Volume 22, issue 6 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Additive invariants for knots, links and graphs in $3$–manifolds

Scott A Taylor and Maggy Tomova

Geometry & Topology 22 (2018) 3235–3286
Bibliography
1 R Blair, M Tomova, Companions of the unknot and width additivity, J. Knot Theory Ramifications 20 (2011) 497 MR2796224
2 R Blair, M Tomova, Width is not additive, Geom. Topol. 17 (2013) 93 MR3035325
3 A J Casson, C M Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275 MR918537
4 B Clark, The Heegaard genus of manifolds obtained by surgery on links and knots, Internat. J. Math. Math. Sci. 3 (1980) 583 MR582900
5 M Culler, C M Gordon, J Luecke, P B Shalen, Dehn surgery on knots, Ann. of Math. 125 (1987) 237 MR881270
6 H Doll, A generalized bridge number for links in 3–manifolds, Math. Ann. 294 (1992) 701 MR1190452
7 D Gabai, Foliations and the topology of 3–manifolds, III, J. Differential Geom. 26 (1987) 479 MR910018
8 C M Gordon, J Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371 MR965210
9 C Hayashi, K Shimokawa, Heegaard splittings of the pair of the solid torus and the core loop, Rev. Mat. Complut. 14 (2001) 479 MR1871309
10 C Hayashi, K Shimokawa, Thin position of a pair (3–manifold, 1–submanifold), Pacific J. Math. 197 (2001) 301 MR1815259
11 J Hempel, 3–manifolds as viewed from the curve complex, Topology 40 (2001) 631 MR1838999
12 W Jaco, Lectures on three-manifold topology, 43, Amer. Math. Soc. (1980) MR565450
13 T Kobayashi, Y Rieck, Heegaard genus of the connected sum of m–small knots, Comm. Anal. Geom. 14 (2006) 1037 MR2287154
14 T Kobayashi, Y Rieck, The growth rate of the tunnel number of m–small knots, preprint (2015) arXiv:1506.03916
15 M Lackenby, An algorithm to determine the Heegaard genus of simple 3–manifolds with nonempty boundary, Algebr. Geom. Topol. 8 (2008) 911 MR2443101
16 S Matveev, V Turaev, A semigroup of theta-curves in 3–manifolds, Mosc. Math. J. 11 (2011) 805 MR2918296
17 J W Milnor, On the total curvature of knots, Ann. of Math. 52 (1950) 248 MR0037509
18 K Miyazaki, Conjugation and the prime decomposition of knots in closed, oriented 3–manifolds, Trans. Amer. Math. Soc. 313 (1989) 785 MR997679
19 Y Moriah, On boundary primitive manifolds and a theorem of Casson–Gordon, Topology Appl. 125 (2002) 571 MR1935173
20 K Morimoto, There are knots whose tunnel numbers go down under connected sum, Proc. Amer. Math. Soc. 123 (1995) 3527 MR1317043
21 K Morimoto, Tunnel number, connected sum and meridional essential surfaces, Topology 39 (2000) 469 MR1746903
22 K Morimoto, On composite types of tunnel number two knots, J. Knot Theory Ramifications 24 (2015) MR3334664
23 K Morimoto, M Sakuma, Y Yokota, Examples of tunnel number one knots which have the property “1 + 1 = 3, Math. Proc. Cambridge Philos. Soc. 119 (1996) 113 MR1356163
24 K Morimoto, J Schultens, Tunnel numbers of small knots do not go down under connected sum, Proc. Amer. Math. Soc. 128 (2000) 269 MR1641065
25 F H Norwood, Every two-generator knot is prime, Proc. Amer. Math. Soc. 86 (1982) 143 MR663884
26 Y Rieck, E Sedgwick, Thin position for a connected sum of small knots, Algebr. Geom. Topol. 2 (2002) 297 MR1917054
27 M Scharlemann, Heegaard splittings of compact 3–manifolds, from: "Handbook of geometric topology" (editors R J Daverman, R B Sher), North-Holland (2002) 921 MR1886684
28 M Scharlemann, J Schultens, The tunnel number of the sum of n knots is at least n, Topology 38 (1999) 265 MR1660345
29 M Scharlemann, J Schultens, 3–manifolds with planar presentations and the width of satellite knots, Trans. Amer. Math. Soc. 358 (2006) 3781 MR2218999
30 M Scharlemann, A Thompson, Thin position for 3–manifolds, from: "Geometric topology" (editors C Gordon, Y Moriah, B Wajnryb), Contemp. Math. 164, Amer. Math. Soc. (1994) 231 MR1282766
31 M Scharlemann, A Thompson, On the additivity of knot width, from: "Proceedings of the Casson Fest" (editors C Gordon, Y Rieck), Geom. Topol. Monogr. 7, Geom. Topol. Publ. (2004) 135 MR2172481
32 M Scharlemann, M Tomova, Uniqueness of bridge surfaces for 2–bridge knots, Math. Proc. Cambridge Philos. Soc. 144 (2008) 639 MR2418708
33 H Schubert, Über eine numerische Knoteninvariante, Math. Z. 61 (1954) 245 MR0072483
34 J Schultens, The classification of Heegaard splittings for (compact orientable surface) ×S1, Proc. London Math. Soc. 67 (1993) 425 MR1226608
35 J Schultens, Additivity of bridge numbers of knots, Math. Proc. Cambridge Philos. Soc. 135 (2003) 539 MR2018265
36 S A Taylor, M Tomova, Thin position for knots, links, and graphs in 3–manifolds, preprint (2016) arXiv:1606.03331
37 A Thompson, Thin position and the recognition problem for S3, Math. Res. Lett. 1 (1994) 613 MR1295555
38 R Weidmann, On the rank of amalgamated products and product knot groups, Math. Ann. 312 (1998) 761 MR1660235
39 Y Yokota, On quantum SU(2) invariants and generalized bridge numbers of knots, Math. Proc. Cambridge Philos. Soc. 117 (1995) 545 MR1317496