Volume 22, issue 6 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 26
Issue 7, 2855–3306
Issue 6, 2405–2853
Issue 5, 1907–2404
Issue 4, 1435–1905
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Chern–Schwartz–MacPherson classes of degeneracy loci

László M Fehér and Richárd Rimányi

Geometry & Topology 22 (2018) 3575–3622
Bibliography
1 P Aluffi, Characteristic classes of singular varieties, from: "Topics in cohomological studies of algebraic varieties" (editor P Pragacz), Birkhäuser (2005) 1 MR2143071
2 P Aluffi, Classes de Chern des variétés singulières, revisitées, C. R. Math. Acad. Sci. Paris 342 (2006) 405 MR2209219
3 P Aluffi, L C Mihalcea, Chern classes of Schubert cells and varieties, J. Algebraic Geom. 18 (2009) 63 MR2448279
4 P Aluffi, L C Mihalcea, Chern–Schwartz–MacPherson classes for Schubert cells in flag manifolds, Compos. Math. 152 (2016) 2603 MR3594289
5 P Aluffi, L C Mihalcea, J Schuermann, C Su, Shadows of characteristic cycles, Verma modules, and positivity of Chern–Schwartz–MacPherson classes of Schubert cells, preprint (2017) arXiv:1709.08697
6 G Bérczi, A Szenes, Thom polynomials of Morin singularities, Ann. of Math. 175 (2012) 567 MR2877067
7 A S Buch, Quiver coefficients of Dynkin type, Michigan Math. J. 57 (2008) 93 MR2492443
8 A S Buch, R Rimányi, A formula for non-equioriented quiver orbits of type A, J. Algebraic Geom. 16 (2007) 531 MR2306279
9 G S Call, D J Velleman, Pascal’s matrices, Amer. Math. Monthly 100 (1993) 372 MR1209465
10 D Edidin, W Graham, Equivariant intersection theory, Invent. Math. 131 (1998) 595 MR1614555
11 L M Fehér, R Rimányi, Schur and Schubert polynomials as Thom polynomials — cohomology of moduli spaces, Cent. Eur. J. Math. 1 (2003) 418 MR2040647
12 L M Fehér, R Rimányi, Calculation of Thom polynomials and other cohomological obstructions for group actions, from: "Real and complex singularities" (editors T Gaffney, M A S Ruas), Contemp. Math. 354, Amer. Math. Soc. (2004) 69 MR2087805
13 L M Fehér, R Rimányi, On the structure of Thom polynomials of singularities, Bull. Lond. Math. Soc. 39 (2007) 541 MR2346933
14 L M Fehér, R Rimányi, Thom series of contact singularities, Ann. of Math. 176 (2012) 1381 MR2979854
15 L M Fehér, R Rimányi, A Weber, Motivic Chern classes and K-theoretic stable envelopes, preprint (2018) arXiv:1802.01503
16 W Fulton, Intersection theory, 2, Springer (1998) MR1644323
17 W Fulton, P Pragacz, Schubert varieties and degeneracy loci, 1689, Springer (1998) MR1639468
18 V Gorbounov, R Rimányi, V Tarasov, A Varchenko, Quantum cohomology of the cotangent bundle of a flag variety as a Yangian Bethe algebra, J. Geom. Phys. 74 (2013) 56 MR3118573
19 J Huh, Positivity of Chern classes of Schubert cells and varieties, J. Algebraic Geom. 25 (2016) 177 MR3419959
20 V Y Kaloshin, A geometric proof of the existence of Whitney stratifications, Mosc. Math. J. 5 (2005) 125 MR2153470
21 M E Kazarian, Non-associative Hilbert scheme and Thom polynomials, preprint (2009) arXiv:1712.09270
22 B Kőműves, Equivariant Chern–Schwartz–MacPherson classes of coincident root loci, in preparation
23 A Knutson, E Miller, Gröbner geometry of Schubert polynomials, Ann. of Math. 161 (2005) 1245 MR2180402
24 D Laksov, A Lascoux, A Thorup, On Giambelli’s theorem on complete correlations, Acta Math. 162 (1989) 143 MR989395
25 B Lindström, On the vector representations of induced matroids, Bull. London Math. Soc. 5 (1973) 85 MR0335313
26 R D MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. 100 (1974) 423 MR0361141
27 D Maulik, A Okounkov, Quantum groups and quantum cohomology, preprint (2012) arXiv:1211.1287
28 T Ohmoto, Equivariant Chern classes of singular algebraic varieties with group actions, Math. Proc. Cambridge Philos. Soc. 140 (2006) 115 MR2197579
29 T Ohmoto, Singularities of maps and characteristic classes, from: "School on real and complex singularities" (editors R N Araújo dos Santos, V H Jorge Pérez, T Nishimura, O Saeki), Adv. Stud. Pure Math. 68, Math. Soc. Japan (2016) 191 MR3585782
30 A Okounkov, Lectures on K–theoretic computations in enumerative geometry, from: "Geometry of moduli spaces and representation theory" (editors R Bezrukavnikov, A Braverman, Z Yun), IAS/Park City Math. Ser. 24, Amer. Math. Soc. (2017) 251 MR3752463
31 A Parusiński, P Pragacz, Chern–Schwartz–MacPherson classes and the Euler characteristic of degeneracy loci and special divisors, J. Amer. Math. Soc. 8 (1995) 793 MR1311826
32 I R Porteous, Simple singularities of maps, from: "Proceedings of Liverpool singularities symposium, I" (editor C T C Wall), Lecture Notes in Math. 192, Springer (1971) 286 MR0293646
33 P Pragacz, A Weber, Positivity of Schur function expansions of Thom polynomials, Fund. Math. 195 (2007) 85 MR2314075
34 S Promtapan, Characteristic classes of symmetric and skew-symmetric degeneracy loci, PhD thesis in preparation, University of North Carolina at Chapel Hill
35 R Rimányi, Thom polynomials, symmetries and incidences of singularities, Invent. Math. 143 (2001) 499 MR1817643
36 R Rimányi, Quiver polynomials in iterated residue form, J. Algebraic Combin. 40 (2014) 527 MR3239295
37 R Rimányi, V Tarasov, A Varchenko, Partial flag varieties, stable envelopes, and weight functions, Quantum Topol. 6 (2015) 333 MR3354333
38 R Rimányi, V Tarasov, A Varchenko, Elliptic and K–theoretic stable envelopes and Newton polytopes, preprint (2017) arXiv:1705.09344
39 R Rimányi, A Varchenko, Equivariant Chern–Schwartz–MacPherson classes in partial flag varieties : interpolation and formulae, from: "Schubert varieties, equivariant cohomology and characteristic classes", IMPANGA 15, Eur. Math. Soc. (2018) 225
40 O Straser, Algebraic stratifications of G–varieties, MathOverflow post (2013)
41 V Tarasov, A Varchenko, Geometry of q–hypergeometric functions as a bridge between Yangians and quantum affine algebras, Invent. Math. 128 (1997) 501 MR1452432
42 A Weber, Equivariant Chern classes and localization theorem, J. Singul. 5 (2012) 153 MR2928940
43 X Zhang, Chern classes and characteristic cycles of determinantal varieties, J. Algebra 497 (2018) 55 MR3743175