothness of I�.x/ follows along with the argument of [34, Lemma A.1.3],
by replacing @ in [loc. cit.] by the differential dg of yg�

E;l
. Therefore we obtain the

morphism (4-30).

Let M be the moduli stack of coherent sheaves on X, and we regard it as a complex
analytic stack. The above lemma implies the following proposition:

Proposition 4.3 By shrinking U if necessary, the morphism (4-29) induces the mor-
phism of complex analytic stacks

(4-31) I�W T !M:
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Proof The map in Lemma 4.2 corresponds to the element

˛ 2 g1
E ˝�.OT /

satisfying the MC equation of the dg-algebra g�
E
˝ �.OT /. Then we obtain the

dg-A0;�.OX /˝OT –module

(4-32) .A0;�.E�/˝OT ; dA0;�.E�/˝OT
C˛/:

Here E� is the complex (4-12).

The dg-module (4-32) is a bounded complex of OX�T –modules. We can show that
each cohomology of (4-32) is a coherent OX�T –module as in [4, Lemma 4.1.5], which
essentially follows the argument in [8, pages 51–52]. Indeed for each t 2 T and x 2X,
by the proof of [4, Lemma 4.1.5] there is an open neighborhood x 2 U such that there
is a degree-zero C1–isomorphism

(4-33) �t W A0;�.E�/jU Š
�!A0;�.E�/jU

satisfying
��1

t ı .dA0;�.E�/C˛t / ı�t D dA0;�.E�/Cˇt :

Here in the notation (4-9), ˇt is of the form

ˇt D ..ˇ
i
0/t ; 0; 0; : : : /; .ˇi

0/t 2 Hom.E i
jU ; E iC1

jU /:

This implies that the dg-module (4-32) restricted to U � ftg is gauge-equivalent to
a complex which is quasi-isomorphic to a bounded complex of holomorphic vector
bundles on U. The isomorphism (4-33) can be found by solving a certain differential
equation, as in [8, pages 51–52]. As remarked in [8, page 52], the solution �t is analytic
in t 2 T as ˛t is. Therefore by shrinking U and T if necessary we see that (4-32)
restricted to U �T is gauge-equivalent to a complex which is quasi-isomorphic to a
bounded complex of analytic vector bundles on U �T . In particular, each cohomology
of (4-32) is coherent.

Therefore (4-32) determines an object

E�T 2Db
Coh.X�T /.ModOX�T /:

We show that by shrinking U if necessary, the object E�
T

is quasi-isomorphic to a
T –flat sheaf

ET :DH0.E�T / 2 Coh.X �T /:
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By the construction of E�
T

, at t D 0 we have E�
T

L
˝OT

Of0g ŠE . We have the spectral
sequence

E
p;q
2
D TorOX�T

�p .Hq.E�T /;OX�f0g/)HpCq.E/:

Let q0 be the maximal q 2 Z such that Hq.E�
T
/ ¤ 0. If q0 > 0, then by the above

spectral sequence we have Hq0.E�
T
/jtD0 D 0. Therefore by shrinking U , we have

q0 � 0, and as E ¤ 0 it follows that q0D 0 by the above spectral sequence. Moreover
we have E

�1;0
2
D 0, which implies that ET is flat at t D 0, hence E

p;0
2
D 0 for any

p < 0. Then by the above spectral sequence again, we have E
0;�1
2
D 0, hence we may

assume H�1.E�
T
/D 0. Inductively, by shrinking U we see that Hq.E�

T
/D 0 for any

q < 0. Therefore the above claim holds.

By the universal property of M, the sheaf ET defines the morphism (4-31).

Proposition 4.4 The morphism of complex analytic stacks I�W T !M in (4-31) is
smooth of relative dimension dim Aut.E/.

Proof We first show that I�W T !M is smooth. Let .S; s/ be a complex analytic
space and .S; s/! .M; ŒE�/ a morphism of complex analytic stacks which sends s

to ŒE�. It is enough to show that, after replacing S by its open neighborhood at s 2 S

if necessary, we have the factorization

(4-34) .S; s/! .T; 0/
I�
��! .M; ŒE�/:

By shrinking S if necessary, we may assume that S !M factors through

.S; s/
f1
��! .A;p/! .M; ŒE�/;

where the right morphism is the local atlas in (4-13). Let E�
A

be the complex on X �A

constructed in (4-14). By pulling E�
A

back by f �
1

, we obtain the complex

E�S D f
�

1 E�A:

Then as described in Section 4.1, the complex structures of each term of E�
S

and their
differentials give rise to the solution of the MC equation of the dg-algebra g�

E
˝OS .S/.

Thus we obtain a map of Banach analytic spaces

f2W .S; s/! .MC.g�E/; 0/:

We are left to prove the existence of the morphism f3W .S; s/! .T; 0/ such that the
composition

.S; s/
f3
��! .T; 0/

I�
��! .MC.g�E/; 0/
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differs from f2 only up to gauge equivalence. The existence of such f3 is proved
in [34, Theorem 2.2.2] when E is a vector bundle, and the same argument applies for
the complex of vector bundles (4-12). Below we give an outline of the proof.

For y 2 g1
E

, consider the series

P�.y/ :D
X
n�1

Pn.y; : : : ;y/;

where P is the homotopy inverse of I in (4-23). By Lemma 4.1, there is an open
neighborhood 0 2 U 0 � g1

E
in k�kl–norm such that P� gives the analytic map

P�W U 0! Ext1.E;E/:

Since P is an A1–homomorphism, after shrinking U 0 if necessary the above map
induces the morphism of Banach analytic spaces

P�W MC.g�E/\ U 0! T:

Therefore by shrinking S if necessary so that f2.S/� U 0 , we have the analytic map

f3 D P� ıf2W .S; s/! .T; 0/:

It remains to show that two maps

I� ıf3 D I� ıP� ıf2; f2W .S; s/! .MC.g�E/; 0/

are gauge-equivalent. Since P is a homotopy inverse of I , we have

H W g�E! g�E ˝�
�
Œ0;1�;

an A1–homomorphism with H.0/D id and H.1/D I ıP . Then H also satisfies
the boundedness property as in Lemma 4.1 (see [34, Corollary A.2.7]), so that after
shrinking U 0 if necessary the A1–homomorphism H induces the analytic map

H�W MC.g�E/\U 0!MC.g�E ˝�
�
Œ0;1�/:

Then the analytic map

H� ıf2W S !MC.g�E ˝�
�
Œ0;1�/

satisfies
H� ıf2.0/D f2; H� ıf2.1/D I� ıP� ıf2:

This implies that f2 and I� ıP� ıf2 are gauge-equivalent in the sense of [11, Defini-
tion 2.2.2]. As proved in [11, Lemma 2.2.2], this notion of gauge equivalence coincides
with the gauge equivalence in (4-11). Therefore the smoothness of I� follows.
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Finally, the relative dimension of I�W T !M is dim Aut.E/ since the dimension of the
tangent space of T at 0 is dim Ext1.E;E/, and that of M at ŒE� is dim Ext1.E;E/�
dim Aut.E/.

5 Local descriptions of moduli stacks of semistable sheaves

In this section, we use the results in the previous sections to prove Theorem 3.2. By
applying the arguments to the CY 3–fold case, we also obtain Corollary 5.7.

5.1 Convergent relation of the Ext–quiver

For a smooth projective variety X, let

E� D .E1; : : : ;Ek/

be a simple collection of coherent sheaves on X, and QE� the associated Ext–quiver;
see Section 3.3. Here we construct a convergent relation of QE� from the minimal
A1–structure on the derived category of coherent sheaves on X.

Let us consider the sheaf on X of the form

(5-1) E D

kM
iD1

Vi ˝Ei

for vector spaces Vi , and set mi D dim Vi . Note that we have the decomposition

(5-2) Ext�.E;E/D
M

1�a;b�k

Hom.Va;Vb/˝Ext�.Ea;Eb/:

Let us take a resolution E� ! E as in (4-12). From its construction, it naturally
decomposes into the direct sum of resolutions of Ei . Namely, let

0! E�N
i

d�N
i����! � � � ! E�1

i

d�1
i���! E0

i !Ei! 0

be the resolution (4-12) applied for Ei . By taking N � 0, we may assume that N is
independent of i . Then the complex E� in (4-12) is

E� D
kM

iD1

Vi ˝ E�i :
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Therefore we have the decompositions

(5-3) g�E D
M

1�a;b�k

Hom.Va;Vb/˝A0;�.Hom�.E�a; E
�

b//:

Here g�
E

is the dg-algebra (4-15), defined via the above complex E�. The decom-
position of g�

E
is compatible with the Laplacian operator �. Indeed each complex

A0;�.Hom�.E�a; E�b// is elliptic and hence we have linear operators

ia;bW Ext�.Ea;Eb/ ,!A0;�.Hom�.E�a; E
�

b//;

pa;bW A
0;�.Hom�.E�a; E

�

b//� Ext�.Ea;Eb/;

ha;bW A
0;�.Hom�.E�a; E

�

b//!A0;��1.Hom�.E�a; E
�

b//

satisfying the same relations as (4-19) and

(5-4) ?D
M

1�a;b�k

idHom.Va;Vb/˝?a;b;

where ? is either i or p or h as given in Section 4.4.

Let xE be the coherent sheaf on X defined by

(5-5) xE :D
kM

iD1

Ei

and consider the A1–product

(5-6) mnW Ext1. xE; xE/˝n
! Ext2. xE; xE/:

By the relation (5-4) and the explicit formula (4-17) of the A1–product, the map (5-6)
only consists of the direct sum factors of the form

(5-7) mnW Ext1.E .1/;E .2//˝Ext1.E .2/;E .3//˝� � �˝Ext1.E .n/;E .nC1//

! Ext2.E .1/;E .nC1//

for maps  W f1; : : : ; nC1g!f1; : : : ; kg, which give a minimal A1–category structure
on the dg-category generated by .E1; : : : ;Ek/. By taking the dual and the products
of (5-7) for all n� 2, we obtain the linear map

m_ :D
Y
n�2

m_n W Ext2. xE; xE/_

!

Y
n�2

M
 W f1;:::;nC1g
!f1;:::;kg

Ext1.E .1/;E .2//
_
˝ � � �˝Ext1.E .n/;E .nC1//

_:
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Note that an element of the right-hand side is an element of CŒŒQE� �� by (2-6). Let
fo1; : : : ; olg be a basis of Ext2. xE; xE/_ and set

fi Dm_.oi/ 2CŒŒQE� ��:

Then by Lemma 4.1, we have fi 2CfQE�g. We obtain the convergent relation of QE�

(5-8) IE� :D .f1; : : : ; fl/:

5.2 Deformations of direct sums of simple collections

We consider the deformations of sheaves of the form (5-1). By the decomposition (5-2),
the space Ext1.E;E/ is identified with the space of QE�–representations

(5-9) Ext1.E;E/D RepQE�
.
�!
m/:

Here �!m is the dimension vector of QE� given by mi D dim Vi . We also have

(5-10) G D Aut.E/D
kY

iD1

GL.Vi/;

and the adjoint action of Aut.E/ on Ext1.E;E/ coincides with the action (2-4) under
the identification (5-9). Recall that in (4-26) and (4-29), we constructed analytic maps

(5-11) �W U ! Ext2.E;E/; I�W U !yg�E;l

for a sufficiently small analytic open subset 0 2 U � Ext1.E;E/. Explicitly under the
identification (5-9), for a QE�–representation

uD .ue/e2E.QE� /
2 U ; ueW Vs.e/! Vt.e/;

we have the following identities by the decompositions (5-2), (5-3) and (5-4):

(5-12)

�.u/D
X
n�2;

 Wf1;:::;nC1g!f1;:::;kg

X
ei2E .i/; .iC1/

mn.e
_
1 ; : : : ;e

_
n /�uen

ı� � �ıue2
ıue1

;

I�.u/D
X
n�2;

 Wf1;:::;nC1g!f1;:::;kg

X
ei2E .i/; .iC1/

In.e
_
1 ; : : : ;e

_
n /�uen

ı� � �ıue2
ıue1

:

Here for e 2Ei;j , the element e_ 2 Ext1.Ei ;Ej / is defined as in (2-18).
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Lemma 5.1 There is a saturated open subset V in Ext1.E;E/ with respect to the
G–action on Ext1.E;E/, satisfying

0 2 V �G �U � Ext1.E;E/

such that the maps in (5-11) induce G–equivariant analytic maps

�W V! Ext2.E;E/; I�W V!yg�E;l :

Here G acts on Ext2.E;E/ and yg�
E;l

by adjoint.

Proof The formal series � and I� in (5-12) are obviously G–equivariant. Therefore
for a choice of U in (4-26) and (4-29), the maps � and I� can be extended to analytic
maps

�W G �U ! Ext2.E;E/; I�W G �U !yg�E;l :

By Lemma 2.5, there is a saturated analytic open subset V � G � U which contains
0 2 Ext1.E;E/, so the lemma follows.

Let V � Ext1.E;E/ be as in Lemma 5.1. By Lemma 2.4, it is written as

V D ��1
QE�

.V /

for some analytic open subset 0 2 V �MQE�
.
�!
m/, where �QE�

is the quotient map

�QE�
W RepQE�

.
�!
m/!MQE�

.
�!
m/:

Let R� V be the closed analytic subspace given by

R :D ��1.0/� V � Ext1.E;E/:

By the definition of IE� in (5-8), under the identification (5-9) we have

RD Rep.QE� ;IE� /
.
�!
m/jV :

Here we have used the notation (2-17) for the right-hand side. Therefore in the notation
of Definition 2.16, we have

M.QE� ;IE� /
.
�!
m/jV D ŒR=G�:

Lemma 5.2 By shrinking V if necessary, the map I� in Lemma 5.1 induces the
smooth morphism of relative dimension zero

(5-13) I�WM.QE� ;IE� /
.
�!
m/jV !M:

Here M is the moduli stack of coherent sheaves on X.
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Proof By Lemma 4.2 and Proposition 4.4, the map I� in Lemma 5.1 gives the analytic
maps

I�W R\U !MC.g�E/; I�W R\U !M:

Then by the G–equivalence of I� and the property V �G �U in Lemma 5.1, the above
maps extend to the G–equivariant analytic maps

(5-14) I�W R!MC.g�E/; I�W R!M:

Here the right map is induced by the left map as in the proof of Proposition 4.4. By the
G–equivalence of I� , the right map of (5-14) descends to the quotient by G to induce
(5-13), which is of relative dimension zero by Lemma 5.1.

5.3 Functoriality of I�

In this subsection, by the explicit description (5-12) of the map I� in Proposition 5.4,
we see that it has some functorial property. In particular, it implies that I� sends
subsheaves to subrepresentations of Ext–quivers. This fact will not be used in the rest
of this section, but will be used in the proof of Theorem 6.8, which will be used in
Theorem 7.7 to compare stability conditions of sheaves and quiver representations.

For each i 2 V .QE�/D f1; 2; : : : ; kg, let Vi and V 0i be vector spaces with dimensions
mi and m0i , and set

E D

kM
iD1

Vi ˝Ei ; E0 D

kM
iD1

V 0i ˝Ei :

Let us take

(5-15) uD .ue/e2E.QE� /
; u0 D .u0e/e2E.QE� /

;

where ue and u0e are linear maps

ueW Vs.e/! Vt.e/; u0eW V
0

s.e/! V 0t.e/

whose operator norms are sufficiently small that they give QE�–representations satis-
fying the relation IE� . Let �i W Vi ! V 0i be linear maps for 1 � i � k such that the
following diagram commutes for each e 2E.QE�/:

Vs.e/

ue
//

�s.e/
��

Vt.e/

�t.e/
��

V 0
s.e/ u0e

// V 0
t.e/
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Then each term of

(5-16) I�.u/ 2MC.g�E/; I�.u
0/ 2MC.g�E0/

in (5-12) satisfies

In.e
_
1 ; : : : ; e

_
n / ��t.en/ ıuen

ı � � � ıue1
D In.e

_
1 ; : : : ; e

_
n / �u

0
en
ı � � � ıu0e1

ı�s.e1/:

This implies that the map

kM
iD1

�i ˝ idW
�
A0;�

� kM
iD1

Vi ˝ E�i

�
; dA0;�.

Lk
iD1 Vi˝E�

i
/C I�.u/

�

!

�
A0;�

� kM
iD1

V 0i ˝ E�i

�
; dA0;�.

Lk
iD1 V 0

i
˝E�

i
/C I�.u

0/

�
is a map of dg-A0;�.OX /–modules. By taking the cohomology of the above map, we
obtain the morphism of coherent sheaves

(5-17) H0

� kM
iD1

�i ˝ id
�
W Eu!Eu0 :

Here Eu and Eu0 are coherent sheaves corresponding to u and u0 under the map in
Proposition 4.3, respectively.

Remark 5.3 In the above argument, we assumed that the operator norms of u and u0

are small enough that I� is defined. We can relax this condition in the following cases.
First suppose that each �i is injective or surjective. Then the operator norm of u is
bounded by that of u0 , so if the operator norm of u0 is enough small then so is u,
and I�.u/ is defined. Next if u and u0 correspond to nilpotent QE�–representations,
then whatever the operator norms of u and u0 , the infinite sums I�.u/ and I�.u

0/ in
(5-12) are finite sums. So in the above cases, Eu;Eu0 and the morphism (5-17) are
well defined.

5.4 Étale slice

Below we use the notation in Section 3.2. Let M!.v/ be the moduli stack of !–
Gieseker semistable sheaves on X with Chern character v , M!.v/ its coarse moduli
space. Let E be a polystable sheaf of the form (3-3), and take closed points

p D ŒE� 2M!.v/; p0 D ŒE� 2M!.v/:
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For m� 0, let V be the vector space given by

V DH 0.E.m//D

kM
iD1

Vi ˝H 0.Ei.m//:

Let q 2 Quotı.V ; v/ be a point which is mapped to p0 under the quotient morphism
Quotı.V ; v/!M!.v/. Then we have

StabGL.V /.q/DG � GL.V /;

where G is given as in (5-10). By Luna’s étale slice theorem [23], there is an affine
locally closed G–invariant subscheme

q 2Z � Quotı.V ; v/

such that the natural GL.V /–equivariant morphism

GL.V /�G Z! Quotı.V ; v/

is étale. Moreover by taking the quotients by GL.V /, we obtain the Cartesian diagram

(5-18)

ŒZ=G� //

pZ

��

�

M!.v/

pM

��

Z�G // M!.v/

such that each horizontal arrows are étale. Therefore there is a saturated analytic open
subset W �Z (with respect to the G–action on Z ) which contains q and the Cartesian
diagram of complex analytic stacks

ŒW=G� //

pW
��

�

M!.v/

pM

��

W�G // M!.v/

such that each horizontal arrows are analytic open immersions.

On the other hand, let us consider the morphism I� in Lemma 5.2 applied for the above
polystable sheaf p0 D ŒE� 2M!.v/. By the openness of stability, by shrinking U in
Lemma 5.1 if necessary, the map I� in Lemma 5.2 factors through the open substack
M!.v/�M:

(5-19) I�WM.QE� ;IE� /
.
�!
m/jV !M!.v/:
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Now the following proposition completes the proof of Theorem 3.2.

Proposition 5.4 By shrinking V in Lemma 5.1 and W if necessary (while keeping
the condition to be saturated in Ext1.E;E/, Z respectively) the map (5-19) induces
the commuting isomorphisms

(5-20)

ŒR=G�DM.QE� ;IE� /
.
�!
m/jV

Š

I�
//

pQ

��

ŒW=G�

pW

��

R�G DM.QE� ;IE� /
.
�!
m/jV

Š
// W�G

Proof The map (5-19) induces the analytic map R�G!M!.v/. So by shrinking
0 2 V �MQE�

.
�!
m/ if necessary, we may assume that the above map factors through

R�G!W�G . Then we have the commutative diagram

ŒR=G�
I�
//

pQ

��

ŒW=G�

pW
��

R�G // W�G

Let K �G be a maximal compact subgroup, and take a sufficiently small K–invariant
analytic open subset q 2 W1 � W. Then as in the proof of Proposition 4.4, the
composition

W1!W! ŒW=G��M!.v/

admits a lift �W W1!R using the homotopy inverse P of I . Moreover, that proof
immediately implies that � can taken to be K–equivariant. (Indeed if the map f2 in
that proof is K–equivariant, then so is f3 as P� is K–equivariant.) So we have the
commutative diagram

(5-21)

R

��

W1

��

�
oo

ŒR=G�
I�
// ŒW=G�

Note that the bottom arrow is a smooth morphism of relative dimension zero by
Lemma 5.2. Let 0 2R1 �R be a sufficiently small K–invariant analytic open neigh-
borhood. Since both R1 and W1 are the bases of versal families of flat deformations
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of E with tangent space Ext1.E;E/, and � is an isomorphism at the tangent by the
diagram (5-21), the K–equivariant map � gives an isomorphism  W W1

Š
�!R1 for

some suitable choices of W1 and R1 . By setting  D ��1 , we obtain the commuta-
tive diagram

(5-22)

R1

 

Š
//

��

W1

��

ŒR=G�
I�
// ŒW=G�

By Lemma 5.5 below, after shrinking R1 if necessary we can extend the K–equivariant
isomorphism  W R1

Š
�!W1 to a G–equivariant isomorphism between G–invariant

open subsets in R and W

(5-23) z W R2
Š
�!W2; where R2 :DG �R1 and W2 :DG �W1;

by sending g �x to g � .x/ for g 2G and x 2R1 . Then by Lemma 5.6 below, the
isomorphism (5-23) restricts to the isomorphism of saturated open subsets. By taking
the quotients of G–actions, we obtain the desired isomorphisms (5-20).

In the proof of the above proposition, we postponed the following two lemmas:

Lemma 5.5 The map (5-23) is well defined and an isomorphism.

Proof The lemma is essentially proved in the proof of [17, Theorem 5.5]. In order
to show that (5-23) is well defined, it is enough to show that if g1R1 \ g2R1 ¤ ∅
for g1;g2 2G , then we have the identity g1 g�1

1
D g2 g�1

2
on g1R1\g2R1 . By

applying g�1
2

, we may assume that g2 D 1. Let G0 �G be the open subset given by

G0 :D fg 2G W gR1\R1 ¤∅g:

If we define

G00 :D fg 2G0 W g g�1
D  on gR1\R1g;

then G00 is a closed analytic subset of G0 which contains K . Therefore if .G0/ı and
.G00/ı are the connected components of G0 and G00 which contain K , then we have
.G0/ıD .G00/ı. Then we take a sufficiently small K–invariant open subset 02R0

1
�R1

satisfying the following: for any x1;x2 2 R0
1

with G � x1 D G � x2 , the connected
component of .G �x1/\R1 containing x1 should contain x2 . The above choice of R0

1
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implies that
G000 :D fg 2G W gR01\R01 ¤∅g � .G0/ı:

Therefore as .G0/ı D .G00/ı , for g 2 G000 we have g g�1 D  on gR0
1
\R0

1
¤ ∅.

By replacing R1 with R0
1

, we see that (5-23) is well defined. Applying the above
argument for the inverse of  W R1

Š
�!W1 , we have the inverse of (5-23), showing

that (5-23) is an isomorphism.

Lemma 5.6 There exist saturated open subsets zV�Ext1.E;E/ and �W�Z satisfying
0 2 R\ zV � R2 and q 2 �W �W2 such that the isomorphism (5-23) restricts to the
isomorphism

z W R\ zV Š
�! �W:

Proof Let W3 � Z be a saturated open subset in Z satisfying q 2 W3 � W2 ,
which exists by Lemma 2.5, and set R3 :D z �1.W3/ �R2 . Then R3 is written as
R3DR\V 0 for some G–invariant open subset 02V 0�V. Let V 00�Ext1.E;E/ be a
saturated open subset satisfying 02V 00�V 0 , which again exists by Lemma 2.5, and set
R4 :DR\V 00 �R3 . Let W4 :D z .R4/. We show that W4 is a saturated open subset
in Z . Indeed for x 2W4 , the orbit closure G �x in Z is contained in W3 since W3

is saturated. Take y 2G �x and consider z �1.y/ 2R3 . Then since V 00 is saturated,
we have z �1.y/ 2R4 , hence y 2W4 as desired. Now V 00 and W4 are saturated in
Ext1.E;E/ and Z . By setting zV D V 00 and �W DW4 , we obtain the lemma.

5.5 Calabi–Yau 3–fold case

We keep the situation as in the previous subsections. Suppose furthermore that X is a
smooth projective CY 3–fold; ie

dim X D 3; OX .KX /ŠOX :

In this case, the A1–structure (5-6) is cyclic (see [29]); ie for a map

 W f1; : : : ; nC 1g ! f1; : : : ; kg;  .1/D  .nC 1/

and elements
ai 2 Ext1.E .i/;E .iC1//; 1� i � n;

we have the relation

(5-24) .mn�1.a1; : : : ; an�1/; an/D .mn�1.a2; : : : ; an/; a1/:
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Here mn is the A1–product (5-7), .�;�/ is the Serre duality pairing

(5-25) .�;�/W Extj .Ea;Eb/�Ext3�j .Eb;Ea/! Ext3.Ea;Ea/

R
X tr
���!C:

Let WE� 2CŒŒQE� �� be defined by

WE� :D
X
n�3

X
 W f1;:::;nC1g!f1;:::;kg

 .1/D .nC1/

X
ei2E .i/; .iC1/

a ;e� � e1e2 � � � en:

Here the coefficient a ;e� is given by

(5-26) a ;e� D
1

n

�
mn�1.e

_
1 ; e
_
2 ; : : : ; e

_
n�1/; e

_
n

�
:

Then by Lemma 4.1, we have

WE� 2CfQE�g �CŒŒQE� ��:

Therefore WE� determines a convergent superpotential of QE� (see Definition 2.17).

Let xE be the object given by (5-5). By the Serre duality, Ext2. xE; xE/_ is identified
with Ext1. xE; xE/. Thus

(5-27) fe_ W e 2E.QE�/g � Ext1. xE; xE/

gives a basis of Ext2. xE; xE/_. Using this basis, the relation IE� defined in (5-8)
satisfies

IE� D fm
_.e_/ W e 2E.QE�/g D @WE� :

Here the first identity is due to the definition of IE� via the basis (5-27), and the second
identity follows from the construction of WE� and the cyclic condition (5-24). As a
corollary of Theorem 3.2, we obtain the following:

Corollary 5.7 In the situation of Theorem 3.2, suppose furthermore that X is a
smooth projective CY 3–fold. Then there is a convergent superpotential WE� of QE� ,
analytic open neighborhoods p 2 U �M!.v/, 0 2 V �MQE�

.
�!
m/ and commuting

isomorphisms

(5-28)

p�1
M
.U /

pM

��

M.QE�;@WE�
/
.
�!
m/jV

Š

I�

oo

pQ

��

�
fd.trWE�/D0g=G

�
� � // Œ��1

Q
.V /=G�

trWE�

��

U M.QE�;@WE�
/
.
�!
m/jV

Š
oo C
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Here the bottom arrow sends 0 to p , the map �QW RepQE�
.
�!
m/!MQE�

.
�!
m/ is the

quotient morphism, and tr WE� is the G–invariant analytic function on the smooth
analytic space ��1

Q
.V / (see Section 2.6).

6 Noncommutative deformation theory

Note that the diagram (3-5) in Theorem 3.2 in particular implies the isomorphism

(6-1) I�W p
�1
Q .0/ Š�! p�1

M .p/:

In this section, we recall the NC deformation theory associated to a simple collection
of sheaves, and explain its relationship to the isomorphism (6-1).

More precisely in Theorem 6.8, using NC deformation theory we show that the map I�

gives an equivalence of categories between the category of nilpotent representations of
the Ext–quiver and the subcategory of coherent sheaves on X generated by the given
simple collection. Theorem 6.8 immediately implies the isomorphism (6-1), so giving
an interpretation of (6-1) via NC deformation theory. The result of Theorem 6.8 will be
only used in the proof of Lemma 7.8 in the next section, but seems to be an interesting
result in its own right as it gives intrinsic understanding of the isomorphism (6-1).

6.1 NC deformation functors

Let X be a smooth projective variety, on which we take a simple collection of coherent
sheaves

(6-2) E� D .E1;E2; : : : ;Ek/:

The NC deformation theory associated to the simple collection (6-2) is formulated for
such a collection [22; 9; 18; 5]. The following convention is due to Kawamata [18].

By definition, a k–pointed C–algebra is an associative ring R with C–algebra homo-
morphisms

Ck p
�!R

q
�!Ck

whose composition is the identity. Then R decomposes as

RDCk
˚m; m :D Ker q:
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For 1� i � k , let mi be the kernel of the composition

R
q
�!Ck

!C;

where the second map is the i th projection. Note that mD
Tk

iD1 mi . We define Artk
to be the category of finite-dimensional k–pointed C–algebras RDCk˚m such that
m is nilpotent.

For a simple collection (6-2), we have the NC deformation functor

(6-3) Def nc
E�
W Artk ! Set:

The above functor is defined by sending RDCk˚m to the set of isomorphism classes
of pairs

.E ;  /; E 2 Coh.R˝C OX /;

where E is a coherent left R˝C OX –module which is flat over R, and  is an
isomorphism R=m˝R E Š�!

L
i Ei which induces isomorphisms

R=mi ˝R E Š�!Ei ; 1� i � k:

6.2 Prorepresentable hull

Let cArtk be the category whose objects consist of Ck–algebras given by inverse limits
of objects in Artk . An object A 2 cArtk is called a prorepresentable hull of the functor
Def nc

E�
if there is a formally smooth morphism

HombArtk
.A;�/! Def nc

E�
.�/

which are isomorphisms in first orders. A prorepresentable hull is, if it exists, unique
up to noncanonical isomorphisms; see [30].

A prorepresentable hull of the functor Def nc
E�

is known to exist by [22; 9]. By [18],
it is explicitly constructed by taking the iterated universal extensions of sheaves Ei ,
which we review here. We first set E.0/

i D Ei for 1 � i � k . Suppose that E.n/
i is

constructed for some n � 0 and all 1 � i � k . Then E.nC1/
i is constructed as the

universal extension

(6-4) 0!

kM
jD1

Ext1.E.n/
i ;Ej /

_
˝Ej !E.nC1/

i !E.n/
i ! 0:
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Let us set

E.n/ :D
nM

iD1

E.n/
i ; R.n/ :D Hom.E.n/;E.n//:

Then by [18, Theorem 4.8], R.n/ is an object of Artk , and E.n/ is an element of
Def nc

E�
.R.n//. Moreover by [18, Lemma 4.3, Corollary 4.6, Theorem 4.8], there exist

natural surjections R.nC1/�R.n/ such that the inverse limit

Rnc
E�
D lim
 ��

R.n/
2cArtk

is a prorepresentable hull of (6-3). Moreover the surjection E.nC1/�E.n/ induces
the isomorphism

(6-5) R.n/
˝R.nC1/ E.nC1/ Š

�!E.n/:

By the surjection R.nC1/�R.n/ , we have the fully faithful embedding

(6-6) mod R.n/ ,!mod R.nC1/:

Then the category modnil Rnc
E�

is defined by

(6-7) modnil Rnc
E�

:D lim
��!
.mod R.n//:

The above category is identified with the abelian category of nilpotent finite-dimensional
right Rnc

E�
–modules.

6.3 Equivalence of categories via NC deformations

In what follows, we show that the category (6-7) is equivalent to the subcategory of
Coh.X /

hE1;E2; : : : ;Eki � Coh.X /

given by the extension closure of E1; : : : ;Ek , ie the smallest extension closed subcat-
egory of Coh.X / which contains E1; : : : ;Ek .

Lemma 6.1 For T 2mod R.n/ , we have

(6-8) ˆ.T / :D T ˝R.n/ E.n/
2 hE1; : : : ;Eki:

Proof Since R.n/ 2Artk , it decomposes as R.n/DCk˚m.n/ . We take the following
filtration in mod R.n/

� � � � T .m.n//j � T .m.n//j�1
� � � � � T m

.n/
� T:
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Then the subquotient
T .j / :D T .m.n//j=T .m.n//jC1

is a Ck–module, which is zero for j � 0. Since E.n/ is an NC deformation of E�

to R.n/ , it follows that T .j /˝R.n/ E.n/ is a direct sum of objects in .E1; : : : ;Ek/.
Since T is given by iterated extensions of T .j / , the lemma follows.

The functor
ˆW mod R.n/

! hE1; : : : ;Eki

given by Lemma 6.1 commutes with the embedding (6-6) by the isomorphism (6-5).
Hence we obtain the functor

(6-9) ˆW modnil Rnc
E�
! hE1; : : : ;Eki:

We will show that the functor (6-9) is an equivalence of categories, for which we now
prepare some lemmas.

Lemma 6.2 We have Hom.E.n/
i ;Ej /DCıij , and the natural map

Ext1.E.n/
i ;Ej /! Ext1.E.nC1/

i ;Ej /

is a zero map.

Proof The lemma follows from the exact sequence

0! Hom.E.n/
i ;Ej /! Hom.E.nC1/

i ;Ej /! Ext1.E.n/
i ;Ej /

id
�! Ext1.E.n/

i ;Ej /! Ext1.E.nC1/
i ;Ej /

obtained by applying Hom.�;Ej / to the exact sequence (6-4).

Lemma 6.3 For any U 2 hE1; : : : ;Eki and n� 0, the natural map

(6-10) Ext1.E.n/
i ;U /! Ext1.E.nCl/

i ;U /

is a zero map for l � 0.

Proof If U DEj for some 1� j �k , the lemma follows from Lemma 6.2. Otherwise
there is an exact sequence

0! U 0! U ! U 00! 0; U 0;U 00 2 hE1; : : : ;Eki n f0g:
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Suppose that the lemma holds for U 0 and U 00 . For l 0� 0 and l 00� 0, We have the
commutative diagram

Ext1.E.n/;U 0/ //

��

Ext1.E.n/;U / //

��

Ext1.E.n/;U 00/

0
��

Ext1.E.nCl 00/;U 0/ //

0
��

Ext1.E.nCl 00/;U / //

��

Ext1.E.nCl 00/;U 00/

��

Ext1.E.nCl 0Cl 00/;U 0/ // Ext1.E.nCl 0Cl 00/;U / // Ext1.E.nClCl 00/;U 00/

Here the horizontal arrows are exact sequences. The map (6-10) for l D l 0C l 00 is the
composition of middle vertical arrows, which is zero by a diagram chasing. Therefore
the lemma follows by the induction on the number of iterated extensions of U by
E1; : : : ;Ek .

Lemma 6.4 For any U 2 hE1; : : : ;Eki, the sequence

(6-11) Hom.E.0/;U /� Hom.E.1/;U /� � � � � Hom.E.n/;U /� � � �

terminates for n� 0.

Proof The lemma can be proved by the induction on the number of iterated extensions
of U by E1; : : : ;Ek . If U DEi for some i , then the sequence (6-11) terminates by
Lemma 6.2. Otherwise there is an exact sequence

0!Ei! U ! U 0! 0

for some 1 � i � k and U 0 2 hE1; : : : ;Eki. By applying Hom.E.n/;�/, we obtain
the exact sequence

0! Hom.E.n/;Ei/! Hom.E.n/;U /! Hom.E.n/;U 0/:

By Lemma 6.2, it follows that

Hom.E.n/;U /� Hom.E.n/;U 0/C 1:

By the induction hypothesis, Hom.E.n/;U 0/ is bounded above by a number which is
independent of n. Therefore Hom.E.n/;U / is also bounded above.

By Lemma 6.4, we have the functor

(6-12) ‰W hE1; : : : ;Eki !modnil Rnc
E�

sending U to Hom.E.n/;U / for n� 0.
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Lemma 6.5 The functor (6-12) is exact.

Proof It is enough to show that (6-12) is right exact. Let 0!U 0!U !U 00! 0 be
an exact sequence in hE1; : : : ;Eki. For n� 0 and l � 0, we have the commutative
diagram

Hom.E.n/;U / //

Š

��

Hom.E.n/;U 00/ //

Š

��

Ext1.E.n/;U 0/

0
��

Hom.E.nCl/;U / // Hom.E.nCl/;U 00/ // Ext1.E.nCl/;U 0/

Here the isomorphisms of the left and middle vertical arrows follow from Lemma 6.4
and the right vertical arrow is a zero map by Lemma 6.3. Therefore the right bottom
horizontal arrow is a zero map, which shows that Hom.E.n/;U /!Hom.E.n/;U 00/ is
surjective for n� 0. Therefore the functor (6-12) is exact.

Proposition 6.6 The functor (6-9) is an equivalence of categories.

Proof The functor (6-12) is a right adjoint functor of ˆ, so there exist canonical
natural transformations

id!‰ ıˆ.�/; ˆ ı‰.�/! id:

It is enough to show that both of them are isomorphisms of functors.

As E.n/ is flat over R.n/ , the functor ˆ is exact. The functor ‰ is also exact by
Lemma 6.5, so the compositions ‰ ıˆ and ˆ ı‰ are also exact. Therefore by the
induction on the number of iterated extensions by simple objects and the five lemma, it
is enough to check the isomorphisms

Si
Š
�!‰ ıˆ.Si/; ˆ ı‰.Ei/

Š
�!Ei :

Here S1; : : : ;Sk are simple R.0/DCk–modules. Since ˆ.Si/DEi and ‰.Ei/DSi ,
the above isomorphisms are obvious.

6.4 Maurer–Cartan formalism of NC deformations

We can interpret the NC deformation functor (6-3) in terms of Maurer–Cartan formalism.
The argument below is also available in [32].
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For R2Artk with the decomposition RDCk˚m, an argument similar to Section 4.2
shows that

(6-13) Def nc
E�
.R/ŠMC

�
A0;�

�
Hom�

� kM
iD1

E�i ;
kM

iD1

E�i

�
˝m

��.
�

DMC
�M

i;j

A0;�.Hom�.E�i ; E
�

j //˝C mij

�.
�:

Here � means gauge equivalence, ˝ is the tensor product of k–pointed C–algebras
(see [32, Section 1.3]), and mij D ei �m � ej for the idempotents fe1; : : : ; ekg of R.
Then using the A1–operation fIngn�1 in Section 4.4, we have the map

(6-14) I�WMC
�M

i;j

Ext�.Ei ;Ej /˝C mij

�
!MC

�M
i;j

A0;�.Hom.E�i ;E
�

j //˝C mij

�
;

which is an isomorphism after taking the quotients by gauge equivalence. Here the
left-hand side is the solution of the MC equation of the A1–algebraM

i;j

Ext�.Ei ;Ej /˝C mij

whose A1–product is given by (5-7), and the map I� is constructed as in (4-28).

Let A be the Ck–algebra defined by

(6-15) A :DCŒŒQE� ��=.f1; : : : ; fl/;

where .f1; : : : ; fl/ is the convergent relation of QE� given in (5-8). We have the
tautological identification

(6-16) MC
�M

i;j

Ext�.Ei ;Ej /˝C mij

�
D HombArtk

.A;R/:

Here .ei;j ˝ ri;j / in the left-hand side corresponds to A!R given by

z 7! ei;j .z/ � ri;j for z 2Ei;j � Ext1.Ei ;Ej /
_:

As proved in [32, Proposition 2.13], under the above identification the gauge equivalence
in the left-hand side corresponds to the conjugation by an element in 1C

L
i mii in

the right-hand side.

Thus we see that A is a prorepresentable hull of Def nc
E�

. By the uniqueness of prorep-
resentable hull, we have an isomorphism

Rnc
E�
ŠA
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which commutes with maps to Def nc
E�

. Combined with Proposition 6.6, we have the
following corollary:

Corollary 6.7 We have an equivalence of categories

(6-17) ˆW modnil A �
�! hE1;E2; : : : ;Eki:

Here A is the Ck–algebra (6-15).

6.5 Equivalence of categories via I�

Let us take a nilpotent QE�–representation

(6-18) uD .ue/e2E.QE� /
; ueW Vs.e/! Vt.e/:

By the argument in Section 5.3 and Remark 5.3, the correspondence u 7! I�.u/ forms
a functor

(6-19) I�W modnil.A/! Coh.X /:

We compare the above functor with the equivalence (6-17) in the following proposition:

Theorem 6.8 The functor (6-19) is isomorphic to the functor ˆ in (6-9). In particular,
the functor I� in (6-19) is an equivalence of categories

I�W modnil.A/
�
�! hE1;E2; : : : ;Eki � Coh.X /:

Proof Let ADCk˚m be the decomposition and fe1; : : : ; ekg the idempotents of A,
and set A.n/ :DA=mnC1 and m.n/ :Dm=mnC1. Then for an element u as in (6-18), the
compositions of ue for e 2E.QE�/ along with the path in QE� defines the linear map

uW m
.n/
ij ! Hom.Vi ;Vj /; m

.n/
ij

:D ei �m
.n/
� ej :

On the other hand, let

c.n/ 2MC
�M

i;j

Ext�.Ei ;Ej /˝C m
.n/
ij

�
be the canonical element corresponding to the surjection A�A.n/ under the tauto-
logical identity (6-16). Applying the map (6-14), we obtain

(6-20) I�.c
.n// 2MC

�M
i;j

A0;�.Hom�.E�i ; E
�

j //˝C m
.n/
ij

�
:
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Then for n� 0, we have the identity

(6-21) I�.u/D u ı I�.c
.n// 2MC.g�E/:

Let F .n/ 2 Def nc
E�
.A.n// the NC deformation of E� over A.n/ corresponding to (6-20)

under the isomorphism (6-13). Note that F .n/ is the universal NC deformation over A

pulled back by the surjection A� A.n/ . Let T 2 modnil.A/ be the object given by
the QE�–representation u. Then the identity (6-21) implies that

I�.T /Š T ˝A.n/ F
.n/:

By the construction of ˆ in (6-17), which goes back to the construction in Lemma 6.1,
and the universality of F .n/ , we have ˆ.T /D T ˝A.n/ F

.n/ . Therefore, the proposi-
tion holds.

In the diagram (3-5), note that p�1
Q
.0/ consists of nilpotent A–modules and p�1

M
.p/

consists of objects in the extension closure hE1; : : : ;Eki. The above proposition
implies that the isomorphism (6-1) is induced by the universal family over NC defor-
mations.

7 Moduli spaces of one-dimensional semistable sheaves

In this section, we focus on the case of moduli spaces of one-dimensional semistable
sheaves, and prove Theorem 1.3.

7.1 Twisted semistable sheaves

Let X be a smooth projective variety, and A.X /C its complexified ample cone

A.X /C :D fBC i! 2 NS.X /C W ! is ampleg:

Let
Coh�1.X /� Coh.X /

be the abelian subcategory of coherent sheaves whose supports have dimensions less
than or equal to one. For an object E 2 Coh�1.X / and B C i! 2 A.X /C , the
B–twisted !–slope �B;!.E/ is defined by

�B;!.E/ :D
�.E/�B � chd�1.E/

! � chd�1.E/
2R[f1g:

Here d D dim X, and we set �B;!.E/ D 1 if ! � chd�1.E/ D 0, ie if E is a
zero-dimensional sheaf.
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Definition 7.1 An object E 2 Coh�1.X / is .B; !/–(semi)stable if for any nonzero
subsheaf F ¨E , we have the inequality

�B;!.F / < .�/ �B;!.E/:

Remark 7.2 If B D 0, then E 2 Coh�1.X / is .0; !/–(semi)stable if and only if it is
!–Gieseker (semi)stable sheaf.

Remark 7.3 For any integer k � 1 and a line bundle L on X, we have

�B;!.E/D �kB;k!.E/D �kBCc1.L/;k!.E˝L/:

In particular if B and ! are elements of NS.X /Q such that kB and k! are integral,
then for a line bundle L with c1.L/ D �kB , a sheaf E 2 Coh�1.X / is .B; !/–
semistable if and only if E˝L is a !–Gieseker semistable sheaf.

The .B; !/–stability condition is interpreted in terms of Bridgeland stability condi-
tions [6] as follows. Let N1.X / � H2.X;Z/ be the group of numerical classes of
algebraic one cycles on X and set

�X :DN1.X /˚Z:

Let cl be the group homomorphism defined by

(7-1) clW K.Coh�1.X //! �X ; E 7! .ŒE�; �.E//;

where ŒE� is the fundamental one cycle associated to E . By definition, a Bridgeland
stability condition on Db.Coh�1.X // with respect to the group homomorphism map
(7-1) consists of the data

(7-2) � D .Z;A/; ZW �X !C; A�Db.Coh�1.X //;

where Z is a group homomorphism and A is the heart of a bounded t-structure
satisfying some axioms; see [6; 21] for details. It determines the set of �–(semi)stable
objects: E 2Db.Coh�1.X // is �–(semi)stable if EŒk� 2A for some k 2 Z, and for
any nonzero subobject 0¤ F ¨EŒk� in A, we have the inequality in .0; ��

arg Z.cl.F // < .�/ arg Z.cl.EŒk�//:

The set of Bridgeland stability conditions (7-2) forms a complex manifold, which we
denote by Stab�1.X /. The forgetting map .Z;A/ 7!Z gives a local homeomorphism

Stab�1.X /! .�X /
_
C:
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For a given element BCi! 2A.X /C , let ZB;! be the group homomorphism �X !C

defined by

(7-3) ZB;!.ˇ;m/ :D�mC .BC i!/ˇ:

Then the pair

(7-4) �B;! :D .ZB;! ;Coh�1.X //

determines a point in Stab�1.X /.

It is obvious that an object in Coh�1.X / is .B; !/–(semi)stable if and only if it is
Bridgeland �B;!–(semi)stable. We also call .B; !/–(semi)stable sheaves as �B;!–
(semi)stable objects. Moreover the map

A.X /C! Stab�1.X /; .B; !/ 7! �B;! ;

is a continuous injective map, whose image is denoted by

U.X /� Stab�1.X /:

7.2 Moduli stacks of twisted semistable sheaves

For � D �B;! 2 U.X / and v 2 �X , let

M� .v/�M

be the moduli stack of �–semistable E 2 Coh�1.X / with cl.E/D v . As in the case
of Gieseker stability, we have the following:

Lemma 7.4 The stack M� .v/ is an algebraic stack of finite type with a projective
coarse moduli space M� .v/. So we have the natural morphism

pM WM� .v/!M� .v/:

Moreover for each closed point p 2M� .v/, the same conclusion of Theorem 3.2 holds.

Proof If B and ! are rational, then we can reduce the lemma in the case of B D 0

and ! is integral by Remark 7.3. In that case, the lemma follows from Theorem 3.2.
In general by wall-chamber structure on the space of Bridgeland stability conditions,
there is a collection of real codimension one submanifolds fWj gj2J in A.X /C called
walls such that M� .v/ is constant if � is contained in a stratum

(7-5)
\

j2J 0

Wj n

[
j 62J 0

Wj
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for some subset J 0 � J . Each wall is given by �B;!.ˇ; n/D �B;!.ˇ
0; n0/ for other

.ˇ0; n0/ 2 �X which is not proportional to .ˇ; n/, ie

.n0ˇ� nˇ0/! D Bˇ0 �!ˇ�Bˇ �!ˇ0:

The above equation determines a hypersurface in A.X /C which contains dense rational
points. Therefore if .B; !/ is not rational, then we can perturb it in the strata (7-5) and
can assume that .B; !/ is rational.

7.3 Moduli stacks of semistable Ext–quiver representations

For v 2 �X and � D �B;! 2 U.X /, take a point p 2 M� .v/. Suppose that p is
represented by a .B; !/–polystable sheaf E of the form

(7-6) E D

kM
iD1

Vi ˝Ei ;

where Ei 2 Coh�1.X / is .B; !/–stable with �B;!.Ei/D �B;!.E/. Then we have
the Ext–quiver QE� associated to the simple collection

E� D .E1; : : : ;Ek/;

together with a convergent relation IE� as in (5-8). For i 2 V .QE�/D f1; 2; : : : ; kg,
let Si be the one-dimensional QE�–representation corresponding to the vertex i . We
denote by K.QE�/ the Grothendieck group of finite-dimensional QE�–representations,
and take the group homomorphism

dimW K.QE�/! �Q :D
kM

iD1

Z �dim.Si/

by taking the dimension vectors.

Let us take another stability condition

(7-7) �C D �BC;!C D .ZBC;!C ;Coh�1.X // 2 U.X /:

Then we have the group homomorphism

ZC
Q
W K.QE�/

dim
���! �Q!C; ŒSi � 7!ZBC;!C.Ei/:

The above group homomorphism determines a Bridgeland stability condition on the
category of QE�–representations, and the associated (semi)stable representations. They
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are described in terms of slope stability condition as in Definition 7.1. Let �C
Q

be the
slope function on the category of QE�–representations defined by

�C
Q
.�/ :D�

Re ZC
Q
.�/

Im ZC
Q
.�/

:

Note that if V is a QE�–representation with dimension vector

(7-8) �!
mD .mi/1�i�k ; mi D dim Vi ;

then we have the identity

(7-9) �C
Q
.V /D �BC;!C.E/;

where E is given by (7-6). We have the following definition:

Definition 7.5 A QE�–representation V is �C
Q

–(semi)stable if for any QE�–subrep-
resentation 0¤ V 0 ¨ V , we have the inequality

�C
Q
.V 0/ < .�/ �C

Q
.V /:

For the dimension vector (7-8), let

RepC
QE�

.
�!
m/� RepQE�

.
�!
m/

be the (Zariski) open subset consisting of �C
Q

–semistable QE�–representations. The
above open subset is a GIT semistable locus with respect to a certain character of G ;
see [19, Section 3]. The quotients by G

MC
QE�

.
�!
m/D ŒRepC

QE�
.
�!
m/=G�; MC

QE�
.
�!
m/D RepC

QE�
.
�!
m/�G

are the moduli stack of �C
Q

–semistable QE�–representations with dimension vector �!m,
and its coarse moduli space, respectively. We have the commutative diagram

MC
QE�

.
�!
m/ �
�

//

p
C

Q

��

MQE�
.
�!
m/

pQ

��

MC

QE�
.
�!
m/

qQ

// MQE�
.
�!
m/

Here the vertical arrows are natural morphisms to the coarse moduli spaces, the top
horizontal arrow is an open immersion and the bottom horizontal arrow qQ is induced
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by the universality of the GIT quotients. Note that qQ is projective due to a general
argument of affine GIT quotients; see [26, Section 6].

Let 02V �MQE�
.
�!
m/ be a sufficiently small analytic open subset as in Definition 2.16.

Let

RepC
.QE� ;IE� /

.
�!
m/jV � Rep.QE� ;IE� /

.
�!
m/jV

be the open locus consisting of �C
Q

–semistable representations, where the right-hand
side is defined as in (2-17). Then we set

MC
.QE� ;IE� /

.
�!
m/jV :D ŒRepC

.QE� ;IE� /
.
�!
m/jV =G�;

MC

.QE� ;IE� /
.
�!
m/jV :D RepC

.QE� ;IE� /
.
�!
m/jV �G:

Here MC

.QE� ;IE� /
.
�!
m/jV is the analytic Hilbert quotient given in Lemma 2.9, which is

a closed analytic subspace of V C D q�1
Q
.V /. We have the commutative diagram

(7-10)

MC
.QE� ;IE� /

.
�!
m/jV

� � //

p
C

.Q;I/

��
r.Q;I/

((

M.QE� ;IE� /
.
�!
m/jV

p.Q;I/

��

MC

.QE� ;IE� /
.
�!
m/jV q.Q;I/

// M.QE� ;IE� /
.
�!
m/jV

Here the vertical arrows are natural morphisms to the coarse moduli spaces, the top
horizontal arrow is an open immersion and the bottom horizontal arrow q.Q;I / is
induced by the universality of analytic Hilbert quotients (see Lemma 2.13).

Lemma 7.6 The morphism q.Q;I / in diagram (7-10) is projective.

Proof We have the commutative diagram

MC

.QE� ;IE� /
.
�!
m/jV

q.Q;I/

��

� � // V C

��

� � //

�

MC

QE�
.
�!
m/

qQ

��

M.QE� ;IE� /
.
�!
m/jV

� � // V �
�

// MQE�
.
�!
m/

Here the right diagram is a Cartesian square whose horizontal arrows are open immer-
sions, and the horizontal arrows in the left diagram are closed immersions. Since qQ

is projective, the morphism q.Q;I / is projective by the above diagram.
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7.4 Moduli stacks of semistable sheaves under the change of stability

Let us take �C in (7-7) sufficiently close to � . Then by wall-chamber structure
on U.X /, any �C–semistable object E with cl.E/ D v is �–semistable. Then we
have the commutative diagram

(7-11)

M�C.v/
� � //

rM %%

p
C

M
��

M� .v/

pM

��

M�C.v/ qM

// M� .v/

Here the vertical arrows are natural morphisms to the coarse moduli spaces, the top
arrow is an open immersion and the bottom arrow is induced by the universality of
coarse moduli spaces. The following is the main result in this section.

Theorem 7.7 For a closed point p 2M� .v/ represented by a polystable sheaf (7-6),
there are analytic open neighborhoods p 2U �M� .v/ and 02 V �MQE�

.
�!
m/, where

QE� is the Ext–quiver associated to p with convergent relation IE� , and the dimension
vector �!m is given by (7-8), such that the diagram (7-11) pulled back to U

r�1
M
.U / �

�
//

p
C

M
��

p�1
M
.U /

pM

��

q�1
M
.U /

qM

// U

is isomorphic to the diagram (7-10).

Proof We take U DW�G , V �MQE�
.
�!
m/ and the isomorphism

(7-12) I�WM.QE� ;IE� /
.
�!
m/jV

Š
�! p�1

M .U /

as in Proposition 5.4. It is enough to show that the isomorphism (7-12) restricts to the
isomorphism

(7-13) I�WMC.QE� ;IE� /
.
�!
m/jV

Š
�! r�1

M .U /:

For a C–valued point x 2M.QE� ;IE� /
.
�!
m/jV , let Vx be the corresponding QE�–

representation, and Ex 2 Coh�1.X / the .B; !/–semistable sheaf corresponding to
I�.x/ 2 p�1

M
.U /. Let Z �MC

.QE� ;IE� /
.
�!
m/jV be the closed substack given by

Z :D
˚
x 2MC

.QE� ;IE� /
.
�!
m/jV W I�.x/ 62 r�1

M .U /
	
:
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Namely x 2M.QE� ;IE� /
.
�!
m/jV is a C–valued point of Z if and only if Vx is �C

Q
–

semistable but Ex is not .BC; !C/–semistable. Below we use the notation in the
diagram (7-10). By Lemma 7.8 below, we have

(7-14) Z \ .r.Q;I //�1.0/D∅:

On the other hand, by Lemma 2.12 the subset

pC
.Q;I /

.Z/�MC

.QE� ;IE� /
.
�!
m/jV

is closed. Together with Lemma 7.6, we see that

r.Q;I /.Z/D q.Q;I / ıpC
.Q;I /

.Z/�M.QE� ;IE� /
.
�!
m/jV

is a closed subset. By (7-14), the above closed subset does not contain 0. There-
fore by shrinking V if necessary, we may assume that Z D ∅, ie (7-12) takes
MC
.QE� ;IE� /

.
�!
m/jV to r�1

M
.U /.

Next for x 2M.QE� ;IE� /
.
�!
m/jV , suppose that Ex is .BC; !C/–semistable, ie I�.x/2

r�1
M
.U /. Note that by (7-9), we have

�C
Q
.Vx/D �BC;!C.Ex/:

By the functoriality of I� in Section 5.3 and the above equality, if a QE�–subrepres-
entation V 0 � Vx destabilizes Vx in �C

Q
–stability, then by applying I� and noting

Remark 5.3 we obtain the subsheaf E0 � Ex which destabilizes Ex in .BC; !C/–
stability. This is a contradiction, so Vx is �C

Q
–semistable; ie x 2MC

.QE� ;IE� /
.
�!
m/jV .

Therefore we obtain the desired isomorphism (7-13).

We have used the following lemma:

Lemma 7.8 Under the equivalence I� in Theorem 6.8, an object V 2modnil.A/ with
dim V D

�!
m is �C

Q
–semistable if and only if F D I�.V / is .BC; !C/–semistable in

Coh�1.X /.

Proof The if direction is proved in the first part of the proof of Theorem 7.7, so we
only prove the only if direction. Suppose by contradiction that V is �C

Q
–semistable

but F is not .BC; !C/–semistable. Then there is a nonzero subsheaf F 0 ¨ F such
that �BC;!C.F

0/ > �BC;!C.F /. On the other hand, as �C is sufficiently close to �
we may assume that there is no wall between � and �C with respect to the numerical
class cl.F /. So we have �B;!.F

0/��B;!.F /. Since F 2 hE1; : : : ;Eki and each Ei
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is .B; !/–stable with the same slope, the sheaf F is .B; !/–semistable. Therefore
we have �B;!.F

0/ � �B;!.F /, thus �B;!.F
0/ D �B;!.F / and F 0 is also .B; !/–

semistable. By the uniqueness of JH factors of .B; !/–semistable sheaves, we have
F 0 2 hE1; : : : ;Eki. Then by the equivalence I� in Theorem 6.8, we find a subobject
V 0 � V in modnil.A/ with I�.V 0/ Š F 0 . By the identity (7-9), the subobject V 0

destabilizes V , hence a contradiction.
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