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Kähler–Ricci flow, Kähler–Einstein metric, and K–stability
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We prove the existence of a Kähler–Einstein metric on a K–stable Fano manifold
using the recent compactness result on Kähler–Ricci flows. The key ingredient is
an algebrogeometric description of the asymptotic behavior of Kähler–Ricci flow
on Fano manifolds. This is in turn based on a general finite-dimensional discussion,
which is interesting on its own and could potentially apply to other problems. As
one application, we relate the asymptotics of the Calabi flow on a polarized Kähler
manifold to K–stability, assuming bounds on geometry.
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1 Introduction

Let X be an n–dimensional Fano manifold. It was first conjectured by Yau [45] that
the existence of a Kähler–Einstein metric on X is equivalent to a certain algebro-
geometric stability of X . In 2012, this conjecture was proved by Chen, Donaldson
and Sun [3; 4; 5]. The precise notion of stability is the so-called K–stability, defined
by Tian [39] and Donaldson [16]. The proof depends on a deformation method
involving Kähler–Einstein metrics with cone singularities, which was introduced by
Donaldson [18] in 2011.

There are also other approaches to studying the existence problem of Kähler–Einstein
metrics on Fano manifolds. In general to make these work two key ingredients
are needed, namely the partial C 0–estimate and the construction of a destabiliz-
ing test configuration. The first is analytic and the second is algebraic in nature.
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The partial C 0–estimate was proved by Székelyhidi [38] for the classical Aubin–
Yau continuity path, by adapting the results of Chen, Donaldson and Sun [4; 5]
and Donaldson and Sun [20]; it was proved, for the approach using Ricci flow, by
Chen and Wang [9; 10] in dimension two, by Tian and Zhang [40] in dimension
three, and by Chen and Wang [11; 12] in all dimensions as a consequence of the
resolution of the Hamilton–Tian conjecture. We note that these results together with the
work of S Paul [28; 29; 30] already imply that on a Fano manifold without nontrivial
holomorphic vector fields, the existence of a Kähler–Einstein metric is equivalent to
the notion of stability defined by Paul.

Regarding the second ingredient, very recently Datar and Székelyhidi [15] have adapted
the results of [5] to the Aubin–Yau continuity path, which gives a new proof of the
theorem of Chen, Donaldson and Sun. Our focus in this paper is to give yet another
proof using the Ricci flow, which means that technically we will address the issue of
constructing a destabilizing test configuration. Notice this can not be naively adapted
from [5] and requires a new strategy to understand the relation between the asymptotic
behavior of the Kähler–Ricci flow and algebraic geometry. Our argument is motivated
by the work of Donaldson and Sun [21], which studies tangent cones of noncollapsed
Kähler–Einstein limit spaces.

We now recall the basic setup. Let X be a Fano manifold, and !.0/ be a smooth
Kähler metric in 2�c1.X/. The normalized Kähler–Ricci flow equation has the form

(1) @

@t
!.t/D !.t/�Ric.!.t//:

It is well known that for any smooth !.0/, Equation (1) has a smooth solution !.t/
for all t 2 Œ0;1/ and the fundamental question is to understand what happens as t
tends to infinity. As a consequence of the Hamilton–Tian conjecture proved by Chen
and Wang [11; 12], we have:

Theorem 1.1 [11; 12] As t!1, a sequential Gromov–Hausdorff limit of .X; !.t//
is naturally a Q–Fano variety endowed with a weak Kähler–Ricci soliton.

Actually, the convergence happens in smooth topology away from the singularities
of the limit variety. The precise statement can be found in [11; 12]. We will also
summarize in Section 3.2 the input that we will need from [12], which we emphasize
is indeed a stronger result than Theorem 1.1, concerning local uniform convergence
of Kähler–Ricci flow. This says that for any fixed T > 0, as t !1, the flow over
the interval Œt �T; t CT � converges (by passing to subsequences) naturally to a limit
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flow, which is induced by a Kähler–Ricci soliton (hence is self-similar). This is a
crucial ingredient for us, in analogy with the important fact used in [21] that when we
rescale the metric at a fixed point, we always get the same tangent cone if we use two
equivalent rescaling sequences (see Lemma 3.1 in [21]).

The main result we shall prove in this article is:

Theorem 1.2 There is a unique Gromov–Hausdorff limit Z of .X; !.t//, as a
Q–Fano variety endowed with a weak Kähler–Ricci soliton. Moreover, if X is
K–stable, then Z is isomorphic to X endowed with a smooth Kähler–Einstein metric.
In particular, X admits a Kähler–Einstein metric if it is K–stable.

If we assume one of the Gromov–Hausdorff limits is smooth, then the uniqueness
statement follows from the main result of Sun and Wang [34] (based on the Łojasiewicz–
Simon technique). The part on the relation with K–stability is new even if we assume the
curvature of !.t/ is uniformly bounded, under which Székelyhidi [36] and Tosatti [42]
have obtained some partial results with extra assumptions.

Theorem 1.2 follows from a finite-dimensional result that we will elaborate in Section 2.
The proof has its own interest. Notice when X does not admit a Kähler–Einstein
metric, in Chen, Donaldson and Sun [5] (hence also in Datar and Székelyhidi [15]), the
destabilizing test configuration is constructed abstractly using the theory of Luna slices,
so is in general not canonical. In our proof of Theorem 1.2, when X is K–unstable,
we will construct a destabilizing test configuration (to be more precise, a filtration)
naturally out of the Kähler–Ricci flow !.t/. We expect this is the unique optimal
degeneration in an appropriate sense, and we will discuss this further in Section 3.

We believe that the strategy developed here should apply to a wider class of problems.
As an example, we will discuss an application to the Calabi flow in Section 4.

As a direct corollary of the proof of Theorem 1.2, we also obtain a corresponding result
for Kähler–Ricci solitons. This has been recently proved by Datar and Székelyhidi [15],
using the classical continuity path. Again the Kähler–Ricci flow proof seems more
intrinsic.

Corollary 1.3 Let VX be a holomorphic vector field on X . Then .X; VX / admits a
Kähler–Ricci soliton if and only if it is relatively K–stable in the sense of Berman and
Witt Nyström [1].

The “only if” direction is proved in [1], and the “if” direction is a conjecture in [1].
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1.1 Organization of the paper

In Section 2 we prove a very general result in the finite-dimensional setting concerning
uniqueness of limiting points of certain sequences in a reductive group orbit. The key
is a convexity lemma (Lemma 2.2). Section 3 is devoted to the proof Theorem 1.2:
in Section 3.1 we discuss the algebrogeometric degeneration associated to a smooth
family of Kähler metrics on a fixed polarized Kähler manifold under two hypotheses
(H1) and (H2); in Section 3.2 we verify these hypotheses for Kähler–Ricci flow on
a K–unstable Fano manifold, using Theorem 1.1. In Section 4 we apply the same
technique to an analogous problem for Calabi flow under the assumptions of long-time
existence and uniformly bounded geometry.

Acknowledgements Chen is partially supported by NSF grant DMS-1515795. Sun
is partially supported by NSF grant DMS-1405832 and an Alfred P Sloan fellowship.
Wang is partially supported by NSF grant DMS-1510401.

2 Finite-dimensional results

The results of this section are motivated by [21]. The discussion here focuses on a
finite-dimensional problem, so is technically simpler than the situation studied in [21].
For this reason we write down a self-contained argument.

Fix a finite-dimensional Hermitian vector space E . We write K D U.E/ and G D
GL.E/. Let ADfAig be a sequence of elements in G with A0D Id. Let BiDAiA�1i�1 .
We assume there is an element ƒ in

p
�1Lie.K/ with spectrum S �R such that the

following holds:

(�) For any subsequence f˛g�fig, passing to a further subsequence, B˛C1 andB˛C2
both converge uniformly to a limit geƒg�1 for some g 2K .

Notice the element g 2K is determined by the subsequence up to right multiplication
by an element in Kƒ D fh 2K j hƒh�1 Dƒg. It is easy to see .�/ is equivalent to:

(�)0 There is a sequence gi 2K with g0 D Id such that

lim
i!1

Bigie
�ƒg�1i D lim

i!1
g�1i�1gi D Id:

Actually, by the compactness of K , the two identities in .�/0 imply .�/. On the other
hand, if .�/ holds, then we can find a sequence gi 2K which satisfies .�/0 except the
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last condition limi!1 g
�1
i�1gi D Id is replaced by that g�1i�1gi converges by sequence

to elements in Kƒ . Then we can simply change gi to giui for an appropriate choice
of sequence ui 2Kƒ .

A special case is when A.i/ D exp.iƒ/. This corresponds to a sequence of points
on a geodesic ray in the symmetric space G=K . Condition (�) roughly means that
we are close to this special case in a certain way. The motivation for condition (�)
will be seen more clearly in the next section, where we evolve geometric structures
naturally towards limits that are self-similar. In general we have to allow the “gauge
transformation” g , and for different subsequences we may get different g .

Let V be a complex representation of G , and S.V / the spectrum of the ƒ–action
on V . Our goal is to understand the limit set of fŒAi :v�g in P .V /, for a nonzero
vector v . The main results are Propositions 2.10 and 2.11 and Theorem 2.12.

In our discussion below, we will choose a K–invariant metric on V , but it is not hard
to see in the end the results are independent of the particular choice of the metric.

Lemma 2.1 For any v 2 V n f0g,

log je2ƒ:vjC log jvj � 2 log jeƒ:vj;

with equality holding if and only if v is an eigenvector of ƒ.

This follows from the convexity of the function log jetƒ:vj. This elementary result is
the key to the following discussion.

Denote fi .v/D log jAi :vj. Then we have:

Lemma 2.2 Given � … S.V /, there is an I D I.�/ such that for all v ¤ 0 and
j > i � I , if fiC1.v/� fi .v/C�, then fjC1.v/ > fj .v/C�.

Proof If this is not true, then we may find subsequences f˛g tending to infinity and
v˛ 2 V such that

f˛C1.v˛/� f˛.v˛/C� and f˛C2.v˛/� f˛C1.v˛/C�:

Note that we have adjusted the sequence to obtain the above inequalities. Without loss
of generality we may normalize v˛ such that jA˛:v˛j D 1. By (�) and by passing
to a subsequence, we may assume A˛CkA�1˛ converges to gekƒg�1 for k D 0; 1; 2
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and some g 2 K . Passing to a further subsequence we may also assume A˛Ck :v˛
converges to wk , with wk D gekƒg�1:w0 . Let wD g�1:w0 . Then by our assumption
we have

log je2ƒ:wj � log jeƒ:wj � �� log jeƒ:wj � log jwj:

By Lemma 2.1 we conclude w is an eigenvector of ƒ, with eigenvalue �. This
contradicts our choice of �.

Lemma 2.3 d.v/D limi!1 i�1fi .v/ is well defined and belongs to S.V /.

Proof It follows from Lemma 2.2 that the limit

(2) zd.v/D lim
i!1

.fiC1.v/�fi .v//

exists and zd.v/ 2 S.V /. It is then an elementary exercise to show that

(3) d.v/D zd.v/:

Remark 2.4 If Ai D exp.iƒ/ then d.v/ is the well-known weight function associated
to a geodesic ray, as the slope at infinity of the Kempf–Ness function.

For v 2 V n f0g, we denote by Œv� the corresponding point in P .V /. Let U be the
eigenspace of ƒ with eigenvalue d.v/.

Lemma 2.5 Given any subsequence f˛g such that B˛C1 converges to geƒg�1 , if we
pass to a further subsequence fˇg, then ŒAˇ :v� converges to a limit Œw� with g�1:w2U .

Proof From the above discussion, we have

lim
˛!1

.f˛C2.v/�f˛C1.v//D lim
˛!1

.f˛C1.v/�f˛.v//D d.v/:

Then the conclusion follows from the proof of Lemma 2.2.

In terms of condition (�)0, this means that Œg�1
ˇ
Aˇ :v� converges to Œg�1:w� 2 P .U /.

Then we define the limit set Lim.v/ to be the union of the Kƒ–orbits of all possible
sequential limits of Œg�1i Ai :v�. By the above lemma, Lim.v/ is a subset of P .U /, and
it is independent of the choice of gi in (�)0. Notice by definition any sequential limit
of ŒAi :v� is in the K–orbit of some element in Lim.v/.

Lemma 2.6 Lim.v/ is compact and connected.
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Proof The compactness is clear. If Lim.v/ is not connected, then we may write
Lim.v/DO1[O2 , with O1 and O2 compact and Kƒ–invariant, and

dFS.O1; O2/� � > 0;

where dFS denotes the Fubini–Study metric on P .V /. Note that Kƒ is connected. By
definition we can find a subsequence f˛g � fig such that

(4) d.Œg�1˛ A˛:v�; O1/� �=2 and d.Œg�1˛C1A˛C1:v�; O1/ > �=2:

Passing to a subsequence we may assume Œg�1˛ A˛:v� converges to Œw�. By our choice
of f˛g we know Œw� …O2 , so Œw� 2O1 . By (�)0 we know g�1˛C1B˛C1g˛ converges
to eƒ , so Œg�1˛C1A˛C1:v� also converges to Œw� 2 O1 . This contradicts the second
inequality of (4).

Now we assume V DE , the standard representation of G . We list the elements in S
in decreasing order as �1 >�2 > � � �>�r . Then we have an orthogonal decomposition

E D

rM
sD1

Us;

where Us is the eigenspace associated to the eigenvalue �s . We also write nsD dimUs .
The sequence A defines a filtration

(5) E D V1 � � � � � Vr � VrC1 D f0g;

where Vs consists of vectors v with d.v/ � �s and we follow the convention that
d.0/D�1.

For any p �m, recall we have the Plücker embedding of the Grassmannian G.pIE/
into P

�Vp
E
�

as a closed subvariety. Given a p–dimensional subspace W �E , we
choose an element �W 2 VpE representing W . Then we apply the above discussion to
V D

Vp
E , and define d.W / WD d.�W /. This is independent of the particular choice

of �W . For simplicity of notation, we will simply denote �W also by W , and the meaning
will be clear from the context. For example, when we say a sequence ŒWi � converges
to ŒW1�, we mean that the corresponding Œ�Wi � converges to Œ�W1� in P

�Vp
E
�
. This

is also equivalent to saying that the corresponding sequence converges in G.pIE/.

Proposition 2.7 For all s we may find a subspace Ws �E such that Vs DWs˚VsC1
and Lim.Ws/D ŒUs�.
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This is a consequence of the following two lemmata. For s D 1; : : : ; r , we define the
following numbers for the simplicity of notation:

ps ,
X
k�s

nk; qs ,
X
k�s

nk; �s ,
X
k�s

nk�k; �s ,
X
k�s

nk�k :

Lemma 2.8 For all s , there is a subspace Rs � E of dimension ps such that
Lim.Rs/D

�L
k�s Uk

�
.

Proof Fix a subsequence f˛g such that B˛C1 converges uniformly to geƒg�1 for
some g 2K . Fix any number � 2 .�sC�sC1��s; �s/. Notice for any s , we have by
definition log jeƒ:Usj D ns�s log jUsj. If we let Rs D A�1˛ g:

L
k�s Uk for ˛ large,

then f˛C1.Rs/� f˛.Rs/C�. So by Lemma 2.2 if we choose ˛ > I.�/, then indeed
we obtain d.Rs/ > �. It is easy to see that

Vps�L
k�s Uk

�
�
Vps Cm is the unique

one-dimensional eigenspace of ƒ with eigenvalue bigger than �. By Lemma 2.5, we
know d.Rs/D �s and Lim.Rs/D

�L
k�s Uk

�
.

Lemma 2.9 For all s , there is a subspace Qs � E of dimension qs such that
Lim.Qs/D

�L
k�s Uk

�
.

Proof We use the same subsequence f˛g as in the proof of previous lemma, and let
� 2 .�s; �s C �s�1 � �s/. We define S˛ D A�1˛ g:

L
k�s Uk , and then for ˛ large

we have f˛C1.S˛/ � f˛.S˛/C �. Now applying Lemma 2.2, we see that for all
i 2 ŒI.�/; ˛/, we have

(6) fiC1.S˛/� fi .S˛/C�:

Letting ˛ tend to infinity, we may pass to a subsequence and assume ŒS˛� converges to
a limit, which we denote by ŒQs�. Combining (2), (3) and (6), we obtain d.Qs/� �.
Hence d.Qs/D �s , by an argument similar to the proof of Lemma 2.8. Then we apply
Lemma 2.5 to obtain Lim.Qs/D

�L
k�s Uk

�
.

Proof of Proposition 2.7 It follows easily from Lemma 2.8 and Lemma 2.9 that for
all s , we have Rs \VsC1 D 0 and Qs � Vs , by their definitions. So we have

qs D dimQs � dimVs �
X
s

ns�s � dimRs�1 D
X
s

ns�s ��s�1 D qs:

Therefore, all the inequalities in the above line become equalities. In particular, we
have Vs DQs . Define Ws DRs \Qs . Then we have

Lim.Ws/D Lim.Rs/\Lim.Qs/D ŒUs�:
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It follows from definitions and the above equalities that Ws � Vs and Ws \VsC1 D 0.
Moreover, the above equalities imply that dimWs D ns and consequently

dimWsC dimVsC1 D dimVs:

This yields that Vs DWs˚VsC1 .

Now fix a choice of Ws in Proposition 2.7. Then we can define a (real) one-parameter
subgroup �.t/D exp.t�/ of G , where � acts on Ws by multiplication by �s . Since
Lim.Ws/D ŒUs�, we may find a sequence Ci 2G such that Ci converges uniformly to
the identity, and Ci identifies g�1i Ai :Ws with Us for all s . Let zAi D Cig�1i AiC

�1
0

and zBi D zAi zA�1i�1 . By construction, zAi ; zBi 2Gƒ , where GƒDfg 2G jgƒg�1Dƒg,
and by our choice of gi we have

(7) lim
i!1

zBi D e
ƒ:

Moreover, �.t/D C�10 etƒC0 .

Now we return to a general representation V . Let V D
Le
jD1 Uj , where Uj is the

eigenspace of ƒ associated to the eigenvalue �j , and �j is arranged in a decreasing
order. We also have the filtration

V D V1 � � � � � Ve � VeC1 D f0g;

where Vj consists of elements v with d.v/ � �j . Given Œv� 2 P .V /, we write
Œ Nv�D limt!1 C0�.t/:Œv� 2 P .V /. Then Œ Nv� is fixed by ƒ.

Proposition 2.10 Any point Œw� 2 Lim.v/ is in the closure of the Gƒ–orbit of Œ Nv�.

Proof Suppose for some subsequence f˛g that g�1˛ A˛:Œv� converges to Œw�. Then

Œv˛�, Œ zA˛C0:v�D ŒC˛g
�1
˛ A˛:v�

also converges to Œw�. Suppose that Œw� 2 P .Uj /. Then C0:v 2
L
k�j Uk by (7).

Therefore Œ Nv� is the projection of ŒC0:v� to P .Uj /. Since zA˛ 2 Gƒ , we have that
zA˛:Œ Nv� is the projection of Œv˛� to P .Uj /. Since the projection map to P .Uj / is

continuous in a neighborhood of Œw�, it follows that lim˛!1 zA˛:Œ Nv�D Œw�.

In general the above �.t/ depends on the choice of Ws . Let P.�/ be the parabolic
subgroup of G consisting of elements p such that limt!1 �.t/p�.t/

�1 exists. If we
are given another choice of complementary subspaces W 0s , then we have � 0 D p�p�1
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for some p 2 P.�/. In particular, the conjugacy class of � under the action of P.�/ is
independent of the particular choice of Ws , so is uniquely determined by the filtration (5).
This equivalence relation is well studied in geometric invariant theory; see for example
[24, Appendix C]. We also have:

Proposition 2.11 The Gƒ–orbit of Œ Nv� is uniquely determined by A and Œv�.

Proof This is not hard to see. The point is that the choice of C0 identifying Ws
with Us for all s is unique up to the action of Gƒ .

Now we introduce the following property on Œv�:

(R) Every element Œw� 2 Lim.v/ has a reductive stabilizer group in Gƒ , and
Gƒ:Œw�DKƒ:Œw�.

This is often satisfied in the concrete geometric situation, as we shall see later.

Theorem 2.12 Suppose v satisfies property (R). Then Lim.v/ D Kƒ:Œv1� for a
unique element Œv1� 2 P .V /. Moreover, there is an algebraic one-parameter subgroup
�W C�!Gƒ that degenerates Œ Nv� to Œv1�, ie limt!0 �.t/:Œ Nv�D Œv1�.

Proof This follows from exactly the same arguments as in [21] (the discussion before
Remark 3.18). For the convenience of readers we repeat the proof here. Let Œv1� be a
point in Lim.v/ whose stabilizer group in Gƒ has minimal dimension. By [19] we
can find an equivariant slice P 0 at Œv1� for the action of Gƒ . Let O be the Gƒ–orbit
of Œw�, and O 0 D O \ P 0 . Notice by general theory the closure O 0 is a (possibly
reducible) algebraic variety. By Proposition 2.10 we have Œv1� 2 O . So from the
construction of P 0 in [19] we can find a small neighborhood W of Œv1� in P such
that each component of O 0\W is contained in a single Gƒ–orbit. Moreover any point
in O \W is in the Gƒ–orbit of a point in O 0\W . In particular, Œv1� 2O 0 .

Now we can choose an open neighborhood N of Œv1� in Lim.v/ such that N �W . By
connectedness of Lim.v/ it suffices to show that N �Kƒ:Œv1�. Now for any Œv01�2N ,
by the construction of the slice we may find g 2Gƒ such that g:Œv01� 2O 0\W . Then
by classical geometric invariant theory we know Œv1� is in the closure of the Kƒ–orbit
of g:Œv01�. Therefore Œv1� and Œv01� must be in the same Gƒ–orbit, since otherwise
Œv01� would have a stabilizer group in Gƒ with smaller dimension, which contradicts
our choice of Œv1�. By property (R) again we conclude Œv01� 2Kƒ:Œv1�.

Geometry & Topology, Volume 22 (2018)



Kähler–Ricci flow, Kähler–Einstein metric, and K–stability 3155

In particular, this says that there is a two-step degeneration from Œv� to Œv1�, through Œ Nv�.
Notice in contrast to �.t/, the above algebraic one-parameter subgroup �.t/ is con-
structed using abstract theory, so is in general not canonically defined.

In practice there are possible variants of the above discussion. We often have, instead
of a sequence fAig, a continuous path

fA.t/ j t 2 Œ0;1/g:

The property (�) is then replaced by:

(��) For any sequence ti !1, passing to a subsequence, the path

Œ0; 2�!GI t 7! A.ti C t /A
�1.ti /

converges uniformly to a limit getƒg�1 for some g 2K .

In this case one can similarly prove that

(8) d.v/D lim
t!1

t�1 log jA.t/:vj

is well defined, and agrees with the definition using A.i/ for i 2Z. Then we can repeat
the above discussion, and we also have a filtration of Cm defined by A.t/, just as in (5).

3 Asymptotics of Kähler–Ricci flow

3.1 A general discussion

Let .X;L/ be an n–dimensional polarized Kähler manifold. Let h.t/ be a smooth
family of Hermitian metrics on L with induced Kähler metrics !.t/ 2 2�c1.L/. We
define a family of Hermitian inner products Ht on H 0.X;L/ by

(9) Ht .s1; s2/ WD

Z
X

hs1; s2ih.t/!
n.t/:

We assume L is very ample, ie the natural map F W X ! P .H 0.X;L/�/ is an embed-
ding and moreover we assume that the natural map �k W SymkH 0.X;L/!H 0.X;Lk/

is surjective for all k � 1. Notice both can be achieved by replacing L with La for
sufficiently big a . Let E be H 0.X;L/� endowed with the metric induced by H0 .
Following the notation of Section 2 we write G D GL.E/ and K D U.E/. The
path Ht determines a smooth path zA.t/ in G=K with zA.0/ D Id. Let A.t/ be the
parallel lift of zA.t/ to G , with respect to the natural connection when we view G as a
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principal K bundle over G=K . This means for each t that PA.t/A.t/�1 is Hermitian
symmetric with respect to the metric induced by H0 .

More concretely, choosing an orthonormal basis fs˛g of H 0.X;L/ with respect to H0 ,
we obtain a smooth family of orthonormal bases of fs˛.t/g of H 0.X;L/ with respect
to Ht , by solving the ODE

(10)
@s˛.t/

@t
D�

1
2
PHt .s˛.t/; sˇ .t//sˇ .t/

with initial value s˛.0/D s˛ . It is easy to see the linear transformation on E that maps
the corresponding dual basis s˛ to s˛.t/ is independent of the choice of fs˛g, and
agrees with the above A.t/. Indeed, with respect to the basis fs˛g we have

. PA.t/A.t/�1/˛ˇ D
1
2
PHt .sˇ .t/; s˛.t//;

which is Hermitian symmetric. Notice for any s 2E� , we have

(11) kA.t/:skH0 D kskHt :

The path A.t/ generates a family of embeddings Ft W X! P .E/, with Ft DA.t/ıF .
Let Hilb be the Hilbert scheme parametrizing subschemes of P .E/ with the same
Hilbert polynomial as .X;L/. By construction it is a closed subscheme of some P .V /,
where V is a natural representation of G and Hilb is G–invariant. Then the above Ft
gives rise to a continuous path ŒXt � in Hilb satisfying ŒXt �D A.t/:ŒX0�.

In what follows we shall assume:

(H1) There is an element ƒ 2
p
�1Lie.K/ such that fA.t/g satisfies (��).

We can then apply the discussion of Section 2 to the path fA.t/g and the representa-
tion V , with Œv� replaced by the point ŒX� in Hilb� P .V /. Since Hilb is closed and
G–invariant, the limit set Lim.X/ and the point ŒX� are both contained in Hilbƒ , the
subscheme of Hilb parametrizing ƒ–invariant subschemes.

We also know the Gƒ–isomorphism class of ŒX� 2 Hilbƒ is uniquely determined
by A.t/. It is interesting to understand the coordinate ring of X in terms of the
language of filtrations introduced in [44]. For all k � 1, G acts naturally on SymkR1 ,
which is

�Nk
R1/=Sk with the symmetric group Sk naturally acting on

Nk
R1 . By

Section 2, we see that fA.t/g generates a filtration of SymkR1 . Then it also induces
a filtration of Rk DH 0.X;Lk/ under the map �k W SymkR1! Rk . More precisely,
for s 2Rk , we define

d.s/, inffd.f / j f 2 SymkR1 and �k.f /D sg;
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where d.f / is defined in Lemma 2.3. Notice each Ht defines a natural metric
on SymkR1 , so induces a metric on Rk

ksk2
H�t
D inffkf k2Ht j f 2 SymkR1 and �k.f /D sg:

Using (11) we have

(12) d.s/D lim
t!1

t�1 logkskH�t :

We follow the convention that d.s/D 0 for s 2H 0.X;L0/'C . For all d 2R, we set

FdRk , fs 2Rk j d.s/� dg and FdR,
M
k�0

FdRk :

Let RD
L
k�0H

0.X;Lk/D
L
k�0Rk be the homogeneous coordinate ring of .X;L/.

Then F WD fFd gd2R is an increasing filtration of subspaces of R . It is multiplicative
in the sense that FdRk �FeRl �FdCeRkCl . This follows from the simple fact that for
any f1 2 SymkR1 and f2 2 SymlR1 we have d.f1 �f2/D d.f1/C d.f2/.

Clearly F is only discontinuous at a discrete set of values d 2R, which is contained in
the subsemigroup of R generated by the spectrum of the ƒ–action on E� . We denote
these by � � �< di�1 < di < � � � , and define the associated ring

R,
M
i

FdiR=Fdi�1R:

It is endowed with two gradings, one by fkg and the other by fdig.

Proposition 3.1 The coordinate ring of X is isomorphic to R , and the action of ƒ is
encoded in the grading by fdig.

Proof The discussion of Section 2 produces an element C0 2 G which identifies
each Ws with Us in E (we adopt the notation there) such that

C�10 :ŒX�D lim
t!1

C�10 etƒC0:ŒX�:

The action of C�10 ƒC0 defines a new grading fdg on the ring
L
k�0 SymkR1 . Namely,

for each k , we have a weight decomposition

SymkR1 D
M
d2R

Vk;d :

It is easy to see from the definition that for any f 2 SymkR1 with a weight decompo-
sition f D

P
d fd (this is of course always a finite sum), we have

d.f /D supfd j fd ¤ 0g:
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Now we define a map
ˆW
M
k�0

SymkR1!R

sending an element f 2 SymkR1 to the corresponding class Œ�k.f /� in FdiR=Fdi�1R
for di D d.f /. By the above discussion ˆ is surjective. Let I be the saturated
ideal defining X . Then the kernel of ˆ is exactly the initial ideal of I , ie the ideal
generated by the initial terms of elements in I , with respect to the above new grading
on
L
k�0 SymkR1 . We denote the initial ideal mentioned above by I . Then we have

R D
L
k�0 SymkR1=I . From the construction of the Hilbert scheme, the latter is

exactly the homogeneous coordinate ring of C�10 :X , and the grading by fdig on R
corresponds to the action of C�10 ƒC0 on C�10 :X .

Now the conclusion follows from the fact that .X;ƒ/ and .C�10 :X; C�10 ƒC0/ have
isomorphic graded homogeneous rings.

For our purposes, it is often convenient to regrade F . Let � be a number smaller than
the smallest eigenvalue of the ƒ–action on R1 . Then we define

F 0dRk , Fd��kRk and F 0dR,
M
k

F 0dRk :

Then the new filtration F 0 D fF 0
d
Rg is again multiplicative. Moreover, it is “positive”

in the sense that F 00RDC . It is easy to see the graded ring associated to F 0 only differs
from R by a shift of the grading, and geometrically, it defines the same variety X
with the same projective action of ƒ, with a different choice of linearization on R1 by
ƒ0 Dƒ�� Id.

We say the filtration F is rational if we can find � such that ƒ0 has rational spectrum.
In this case, we can find a smallest integer D and some � such that D � S.ƒ0/� Z.
Then we define a new filtration fF 00j Rgj2Z�0 by setting

F 00j RD
[

d�D�1j

F 0dR:

The associated graded ring again defines the same variety X , but the induced action
has been rescaled to Dƒ0 .

As in [44; 37] we form the Rees algebra

Rees.F 00/D
M
k�0

F 00k t
k
�RŒt�;
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which gives rise to a test configuration for X with central fiber X . Geometrically,
the rationality of F means that ƒ generates an algebraic one-parameter subgroup
� WC�!G such that limt!0 �.t/:ŒX�D C

�1
0 :ŒX�.

When F is not rational,
p
�1ƒ generates a compact subtorus T � K , with rank

bigger than one. Then we can still construct a test configuration in a noncanonical
way. More precisely, we want to perturb ƒ within

p
�1Lie.T /, while keeping the

associated ring R invariant (of course the grading will change). Notice when we vary ƒ
in
p
�1Lie.T /, we actually change the grading on

L
k�0 SymkR1 ; indeed we are

weakening the grading in that a graded piece does not split but different graded pieces
can emerge. Now suppose I is generated by the g1; : : : ; gp , where each gi is the
initial term of some fi 2 I with respect to the grading defined by C�10 ƒC0 . Then it
follows for a rational � 2 Lie.T / close to ƒ that gi is also the initial term of fi with
respect to the grading defined by C�10 �C0 . This implies that the initial ideal J of I
with respect to the new grading contains I . By the proof of Proposition 3.1 we know
for all k � 1,

dim SymkR1=I k D dimRk D dimRk :

Similarly,

dim SymkR1=Jk D dimRk :

This implies J D I . It follows that we can use the filtration defined by � to construct a
test configuration for X with central fiber X , and the induced C�–action is generated
by � .

Now we come back to the filtration F . For all k � 1, we have a natural L2 inner
product Ht on Rk , defined just like (9). Suppose .X; h.t// satisfies an extra hypothesis:

(H2) For all k � 1, there is a constant Ck > 0 such that for all t � 0, we have on Rk ,

C�1k Ht �H
�
t � CkHt :

Then by (12), we have

d.s/D lim
t!1

t�1 logkskHt :

In particular, the filtration F , and hence .X;ƒ/, is intrinsically defined by .X; h.t//.
In other words, suppose we replace L by Lk for some k � 1 in the above discussion,
and suppose again (H1) holds; then we will end up with the same filtration.
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3.2 Kähler–Ricci flow on Fano manifolds

Now we prove Theorem 1.2, so we assume X is Fano. Let !.t/ be a solution of (1)
with !.0/ 2 2�c1.X/. To obtain the corresponding family of Hermitian metrics h.t/
on K�1X , we use the normalization

(13)
Z
X

�h.t/ D

Z
X

!n.t/;

where �h.t/ is the volume form on X naturally associated to h.t/. The corresponding
Kähler potential �.t/D�log.h.t/h.0/�1/ satisfies the usual normalized equation,

P� D log
!n�

!n
C� �u! ;

where u! is the Ricci potential with condition
R
M e�u! .!n=nŠ/D .2�/n .

We first summarize the relevant results proved in [12]. First of all, as t !1, one can
take sequential polarized Gromov–Hausdorff limits, in the sense of [20]. Such a limit Z
is naturally a Q–Fano variety, endowed with a weak Kähler–Ricci soliton metric !Z , in
the sense of [1] (see the remark after Proposition 4.15 of [20] for a similar discussion). In
particular, there is a continuous Hermitian metric hZ on the Q–line bundle K�1Z which
is smooth on the smooth locus Zs of Z , with curvature form �

p
�1!Z . Moreover,

!Z is a genuine Kähler form on Zs , and there is a holomorphic vector field VZ on Z
such that JVZ generates holomorphic transformations of Z that preserve !Z and
such that the equation Ric.!Z/D !Z CLVZ!Z holds on Zs .

Let C be the set of all such sequential limits, and let C be the union of C and the set
fXt D .X; J; !.t// j t � 0g. Then C is endowed with the polarized Gromov–Hausdorff
topology, in the sense of [20]. It is easy to see both C and C are compact and connected
(we refer the reader to [21, Lemma 2.7 and Lemma 3.2] for proofs of similar results).

As a consequence of the main result of [12] and the discussion in [20], there are positive
integers r and m (depending only on .X; !.0//) such that any Z2C is holomorphically
embedded into Pm�1 by L2 orthonormal sections of H 0.Z;K�rZ /, and the image
lies in a fixed Hilbert scheme Hilb. Moreover, the natural map C! Hilb=U.m/ is
continuous. We may also assume that the map �k W SymkH 0.X;K�rX /!H 0.X;K�rkX /

is surjective for all k� 1. We are therefore in the setting of Section 3.1, with LDK�rX ,
and we obtain the corresponding path A.t/.

Case I Every Z 2 C is a nontrivial Kähler–Ricci soliton, ie VZ ¤ 0. This is our main
interest in this paper — the other case is easier and will be treated later.
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Proposition 3.2 Property (H1) holds in Case I.

We need to first determine the element ƒ. Given Z 2 C , the vector field JVZ

generates a real one-parameter group of holomorphic isometric actions of Z . It induces
naturally a one-parameter subgroup �.t/ of the group U of unitary transformations
of H 0.Z;K�rZ /� (with respect to the natural L2–Hermitian inner product defined
by hZ ). Taking the closure of �.t/, we obtain a torus T .Z/ � U . Then under the
natural embedding of Z � P .H 0.Z;K�rZ /�/, the action of T .Z/ keeps Z invariant.

We have a weight-space decomposition

(14) H 0.Z;K�rZ /� D
M
�2R

H 0
� .Z;K

�r
Z /�

such that the VZ–action on H 0
�
.Z;K�rZ /� is given by multiplication by �. Clearly dif-

ferent weight spaces are L2–orthogonal. We list the nontrivial weights as �1 > �2 > � � � ,
and choose an L2–orthonormal basis of H 0

�i
.Z;K�rZ / for each i . Then we put these

together in order of decreasing weight and form an orthonormal basis of H 0.Z;K�rZ /� .
For simplicity we call such a basis compatible.

Given a compatible basis we can identify H 0.Z;K�rZ /� with Pm�1 . Then we can
view the torus T .Z/ as a subgroup of T , the diagonal maximal torus in U.m/, and
JVZ as an element in Lie.T /DRk �RN . Notice these do not depend on the choice
of a compatible basis.

Lemma 3.3 The map VW C!RN sending Z to JVZ is continuous. In particular, the
image of V is compact and connected.

Proof Suppose we have a sequence Zi 2 C converging to Z1 . Let fsi˛g be a
compatible basis of H 0.Zi ; K

�r
Zi
/. Passing to a subsequence we may assume fsi˛g

converges to an orthonormal basis fs1˛g of H 0.Z1; K
�r
Z1

/, under the polarized
Gromov–Hausdorff convergence. Given any smooth point p 2 Z1 , we may view
the convergence in a neighborhood of p as the smooth convergence of the metric
tensors !Zi to !Z1 on a fixed ball B �Cn . Writing Ric.!Zi /D !Zi C i@N@hi and
using standard elliptic estimates we may assume hi converges smoothly to h1 on
the half-ball B=2. Therefore VZi D r!Zi hi converges smoothly to VZ1 on any
compact subsets of Z1 . Suppose LVZi si˛ D �i;˛si˛ . Then passing to a subsequence,
�i;˛ converges to a limit �1;˛ and LVZ1 s1˛ D �1;˛s1˛ over Zs1 . Since Zs1 is
normal we know s1˛ 2H

0
�1;˛

.Z1; K
�r
Z1

/. This shows that fs1˛g is a compatible
basis, and the map V is continuous.
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Lemma 3.4 There is a unique element � 2RN such that JVZ D � for all Z 2 C .

Proof It suffices to show the image of V is a countable set. To see this we notice that
there are countably many subtori of T , and for a given subtorus T 0 of T , the fixed
point set HilbT

0

of T 0–actions on Hilb is a projective subscheme and thus has finitely
many connected components. Therefore we only need to show for a given T 0 and
connected component eHilb of HilbT

0

, for all Z 2 C with T .Z/D T 0 and ŒZ�2 eHilb ,
that JVZ gives rise to the same element in Lie.T 0/. By [1] we know for a given Z
that VZ is characterized as the unique vector in Rk satisfying

(15) FutJVZ .V
0/D� lim

k!1
.mk/�n�1

d

dt

ˇ̌̌
tD0

Tr.eJVZCtV
0

/jH0.Z;K�mkZ /D 0

for all V 0 2 Lie.T 0/. Now since eHilb is connected, the weight decomposition
of H 0.Z;K�mrZ / with respect to T 0 is the same for all Z 2 eHilb , hence equation (15)
is also. In particular, JVZ 2 Lie.T 0/ is also independent of Z .

We define ƒ 2
p
�1Lie.U.m// to be the linear transformation of Cm corresponding

to �J � . For any Z 2 C , under the identification of H 0.Z;K�rZ / with Cm using a
compatible basis, ƒ coincides with the natural action of VZ on H 0.Z;K�rZ /� . For
simplicity we may also simply view ƒ as the holomorphic vector field on Z .

An important ingredient in the proof of Proposition 3.2 is the convergence of polarized
Kähler–Ricci flows proved in [12], which we recall. For any sequence ti!1, by [12],
passing to a subsequence, .X; !.ti /; h.ti // converges to some .Z; !Z ; hZ/ in the
polarized Gromov–Hausdorff topology. We can fix a metric on the disjoint unionS
i .X; !.ti //[ .Z; !Z/ which realizes this convergence. By Theorem 1.6 of [12] and

the normalization condition (13), we may assume h.ti C �/ and !.ti C �/ converge
smoothly (as tensors) to ˆ�� hZ and ˆ��!Z over compact subsets of Zs , uniformly
for � 2 Œ0; 2�. Here ˆ� is the one-parameter group of holomorphic transformations
generated by VZ . The key point is that the gauge transformation involved in the process
of convergence is chosen uniformly for all s .

Proof of Proposition 3.2 We use the initial orthonormal basis fs˛g with respect
to H0 to identify E with Cm , and hence G with GL.mIC/ and K with U.m/. Then
we adopt the notation of Section 3.1, and write Ai .�/D AtiC� . Then we have

. PAi .�/Ai .�/
�1/˛ˇ D�

1
2
PHtiC� .sˇ .ti C �/; s˛.ti C �//:
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The right-hand side is given byZ
X

hs˛.ti C �/; sˇ .ti C �/i.�r P�.ti C �/C� P�.ti C �//!
n
�.tiC�/

:

By Perelman’s estimate, which was written down by Tian and Sesum in [32] and
improved by Phong, Sesum and Sturm in [31], we know j P�.t/j and j� P�.t/j are
uniformly bounded independent of t . Therefore Ai is uniformly Lipschitz in � , so
by passing to a subsequence we may assume Ai converges to a Lipschitz map A1
from Œ0; 2� to G . From the definition of polarized convergence, we may also assume
fAti :s˛g converges to an orthonormal basis fs˛.1/g of H 0.Z;K�rZ / with respect
to hZ . Then for � 2 Œ0; 2�, we have that fAi .�/:s˛.ti /g converges to an orthonormal
basis of H 0.Z;K�rZ / with respect to ˆ�� hZ . Now we can find an element h 2 U.m/
such that fh:s˛.1/g is a compatible orthonormal basis of H 0.Z;K�rZ /. Then we easily
see fe�ƒh:s˛.1/g is an orthonormal basis of H 0.Z;K�rZ / with respect to ˆ�� hZ . So
we have A1.�/Dg.�/e�ƒh for some g.�/2U.m/. Using the fact that PA1.�/A�11 .�/
is Hermitian symmetric, we see that g is independent of � . Therefore Ai .�/A.ti /�1

converges uniformly to ge�ƒg�1 . This proves that A.t/ satisfies (��).

From the above discussion it follows that Lim.X/ is exactly given by the union of
the Kƒ–orbits of ŒZ� (the image of Z under the embedding using a compatible basis
of H 0.Z;K�rZ /). We now claim ŒX� satisfies property (R). Indeed for any Z 2 C , the
stabilizer group of ŒZ� in Gƒ is isomorphic to Aut.Z; VZ/. The latter is reductive by
Theorem 1.6 in [1]. Moreover, if ŒZ� and ŒZ0� are in the same Gƒ–orbit, then Z and Z0

are isomorphic as Q–Fano varieties, and by Theorem 1.4 in [1], Z and Z0 are indeed
the same point in C . Then it follows from Theorem 2.12 that Lim.X/ D Kƒ:ŒX1�
for a single ŒX1�. This shows that for all Z 2 C , the underlying Q–Fano variety
.Z; VZ/ is isomorphic to X1 . Then by Theorem 1.4 of [1] the corresponding weak
Kähler–Ricci soliton metric is also unique up to the action of Aut.Z; VZ/. This is the
precise meaning of the uniqueness statement in Theorem 1.2. Notice the definition of
polarized Gromov–Hausdorff limit in [20] also involves a limit connection on K�rZ jZs .
This is irrelevant for our purposes in this paper and we leave this for future work.

The one-parameter subgroup �W C�!G constructed from Theorem 2.12 gives rise to
a ƒ–equivariant test configuration for X with central fiber X1 . By the openness of
normality in a flat family (see for example [25, Appendix E]), we conclude that X is
also normal.

Proposition 3.5 In Case I, X is K–unstable.
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Proof Similarly to the proof of Lemma 3.4, we know

Fut.X;ƒ/D Fut.X1; ƒ/:

Here the notation means the usual Futaki invariant computed using the holomorphic
vector field ƒ. Notice ƒDVX1 . By the discussion in [1, Section 3], which generalizes
the result of Tian and Zhu [41] to the case of Q–Fano varieties, we know on the space t

of holomorphic vector fields on X1 that commute with VX1 , there is a strictly convex
function F such that for any V;W 2 t,

FutV .X1; W /D
d

dt
F.V C tW /

ˇ̌̌
tD0

:

Note that FutV is the same as defined in [1] and [41]. Since .X1; V1/ is a weak
Kähler–Ricci soliton, V1 is a critical point of F . This implies

Fut.X1; ƒ/D Fut0.X1; V1/ < FutV1.X1; V1/D 0:

Now as in Section 3.1 we choose a rational � 2 Lie.T / that is sufficiently close to ƒ,
and obtain a test configuration for X with central fiber X . Since the Futaki invariant
depends linearly on the holomorphic vector field, we can assume Fut.X; �/<0. Hence
X is K–unstable.

Proposition 3.6 .X; h.t// satisfies property (H2).

Proof We have the natural map �k;t W SymkH 0.X;L/ ! H 0.X;Lk/, where both
spaces are endowed with the L2–metric Ht . Given any sequence ti ! 1, by
passing to a subsequence we may assume .H 0.X;Lk/;Hti / converges naturally to
.H 0.Z;�KkrZ /;HZ/, where HZ is the L2 inner product defined by hZ , and �k;ti
converges to �k;1 , which is also surjective. The conclusion follows from this and the
definition of H�t .

In particular, by the discussion in Section 3.1, the filtration F (and hence .X;ƒ/) are
intrinsically defined by .X; h.t//.

Case II There is one limit in C which is Kähler–Einstein. In this case, it is not hard
to see that every Z 2 C is Kähler–Einstein.

Actually, by the monotonicity of Perelman’s �–functional along the Kähler–Ricci flow,
we know that every limit in C has the same �–functional level �1 , which is that of
the Kähler–Einstein metric. Suppose X1 2 C and f1 is the Ricci potential on X1 .

Geometry & Topology, Volume 22 (2018)



Kähler–Ricci flow, Kähler–Einstein metric, and K–stability 3165

By the soliton equation on the regular part of X1 , we have

RC�f1�nD 0 and RC 2�f1� jrf1j
2
Cf1� 2nD �1:

Since �1 is the �–functional level of the weak Kähler–Einstein metric, it is easy to
see that �1 D�nC log.Vol.X/=.2�/n/. Combining this with the above equations,
we obtain

�.X1/D

Z
X1

fRCjrf1j
2
Cf1� 2ng.2�/

�ne�f1

D

Z
X1

fRC�f1Cf1� 2ng.2�/
�ne�f1

D�nC log
Vol.X/
.2�/n

:

Note that the integration by parts works here because of the high codimension of the
singularity of X1 (Minkowski codimension strictly greater than 2; see [11, Section 2]
for more details) and the uniform boundedness of f1 . It follows that

.2�/�n
Z
X1

f1e
�f1 D�n log 2� C log Vol.X/:

By Jensen’s inequality for the convex function x log x , the above equality implies
f1 D constantD log.Vol.X/=.2�/n/. Therefore X1 must be weak Kähler–Einstein.

Then by arguments similar to the proof of Theorem 2.12 (indeed easier since there is
no ƒ involved), one can prove the uniqueness of the limits in C . It also follows from [5]
that in this case X is always K–semistable, and if X is K–stable, then X1 DX , and
X admits a Kähler–Einstein metric.

To summarize, we have proved the following:

� If X is K–unstable, then the flow converges to a unique Q–Fano variety X1
endowed with a nontrivial weak Kähler–Ricci soliton metric.

� If X is K–stable, then the flow converges to a unique Kähler–Einstein metric
on X .

� If X is K–semistable but not K–stable, then the flow converges to a unique
Q–Fano variety X1 endowed with a weak Kähler–Einstein metric.

Theorem 1.2 follows directly from this. Proposition 3.6 motivates the following:
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Conjecture 3.7 When X is K–unstable, the geometric objects X , F and X1 are
uniquely determined by X . In other words, these are independent of the choice of the
initial metric !0 .

This is also related to the work of Darvas and He [14], where it is shown that the Kähler–
Ricci flow trajectories give rise to nontrivial geodesic rays in the space of Kähler po-
tentials. If the conjecture is true, then we can ask a sensible algebrogeometric question:

Problem 3.8 Determine X , F and X1 in terms of the algebraic geometry of X ; for
example, the filtration should maximize an appropriate notion of “normalized Futaki
invariant”.

Now we prove Corollary 1.3. Suppose we are given a Fano manifold X together with a
holomorphic vector field V such that JV generates a compact subgroup H of Aut.X/,
and then we can assume the initial metrics h.0/ and !.0/ are H–invariant. It follows
that V also induces a natural holomorphic vector field on X and X1 . For simplicity
of notation we also denote this by V . Then by the definition of relative K–stability,
if .X;ƒ/ is not isomorphic to .X; V /, then FutV .X; �/>0 for all rational � 2Lie.T /
close to ƒ. This implies that FutV .X;ƒ/� 0. On the other hand, we can write

FutV .X1; ƒ/D FutV .X1; ƒ�V /CFutV .X1; V /:

Since .X1; ƒ/ is a Kähler–Ricci soliton and Œƒ; V � D 0, by the results of [1] and
discussion similar to that above, we know

FutV .X1; ƒ�V /� Futƒ.X1; ƒ�V /D 0

with equality if and only if V Dƒ. Applying the relative K–stability of .X; V / to the
product test configurations, we see FutV .X; V /D 0. Now we know X , X and X1
all lie in the same component of the subscheme of Hilb fixed by V , so as in the
proof of Lemma 3.4 we know FutV .X1; V / vanishes as well. Therefore we conclude
that FutV .X1; ƒ/ � 0, and hence V D ƒ. This implies that .X;ƒ/ is isomorphic
to .X; V /. Then using relative K–stability again we conclude that .X1; ƒ/ is also
isomorphic to .X; V /, which shows the existence of a Kähler–Ricci soliton on .X; V /.

Remark 3.9 If X is endowed with an action of a compact group H , then the above
arguments can also be used to show that X admits a Kähler–Einstein metric if and
only if X is H–equivariantly stable. This has been proved in [15], using the classical
continuity path. It is further observed in [15] that the “equivariant K–stability” is
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sometimes verifiable for manifolds with large symmetry, including toric Fano manifolds
and Fano threefolds with an action of a two-dimensional torus.

Remark 3.10 For the limit Kähler–Ricci soliton X1 , it was proved in [12] that the
smooth part of any tangent cone is Ricci-flat. Actually, in light of [12, Theorem 3.44],
we can regard each tangent space Y of X1 as a limit of sequences satisfying the
conditions of [12, Theorem 3.31]. It follows that the regular part of Y must be Ricci-flat
by [12, Theorem 3.31 and Definition 2.1]. It follows from [12, Theorem 3.44 and
Theorem 3.18] that Y is a metric cone. Using this the results of [21] can be extended
to our case and we leave this for future work.

4 The Calabi flow and stability

Suppose .X;L/ is a polarized Kähler manifold, with ! a background Kähler metric
in 2�c1.L/. Starting from any metric !.0/D!Ci@N@�.0/2 2�c1.L/, the Calabi flow
!.t/D !C i@N@�.t/ is a fourth-order nonlinear parabolic equation on �.t/, given by

(16)
@�.t/

@t
D S.!.t//�S;

where S.!.t// is the scalar curvature of !.t/, and S is the average of S.!.t//
(independent of t ). This is a promising approach to tackling the Yau–Tian–Donaldson
conjecture relating existence of extremal Kähler metrics in 2�c1.L/ and K–stability
of .X;L/; see [35]. We will not discuss the analytic aspects of the Calabi flow, which
has seen significant progress recently. For instance, one can check the work of Chen and
He [6], Tosatti and Weinkove [43], He [26], Streets [33], Huang and Feng [22], Li, Wang
and Zheng [27] for more information on recent developments. However, in the current
paper, our focus is again on the relation with K–stability. In particular, we will prove:

Theorem 4.1 Given a smooth solution !.t/ .t 2 Œ0;1// of (16). Suppose !.t/ has
uniformly bounded curvature and diameter. Then:

(1) .X;L; !.t// converges to a unique limit .X 0; L0; !0/ in the sense of Cheeger
and Gromov, where !0 2 2�c1.L0/ is an extremal Kähler metric, ie r1;0!0 S.!

0/

is a holomorphic vector field.

(2) IfX is K–stable, then .X 0; L0/ is isomorphic to .X;L/ and !0 has constant scalar
curvature. In particular, .X;L/ admits a constant scalar curvature Kähler metric.

(3) If X is strictly K–semistable, then !0 has constant scalar curvature, and there is
a test configuration for .X;L/ with central fiber .X 0; L0/.
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(4) If X is K–unstable, then there is a test configuration X for .X;L/ with central
fiber .X 00; L00/, which is naturally associated to !.t/, with

Fut.X /=N2.X /D� inf
!22�c1.L/

kS.!/�SkL2 :

Here N2.X / is the norm defined in [17]. In particular, in view of [17], X is an
optimal test configuration with minimal Futaki invariant.

The proof of this is similar to that of Theorem 1.2, but simpler. We now briefly sketch
the main arguments. We fix a Hermitian metric h on L with curvature �

p
�1! .

Then h.t/D he��.t/ has curvature �
p
�1!.t/. By our assumption we may obtain

polarized Cheeger–Gromov compactness. Namely, given any sequence ti ! 1,
passing to a subsequence, we may obtain a polarized limit .X 0; L0; !0; h0/. We claim
that !0 is an extremal Kähler metric. This follows from well-known arguments. Recall
the Calabi functional is defined as

Ca.!/D
Z
.S.!/�S/2!n:

Direct calculation (see for example Chen and He [6]) shows that

(17) d

dt
Ca.!.t//D�

Z
jN@rtS.!.t//j

2!.t/n � 0:

This in particular implies that Ca.�.ti � 1//�Ca.�.ti C 1// converges uniformly to
zero. By the parabolic curvature estimates in [7] we know the path

f�i .t/D �.ti C t /��.ti / j t 2 Œ�1; 1�g

converges smoothly (with respect to both the time and space variables) to a path �1.t/
and !0.t/D !0C i@N@�1.t/ also solves the Calabi flow equation. Now, since

Ca.�.ti � 1//�Ca.�.ti C 1//D
Z tiC1

ti�1

jN@rtS.!.t//j
2!.t/n dt;

we easily conclude that N@rS.!0/ D 0, ie !0 is an extremal Kähler metric. This
proves (1), except the uniqueness.

Then as in Section 3.2 we let C be the set of all such sequential limits, and C be the
union of C and f.X;L; !.t// j t � 0g. It is then easy to find r and m depending only
on .X;L; !.0// such that any Z 2 C is holomorphically embedded into Pm�1 by
L2–orthonormal sections of Lr , its image lies in a fixed Hilbert scheme Hilb, and
the natural map C!Hilb=U.m/ is continuous. Then we can apply the discussion of
Section 3.1, with L replaced by Lr , and get the path A.t/.
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Again as in Section 3.2, it suffices to deal with the case that none of the limits in C has
constant scalar curvature (the other case is easier, and is already treated in [8]), so we
will always assume this is case in the remainder of this subsection.

Proposition 4.2 Property (H1) holds.

Proof The key property is that by [23], the extremal vector field V 0 D r 0S.!0/ is
always rational, ie it always generates an S1–action on X 0 which also lifts to L0 . This
implies an analogous statement to Lemma 3.4 is true, and the proof is simpler (since
there are at most countably many rational elements in the abelian Lie algebra). From
here the proof of our claim is exactly the same as Proposition 3.2.

We first obtain that there is a unique element .X1; L1/ in C , by Calabi’s structure
theorem for extremal metrics (which says that Aut.X 0; L0; V 0/ is reductive) and the
uniqueness of extremal Kähler metrics on a fixed polarized Kähler manifold. Then by
similar arguments to Proposition 3.5 we know .X;L/ is K–unstable and there is a test
configuration X for .X;Lr/ with central fiber .X;L WDO.1/jX / with negative Futaki
invariant. Again the proof is simpler since our assumptions rule out the appearance
of possible singularities and by rationality of the extremal vector field we do not need
to perturb the ƒ. Moreover, as in Proposition 3.6, we know .X; h.t// satisfies (H2),
and so we obtain an intrinsic description of .X;L/ as the scheme corresponding
to the graded ring associated to the filtration of

L
k�0H

0.X;Lrk/ defined by the
Calabi-flow solution !.t/. Furthermore, X is smooth since by Theorem 2.12 there
is a ƒ–equivariant test configuration for .X;L/ with central fiber .X1; L1/, and
smoothness is an open condition among a flat family.

Now it remains to prove the last statement in Theorem 4.1. For this we notice by
definition

Fut.X /D Fut.X1; ƒ/D�kS.!0/�Sk2L2 :

By the smooth convergence we have

kS.!0/�Sk2
L2
� inf
!22�c1.L/

kS.!/�Sk2
L2
:

By the definition in [17] and the equivariant Riemann–Roch theorem, we have

N2.X /2 D kS.!0/�Sk2L2
Hence we have

Fut.X /=N2.X /� � inf
!22�c1.L/

kS.!/�Sk2
L2
:
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On the other hand, by Theorem 2 of [17], we also have

kXk�1 Fut.X /� � inf
!22�c1.L/

kS.!/�SkL2 :

Therefore the inequality holds. This finishes the proof of Theorem 4.1.

We conclude with some remarks:

(1) One can also formulate conjectures relating the above .X;L/ with optimal de-
generation, similar to Conjecture 3.7 and Problem 3.8. The difference is that here we
can use the known notion of an “optimal degeneration”, as introduced in [17], and the
moment-map interpretation of Calabi flow yields extra, useful geometric structures
which enable us to obtain stronger results.

Suppose that we have two Calabi flows !1.t/ and !2.t/ in 2�c1.L/ both defined
over Œ0;1/, with uniformly bounded diameter and curvature. Then we claim that
they give rise to the same limit extremal Kähler manifold .X 0; L0; !0/ and the same
filtration, hence the same .X;L/. To see this, define the space of all Kähler potentials

HD f� 2 C1.X IR/ j !C i@N@� > 0g:

This is equipped with the well-known Mabuchi–Semmes–Donaldson metric dH . Writ-
ing !1.t/D !C i@N@�1.t/, and !2.t/D !C i@N@�2.t/, we obtain two smooth paths
�1.t/ and �2.t/ in H . By Theorem 1.3 of [2], we have dH.�1.t/; �2.t// is nonin-
creasing in t , hence uniformly bounded above. Now by the recent work of Darvas [13]
(first inequality on page 7) we obtainZ

X

.�2.t/��1.t//
2!1.t/

n
C

Z
X

.�2.t/��1.t//
2!2.t/

n
� C:

By assumption !1.t/ and !2.t/ have uniformly bounded geometry, so we can apply
Moser iteration to the inequalities

nC�!1.t/.�2.t/��1.t//� 0 and nC�!2.t/.�1.t/��2.t//� 0;

and conclude that j�2.t/ � �1.t/jL1 is uniformly bounded. Then it follows from
standard arguments that j�2.t/��1.t/jCk.!1.t// is uniformly bounded for each k (see
for example [6; 8]). The above claim follows easily from this uniform estimate.

(2) It seems also possible to allow suitable classes of singularities to occur, as in the
case of Kähler–Ricci flow on Fano manifolds. This, together with an appropriate weak
compactness theory, might lead to a proof of the Yau–Tian–Donaldson conjecture in
some special cases. We will leave this for future work.
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