Volume 22, issue 6 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 2, 549–862
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Additive invariants for knots, links and graphs in $3$–manifolds

Scott A Taylor and Maggy Tomova

Geometry & Topology 22 (2018) 3235–3286
Bibliography
1 R Blair, M Tomova, Companions of the unknot and width additivity, J. Knot Theory Ramifications 20 (2011) 497 MR2796224
2 R Blair, M Tomova, Width is not additive, Geom. Topol. 17 (2013) 93 MR3035325
3 A J Casson, C M Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275 MR918537
4 B Clark, The Heegaard genus of manifolds obtained by surgery on links and knots, Internat. J. Math. Math. Sci. 3 (1980) 583 MR582900
5 M Culler, C M Gordon, J Luecke, P B Shalen, Dehn surgery on knots, Ann. of Math. 125 (1987) 237 MR881270
6 H Doll, A generalized bridge number for links in 3–manifolds, Math. Ann. 294 (1992) 701 MR1190452
7 D Gabai, Foliations and the topology of 3–manifolds, III, J. Differential Geom. 26 (1987) 479 MR910018
8 C M Gordon, J Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371 MR965210
9 C Hayashi, K Shimokawa, Heegaard splittings of the pair of the solid torus and the core loop, Rev. Mat. Complut. 14 (2001) 479 MR1871309
10 C Hayashi, K Shimokawa, Thin position of a pair (3–manifold, 1–submanifold), Pacific J. Math. 197 (2001) 301 MR1815259
11 J Hempel, 3–manifolds as viewed from the curve complex, Topology 40 (2001) 631 MR1838999
12 W Jaco, Lectures on three-manifold topology, 43, Amer. Math. Soc. (1980) MR565450
13 T Kobayashi, Y Rieck, Heegaard genus of the connected sum of m–small knots, Comm. Anal. Geom. 14 (2006) 1037 MR2287154
14 T Kobayashi, Y Rieck, The growth rate of the tunnel number of m–small knots, preprint (2015) arXiv:1506.03916
15 M Lackenby, An algorithm to determine the Heegaard genus of simple 3–manifolds with nonempty boundary, Algebr. Geom. Topol. 8 (2008) 911 MR2443101
16 S Matveev, V Turaev, A semigroup of theta-curves in 3–manifolds, Mosc. Math. J. 11 (2011) 805 MR2918296
17 J W Milnor, On the total curvature of knots, Ann. of Math. 52 (1950) 248 MR0037509
18 K Miyazaki, Conjugation and the prime decomposition of knots in closed, oriented 3–manifolds, Trans. Amer. Math. Soc. 313 (1989) 785 MR997679
19 Y Moriah, On boundary primitive manifolds and a theorem of Casson–Gordon, Topology Appl. 125 (2002) 571 MR1935173
20 K Morimoto, There are knots whose tunnel numbers go down under connected sum, Proc. Amer. Math. Soc. 123 (1995) 3527 MR1317043
21 K Morimoto, Tunnel number, connected sum and meridional essential surfaces, Topology 39 (2000) 469 MR1746903
22 K Morimoto, On composite types of tunnel number two knots, J. Knot Theory Ramifications 24 (2015) MR3334664
23 K Morimoto, M Sakuma, Y Yokota, Examples of tunnel number one knots which have the property “1 + 1 = 3, Math. Proc. Cambridge Philos. Soc. 119 (1996) 113 MR1356163
24 K Morimoto, J Schultens, Tunnel numbers of small knots do not go down under connected sum, Proc. Amer. Math. Soc. 128 (2000) 269 MR1641065
25 F H Norwood, Every two-generator knot is prime, Proc. Amer. Math. Soc. 86 (1982) 143 MR663884
26 Y Rieck, E Sedgwick, Thin position for a connected sum of small knots, Algebr. Geom. Topol. 2 (2002) 297 MR1917054
27 M Scharlemann, Heegaard splittings of compact 3–manifolds, from: "Handbook of geometric topology" (editors R J Daverman, R B Sher), North-Holland (2002) 921 MR1886684
28 M Scharlemann, J Schultens, The tunnel number of the sum of n knots is at least n, Topology 38 (1999) 265 MR1660345
29 M Scharlemann, J Schultens, 3–manifolds with planar presentations and the width of satellite knots, Trans. Amer. Math. Soc. 358 (2006) 3781 MR2218999
30 M Scharlemann, A Thompson, Thin position for 3–manifolds, from: "Geometric topology" (editors C Gordon, Y Moriah, B Wajnryb), Contemp. Math. 164, Amer. Math. Soc. (1994) 231 MR1282766
31 M Scharlemann, A Thompson, On the additivity of knot width, from: "Proceedings of the Casson Fest" (editors C Gordon, Y Rieck), Geom. Topol. Monogr. 7, Geom. Topol. Publ. (2004) 135 MR2172481
32 M Scharlemann, M Tomova, Uniqueness of bridge surfaces for 2–bridge knots, Math. Proc. Cambridge Philos. Soc. 144 (2008) 639 MR2418708
33 H Schubert, Über eine numerische Knoteninvariante, Math. Z. 61 (1954) 245 MR0072483
34 J Schultens, The classification of Heegaard splittings for (compact orientable surface) ×S1, Proc. London Math. Soc. 67 (1993) 425 MR1226608
35 J Schultens, Additivity of bridge numbers of knots, Math. Proc. Cambridge Philos. Soc. 135 (2003) 539 MR2018265
36 S A Taylor, M Tomova, Thin position for knots, links, and graphs in 3–manifolds, preprint (2016) arXiv:1606.03331
37 A Thompson, Thin position and the recognition problem for S3, Math. Res. Lett. 1 (1994) 613 MR1295555
38 R Weidmann, On the rank of amalgamated products and product knot groups, Math. Ann. 312 (1998) 761 MR1660235
39 Y Yokota, On quantum SU(2) invariants and generalized bridge numbers of knots, Math. Proc. Cambridge Philos. Soc. 117 (1995) 545 MR1317496