Volume 22, issue 6 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 5, 2251–2782
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
 
Author index
To appear
 
Other MSP journals
Computational complexity and $3$–manifolds and zombies

Greg Kuperberg and Eric Samperton

Geometry & Topology 22 (2018) 3623–3670
Bibliography
1 S Aaronson, C Granade, G Kuperberg, V Russo, The complexity zoo, electronic resource
2 D Aharonov, I Arad, The BQP-hardness of approximating the Jones polynomial, preprint (2000) arXiv:quant-ph/0605181
3 G Alagic, C Lo, Quantum invariants of 3–manifolds and NP vs #P, preprint (2014) arXiv:1411.6049
4 S Arora, B Barak, Computational complexity: a modern approach, Cambridge Univ. Press (2009) MR2500087
5 M Aschenbrenner, S Friedl, H Wilton, Decision problems for 3–manifolds and their fundamental groups, from: "Interactions between low-dimensional topology and mapping class groups" (editors R I Baykur, J Etnyre, U Hamenstädt), Geom. Topol. Monogr. 19, Geom. Topol. Publ. (2015) 201 MR3609909
6 R Barbanchon, On unique graph 3–colorability and parsimonious reductions in the plane, Theoret. Comput. Sci. 319 (2004) 455 MR2074967
7 H Bass, M Lazard, J P Serre, Sous-groupes d’indice fini dans SL(n,Z), Bull. Amer. Math. Soc. 70 (1964) 385 MR0161913
8 K Bauer, D Sen, P Zvengrowski, A generalized Goursat lemma, Tatra Mt. Math. Publ. 64 (2015) 1 MR3458781
9 R W Carter, Simple groups of Lie type, 28, Wiley (1972) MR0407163
10 H Chen, Applying TQFT to count regular coverings of Seifert 3–manifolds, J. Geom. Phys. 62 (2012) 1347 MR2911210
11 P Diaconis, R L Graham, W M a Kantor, The mathematics of perfect shuffles, Adv. in Appl. Math. 4 (1983) 175 MR700845
12 R Dijkgraaf, E Witten, Topological gauge theories and group cohomology, Comm. Math. Phys. 129 (1990) 393 MR1048699
13 B R Donald, D R Chang, On the complexity of computing the homology type of a triangulation, from: "32nd Annual Symposium on Foundations of Computer Science", IEEE (1991) 650 MR1177213
14 N M Dunfield, W P Thurston, Finite covers of random 3–manifolds, Invent. Math. 166 (2006) 457 MR2257389
15 B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012) MR2850125
16 E Fredkin, T Toffoli, Conservative logic, Internat. J. Theoret. Phys. 21 (1982) 219 MR657156
17 D S Freed, F Quinn, Chern–Simons theory with finite gauge group, Comm. Math. Phys. 156 (1993) 435 MR1240583
18 M H Freedman, M Larsen, Z Wang, A modular functor which is universal for quantum computation, Comm. Math. Phys. 227 (2002) 605 MR1910833
19 M H Freedman, M J Larsen, Z Wang, The two-eigenvalue problem and density of Jones representation of braid groups, Comm. Math. Phys. 228 (2002) 177 MR1911253
20 G Frobenius, I Schur, Über die reellen Darstellungen der endlichen Gruppen, Sitzungsber. Königlich Preussischen Akad. Wiss. 8 (1906) 186
21 M Goldmann, A Russell, The complexity of solving equations over finite groups, Inform. and Comput. 178 (2002) 253 MR1931744
22 E Goursat, Sur les substitutions orthogonales et les divisions régulières de l’espace, Ann. Sci. École Norm. Sup. 6 (1889) 9 MR1508819
23 P Hall, The Eulerian functions of a group, Quart. J. Math. 7 (1936) 134
24 F Jaeger, D L Vertigan, D J A Welsh, On the computational complexity of the Jones and Tutte polynomials, Math. Proc. Cambridge Philos. Soc. 108 (1990) 35 MR1049758
25 D Johnson, The structure of the Torelli group, I : A finite set of generators for , Ann. of Math. 118 (1983) 423 MR727699
26 R Kannan, A Bachem, Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix, SIAM J. Comput. 8 (1979) 499 MR573842
27 R Koenig, G Kuperberg, B W Reichardt, Quantum computation with Turaev–Viro codes, Ann. Physics 325 (2010) 2707 MR2726654
28 H Krovi, A Russell, Quantum Fourier transforms and the complexity of link invariants for quantum doubles of finite groups, Comm. Math. Phys. 334 (2015) 743 MR3306603
29 G Kuperberg, Involutory Hopf algebras and 3–manifold invariants, Internat. J. Math. 2 (1991) 41 MR1082836
30 G Kuperberg, Denseness and Zariski denseness of Jones braid representations, Geom. Topol. 15 (2011) 11 MR2764112
31 G Kuperberg, Algorithmic homeomorphism of 3–manifolds as a corollary of geometrization, preprint (2015) arXiv:1508.06720
32 G Kuperberg, How hard is it to approximate the Jones polynomial ?, Theory Comput. 11 (2015) 183 MR3354608
33 G Kuperberg, E Samperton, Coloring invariants of knots and links are often intractable, in preparation
34 W B R Lickorish, An introduction to knot theory, 175, Springer (1997) MR1472978
35 J Maher, Random Heegaard splittings, J. Topol. 3 (2010) 997 MR2746344
36 G A Margulis, Discrete subgroups of semisimple Lie groups, 17, Springer (1991) MR1090825
37 A D Mednykh, Determination of the number of nonequivalent coverings over a compact Riemann surface, Dokl. Akad. Nauk SSSR 239 (1978) 269 MR490616
38 J Mennicke, Zur Theorie der Siegelschen Modulgruppe, Math. Ann. 159 (1965) 115 MR0181676
39 C Mochon, Anyons from non-solvable finite groups are sufficient for universal quantum computation, preprint (2000) arXiv:quant-ph/0206128
40 B H Neumann, Some remarks on infinite groups, J. London Math. Soc. 12 (1937) 120
41 G Nordh, P Jonsson, The complexity of counting solutions to systems of equations over finite semigroups, from: "Computing and combinatorics" (editors K Y Chwa, J I Munro), Lecture Notes in Comput. Sci. 3106, Springer (2004) 370 MR2162052
42 R W Ogburn, J Preskill, Topological quantum computation, from: "Quantum computing and quantum communications" (editor C P Williams), Lecture Notes in Comput. Sci. 1509, Springer (1999) 341 MR1750535
43 P Olum, Non-abelian cohomology and van Kampen’s theorem, Ann. of Math. 68 (1958) 658 MR0096218
44 B Poonen, Undecidable problems: a sampler, from: "Interpreting Gödel" (editor J Kennedy), Cambridge Univ. Press (2014) 211 MR3468188
45 N Y Reshetikhin, V G Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990) 1 MR1036112
46 N Reshetikhin, V G Turaev, Invariants of 3–manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991) 547 MR1091619
47 K A Ribet, On l–adic representations attached to modular forms, Invent. Math. 28 (1975) 245 MR0419358
48 D P Roberts, A Venkatesh, Hurwitz monodromy and full number fields, Algebra Number Theory 9 (2015) 511 MR3340543
49 E C Rowell, Two paradigms for topological quantum computation, from: "Advances in quantum computation" (editors K Mahdavi, D Koslover), Contemp. Math. 482, Amer. Math. Soc. (2009) 165 MR2568418
50 V G Turaev, Quantum invariants of knots and 3–manifolds, 18, de Gruyter (1994) MR1292673
51 L G Valiant, The complexity of computing the permanent, Theoret. Comput. Sci. 8 (1979) 189 MR526203
52 L G Valiant, V V Vazirani, NP is as easy as detecting unique solutions, Theoret. Comput. Sci. 47 (1986) 85 MR871466