Recent Issues
Volume 28, 7 issues
Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496
Volume 27, 9 issues
Volume 27
Issue 9, 3387–3831
Issue 8, 2937–3385
Issue 7, 2497–2936
Issue 6, 2049–2496
Issue 5, 1657–2048
Issue 4, 1273–1655
Issue 3, 823–1272
Issue 2, 417–821
Issue 1, 1–415
Volume 26, 8 issues
Volume 26
Issue 8, 3307–3833
Issue 7, 2855–3306
Issue 6, 2405–2853
Issue 5, 1907–2404
Issue 4, 1435–1905
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476
Volume 25, 7 issues
Volume 25
Issue 7, 3257–3753
Issue 6, 2713–3256
Issue 5, 2167–2711
Issue 4, 1631–2166
Issue 3, 1087–1630
Issue 2, 547–1085
Issue 1, 1–546
Volume 24, 7 issues
Volume 24
Issue 7, 3219–3748
Issue 6, 2675–3218
Issue 5, 2149–2674
Issue 4, 1615–2148
Issue 3, 1075–1614
Issue 2, 533–1073
Issue 1, 1–532
Volume 23, 7 issues
Volume 23
Issue 7, 3233–3749
Issue 6, 2701–3231
Issue 5, 2165–2700
Issue 4, 1621–2164
Issue 3, 1085–1619
Issue 2, 541–1084
Issue 1, 1–540
Volume 22, 7 issues
Volume 22
Issue 7, 3761–4380
Issue 6, 3145–3760
Issue 5, 2511–3144
Issue 4, 1893–2510
Issue 3, 1267–1891
Issue 2, 645–1266
Issue 1, 1–644
Volume 21, 6 issues
Volume 21
Issue 6, 3191–3810
Issue 5, 2557–3190
Issue 4, 1931–2555
Issue 3, 1285–1930
Issue 2, 647–1283
Issue 1, 1–645
Volume 20, 6 issues
Volume 20
Issue 6, 3057–3673
Issue 5, 2439–3056
Issue 4, 1807–2438
Issue 3, 1257–1806
Issue 2, 629–1255
Issue 1, 1–627
Volume 19, 6 issues
Volume 19
Issue 6, 3031–3656
Issue 5, 2407–3030
Issue 4, 1777–2406
Issue 3, 1155–1775
Issue 2, 525–1154
Issue 1, 1–523
Volume 18, 5 issues
Volume 18
Issue 5, 2487–3110
Issue 4, 1865–2486
Issue 3, 1245–1863
Issue 2, 617–1244
Issue 1, 1–616
Volume 17, 5 issues
Volume 17
Issue 5, 2513–3134
Issue 4, 1877–2512
Issue 3, 1253–1876
Issue 2, 621–1252
Issue 1, 1–620
Volume 16, 4 issues
Volume 16
Issue 4, 1881–2516
Issue 3, 1247–1880
Issue 2, 625–1246
Issue 1, 1–624
Volume 15, 4 issues
Volume 15
Issue 4, 1843–2457
Issue 3, 1225–1842
Issue 2, 609–1224
Issue 1, 1–607
Volume 14, 5 issues
Volume 14
Issue 5, 2497–3000
Issue 4, 1871–2496
Issue 3, 1243–1870
Issue 2, 627–1242
Issue 1, 1–626
Volume 13, 5 issues
Volume 13
Issue 5, 2427–3054
Issue 4, 1835–2425
Issue 3, 1229–1833
Issue 2, 623–1227
Issue 1, 1–621
Volume 12, 5 issues
Volume 12
Issue 5, 2517–2855
Issue 4, 1883–2515
Issue 3, 1265–1882
Issue 2, 639–1263
Issue 1, 1–637
Volume 11, 4 issues
Volume 11
Issue 4, 1855–2440
Issue 3, 1255–1854
Issue 2, 643–1254
Issue 1, 1–642
Volume 10, 4 issues
Volume 10
Issue 4, 1855–2504
Issue 3, 1239–1853
Issue 2, 619–1238
Issue 1, 1–617
Volume 9, 4 issues
Volume 9
Issue 4, 1775–2415
Issue 3, 1187–1774
Issue 2, 571–1185
Issue 1, 1–569
Volume 8, 3 issues
Volume 8
Issue 3, 1013–1499
Issue 2, 511–1012
Issue 1, 1–509
Volume 7, 2 issues
Volume 7
Issue 2, 569–1073
Issue 1, 1–568
Volume 6, 2 issues
Volume 6
Issue 2, 495–990
Issue 1, 1–494
Volume 5, 2 issues
Volume 5
Issue 2, 441–945
Issue 1, 1–440
Volume 4, 1 issue
Volume 3, 1 issue
Volume 2, 1 issue
Volume 1, 1 issue
1
P Aluffi , Characteristic
classes of singular varieties , from: "Topics in
cohomological studies of algebraic varieties" (editor P
Pragacz), Birkhäuser (2005) 1 MR2143071
2
P Aluffi , Classes de Chern
des variétés singulières, revisitées , C. R. Math. Acad.
Sci. Paris 342 (2006) 405 MR2209219
3
P Aluffi , L C
Mihalcea , Chern classes
of Schubert cells and varieties , J. Algebraic Geom. 18
(2009) 63 MR2448279
4
P Aluffi , L C
Mihalcea , Chern–Schwartz–MacPherson
classes for Schubert cells in flag manifolds , Compos.
Math. 152 (2016) 2603 MR3594289
5
P Aluffi , L C
Mihalcea , J Schuermann , C Su , Shadows of
characteristic cycles, Verma modules, and positivity of
Chern–Schwartz–MacPherson classes of Schubert cells ,
preprint (2017) arXiv:1709.08697
6
G Bérczi , A
Szenes , Thom polynomials
of Morin singularities , Ann. of Math. 175 (2012) 567
MR2877067
7
A S Buch ,
Quiver
coefficients of Dynkin type , Michigan Math. J. 57
(2008) 93 MR2492443
8
A S Buch , R
Rimányi , A formula for
non-equioriented quiver orbits of type A , J. Algebraic Geom. 16 (2007) 531
MR2306279
9
G S Call ,
D J Velleman , Pascal’s matrices ,
Amer. Math. Monthly 100 (1993) 372 MR1209465
10
D Edidin , W
Graham , Equivariant
intersection theory , Invent. Math. 131 (1998) 595
MR1614555
11
L M Fehér , R
Rimányi , Schur and Schubert
polynomials as Thom polynomials — cohomology of moduli
spaces , Cent. Eur. J. Math. 1 (2003) 418 MR2040647
12
L M Fehér , R
Rimányi , Calculation of Thom
polynomials and other cohomological obstructions for group
actions , from: "Real and complex singularities"
(editors T Gaffney, M A S Ruas), Contemp. Math. 354,
Amer. Math. Soc. (2004) 69 MR2087805
13
L M Fehér , R
Rimányi , On the structure of Thom
polynomials of singularities , Bull. Lond. Math. Soc. 39
(2007) 541 MR2346933
14
L M Fehér , R
Rimányi , Thom series of
contact singularities , Ann. of Math. 176 (2012) 1381
MR2979854
15
L M Fehér , R
Rimányi , A Weber , Motivic Chern classes and
K-theoretic stable envelopes , preprint (2018) arXiv:1802.01503
16
W Fulton , Intersection
theory , 2, Springer (1998) MR1644323
17
W Fulton , P
Pragacz , Schubert varieties and
degeneracy loci , 1689, Springer (1998) MR1639468
18
V Gorbounov , R
Rimányi , V Tarasov , A Varchenko , Quantum
cohomology of the cotangent bundle of a flag variety as a
Yangian Bethe algebra , J. Geom. Phys. 74 (2013) 56
MR3118573
19
J Huh , Positivity of Chern classes
of Schubert cells and varieties , J. Algebraic Geom. 25
(2016) 177 MR3419959
20
V Y Kaloshin ,
A
geometric proof of the existence of Whitney
stratifications , Mosc. Math. J. 5 (2005) 125 MR2153470
21
M E Kazarian ,
Non-associative Hilbert scheme and Thom polynomials ,
preprint (2009) arXiv:1712.09270
22
B Kőműves ,
Equivariant Chern–Schwartz–MacPherson classes of coincident
root loci , in preparation
23
A Knutson , E
Miller , Gröbner geometry
of Schubert polynomials , Ann. of Math. 161 (2005) 1245
MR2180402
24
D Laksov , A
Lascoux , A Thorup , On Giambelli’s theorem on
complete correlations , Acta Math. 162 (1989) 143
MR989395
25
B Lindström ,
On the vector
representations of induced matroids , Bull. London Math.
Soc. 5 (1973) 85 MR0335313
26
R D MacPherson ,
Chern classes for
singular algebraic varieties , Ann. of Math. 100 (1974)
423 MR0361141
27
D Maulik , A
Okounkov , Quantum groups and quantum cohomology ,
preprint (2012) arXiv:1211.1287
28
T Ohmoto , Equivariant Chern
classes of singular algebraic varieties with group
actions , Math. Proc. Cambridge Philos. Soc. 140 (2006)
115 MR2197579
29
T Ohmoto ,
Singularities of maps and characteristic classes , from:
"School on real and complex singularities" (editors R N
Araújo dos Santos, V H Jorge Pérez, T Nishimura, O Saeki),
Adv. Stud. Pure Math. 68, Math. Soc. Japan (2016) 191 MR3585782
30
A Okounkov ,
Lectures on K–theoretic computations in enumerative
geometry , from: "Geometry of moduli spaces and
representation theory" (editors R Bezrukavnikov, A Braverman, Z
Yun), IAS/Park City Math. Ser. 24, Amer. Math. Soc. (2017) 251
MR3752463
31
A Parusiński , P
Pragacz , Chern–Schwartz–MacPherson
classes and the Euler characteristic of degeneracy loci and
special divisors , J. Amer. Math. Soc. 8 (1995) 793
MR1311826
32
I R Porteous ,
Simple
singularities of maps , from: "Proceedings of Liverpool
singularities symposium, I" (editor C T C Wall),
Lecture Notes in Math. 192, Springer (1971) 286 MR0293646
33
P Pragacz , A
Weber , Positivity of Schur
function expansions of Thom polynomials , Fund. Math.
195 (2007) 85 MR2314075
34
S Promtapan ,
Characteristic classes of symmetric and skew-symmetric
degeneracy loci , PhD thesis in preparation, University of
North Carolina at Chapel Hill
35
R Rimányi , Thom polynomials,
symmetries and incidences of singularities , Invent.
Math. 143 (2001) 499 MR1817643
36
R Rimányi , Quiver polynomials
in iterated residue form , J. Algebraic Combin. 40
(2014) 527 MR3239295
37
R Rimányi , V
Tarasov , A Varchenko , Partial flag varieties, stable
envelopes, and weight functions , Quantum Topol. 6
(2015) 333 MR3354333
38
R Rimányi , V
Tarasov , A Varchenko , Elliptic and K–theoretic
stable envelopes and Newton polytopes , preprint (2017)
arXiv:1705.09344
39
R Rimányi , A
Varchenko , Equivariant
Chern–Schwartz–MacPherson classes in partial flag varieties :
interpolation and formulae , from: "Schubert varieties,
equivariant cohomology and characteristic classes", IMPANGA 15,
Eur. Math. Soc. (2018) 225
40
O Straser , Algebraic
stratifications of G –varieties , MathOverflow post
(2013)
41
V Tarasov , A
Varchenko , Geometry of
q –hypergeometric functions as a
bridge between Yangians and quantum affine algebras ,
Invent. Math. 128 (1997) 501 MR1452432
42
A Weber , Equivariant
Chern classes and localization theorem , J. Singul. 5
(2012) 153 MR2928940
43
X Zhang , Chern classes
and characteristic cycles of determinantal varieties ,
J. Algebra 497 (2018) 55 MR3743175