Volume 22, issue 6 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
A formal Riemannian structure on conformal classes and uniqueness for the $\sigma_2$–Yamabe problem

Matthew Gursky and Jeffrey Streets

Geometry & Topology 22 (2018) 3501–3573
Bibliography
1 Z Błocki, On geodesics in the space of Kähler metrics, from: "Advances in geometric analysis" (editors S Janeczko, J Li, D H Phong), Adv. Lect. Math. 21, International (2012) 3 MR3077245
2 S Brendle, Blow-up phenomena for the Yamabe equation, J. Amer. Math. Soc. 21 (2008) 951 MR2425176
3 S Brendle, F C Marques, Blow-up phenomena for the Yamabe equation, II, J. Differential Geom. 81 (2009) 225 MR2472174
4 S Brendle, J A Viaclovsky, A variational characterization for σn∕2, Calc. Var. Partial Differential Equations 20 (2004) 399 MR2071927
5 E Calabi, X X Chen, The space of Kähler metrics, II, J. Differential Geom. 61 (2002) 173 MR1969662
6 S Y A Chang, M J Gursky, P Yang, An a priori estimate for a fully nonlinear equation on four-manifolds, J. Anal. Math. 87 (2002) 151 MR1945280
7 S Y A Chang, M J Gursky, P C Yang, An equation of Monge–Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature, Ann. of Math. 155 (2002) 709 MR1923964
8 S Y A Chang, P C Yang, The inequality of Moser and Trudinger and applications to conformal geometry, Comm. Pure Appl. Math. 56 (2003) 1135 MR1989228
9 X Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000) 189 MR1863016
10 X X Chen, G Tian, Geometry of Kähler metrics and foliations by holomorphic discs, Publ. Math. Inst. Hautes Études Sci. 107 (2008) 1 MR2434691
11 B Chow, P Lu, L Ni, Hamilton’s Ricci flow, 77, Science (2006) MR2274812
12 S K Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, from: "Northern California Symplectic Geometry Seminar" (editors Y Eliashberg, D Fuchs, T Ratiu, A Weinstein), Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc. (1999) 13 MR1736211
13 S K Donaldson, Conjectures in Kähler geometry, from: "Strings and geometry" (editors M Douglas, J Gauntlett, M Gross), Clay Math. Proc. 3, Amer. Math. Soc. (2004) 71 MR2103718
14 L C Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982) 333 MR649348
15 L Gårding, An inequality for hyperbolic polynomials, J. Math. Mech. 8 (1959) 957 MR0113978
16 D Gilbarg, N S Trudinger, Elliptic partial differential equations of second order, 224, Springer (1977) MR0473443
17 B Guan, The Dirichlet problem for complex Monge–Ampère equations and regularity of the pluri-complex Green function, Comm. Anal. Geom. 6 (1998) 687 MR1664889
18 P Guan, J Viaclovsky, G Wang, Some properties of the Schouten tensor and applications to conformal geometry, Trans. Amer. Math. Soc. 355 (2003) 925 MR1938739
19 P Guan, G Wang, A fully nonlinear conformal flow on locally conformally flat manifolds, J. Reine Angew. Math. 557 (2003) 219 MR1978409
20 M J Gursky, J Streets, A formal Riemannian structure on conformal classes and the inverse Gauss curvature flow, preprint (2015) arXiv:1507.04781
21 M J Gursky, J Streets, Variational structure of the vk–Yamabe problem, preprint (2016) arXiv:1611.00322
22 W He, The Gursky–Streets equations, preprint (2017) arXiv:1707.04689
23 N V Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983) 75 MR688919
24 J M Lee, T H Parker, The Yamabe problem, Bull. Amer. Math. Soc. 17 (1987) 37 MR888880
25 J Lelong-Ferrand, Transformations conformes et quasiconformes des variétés riemanniennes ; application à la démonstration d’une conjecture de A Lichnerowicz, C. R. Acad. Sci. Paris Sér. A-B 269 (1969) MR0254782
26 T Mabuchi, K–energy maps integrating Futaki invariants, Tohoku Math. J. 38 (1986) 575 MR867064
27 T Mabuchi, Some symplectic geometry on compact Kähler manifolds, I, Osaka J. Math. 24 (1987) 227 MR909015
28 M Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962) 333 MR0142086
29 D Pollack, Nonuniqueness and high energy solutions for a conformally invariant scalar equation, Comm. Anal. Geom. 1 (1993) 347 MR1266473
30 R C Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differential Geometry 8 (1973) 465 MR0341351
31 R M Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, from: "Topics in calculus of variations" (editor M Giaquinta), Lecture Notes in Math. 1365, Springer (1989) 120 MR994021
32 S Semmes, Complex Monge–Ampère and symplectic manifolds, Amer. J. Math. 114 (1992) 495 MR1165352
33 W Sheng, N S Trudinger, X J Wang, The k–Yamabe problem, from: "Surveys in differential geometry" (editors H D Cao, S T Yau), International (2012) 427 MR3076067
34 J A Viaclovsky, Conformal geometry, contact geometry, and the calculus of variations, Duke Math. J. 101 (2000) 283 MR1738176
35 J A Viaclovsky, Conformally invariant Monge–Ampère equations : global solutions, Trans. Amer. Math. Soc. 352 (2000) 4371 MR1694380
36 J A Viaclovsky, Estimates and existence results for some fully nonlinear elliptic equations on Riemannian manifolds, Comm. Anal. Geom. 10 (2002) 815 MR1925503
37 J Viaclovsky, Conformal geometry and fully nonlinear equations, from: "Inspired by S S Chern" (editor P A Griffiths), Nankai Tracts Math. 11, World Sci. (2006) 435 MR2313345