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We prove the Farrell–Jones conjecture for (nonconnective) A–theory with coefficients
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pseudoisotopies in the topological, piecewise linear and smooth categories.

19D10; 57Q10, 57Q60

1. Introduction 3321

2. The isomorphism conjecture 3325

3. Relations between the conjectures for various theories 3332

4. Some applications to automorphism groups of aspherical closed
manifolds 3335

5. Inheritance properties of the isomorphism conjectures 3340

6. Proof of the Farrell–Jones conjecture for hyperbolic and
CAT.0/–groups 3350

7. The transfer: final part of the proof 3366

References 3390

1 Introduction

We investigate the Farrell–Jones conjecture for Waldhausen’s A–theory. Our main
result is:
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Theorem 1.1 (main result) Let FJA be the class of groups for which the Farrell–
Jones conjecture 2.15 for (nonconnective) A–theory with coefficients and finite wreath
products holds.

(i) The class FJA contains the following groups:
� Hyperbolic groups.
� CAT.0/–groups.
� Virtually polycyclic groups.
� Cocompact lattices in almost connected Lie groups.
� Fundamental groups of (not necessarily compact) d –dimensional manifolds

(possibly with boundary) for d � 3.

(ii) The class FJA has the following inheritance properties:
� If G1 and G2 belong to FJA , then G1 �G2 and G1 �G2 belong to FJA .
� If H is a subgroup of G and G 2 FJA , then H 2 FJA .
� Let 1!K! G

p
�!Q! 1 be an extension of groups. Suppose that K ,

Q and p�1.C / for every infinite cyclic subgroup C �Q belong to FJA .
Then G belongs to FJA .

� If H � G is a subgroup of G with ŒG W H� < 1 and H 2 FJA , then
G 2 FJA .

� Let fGi j i 2 I g be a directed system of groups (with not necessarily injective
structure maps) such that Gi 2 FJA for i 2 I. Then colimi2I Gi belongs
to FJA .

The Farrell–Jones conjecture for A–theory aims at the computation of the homotopy
groups of A.BG/ for a group G, where AW SPACES! SPECTRA sends a space X
to the nonconnective A–theory spectrum A.X/ modeling Waldhausen’s A–theory
space A.X/. More precisely, it predicts the bijectivity of the assembly map

HG
n .EVCY.G/IA

B/ Š�!HG
n .G=GIA

B/D �n.A.BG//

induced by the projection of the classifying space EVCY.G/ for the family of virtually
cyclic subgroups of G to G=G. It essentially reduces the computation of �n.A.BG//
to the computation of the system f�n.A.BV //g, where V ranges over the virtually
cyclic subgroups V of G. Following the setup of Davis and Lück [13], we give the
precise formulations of the various versions of the Farrell–Jones conjecture in Section 2.
The equivalent original formulation of their conjecture can be found in Farrell and
Jones [21].
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Section 3 relates the Farrell–Jones conjecture for A–theory to the corresponding con-
jectures for other functors. In particular, we discuss the equivalence of the conjectures
for A , WhCAT and PCAT , where the latter denote the nonconnective spectra modeling
the Whitehead space and the space of stable pseudoisotopies, with CAT being TOP,
PL or DIFF.

As an illustration of the impact of the Farrell–Jones conjecture for A–theory, we discuss
applications to the automorphism groups of aspherical closed manifolds in Section 4.1,
where also the proof of the following Theorem 1.3 is given.

Let NA.f�g/ be the Nil–term occurring in the Bass–Heller–Swan-isomorphisms for
nonconnective A–theory; see Hüttemann, Klein, Vogell, Waldhausen and Williams
[30; 31]. We have

(1:2) �n.A.S1//D �n.A.f�g//˚�n�1.A.f�g//˚�n.NA.f�g//˚�n.NA.f�g//:

We conclude �n.NA.f�g//D f0g for n� 1 and �n.NA.f�g//˝Z QD f0g for n 2Z

from Theorem 3.7 and Lück and Steimle [38, Theorem 0.3]. On the other hand,
�n.NA.f�g// for n D 2; 3 is an infinite-dimensional F2–vector space. For more
information about �n.NA.f�g// we refer to Grunewald, Klein and Macko [28] and
Hesselholt [29]. The next result is already explained in the special case of closed
manifolds with negative sectional curvature by Weiss and Williams [59, Section 6.3],
based on the work of Farrell and Jones [17; 18; 19; 20; 21], and we can extend it to
torsionfree hyperbolic groups.

Theorem 1.3 (i) Let G be a torsionfree hyperbolic group. Then we get an equiva-
lence

WhTOP.BG/'
W
CWhTOP.BC/'

W
CNA.f�g/_NA.f�g/;

where C ranges over the conjugacy classes of maximal infinite cyclic subgroups
of G.
In particular, WhTOP.BG/ is connective.

(ii) Let M be a smoothable aspherical closed manifold of dimension � 10 whose
fundamental group � is hyperbolic.
Then there is a Z=2–action on WhTOP.B�/ such that we obtain, for 1 � n �
min

˚
1
2
.dimM � 7/; 1

3
.dimM � 4/

	
, isomorphisms

�n.TOP.M//Š �nC2
�
EZ=2C ^Z=2

�W
CWhTOP.BC/

��
Geometry & Topology, Volume 22 (2018)
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and an exact sequence

1! �2
�
EZ=2C ^Z=2

�W
CWhTOP.BC/

��
! �0.TOP.M//! Out.�/! 1;

where C ranges over the conjugacy classes of maximal infinite cyclic subgroups
of � .

Remark 1.4 The Z=2–action we refer to in Theorem 1.3 is induced by the one given
Weiss and Williams [57]. Vogell described in [48] another Z=2–action on Wh.B�/
which depends on the choice of a spherical fibration over B� . It was shown by
Hüttemann et al [31] that for a certain fibration this action corresponds under the
Bass–Heller–Swan decomposition to switching the Nil–terms via a homeomorphism.
If the arguments presented in [31] carry over to other spherical fibrations and the two
actions on WhTOP.B�/ agree for a suitably chosen fibration, then the homotopy orbits
appearing in Theorem 1.3 can be identified as

EZ=2C ^Z=2

�W
CWhTOP.BC/

�
'
W
CNA.f�g/:

These issues will be discussed in Pieper’s forthcoming PhD thesis [42].

The rest of the paper is devoted to the proof of Theorem 1.1. The main technical part
of this paper concerns the proof for hyperbolic groups and CAT.0/–groups. It is given
in Sections 6 and 7, and is motivated by the proof of the K–theoretic Farrell–Jones
conjecture for CAT.0/–groups given by Wegner [55] based on the method of Bartels
and Lück [5]. Our approach, which is based on work of Ullmann and Winges [47],
requires us to define an analog of the transfer on geometric modules which works on
Waldhausen categories of controlled retractive spaces. Virtually polycyclic groups have
already been treated in [47].

In conjunction with the inheritance properties in Theorem 1.1(ii), the case of a co-
compact lattice in an almost-connected Lie group or a fundamental group of a (not
necessarily compact) d –dimensional manifold (possibly with boundary) for d � 3
follows via the argument presented in Bartels, Farrell and Lück [3]. The inheritance
properties for the A–theoretic conjecture are taken care of in Section 5.

Remark 1.5 (solvable groups) The class FJA has also been shown to contain all
virtually solvable groups by Kasprowski, Ullmann, Wegner and Winges [33]. Therefore,
FJ also contains any (not necessarily cocompact) lattice in a second countable, locally
compact Hausdorff group with finitely many path components, the groups GLn.Q/
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and GLn.F.t// for F.t/ the function field over a finite field F , and all S –arithmetic
groups. The arguments of Kammeyer, Lück and Rüping [32] and Rüping [46] carry
over to show the prerequisites of Theorem 1.1 and Corollary 6.20, respectively.
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2 The isomorphism conjecture

In this section we state various versions of the isomorphism conjectures we want to
consider. We assume familiarity with the notion of a G–equivariant homology theory
from [13] and the notion of an equivariant homology theory from [36]. As usual, we
use a convenient category of compactly generated spaces.

2.1 The metaisomorphism conjecture for functors from spaces to spectra

Let S W SPACES! SPECTRA be a covariant functor. Throughout this section we will
assume that S respects weak equivalences and disjoint unions, ie a weak homotopy
equivalence of spaces f W X ! Y is sent to a weak homotopy equivalence of spectra
S .f /W S .X/! S .Y / and, for a collection of spaces fXi j i 2 I g for an arbitrary
index set I, the canonical map

(2:1)
W
i2IS .Xi /! S

�`
i2IXi

�
is a weak homotopy equivalence of spectra. Weak equivalences of spectra are understood
to be the stable equivalences, ie the maps which induce isomorphisms on all stable
homotopy groups. We obtain a covariant functor

(2:2) SB W GROUPOIDS! SPECTRA; G 7! S .BG/;

Geometry & Topology, Volume 22 (2018)
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where BG is the classifying space of the groupoid G which is the geometric realization
of the simplicial set given by its nerve and denoted by BbarG in [13, page 227]. Let
H ‹
n.�IS

B/ be the equivariant homology theory in the sense of [36, Section 1] which is
associated to SB by the construction in [37, Proposition 157 on page 796]. Equivariant
homology theory essentially means that we get for every group G a G–homology theory
HG
n .�IS

B/ satisfying the disjoint union axiom and for every group homomorphism
˛W H !G and H –CW–pair .X;A/ we get natural maps compatible with boundary
homomorphisms of pairs HH

� .X;AIS
B/!HG

� .˛�.X;A/IS
B/, which are bijective

if the kernel of ˛ acts freely on X. Moreover, for any group G, subgroup H �G and
n 2 Z we have canonical identifications

HG
n .G=H IS

B/ŠHH
n .H=H IS

B/Š �n.S .BH//:

Conjecture 2.3 (metaisomorphism conjecture for functors from spaces to spectra)
Let S W SPACES! SPECTRA be a covariant functor which respects weak equiva-
lences and disjoint unions. The group G satisfies the metaisomorphism conjecture
for S with respect to the family F of subgroups of G if the assembly map induced by
the projection prW EF .G/!G=G,

HG
n .prISB/W HG

n .EF .G/IS
B/!HG

n .G=GIS
B/Š �n.S .BG//;

is bijective for all n 2 Z.

Example 2.4 (the K– and L–theoretic Farrell–Jones conjectures) Let R be a ring
(with involution). There are covariant functors [37, Theorem 158]

KRW GROUPOIDS! SPECTRA;

L
h�1i

R W GROUPOIDS! SPECTRA

such that, for every group G, which we can consider as a groupoid G with precisely
one object and G as its group of automorphisms, and n 2 Z, we have

Kn.RG/D �n.KR.G//;

Lh�1in .RG/D �n.L
h�1i

R .G//:

Then the K–theoretic and L–theoretic Farrell–Jones conjectures, which were originally
formulated in [21, Conjecture 1.6 on page 257], are equivalent to the statement that
the covariant functors S W SPACES! SPECTRA, given by the composition of KR
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and LR with the functor sending a space to its fundamental groupoid, satisfy the
Metaisomorphism conjecture 2.3 for the family VCY of virtually cyclic subgroups
of G.

Our main example is the following case. Let AW SPACES! SPECTRA be the functor
sending a space X to the spectrum A.X/ given by the nonconnective version of
Waldhausen’s algebraic K–theory of spaces in the sense of [47].

Lemma 2.5 (i) The functor AW SPACES ! SPECTRA respects weak equiva-
lences and disjoint unions.

(ii) For any directed systems of spaces fXi j i 2 I g indexed over an arbitrary directed
set I, the canonical map

hocolim
i2I

A.Xi /!A
�
hocolim
i2I

Xi
�

is a weak homotopy equivalence.

Proof In the connective case, Waldhausen proved in [53, Proposition 2.1.7] that A–
theory preserves weak equivalences. The other two properties follow upon inspection
of the explicit model as finite retractive CW–complexes. Since the homotopy groups
of connective and nonconnective A–theory agree in positive degrees and the indexing
category I is assumed to be directed in (ii), this proves the claim for �n for n� 1.

Note that the algebraic K–theory functor which sends X to K.Z….X// enjoys the
properties claimed for A . Since Vogell showed that the linearization map LW A!K

induces an isomorphism on all nonpositive homotopy groups [50], the general case
follows.

It will be shown in [42] that the nonconnective deloopings described by Ullmann and
Winges in [47] and Vogell in [49] are equivalent.

Conjecture 2.6 (the Farrell–Jones conjecture for A–theory) A group G satisfies the
Farrell–Jones conjecture for A–theory if the Metaisomorphism conjecture 2.3 holds
for AW SPACES! SPECTRA and the family VCY , ie for every n 2 Z the projection
EVCY.G/!G=G induces an isomorphism

HG
n .prIAB/W HG

n .EVCY.G/IA
B/!HG

n .G=GIA
B/D �n.A.BG//:

Geometry & Topology, Volume 22 (2018)
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2.2 The metaisomorphism conjecture for functors from spaces to spectra
with coefficients

Let G be a group and Z be a G–CW–complex. Define a covariant Or.G/–spectrum

(2:7) SGZ W Or.G/! SPECTRA; G=H 7! S .G=H �G Z/;

where G=H�GZ is the orbit space of the diagonal G–action on G=H�Z . Notice that
there is an obvious homeomorphism G=H �G Z

Š
�!Z=H. Denote by HG

n .�IS
G
Z /

the G–homology theory in the sense of [36, Section 1] which is associated to SGZ by
the construction of [37, Proposition 156 on page 795] and satisfies HG

n .G=H IS
G
Z /Š

�n.S
G
Z .G=H//D �n.S .Z=H// for any homogeneous G–space G=H and n 2 Z.

Conjecture 2.8 (metaisomorphism conjecture for functors from spaces to spectra with
coefficients) Let S W SPACES! SPECTRA be a covariant functor which respects
weak equivalences and disjoint unions. The group G satisfies the metaisomorphism
conjecture for S with coefficients with respect to the family F of subgroups of G if
for any free G–CW–complex Z the assembly map

HG
n .prISGZ /W H

G
n .EF .G/IS

G
Z /!HG

n .G=GIS
G
Z /D �n.S .Z=G//;

induced by the projection prW EF .G/!G=G, is bijective for all n 2 Z.

Example 2.9 (Z DEG ) If we take Z DEG in Conjecture 2.8, then Conjecture 2.8
reduces to Conjecture 2.3. Namely, for a G–set S let T G.S/ be its transport groupoid
whose set of objects is S, the set of morphisms from s1 to s2 is the set fg2G j s2Dgs1g
and composition comes from the multiplication in G. There is a homotopy equivalence
BT G.G=H/ '�! G=H �G EG which is natural in G=H. Hence, we get a weak
homotopy equivalence of Or.G/–spectra SB.T G.G=‹// '�! SGEG . It induces an
isomorphism of G–homology theories — see [13, Lemma 4.6] —

HG
� .�IS

B/ Š�!HG
� .�IS

G
EG/:

Remark 2.10 (relation to the original formulation) In [21, Section 1.7 on page 262],
Farrell and Jones formulate a fibered version of their conjectures for a covariant functor
S W SPACES! SPECTRA for every (Serre) fibration �W Y ! X over a connected
CW–complex X. In our setup this corresponds to choosing Z to be the total space
of the fibration obtained from Y ! X by pulling back along the universal covering
zX ! X. This space Z is a free G–CW–complex for G D �1.X/. Note that every

Geometry & Topology, Volume 22 (2018)
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free G–CW–complex Z can always be obtained in this fashion from the fiber bundle
EG �G Z! BG up to G–homotopy; compare [21, Corollary 2.2.1 on page 263].

We sketch the proof of this identification. Let A be a G–CW–complex. Let f W E.X/!
X be the map obtained by taking the quotient of the GD�1.X/–action on the G–map
A� zX ! zX given by the projection. Denote by ypW E.�/! E.X/ the pullback of �
with f . Let qW E.�/! A=G be the composite of yp with the map E.X/! A=G

induced by the projection A� zX!A. This is a stratified fibration and one can consider
the spectrum H.A=GIS.q// in the sense of Quinn [43, Section 8]. Put

HG
n .AI �/ WD �n.H.A=GIS.q///:

The projection prW A!G=G induces a map

(2:11) a.A/W H.A=GIS.q//!H.G=GIS.Y !G=G//D S .Y /;

which is the assembly map in [21, Section 1.7 on page 262] if we take ADEVCY.G/.
The construction of HG

n .AI �/ WDH.A=GIS.q// is very complicated, but, fortunately,
for us only two facts are relevant. We obtain a G–homology theory HG

n .�I �/ and for
every H � G we get a natural identification HG

n .G=H I �/ D SGZ .G=H/. Hence,
the functor G–CW–COMPLEXES ! SPECTRA given by A 7! H.A=GIS.q//
is weakly excisive and its restriction to Or.G/ is the functor SGZ . We conclude
from [13, Theorem 6.3] that the map (2.11) can be identified with the map induced by
the projection A!G=G,

HG
n .AIS

G
Z /!HG

n .G=GIS
G
Z /D �n.S .Z=G//D �n.S .Y //;

which appears in Metaisomorphism conjecture 2.8 for functors from spaces to spectra
with coefficients.

Remark 2.12 (the condition free is necessary in Conjecture 2.8) Conjecture 2.8 is
only true very rarely if we drop the condition that Z is free. Take for instance ZDG=G.
Then Conjecture 2.8 predicts that the projection EF .G/=G! G=G induces for all
n 2 Z an isomorphism

Hn.prIS .f�g//W Hn.EF .G/=GIS .f�g//!Hn.f�g;S .f�g//;

where H�.�IS .f�g// is the (nonequivariant) homology theory associated to the spec-
trum S .f�g/. This statement is in general wrong, except in extreme cases such as
F DALL.

Geometry & Topology, Volume 22 (2018)
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Conjecture 2.13 (the Farrell–Jones conjecture for A–theory with coefficients) A
group G satisfies the Farrell–Jones conjecture for A–theory with coefficients if the
Metaisomorphism conjecture 2.8 with coefficients holds for AW SPACES!SPECTRA

and the family VCY , ie for every n 2 Z and free G–CW–complex Z the projection
EVCY.G/!G=G induces an isomorphism

HG
n .prIAG

Z /W H
G
n .EVCY.G/IA

G
Z /!HG

n .G=GIA
G
Z /D �n.A.Z=G//:

2.3 The metaisomorphism conjecture for functors from spaces to spectra
with coefficients and finite wreath products

There are also versions with finite wreath products. Recall that for groups G and F
their wreath product G oF is defined to be the semidirect product

�Q
F G

�
ÌF , where

F acts on
Q
F G by permuting the factors. Fix a class of groups C which is closed

under isomorphisms, taking subgroups and taking quotients. Examples are the classes
FIN and VCY of finite and of virtually cyclic groups. For a group G define the
family of subgroups C.G/ WD fK �G jK 2 Cg.

Conjecture 2.14 (the metaisomorphism conjecture for functors from spaces to spectra
with coefficients and finite wreath products) Let S W SPACES ! SPECTRA be a
covariant functor which respects weak equivalences and disjoint unions. The group
G satisfies the metaisomorphism conjecture with coefficients and finite wreath
products for the functor S W SPACES! SPECTRA with respect to the class C of
groups if, for any finite group F , the wreath product GoF satisfies the Metaisomorphism
conjecture 2.8 with coefficients for the functor S W SPACES! SPECTRA with respect
to the family C.G oF / of subgroups of G.

Conjecture 2.15 (the Farrell–Jones conjecture for A–theory with coefficients and
finite wreath products) A group G satisfies the Farrell–Jones conjecture for A–
theory with coefficients and finite wreath products if the Metaisomorphism con-
jecture 2.14 with coefficients and finite wreath products holds for AW SPACES !

SPECTRA and the class VCY of virtually cyclic groups.

The next two lemmas will be needed later.

Lemma 2.16 Let E be a spectrum such that S W SPACES! SPECTRA is given by
Y 7! YC ^E .
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On the Farrell–Jones conjecture for Waldhausen’s A–theory 3331

(i) Then, for any group G, any G–CW–complex X which is contractible (after
forgetting the G–action) and any free G–CW–complex Z , the projection X !
G=G induces for all n 2 Z an isomorphism

HG
n .X IS

G
Z /

Š
�!HG

n .G=GIS
G
Z /:

(ii) Conjectures 2.3, 2.8 and 2.14 hold for such an S for every group G and every
family F of subgroups of G.

An S given by Y 7! YC^E is a homology theory, and thus the lemma states that the
conjectures hold for homology theories.

Proof (i) There are natural isomorphisms of spectra

mapG..G=‹/; X/C ^Or.G/ ..G=‹�G Z/C ^E/

Š
�!

��
mapG..G=‹/; X/�Or.G/G=‹

�
�G Z

�
C
^E Š
�! .X �G Z/C ^E ;

where the second isomorphism comes from the G–homeomorphism

mapG..G=‹/; X/�Or.G/G=‹
Š
�!X

of [13, Theorem 7.4(1)]. Since Z is a free G–CW–complex and X is contractible
(after forgetting the group action), the projection X�GZ!G=G�GZ is a homotopy
equivalence and hence induces a weak homotopy equivalence

.X �G Z/C ^E '
�! .G=G �G Z/C ^E :

Thus, we get a weak homotopy equivalence

mapG..G=‹/; X/C ^Or.G/ ..G=‹�G Z/C ^E/! .G=G �G Z/C ^E :

Under the identifications coming from the definitions

HG
n .X IS

G
Z /D �n

�
mapG..G=‹/; X/C ^Or.G/ ..G=‹�G Z/C ^E/

�
;

HG
n .G=GIS

G
Z /D �n..G=G �G Z/C ^E/;

this weak homotopy equivalence induces on homotopy groups the isomorphism

HG
n .X IS

G
Z /!HG

n .G=GIS
G
Z /:

(ii) This follows from assertion (i).
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Lemma 2.17 Let S ;T ;U W SPACES! SPECTRA be covariant functors which re-
spect weak equivalences and disjoint unions. Let i W S ! T and pW T ! U be
natural transformations such that for any space Y the sequence of spectra S .Y /

i .Y /
��!

T .Y /
p.Y /
��!U .Y / is up to weak homotopy equivalence a cofiber sequence of spectra.

(i) Then we obtain for every group G and all G–CW–complexes X and Z a
natural long exact sequence

� � � !HG
n .X IS

G
Z /!HG

n .X IT
G
Z /!HG

n .X IU
G
Z /

!HG
n�1.X IS

G
Z /!HG

n�1.X IT
G
Z /!HG

n�1.X IU
G
Z /! � � � :

(ii) Let G be a group and F be a family of subgroups of G. Then the Metaiso-
morphism conjecture 2.3 for functors from spaces to spectra holds for all three
functors S, T and U for .G;F/ if it holds for two of the functors S, T and U

for .G;F/.
The analogous statement is true for the Metaisomorphism conjecture 2.8 for
functors from spaces to spectra with coefficients and for the Metaisomorphism
conjecture 2.14 for functors from spaces to spectra with coefficients and finite
wreath products.

Proof (i) The version for spectra of [13, Theorem 3.11] implies that we obtain, up
to weak homotopy equivalence, a cofiber sequence of spectra

mapG.G=‹;X/C ^Or.G/ S .G=‹�G Z/!mapG.G=‹;X/C ^Or.G/ T .G=‹�G Z/

!mapG.G=‹;X/C ^Or.G/U .G=‹�G Z/:

and passing to its associated long exact sequence of homotopy groups yields the result.

(ii) This follows from assertion (i) and the five lemma.

3 Relations between the conjectures for various theories

There are other prominent covariant functors SPACES! SPECTRA which respect
weak homotopy equivalences and disjoint unions. Notice in the sequel that we are
always considering the nonconnective versions. We are thinking of the stable pseu-
doisotopy spectrum PCAT and the Whitehead spectrum WhCAT , where CAT can be
the topological category TOP, the PL–category PL or the smooth category DIFF. For
the definition of PCAT we refer to [14; 42; 57].
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Usually, the Whitehead spectrum is defined as a connective spectrum — see [54] —
and see [58, Section 2.2] for a definition of the classical assembly map. We make the
obvious generalization.

Definition 3.1 The topological nonconnective Whitehead spectrum WhTOP.X/ is the
homotopy cofiber of the classical assembly map in nonconnective A–theory:

XC ^A.f�g/!A.X/!WhTOP.X/:

The piecewise-linear nonconnective Whitehead spectrum is, by definition,

WhPL.X/ WDWhTOP.X/:

Further, we define the smooth nonconnective Whitehead spectrum WhDIFF.X/ as the
homotopy cofiber of the sequence

†1XC!A.X/!WhDIFF.X/;

where †1XC!A.X/ factors as the unit map †1XC DXC ^S!XC ^A.f�g/

and assembly.

Theorem 3.2 (relations between the various functors) (i) There is a zigzag of
natural equivalences,

PCAT '
 !�2WhCAT;

where CAT can be taken to be TOP, PL or DIFF.

(ii) The canonical map
PPL '
�!PTOP

is a natural equivalence.

Proof The connective, objectwise case of (i) follows from the equivalence P.M/'

�2WhPL.M/, which was originally stated in [52] and fully proved in [54, Theorem 0.2].

There are some issues concerning the full functoriality of pseudoisotopy, which will be
clarified in [14; 42]. The full statement will be established in [42].

The objectwise version of (ii) has been shown in [11; 12]. An argument for the full
statement will be given in [14].

Lemma 3.3 If the Metaisomorphism conjecture 2.3 for functors from spaces to spectra
holds for the group G and the family F for one of the functors A , WhTOP , WhPL ,
WhDIFF , PTOP , PPL and PDIFF , then it holds for all of them.
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The analogous statement holds for the Metaisomorphism conjecture 2.8 for functors
from spaces to spectra with coefficients and for the Metaisomorphism conjecture 2.14
for functors from spaces to spectra with coefficients and finite wreath products.

Proof This follows from Lemmas 2.16 and 2.17.

Remark 3.4 (the nonconnective spectrum of stable h–cobordisms) There is also
the nonconnective stable h–cobordism spectrum H CAT.M/ of a compact manifold
(possibly with boundary) M. Note that h–cobordisms are (usually) only defined as
a functor in codimension-zero embeddings. As such, they are related to the previous
functors. For every compact manifold M (possibly with boundary), there are natural
weak homotopy equivalences

H CAT.M/ '�!�WhCAT.M/

and
PCAT.M/ '�!�H CAT.M/:

For the proof and more information we refer to [54].

Finally, we explain the relationship between A–theory and algebraic K–theory of
integral group rings.

For a space X, denote its fundamental groupoid by ….X/. There is a so-called
linearization map, natural in X,

(3:5) L.X/W A.X/!K .Z…1.X//

The next result follows combining [50, Section 4] and [52, Propositions 2.2 and 2.3].

Theorem 3.6 (connectivity of the linearization map) Let X be a CW–complex.
Then:

(i) The linearization map L.X/ of (3.5) is 2–connected, ie the map

Ln.X/ WD �n.L.X//W An.X/!Kn.Z….X//

is bijective for n� 1 and surjective for nD 2.

(ii) The map Ln is rationally bijective for all n 2 Z provided that each component
of X is aspherical.

This implies that the K–theoretic Farrell–Jones conjecture for ZG and the A–theoretic
Farrell–Jones conjecture for A.BG/ are equivalent in degree � 1 and rationally
equivalent in all degrees. More precisely, we have:
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Theorem 3.7 (relating A–theory to algebraic K–theory) Consider a group G and a
family F of subgroups of G. The linearization map (3.5) and the projection EF .G/!

G=G yield a commutative diagram

HG
n .EF .G/IA

B/ //

��

HG
n .G=GIA

B/D An.BG/

��

HG
n .EF .G/IKZ/ // HG

n .G=GIKZ/DKn.ZG/

where KZW GROUPOIDS ! SPECTRA has been recalled in Example 2.4. The
vertical arrows are bijective for n � 1 and surjective for n D 2. They are rationally
bijective for all n 2 Z.

4 Some applications to automorphism groups of aspherical
closed manifolds

Before we begin with the proof of Theorem 1.1, we want to illustrate the impact of
the Farrell–Jones conjecture by discussing automorphism groups of aspherical closed
manifolds. For rational computations the Farrell–Jones conjecture for K–theory and
L–theory suffices. For potential integral computations one needs the Farrell–Jones
conjecture for A–theory and for L–theory. More details about automorphism groups
of closed manifolds can be found in [59].

4.1 Topological automorphism groups of aspherical closed manifolds

Let TOP.M/ be the topological group of self-homeomorphisms of the closed mani-
fold M. Denote by G.M/ the monoid of self-homotopy equivalences M !M. Let
eTOP.M/ and zG.M/ be the block versions; see [59, page 168] for a survey and further

references. There are natural maps making the diagram

TOP.M/

��

// eTOP.M/

��

G.M/ // zG.M/

commute.

Define eTOP.M/=TOP.M/, zG.M/=TOP.M/ and G.M/=TOP.M/ to be the ho-
motopy fibers of the maps BTOP.M/! B eTOP.M/, BTOP.M/! B zG.M/ and
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BTOP.M/ ! BG.M/. We obtain a commutative diagram with horizontal fiber
sequences

eTOP.M/=TOP.M/ //

��

BTOP.M/ //

id
��

BeTOP.M/

��

zG.M/=TOP.M/ // BTOP.M/ // B zG.M/

G.M/=TOP.M/ //

OO

BTOP.M/ //

id

OO

BG.M/:

OO

According to [44, Theorem 5.8], there is no real difference between self-homotopy
equivalences and their block version.

Lemma 4.1 The map G.M/! zG.M/ and hence the map BG.M/! BzG.M/ are
weak homotopy equivalences.

The relative homotopy groups of the map eTOP.M/! zG.M/ can be identified with
the groups Ss.M �Dn; @/ as explained in [15, page 285]. The next lemma follows in
combination with [5, Proposition 0.3]. Recall that a space X is aspherical if �i .X/D 0
for i ¤ 1.

Lemma 4.2 Suppose that M is an aspherical closed manifold of dimension � 5 and
both the K– and L–theoretic Farrell–Jones conjectures hold for Z�1.M/.

Then Ss.M �Dn; @/ is trivial for n� 0 and the map

eTOP.M/! zG.M/

is a weak homotopy equivalence.

For aspherical spaces X, the homotopy groups of G.X/ can be computed from the long
exact sequence of homotopy groups associated to the evaluation map G.X/

evx0��!X

for some basepoint x0 2X :

Lemma 4.3 Let X be an aspherical CW–complex. Then

�n.G.X//Š

8<:
Out.�1.X// if nD 0;
center.�1.X// if nD 1;
0 if n� 2:
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We conclude from Lemmas 4.1, 4.2 and 4.3:

Corollary 4.4 If M is an aspherical closed manifold of dimension � 5 with funda-
mental group � , and both the K–theoretic and L–theoretic Farrell–Jones conjectures
hold for Z� , then there are natural zigzags of homotopy equivalences

eTOP.M/' G.M/

and
BeTOP.M/' BG.M/

and we get

�n.eTOP.M//Š

8<:
Out.�/ if nD 0;
center.�/ if nD 1;
0 if n� 2:

Theorem 4.5 There is a map

eTOP.M/=TOP.M/!�1.EZ=2C ^Z=2�WhsTOP.M//

which is .kC1/–connected if k is in the topological concordance stable range for M.
Here WhsTOP.M/ denotes the connective cover of the Whitehead spectrum WhTOP.M/.

Proof It suffices to show that the spectrum denoted by WhTOP.M/ in [57] is a
model for the homotopy cofiber of the assembly map; see Definition 3.1. This follows
from combining [57, Theorem A], the equivalence PTOP.M/ ' �H TOP.M/ and
[54, Theorem 0.2].

We conclude from Theorem 3.2(ii), Corollary 4.4, Theorem 4.5 and the lower bound
on the topological concordance stable range given in [54, Corollary 1.4.2]:

Theorem 4.6 Let M be a smoothable aspherical closed manifold of dimension � 10
with fundamental group � . Suppose that the Farrell–Jones conjecture for A–theory for
B� and the Farrell–Jones conjecture for L–theory for Z� hold.

Then we obtain for 2� n�min
˚
1
2
.dimM � 7/; 1

3
.dimM � 4/

	
isomorphisms

�n.TOP.M// Š�!�nC2.EZ=2C ^Z=2 WhTOP.B�//;

and an exact sequence

1! �3.EZ=2C ^Z=2 WhTOP.B�//! �1.TOP.M//! center.�/

! �2.EZ=2C ^Z=2 WhTOP.B�//! �0.TOP.M//! Out.�/! 1:
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Next we give the proof of Theorem 1.3.

Proof of Theorem 1.3 Let G be a torsionfree hyperbolic group. Then the Farrell–
Jones conjecture for A–theory for BG and the Farrell–Jones conjectures for algebraic
K–theory and for L–theory for ZG hold by Theorem 1.1 and [5; 6].

Since G is torsionfree, we have K�i .ZG/D 0 for all i � 1 and zK0.ZG/D 0, and
thus the spectra under consideration are connective by Theorem 3.6(i). It follows from
Lemma 3.3 that there is a weak homotopy equivalence

HG.EVCY.G/I .WhTOP/B/ '�!WhTOP.BG/:

The arguments in [38, Section 10] based on [39, Corollary 2.8 and Example 3.6]
for algebraic K–theory carry over to WhTOP and imply that there is a weak homo-
topy equivalence induced by the various inclusions C !G of representatives of the
conjugacy classes of maximal cyclic subgroups of G,W

CWhTOP.BC/ '�!WhTOP.BG/:

From the Bass–Heller–Swan decomposition (1.2) we obtain a weak homotopy equiva-
lence

NA.f�g/_NA.f�g/ '�!WhTOP.BC/:

This proves part (i) of Theorem 1.3.

Part (ii) follows from part (i) and Theorem 4.6 together with the fact that the center of
a hyperbolic group which is torsionfree and not cyclic is trivial.

Theorems 3.7 and 4.6 imply:

Theorem 4.7 (rational homotopy groups of TOP.M/ for an aspherical closed man-
ifold) Let M be a smoothable aspherical closed manifold of dimension � 10 with
fundamental group � . Suppose that the Farrell–Jones conjectures for K–theory and
for L–theory for Z� hold.

Then for 1� n�min
˚
1
2
.dimM � 7/; 1

3
.dimM � 4/

	
we have

�n.TOP.M//˝Z QD

�
center.�/˝Z Q if nD 1;
f0g if n� 2:
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4.2 Smooth automorphism groups of aspherical closed smooth manifolds

Taking the computation of Ki .Z/˝Z Q of Borel [10] into account, we get from
Theorems 3.2 and 3.7 and [38, Theorem 0.3]:

Theorem 4.8 Let M be an aspherical closed smooth manifold of dimension � 10
with fundamental group � . Suppose that the Farrell–Jones conjectures for K–theory
and for L–theory for Z� hold.

Then we get, for all n 2 Z,

�n.WhDIFF.M//˝Z QŠ
1M
kD1

Hn�4k�1.M IQ/;

�n.P
DIFF.M//˝Z QŠ

1M
kD1

Hn�4kC1.M IQ/:

For the proof of the next result, which does involve the involutions on higher algebraic
K–theory, we refer to [15, Lecture 5], [16] or [19, Section 2].

Theorem 4.9 (rational homotopy groups of DIFF.M/ for an aspherical closed smooth
manifold) Let M be an aspherical closed smooth manifold of dimension � 10 with
fundamental group � . Suppose that the Farrell–Jones conjectures for K–theory and
for L–theory for Z� hold.

Then for 1� n�min
˚
1
2
.dimM � 7/; 1

3
.dimM � 4/

	
we have

�n.DIFF.M//˝Z QD

8<:
center.�/˝Z Q if nD 1;L1
jD1H.nC1/�4j .M IQ/ if n� 2; dimM odd;
f0g if n� 2; dimM even:

Remark 4.10 (surfaces and simply connected manifolds) There are very interesting
computations of the cohomology of BDIFF.M/ in a range and under stabilization with
taking the connected sum with Sn �Sn for 2–dimensional manifolds or simply con-
nected high-dimensional manifolds by Berglund, Galatius, Madsen, Randal-Williams,
Weiss and others; see for instance [8; 9; 23; 24; 25; 26; 27; 40; 41]. The methods used
in these papers are quite different. Notice that taking the connected sum with Sn �Sn

will destroy asphericity except for nD 1, so that it is not clear what stabilization could
mean in the context of aspherical manifolds in high dimensions.
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5 Inheritance properties of the isomorphism conjectures

The main result of this section is:

Theorem 5.1 (inheritance properties of the metaconjecture with coefficients) Let
S W SPACES! SPECTRA be a covariant functor which respects weak equivalences
and disjoint unions. Let C be a class of groups which is closed under isomorphisms,
taking subgroups and taking quotients.

(i) Suppose that the Metaisomorphism conjecture 2.8 with coefficients holds for
.G; C.G//, ie it holds for G with respect to the family of subgroups C.G/ D
fH �G jH 2 Cg of G. Let H �G be a subgroup. Then Conjecture 2.8 holds
for .H; C.H//.

(ii) Let 1!K!G
p
�!Q! 1 be an extension of groups. Suppose that .Q; C.Q//

and .p�1.H/; C.p�1.H// for every H 2 C.Q/ satisfy Conjecture 2.8. Then
.G; C.G// satisfies Conjecture 2.8.

(iii) Suppose that Conjecture 2.8 is true for .H1 � H2; C.H1 � H2// for every
H1;H2 2 C . Then, for two groups G1 and G2 , Conjecture 2.8 is true for
the direct product G1 �G2 and the family C.G1 �G2/ if and only if it is true
for .Gk; C.Gk// for k D 1; 2.

(iv) Suppose that for any directed systems of spaces fXi j i 2 I g indexed over an
arbitrary directed set I the canonical map

hocolim
i2I

S .Xi /! S
�
hocolim
i2I

Xi
�

is a weak homotopy equivalence. Let fGi j i 2 I g be a directed system of groups
over a directed set I (with arbitrary structure maps). Put G D colimi2I Gi .
Suppose that Conjecture 2.8 holds for .Gi ; C.Gi // for every i 2 I. Then
Conjecture 2.8 holds for .G; C.G//.

(v) The analogs of assertions (i), (ii), (iii) and (iv) hold for the Metaisomorphism
conjecture 2.14 with coefficients and finite wreath products. Moreover, if G is a
group and H �G is a subgroup of finite index, then Conjecture 2.14 holds for
.G; C.G// if and only if Conjecture 2.14 holds for .H; C.H//.

Let us remark that the case of free products is missing in Theorem 5.1. It will be treated
in Section 5.6 below.
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5.1 The fibered metaisomorphism conjecture for equivariant homology
theories

Next we introduce the metaconjecture and its fibered version in terms of G–homology
theories. In this setting the analog of Theorem 5.1 has already been proved and we
want to reduce the case coming from a functor from spaces to spectra to this situation.

Conjecture 5.2 (metaisomorphism conjecture) The group G satisfies the meta-
isomorphism conjecture with respect to the G–homology theory HG� and the family
F of subgroups of G if the assembly map

HGn .pr/W HGn .EF .G//!HGn .G=G/

induced by the projection prW EF .G/!G=G is bijective for all n 2 Z.

Let X be a G–CW–complex. Let ˛W H ! G be a group homomorphism. Denote
by ˛�X the H –CW–complex obtained from X by restriction with ˛ . Given an
H –CW–complex Y , we denote the G–CW–complex given by induction by ˛�Y .

Fix a group � . An equivariant homology theory H ‹
� over � in the sense of [2,

Definition 2.3] assigns to a group .G; / over � , ie a group G together with a
homomorphism  W G! � , a G–homology theory HG; 

n , sometimes denoted just
by HG

� . For two groups .G; / and .G0;  0/ over � and a morphism ' between
them, ie a group homomorphism 'W G ! G0 with  0 ı ˛ D  , one obtains homo-
morphisms ind˛W HG

� .X;A/!HG0

� .˛�.X;A// for every G–CW–pair .X;A/, which
are bijective if the kernel of ˛ acts freely on .X;A/ and compatible with the boundary
homomorphisms associated to pairs. If � is trivial, this is just an equivariant homology
theory.

Conjecture 5.3 (fibered metaisomorphism conjecture) A group .G; / over � satis-
fies the fibered metaisomorphism conjecture with respect to H‹

� and the family F
of subgroups of G if for each group homomorphism 'W K!G the group K satisfies
the Metaisomorphism conjecture 5.2 with respect to the K–homology theory HK; ı'�

and the family '�F D fH �G j '.H/ 2 Fg of subgroups of K .

Lemma 5.4 Let .G; / be a group over � and 'W K!G be a group homomorphism.
If .G; / satisfies the Fibered metaisomorphism conjecture 5.3 with respect to the
family F of subgroups of G, then the group .K; ı '/ over � satisfies the Fibered
metaisomorphism conjecture 5.3 with respect to the family '�F .

Proof If # W L!K is a group homomorphism, then #�.'�F/D .' ı#/�F .
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5.2 Some adjunctions

Let S W SPACES! SPECTRA be a covariant functor. Throughout this section we
will assume that it respects weak equivalences and disjoint unions.

Lemma 5.5 Let  W K1!K2 be a group homomorphism.

(i) If Z is a K1–CW–complex and X is a K2–CW–complex, then there is a natural
isomorphism

HK1
n . �X IS

K1
Z / Š�!HK2

n .X IS
K2
 �Z

/:

(ii) If Z is a K2–CW–complex and X is a K1–CW–complex, then there is a natural
isomorphism

HK1
n .X IS

K1
 �Z/

Š
�!HK2

n . �X IS
K2
Z /:

Proof (i) The fourth isomorphism appearing in [13, Lemma 1.9], together with
[13, Lemma 4.6], applied levelwise implies that it suffices to construct a natural weak
homotopy equivalence of Or.K2/–spectra

u. ;Z/W  �S
K1
Z

'
�!S

K2
 �Z

;

where  �S
K1
Z is the Or.K2/–spectrum obtained by induction in the sense of [13,

Definition 1.8] with the functor Or. /W Or.K1/!Or.K2/, K1=H1 7! �.K1=H1/,
applied to the Or.K1/–spectrum S

K1
Z . For a homogeneous space K2=H we define

u. ;Z/.K2=H/ to be the composite

 �S
K1
Z .K2=H/DmapK2. �.K1=‹/;K2=H/C ^Or.K1/ S .K1=‹�K1 Z/

Š
�!mapK1..K1=‹/;  

�.K2=H//C ^Or.K1/ S .K1=‹�K1 Z/

'
�!S . �.K2=H/�K1 Z/

Š
�!S .K2=H �K2  �Z/DW S

K2
 �Z

.K2=H/:

Here the first map comes from the adjunction isomorphism

mapK2. �.K1=‹/;K2=H/
Š
�!mapK1.K1=‹/;  

�.K2=H//;

and the third map comes from the canonical homeomorphism

 �.K2=H/�K1 Z
Š
�!K2=H �K2  �Z:
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The second map is the special case T D  �K2=‹ of the natural weak homotopy
equivalence defined for any K1–set T ,

�.T /W mapK1..K1=‹/; T /C ^Or.K1/ S .K1=‹�K1 Z/
'
�!S .T �K1 Z/;

which is given by .uW K1=‹! T /� s 7! S .u�K1 idZ/.s/. If T is a transitive K1–
set, then �.T / is even an isomorphism by the Yoneda lemma. The left-hand side is
compatible with disjoint unions in T ; the right-hand side is compatible with disjoint
unions in T up to homotopy, where we use that S respects disjoint unions. As every
K1–set is the disjoint union of homogeneous K1–sets, �.T / is a weak homotopy
equivalence for every K1–set T .

(ii) The third isomorphism appearing in [13, Lemma 1.9] together with [13, Lemma 4.6]
implies that it suffices to construct a natural weak homotopy equivalence of Or.K1/–
spectra

v. ;Z/W  �S
K2
Z

'
�!S

K1
 �Z ;

where  �SK2Z is the Or.K1/–spectrum obtained by restriction in the sense of [13,
Definition 1.8] with the functor Or. /W Or.K1/!Or.K2/, K1=H 7!  �.K1=H/,
applied to the Or.K2/–spectrum S

K2
Z . Actually, we obtain even an isomorphism

v. ;Z/ using the adjunction

 �.K1=H/�K2 Z ŠK1=H �K1  
�Z

for any subgroup H �K1 .

5.3 The fibered metaisomorphism conjecture with coefficients for
functors from spaces to spectra

Notice that for a homomorphism 'W H ! G the restriction '�Z of a free G–CW–
complex Z is free again if and only if ' is injective. We have already explained in
Remark 2.12 that the assumption that Z is free is needed in Conjecture 2.8. In the
Fibered metaisomorphism conjecture 5.3 it is crucial not to require that 'W H ! G

is injective since we want to have good inheritance properties. Therefore, we have to
blow up Z everywhere by passing to EG �Z , as explained below.

Let G be a group and Z be a G–CW–complex. Recall that G denotes the groupoid with
precisely one object, which has G as its automorphism group. Let GROUPOIDS #G

be the category of groupoids over G. Objects are groupoids G together with a functor
P W G ! G. A morphism from P W G ! G to P 0W G0 ! G is a covariant functor
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F W G ! G0 satisfying P 0 ı F D P. Given a groupoid G , we obtain a contravariant
functor E.‹ # G/W G! SPACES by sending an object x to the classifying space of
the category x # G of objects in G under x . We get from Z , by restriction along P, a
covariant functor P �ZW G! SPACES, where we think of the left G–space Z as a
covariant functor G! SPACES. The tensor product over G — see [13, Section 1] —
yields a space E.‹ # G/�G P �Z.‹/. Thus, we obtain a covariant functor

(5:6)
S
#G
Z W GROUPOIDS #G! SPECTRA;

P W .G!G/ 7! S .E.‹ # G/�G P �Z.‹//:

It yields an equivariant homology theory H ‹
n.�IS

#G
Z / over G ; see [2, Lemma 7.1].

Given a homomorphism  W K!G we get an identification of K–homology theories

(5:7) H
K; 
� .�IS

#G
Z /ŠHK

� .�IS
K
EK� �Z/;

which is induced by a homotopy equivalence, natural in K=H,

E.‹ # T K.K=H//�T K.K=H/  
�Z.‹/ '�!K=H �K .EK � 

�Z/

and [13, Lemma 4.6], where T denotes the transport groupoid from Example 2.9
and  also denotes its induced map T K.K=H/! G. For any group  W K ! G

over G, inclusion i W H !K of a subgroup H of K , and n 2 Z, we have canonical
identifications

HK; 
n .K=H IS

#G
Z / Š�!HH; ıi

n .H=H IS
#G
Z /Š �n.S .EH �H . ı i/

�Z//:

Lemma 5.8 Let 'W H !K and  W K!G be group homomorphisms.

(i) Let X be a G–CW–complex and let Z be a K–CW–complex. Then we obtain
a natural isomorphism

HH;'
n .'� �X IS

#K
Z / Š�!HG

n .X IS
G
. ı'/�.EH�'�Z/

/:

(ii) Let X be an H –CW–complex and let Z be a G–CW–complex. Then we obtain
a natural isomorphism

HH;'
n .X IS

#K
 �Z/

Š
�!HH; ı'

n .X IS
#G
Z /:

Proof (i) We get, from (5.7),

HH;'
n .'� �X IS

#K
Z / WDHH

n .'
� �X ISHEH�'�Z/:

Now apply Lemma 5.5(i).
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(ii) We get, from (5.7),

HH;'
n .X IS

#K
 �Z/ WDH

H
n .X IS

H
EH�'� �Z/

DHH
n .X IS

H
EH�. ı'/�Z/DWH

H; ı'
n .X IS

#G
Z /:

Conjecture 5.9 (fibered metaisomorphism conjecture for a functor from spaces to
spectra with coefficients) Let S W SPACES! SPECTRA, as before, respect weak
equivalences and disjoint unions. We say that S satisfies the fibered metaisomorphism
conjecture for a functor from spaces to spectra with coefficients for the group G and
the family of subgroups F of G if the following holds: For any G–CW–complex Z ,
the equivariant homology theory H ‹

�.�IS
#G
Z / over G satisfies the Fibered metaiso-

morphism conjecture 5.3 for the group .G; idG/ over G and the family F .

Note that Conjecture 2.8 deals with the G–homology theory HG
� .�IS

G/, whereas
Conjecture 5.9 deals with the equivariant homology theory H ‹

�.�IS
#G/ over G. More-

over, Conjecture 5.9 is unchanged if we additionally require that the G–CW–complex Z
is free. Namely, for any G–CW–complex Z , the G–CW–complex EG�Z is free and
the projection EG�Z!Z induces an isomorphism H ‹

�.�IS
#G
EG�Z/

Š
�!H ‹

�.�IS
#G
Z /

of equivariant homology theories over G because of (5.7) and [13, Lemma 4.6].

For the rest of this section, we abbreviate the different conjectures as follows:

� C2.8 is the Metaisomorphism conjecture 2.8 for functors from spaces to spectra
with coefficients. This is the conjecture we want to know about in the end.

� MIC5.2 and FMIC5.3 denote the Metaisomorphism conjecture 5.2, and the
Fibered metaisomorphism conjecture 5.3. These are statements about a (G–)equi-
variant homology theory.

� S5.9 denotes the Fibered metaisomorphism conjecture 5.9 for a functor from
spaces to spectra with coefficients. This takes as input a functor S and is the
most general version of a conjecture we are interested it.

Lemma 5.10 Let  W K!G be a group homomorphism.

(i) Suppose that C2.8 holds for the group G and the family F . Then S5.9 holds for
the group K and the family  �F .

(ii) If S5.9 holds for the group G and the family F , then C2.8 holds for the group G
and the family F .
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(iii) Suppose that S5.9 holds for the group K and the family F . Then, for ev-
ery G–CW–complex Z , FMIC5.3 holds for the equivariant homology theory
Hn.�IS

#G
Z / over G for the group .K; / over G and the family F of sub-

groups of K .

Proof (i) This follows from Lemma 5.8(i), since in the notation used there we have
'� �EF .G/D '

�E �F .K/ and '� �G=G DH=H, and . ı'/�.EH �'�Z/ is
a free G–CW–complex.

(ii) This follows from applying Conjecture 5.9 to the special case  D idG and the
fact that for a free G–CW–complex Z the projection EG�Z!Z is a G–homotopy
equivalence and hence we get, from (5.7) and [13, Lemma 4.6], natural isomorphisms

HG;idG
n .X IS

#G
Z /ŠHG

n .X IS
G
EG�Z/ŠH

G
n .X IS

G
Z /

for every G–CW–complex X and n 2 Z.

(iii) This follows from Lemma 5.8(ii).

5.4 Strongly continuous equivariant homology theories over a group

Fix a group � and an equivariant homology theory H‹� over � .

Let X be a G–CW–complex and let ˛W H ! G be a group homomorphism. The
functors ˛�W H–CW�G–CW W˛� are adjoint to one another. In particular, the adjoint
of the identity on ˛�X is a natural G–map

(5:11) f .X; ˛/W ˛�˛
�X !X; .g; x/ 7! gx:

Consider a map ˛W .H; �/! .G;�/ of groups over � . Define the ƒ–map

an D an.X; ˛/W HHn .˛
�X/

ind˛
��!HGn .˛�˛

�X/
HGn .f .X;˛//
��������!HGn .X/:

If ˇW .G;�/! .K; �/ is another morphism of groups over � , then by the axioms of
an induction structure, see [36], the composite

HHn .˛
�ˇ�X/

an.ˇ
�X;˛/

�������!HGn .ˇ
�X/

an.X;ˇ/
�����!HKn .X/

agrees with an.X; ˇ ı˛/W HHn .˛�ˇ�X/DHHn ..ˇ ı˛/�X/!HKn .X/ for a K–CW–
complex X.

Consider a directed system of groups fGi j i 2 I g with G D colimi2I Gi and structure
maps  i W Gi !G for i 2 I and 'i;j W Gi !Gj for i; j 2 I with i � j . We obtain
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for every G–CW–complex X a system an. 
�
j X; 'i;j /W H

Gi . �i X/! HGj . �j X/.
We get a map

(5:12) tGn .X/ WD colim
i2I

an.X; i /W colim
i2I

HGin . 
�
i .X//!HGn .X/:

The next definition is taken from [2, Definition 3.3].

Definition 5.13 (strongly continuous equivariant homology theory over a group) An
equivariant homology theory H‹� over the group � is called strongly continuous if,
for every group .G; �/ over � and every directed system of groups fGi j i 2 I g with
G D colimi2I Gi and structure maps  i W Gi !G for i 2 I, the map

tGn .f�g/W colim
i2I

HGin .f�g/!HGn .f�g/

is an isomorphism for every n 2 Z.

Lemma 5.14 Suppose that, for any directed system of spaces fXi j i 2 I g indexed
over an arbitrary directed set I, the canonical map

hocolim
i2I

S .Xi /! S
�
hocolim
i2I

Xi
�

is a weak homotopy equivalence.

Then, for every group � and �–CW–complex Z , the equivariant homology theory
over � given by H ‹

�.�IS
#�
Z / is strongly continuous.

Proof We only treat the case � D G and  D idG ; the general case of a group
 W G ! � over � is completely analogous. Consider a directed system of groups
fGi j i 2 I g with G D colimi2I Gi . Let  i W Gi !G be the structure map for i 2 I.

As I is directed, the canonical map

(5:15) hocolim
i2I

S .EGi �Gi  
�
i Z/! S

�
hocolim
i2I

.EGi �Gi  
�
i Z/

�
is by assumption a weak homotopy equivalence. We have the homeomorphisms

EGi �Gi  
�
i Z

Š
�! . i /�EGi �G Z;�

hocolim
i2I

. i /�EGi
�
�G Z

Š
�! hocolim

i2I
.. i /�EGi �G Z/:

They induce a homeomorphism

(5:16) S .hocolim
i2I

.EGi �Gi  
�
i Z//

Š
�!S

��
hocolim
i2I

. i /�EGi
�
�G Z

�
:
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The canonical map

hocolim
i2I

. i /�EGi !EG

is a G–homotopy equivalence. The proof of this fact is a special case of the argument
appearing in the proof of [39, Theorem 4.3 on page 516]. It induces a weak homotopy
equivalence

(5:17) S
��

hocolim
i2I

. i /�EGi
�
�G Z

�
! S .EG �G Z/:

Hence, we get, by taking the composite of the maps (5.15), (5.16) and (5.17), a weak
homotopy equivalence

hocolim
i2I

S .EGi �Gi  
�
i Z/! S .EG �G Z/:

As I is directed, it induces, after taking homotopy groups for every n 2 Z, an isomor-
phism

colim
i2I

�n.S .EGi �Gi  
�
i Z//! �n.S .EG �G Z//;

which can be identified using (5.7) with the canonical map

tGn .f�g/W colim
i2I

HGi
n .f�gIS

#G
Z /!HG

n .f�gIS
#G
Z /:

This finishes the proof of Lemma 5.14.

5.5 Proof of Theorem 5.1

In this section we give the proof of Theorem 5.1. We use the notation from there.

Proof (i) Consider a free H –CW–complex Z . Let i W H!G be the inclusion. Then
i�Z is a free G–CW–complex, i�EC.G/.G/ is a model for EC.H/.H/ and i�G=G D
H=H. From Lemma 5.5(i), we obtain a commutative diagram with isomorphisms as
vertical maps

HH
n .EC.H/.H/IS

H
Z /

//

Š

��

HH
n .H=H IS

G
Z /

Š

��

HG
n .EC.G/.G/IS

G
i�Z
/ // HG

n .G=GIS
G
i�Z
/

where the horizontal maps are induced by the projections. The lower map is bijective
by assumption. Hence, the upper map is bijective as well.

Geometry & Topology, Volume 22 (2018)



On the Farrell–Jones conjecture for Waldhausen’s A–theory 3349

(ii) As C2.8 holds for .Q;Q/, by Lemma 5.10(i), S5.9 holds for .G; p�C.Q//. By
Lemma 5.10(i) again, for every H 2 C.Q/, C2.8 holds for

�
p�1.H/; C.p�1.H//

�
.

Naturally, p�1.H/�G is a group over G for which, by Lemma 5.10(iii), FMIC5.3
holds for H ‹

n.�IS
#G
Z / for any G–CW–complex Z and the family C.p�1.H// D

C.G/jp�1.H/ . Let L2p�C.Q/. Then, using Lemma 5.4 for the map L!p�1.p.L//,
FMIC5.3 holds for .L; CjL/ and H ‹

n.�IS
#G
Z /. As FMIC5.3 holds for .G; p�C.Q//

and for .L; CjL/ for every L 2 p�C.Q/, the transitivity principle — see Theorem 4.3
of [2] — implies that FMIC5.3 holds for .G; C/. By Lemma 5.10(ii), then also C2.8
holds for .G; C/.

(iii) If C2.8 holds for .G1�G2; C.G1�G2//, it holds for Gk and the family C.Gk/D
C.G1 �G2/jGk for k D 1; 2 by assertion (i).

Suppose that C2.8 holds for .Gk; C.Gk// for k D 1; 2. By assertion (ii) applied to the
split exact sequence

1!H2!G1 �H2!G1! 1;

C2.8 holds for .G1 � H2; C.G1 � H2// for every H2 2 C.G2/. By assertion (ii)
applied to the split exact sequence 1! G1! G1 �G2! G2! 1, C2.8 holds for
.G1 �G2; C.G1 �G2//.

(iv) Since C2.8 holds for Gi and C.Gi / for every i 2 I by assumption, we conclude
from Lemma 5.10(i) that S5.9 holds for the group Gi and the family C.Gi / for
every i 2 I. Lemma 5.10(iii) implies that, for every i 2 I and G–CW–complex
Z , FMIC5.3 holds for the equivariant homology theory Hn.�IS

#G
Z / over G for the

group  i W Gi!G over G and the family C.Gi /. We conclude from [2, Theorem 5.2]
and Lemma 5.14 that, for every G–CW–complex Z , FMIC5.3 holds for the equi-
variant homology theory H ‹

�.�IS
#G
Z / over G for the group .G; idG/ over G and

the family C.G/. In other words, S5.9 holds for the group G and the family C.G/.
Lemma 5.10(ii) implies that C2.8 holds for the group G and the family C.G/.

(v) The analogs of (i), (ii), (iii) and (iv) hold for the Metaisomorphism conjecture 2.14
with coefficients and finite wreath products by [34, Lemmas 3.2, 3.15 and 3.16 and
Satz 3.5].

For a group G and two finite groups F1 and F2 , we have .H oF1/ oF2�H o.F1 oF2/
and F1 oF2 is finite. In particular, if G satisfies Conjecture 2.14 with wreath products,
then the same is true for any wreath product G o F with F finite. If H � G is a
subgroup of finite index, then G can be embedded in H oF for some finite group F ;
see [56, Proof of Proposition 2.17]. Hence, the Theorem 5.1.
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5.6 Proof of Theorem 1.1(ii)

By Lemma 2.5, the functor A satisfies all assumptions of Theorem 5.1. The claim
of the inheritance properties appearing in Theorem 1.1(ii) follows immediately from
Theorem 5.1 except for the statements about extensions, direct products and free
products. For extensions, it follows from the inheritance under finite-index supergroups.
For direct products, note that the product of two virtually cyclic groups is virtually
abelian; hence, by [47] it satisfies the conjecture.

For free products, note that due to the inheritance under filtered colimits, we can
assume our groups are finitely generated, so in particular countable. For G1 , G2 2FJA
consider the canonical map pW G1�G2!G1�G2 . We already know G1�G2 2FJA
and hence that it suffices to prove p�1.C /2FJA , where C is the trivial or any infinite
cyclic subgroup of G1�G2 . By [45, Lemma 5.2], all such p�1.C / are free and hence
hyperbolic, as G1 �G2 is countable.

6 Proof of the Farrell–Jones conjecture for hyperbolic and
CAT.0/–groups

Thanks to the framework established in [47], we can proceed similarly to the linear case
as in [55] and reduce the proof to the construction of a transfer map. This reduction is
carried out in this section, while the construction of the transfer occupies Section 7.

6.1 Homotopy coherent actions and homotopy transfer reducibility

The geometric criterion we use to prove the conjecture relies on the notion of a
homotopy coherent diagram, which goes back to Vogt [51]. For applications to the
Farrell–Jones conjecture, it is enough to consider the case of a homotopy coherent
diagram of shape G, regarding G as a one-object groupoid. In this special case, Vogt’s
definition was rediscovered by Wegner [55, Definition 2.1], who called it “strong
homotopy action”.

Definition 6.1 A homotopy coherent G–action of a group G on a topological space X
is a continuous map

�W

1a
jD0

..G � Œ0; 1�/j �G �X/!X
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with the following properties:

�.
k; tk; : : : ;
1; t1;
0;x/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�.: : : ;
j ;�.
j�1; : : : ;x// if tj D 0;
�. : : : ;
j 
j�1; : : : ;x/ if tj D 1;
�.
k; : : : ;
2; t2;
1;x/ if 
0 D e and 0 < k;
�.
k; : : : ; tjC1tj ; : : : ;
0;x/ if 
j D e and 1� j < k;
�.
k�1; tk�1; : : : ; t1;
0;x/ if 
k D e and 0 < k;
x if 
0 D e and k D 0:

The following definition is adapted from the conditions given in [1, Theorem B], which
does not use coherence conditions. We explain some notation below.

Definition 6.2 Let G be a discrete group. Let F be a family of subgroups of G.

Then G is homotopy transfer reducible over F if there exists a finite, symmetric
generating set S �G of G which contains the trivial element, as well as N 2N such
that there are, for every n 2N :

(i) A compact, contractible metric space .X; dX / such that for every " > 0 there is
an "–controlled domination of X by an at most N –dimensional, finite simplicial
complex.

(ii) A homotopy coherent G–action � on X.

(iii) A G–simplicial complex † of dimension at most N whose isotropy is contained
in F.

(iv) A continuous map f W X !† which is .S; n/–equivariant in the sense that

� For all x 2X and s 2 Sn ,

d `
1

.f .�.s; x//; s �f .x//�
1

n
:

� For all x 2X and s0; : : : ; sn 2 Sn ,

diamff .�.sn; tn; : : : ; s0; x// j .t1; : : : ; tn/ 2 Œ0; 1�ng �
2

n
:

Notation 6.3 Let us briefly recall some notation used in Definition 6.2.

(i) Recall from [5, Definition 1.5] that an "–controlled domination of a metric
space .X; d/ by a finite simplicial complex K consists of maps i W X !K and
pW K!X together with a homotopy H from p ı i to idX such that for every
x 2X the diameter of fH.x; t/ j t 2 Œ0; 1�g is at most ".
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(ii) The `1–metric d `
1

on a simplicial complex is defined in [6, Section 4.2].

(iii) If S is a finite generating set of G, we denote by Sn �G the set

fs1s2 : : : sn 2G j si 2 Sg:

We always equip G with the word metric dG with respect to S. Equivalently,
Sn is the n–ball around the trivial element with respect to dG .

We will show in Section 6.7 that a group satisfying Definition 6.2 satisfies the Farrell-
Jones conjecture with coefficients in A–theory with respect to the family F, and we
show in Section 6.10 that hyperbolic and CAT.0/–groups satisfy Definition 6.2, thus
proving Theorem 1.1(i).

6.2 Controlled CW–complexes

Let G be a discrete group and let F be a family of subgroups of G. In [47] it
was shown that Theorem 6.14 below holds for G if and only if a certain spectrum
F.G;W;EF .G// is weakly contractible for every free G–CW–complex W . The
spectrum F.G;W;EF .G// is the algebraic K–theory of a Waldhausen category of
controlled retractive G–CW–complexes, similar in spirit to the obstruction category
for the isomorphism conjecture in algebraic K–theory; cf [4; 6, Section 3]. Let us
recall the relevant definitions from [47] in this and the next section.

A coarse structure is a triple ZD .Z;C;S/ such that Z is a Hausdorff G–space, C is
a collection of reflexive, symmetric and G–invariant relations on Z which is closed
under taking finite unions and compositions — see [47, Definition 2.1] — and S is a
collection of G–invariant subsets of Z which is closed under taking finite unions. See
[47, Definition 3.23] for the notion of a morphism of coarse structures.

Fix a coarse structure Z.

For a G–CW–complex Y relative W , denote by ˘Y the (discrete) set of relative
cells of Y and by ˘k Y the subset of all relative k–cells in Y . A labeled G–CW–
complex relative W — see [47, Definition 2.3] — is a pair .Y; �/, where Y is a free
G–CW–complex relative W together with a G–equivariant function �W ˘Y !Z .

A Z–controlled map f W .Y1; �1/! .Y2; �2/ is a G–equivariant, cellular map f W Y1!
Y2 relative W such that for all k 2N there is some C 2 C for which

.�2; �1/
�
f.e2; e1/ j e1 2 ˘k Y1; e2 2 ˘Y2; hf .e1/i \ e2 ¤¿g

�
� C
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holds, where hf .e1/i denotes the smallest nonequivariant subcomplex of Y2 which
contains f .e1/.

A Z–controlled G–CW–complex relative W is a labeled G–CW–complex .Y; �/ rela-
tive W such that the identity is a Z–controlled map and for all k 2N there is some
S 2S such that

�.˘k Y /� S:

A Z–controlled retractive space relative W is a Z–controlled G–CW–complex .Y; �/
relative W together with a G–equivariant retraction r W Y !W , ie a left inverse to the
structural inclusion W ,! Y . The Z–controlled retractive spaces relative W form a
category RG.W;Z/ in which morphisms are Z–controlled maps which additionally
respect the chosen retractions.

The category of controlled G–CW–complexes (relative W ) and controlled maps
admits a notion of controlled homotopies — see [47, Definition 2.5] — via the objects
.Y h Œ0; 1�; � ı prY /, where Y h Œ0; 1� denotes the reduced product which identifies
W � Œ0; 1� � Y � Œ0; 1� to a single copy of W and prY W ˘.Y h Œ0; 1�/ ! ˘Y is
the canonical projection. In particular, we obtain a notion of controlled homotopy
equivalence (or h–equivalence).

A Z–controlled retractive space .Y; �/ is called finite if it is finite-dimensional, the
image of Y nW under the retraction meets the orbits of only finitely many path compo-
nents of W and for each z 2 Z there is some open neighborhood U of z such that
��1.U / is finite; see [47, Definition 3.3].

A Z–controlled retractive space .Y; �/ is called finitely dominated if there are a finite
Z–controlled, retractive space D, a morphism pW D ! Y and a Z–controlled map
i W Y !D such that p ı i is controlled homotopic to idY .

The finite and finitely dominated Z–controlled retractive spaces form full subcate-
gories RGf .W;Z/ �RGfd.W;Z/ �RG.W;Z/. All three of these categories support a
Waldhausen category structure in which inclusions of G–invariant subcomplexes up to
isomorphism are the cofibrations and controlled homotopy equivalences are the weak
equivalences; see [47, Corollary 3.22]. We denote this class of weak equivalences by h.

Note that a controlled homotopy equivalence is a morphism, but only admits a controlled
homotopy inverse map, which does not need to be compatible with the retractions to W .
This is similar to the classical situation [53, Section 2.1].
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6.3 The obstruction category

Let M be a metric space with free, isometric G–action. Define the bounded morphism
control condition on M , Cbdd.M/, to be the collection of all subsets C �M �M
which are of the form

C D f.m;m0/ 2M �M j d.m;m0/� ˛g

for some ˛ � 0.

Let X be a G–CW–complex. Define further the G–continuous control condition
CG-cc.X/ to be the collection of all C � .X � Œ1;1Œ/� .X � Œ1;1Œ/ which satisfy
the following:

(i) For every x 2X and every Gx –invariant open neighborhood U of .x;1/ in
X � Œ1;1�, there exists a Gx –invariant open neighborhood V � U of .x;1/
such that

�
..X � Œ1;1Œ/XU/�V

�
\C D¿.

(ii) Let pŒ1;1ŒW X � Œ1;1Œ! Œ1;1Œ be the projection map. Equip Œ1;1Œ with
the Euclidean metric. Then there exists some B 2 Cbdd.Œ1;1Œ/ such that
C � p�1

Œ1;1Œ
.B/.

(iii) C is symmetric, G–invariant and contains the diagonal.

We can combine the two morphism control conditions into one set of conditions on
M �X � Œ1;1Œ: Let pM W M �X � Œ1;1Œ!M and pX�Œ1;1ŒW M �X � Œ1;1Œ!
X � Œ1;1Œ denote the projection maps. Then C.M;X/ is the collection of all subsets
C � .M �X � Œ1;1Œ/2 which are of the form

C D p�1M .B/\p�1X�Œ1;1Œ.C
0/

for some B 2 Cbdd.M/ and C 0 2 CG-cc.X/.

Finally, define S.M;X/ to be the collection of all subsets S �M �X � Œ1;1Œ which
are of the form S DK � Œ1;1Œ for some G–compact subset K �M �X.

Recall that EF .G/ denotes the classifying space of G with respect to F . We also
consider G as a metric space with the word metric induced by a generating set S.

Definition 6.4 With the above definitions we obtain a coarse structure

J.M;X/ WD .M �X � Œ1;1Œ;C.M;X/;S.M;X//:
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Define the “obstruction category” as the category of finite controlled CW–complexes
relative W , ie as �

RGf
�
W; J.G;EF .G//

�
; h
�
I

see [47, Example 2.2 and Definition 6.1]. The spectrum F.G;W;EF .G// alluded to
before is the nonconnective K–theory spectrum of RGf .W; J.G;EF .G/// with respect
to the h–equivalences; see [47, Section 5] and Definition 6.13 below. If M DG, we
often abbreviate J.G;X/ as J.X/.

By [47, Corollary 6.11], a group G satisfies the Farrell–Jones conjecture 2.13 with
coefficients in A–theory with respect to F if and only if F.G;W;EF .G// is weakly
contractible for every free G–CW–complex W .

6.4 The target of the transfer

Suppose that G is homotopy transfer reducible in the sense of Definition 6.2. The key
step in proving the weak contractibility of F.G;W;EF .G// will be the construction of
a “transfer map”. We need a generalization of the coarse structure J.M;X/ to define
the target of the transfer.

Suppose that .Mn/n is a sequence of metric spaces with a free, isometric G–action.
Let X be a G–CW–complex. Following [47, Section 7], define the coarse structure

J..Mn/n; X/ WD

�a
n

Mn �X � Œ1;1Œ;C..Mn/n; X/;S..Mn/n; X/

�
as follows: Members of C..Mn/n; X/ are of the form C D

`
n Cn with Cn2C.Mn; X/,

and we additionally require that C satisfies the uniform metric control condition: There
is some ˛ > 0, independent of n, such that for all ..m; x; t/, .m0; x0; t 0// 2 C we
have d.m;m0/ < ˛ . Members of S..Mn/n; X/ are sets of the form S D

`
n Sn with

Sn 2S.Mn; X/. The resulting category RG.W; J..Mn/n; X// has a canonical faithful
functor into the product category

Q
nRG.W; J.Mn; X//.

Fix a symmetric, finite generating set S of G. Let dG denote the word metric on G
with respect to S. Since G is homotopy transfer reducible by assumption, there exists
a natural number N 2N such that we can choose, for each n 2N ,

(i) a compact, contractible metric space .Xn; dXn/ such that for every " > 0 there
is an "–controlled domination of Xn by an at most N –dimensional, finite
simplicial complex;
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(ii) a homotopy coherent G–action �n on Xn ;

(iii) a G–simplicial complex †n of dimension at most N whose isotropy is contained
in F ;

(iv) a map fnW X !†n which is .S; n/–equivariant, ie

(a) for all x 2Xn and s 2 Sn ,

(6:5) d `
1

.f .�n.s; x//; s �fn.x//�
1

n
I

(b) for all x 2Xn and s0; : : : ; sn 2 Sn ,

(6:6) diamffn.�n.sn; tn; : : : ; s0; x// j .t1; : : : ; tn/ 2 Œ0; 1�ng �
2

n
:

Definition 6.7 We equip †n �G with the metric n � d `
1

.x; y/C dG.g; h/.

Recall that an extended metric satisfies the usual axioms of a metric, but it is allowed
to take the value 1. The following definition will be used to produce a metric on
Xn �G for each n 2N .

Definition 6.8 Let .X; dX / be a metric space, � a homotopy-coherent G–action
on X, and S �G a finite subset containing the trivial element. Let k 2N and ƒ> 0.
Define on X �G the extended metric

dS;k;ƒ..x; g/; .y; h// 2 Œ0;1�

to be the infimum over the numbers

l C

lX
iD0

ƒ � dX .xi ; zi /;

where the infimum is taken over all l 2N , x0; : : : ; xl , z0; : : : ; zl 2X and a1; : : : ; al ,
b1; : : : ; bl 2 S such that

(i) x0 D x and zl D y ;

(ii) ga�11 b1 : : : a
�1
l
bl D h;

(iii) for each 1 � i � l there are elements r0; : : : ; rk; s0; : : : ; sk 2 S such that
ai D rk : : : r0 , bi D sk : : : s0 and �.rk; tk; : : : ; r0; zi�1/D�.sk; uk; : : : ; s0; xi /
for some t1; : : : ; tk; u1; : : : ; uk 2 Œ0; 1�.

If no such data exist, take the infimum to be 1.
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This definition is analogous to [5, Definition 3.4; 55, Definition 2.3]. Since we only
consider the coherent G–action �n on Xn , we drop �n from the notation of [55]. The
proof of the next lemma is analogous to the one given in [5, Lemma 3.5].

Lemma 6.9 Let k 2N .

(i) For all ƒ > 0, the function dS;k;ƒ is an extended metric on X �G which is
G–invariant if we let G act on X �G by 
 � .x; g/D .x; 
g/. It is a metric if
and only if S generates G.

(ii) We have dS;k;ƒ..x; g/; .y; h// < 1 if and only if g D h and ƒ � dX .x; y/ < 1

holds, in which case we have dS;k;ƒ..x; g/; .y; h//Dƒ �dX .x; y/. In particular,
the topology induced by dS;k;ƒ is the product topology.

6.5 The actual target of the transfer

We now specialize the construction of Section 6.4 to our needs. Assume that G is
homotopy transfer reducible, ie it satisfies Definition 6.2. That definition provides us
for every n with a metric space Xn , as well as �n , fn and †n . From Definition 6.8
and Lemma 6.9 we obtain for any sequence .ƒn/n a sequence of metric spaces
.Xn�G; dSn;n;ƒn/n . Although we do not need to restrict to a specific choice of .ƒn/n
until a little later, we wish to avoid spreading our choices throughout the whole proof.
Therefore, we will now fix a specific sequence .ƒn/n .

Since each Xn is compact, fn is uniformly continuous. Hence, there exists for
each n 2 N some ın > 0 such that for all x; y 2 Xn with dX .x; y/ < ın we have
d `

1

.fn.x/; fn.y// <
1
n

.

Definition 6.10 Choose such ın for all n and set

ƒn WD
nC 1

ın
:

Define a metric dn on Xn �G by

dn..x; g/; .y; h// WD dSn;n;ƒn..x; g/; .y; h//C dG.g; h/:

Then Xn �G carries a free and isometric G–action if we let G act on the right factor.
If we make no explicit mention of a metric, we will view Xn �G as a metric space
with respect to dn in what follows. Similarly, †n �G carries a diagonal G–action
and will always be understood as a metric space with respect to the metric n �d `

1

CdG

from Definition 6.7. Abbreviate E WDEF .G/.
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The category RG
�
W; J..Xn �G/n; E/

�
will be the target of the “transfer”. However,

we need to equip it with another class of weak equivalences. These hfin –equivalences
were introduced in the proof of [47, Theorem 10.1]. Basically, they ignore the behavior
of an object on finitely many factors and behave like h–equivalences otherwise.

Definition 6.11 Let .Mn/n be a sequence of metric spaces with free, isometric G–
action (eg Mn DXn �G ).

Let .Yn/n be an object of RG
�
W; J..Mn/n; E/

�
. For � 2N , we denote by .�/n>�

the endofunctor which sends .Yn/n to the sequence . zYn/n with zYn equal to the zero
object, ie W for n� � and zYn D Yn for n > � .

A morphism .fn/nW .Yn/n! .Y 0n/n is an hfin –equivalence if there is some � 2N such
that .fn/n>� W .Yn/n>�! .Y 0n/n>� is an h–equivalence.

Lemma 6.12 Let .Mn/n and .Nn/n be sequences of metric spaces with free, isometric
G–action. Let .gn/nW .Mn/n ! .Nn/n be a uniformly expanding sequence of G–
equivariant maps, ie for every ˛ > 0 there is some ˇ > 0 such that for all n 2N and
x; y 2Mn we have d.gn.x/; gn.y// < ˇ whenever d.x; y/ < ˛ .

Then .gn/n induces a map RG.W; J..Mn/n; E//!RG.W; J..Nn/n; E// which also
respects h– and hfin –equivalences, as well as finiteness conditions.

Proof As .gn/n induces a map on J..Mn/n; E/ which respects the control conditions,
it also respects the h–equivalences. As it maps Mn to Nn , it also respects the hfin –
equivalences.

We will discuss the difference between h– and the hfin –equivalences in Section 6.8.

6.6 Nonconnective algebraic K –theory of controlled CW–complexes

Before we turn to the main theorem, we need to briefly recall the definition of algebraic
K–theory in our setting. Let Z D .Z;C;S/ be a coarse structure. Then RGf .W;Z/
and its variants are Waldhausen categories, hence their algebraic K–theory is defined
by [53]. However, we need the nonconnective delooping from [47, Section 5], which
we briefly recall for completeness.

Definition 6.13 Let ZD .Z;C;S/ be a coarse structure. For n 2N define the coarse
structure Z.n/D .Rn �Z;C.n/;S.n// as follows: A set C � .Rn �Z/2 is in C.n/

if and only if:
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(i) C is symmetric, G–invariant and contains the diagonal.

(ii) C � p�1n .C 0/ for some C 0 2 Cbdd.Rn/, where pnW Rn � Z ! Rn is the
projection map.

(iii) For all K �Rn compact, there is a C 0 2 C such that

C \ ..K �Z/� .K �Z//� p�1Z .C 0/;

where pZ W Rn �Z!Z is the projection map.

Let S.n/ be the collection of all S � Rn � Z such that S D p�1Z .S 0/ for some
S 0 2S.Z/.

Consider for all n also the restricted coarse structures

Z.nC 1/C WD Z.nC 1/\ .Rn �R�0 �Z/;

Z.nC 1/� WD Z.nC 1/\ .Rn �R�0 �Z/:

Note that Z.nC 1/ \ .Rn � f0g � Z/ D Z.n/. The inclusion maps give rise to a
commutative square

hS�RGf .W;Z.n// hS�RGf .W;Z.nC 1/
C/

hS�RGf .W;Z.nC 1/
�/ hS�RGf .W;Z.nC 1//

By an Eilenberg swindle, the top-right and bottom-left corners of this square are con-
tractible. This provides us with structure maps (uniquely determined up to contractible
choice) for a spectrum

K�1.RGf .W;Z/; h/n WDK
�
RGf .W;Z.n//; h

�
;

which we call the nonconnective algebraic K–theory spectrum of RGf .W;Z/. This
construction can be made functorial in Z; see [47, Section 5].

All the arguments which will follow do not interact with a possible Rn–coordinate,
hence can also be carried out for n > 0, similar to [47, Section 9]. From the next
section onwards, our proofs will only treat the case nD 0.
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6.7 The main theorem

In this part we show the following result:

Theorem 6.14 Let G be a discrete group and let F be a family of subgroups of G. If
G is homotopy transfer reducible over F, then G satisfies the Farrell–Jones conjecture
2.13 with coefficients in A–theory with respect to F.

Theorem 1.1(i) follows from Theorem 6.14 in conjunction with the inheritance proper-
ties established in Section 5; see the introduction. We derive the validity of Theorem
1.1(i) for hyperbolic and CAT.0/–groups in Corollary 6.20 below.

We follow the strategy of [55, Section 5]. We construct a commutative diagram of
Waldhausen categories and exact functors�

RGfd
�
W; J..Xn �G/n; E/

�
; hfin

� �
RGfd

�
W; J..†n �G/n; E/

�
; hfin

�
�
RGfd

�
W; J..G/n; E/

�
; hfin

�
�
RGf .W; J.E//; h

� �
RGfd.W; J.E//; h

�

F

pXn�G!G

�

p†n�G!G

incl

trans

We define the maps trans, � and F below and show the following:

Proposition 6.15 (i) The arrow trans exists after applying nonconnective algebraic
K–theory. It will be induced by a map of spectra whose domain is weakly
equivalent to K�1.RGf .W; J.E//; h/. The square formed by pXn�G!G ı trans
and � ı incl commutes up to levelwise weak equivalence of spectra.

(ii) The functor F , defined below, is well defined.

(iii) The algebraic K–theory of RGfd.W; J..†n �G/n; E/; h
fin/ vanishes.

(iv) The map � ı incl is injective on nonconnective algebraic K–theory groups.

Given all of this, the proof can be finished as in [55, Section 5]. It is a diagram chase
on the level of homotopy groups.

Before proving Proposition 6.15, let us define the maps of the diagram. The maps p
are induced by the indicated projections on control spaces, “incl” is the inclusion of the
finite into the finitely dominated objects. The functor � is induced by the diagonal map
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into
Q
nR

G
fd.W; J.Gn; X//, which factors over

�
RGfd

�
W; J..G/n; E/

�
; hfin

�
because

its image consists of uniformly controlled objects and maps. Also note that every
h–equivalence is an hfin –equivalence.

The functor F is defined using the maps fn from Section 6.4. It is induced by the
maps FnW Xn�G!†n�G, .x; g/ 7! .gfn.x/; g/. We show in Section 6.8 that with
our choices these are uniformly bounded. The map “trans” is constructed in Section 7.

6.8 Squeezing

All claims made in Proposition 6.15 except part (i) admit fairly short proofs, which we
give in this section. Part (i) will be shown in Section 7.10

Proposition 6.15(iii) follows from the “squeezing theorem” [47, Theorem 10.1] and
the fact that nonconnective K–theory does not distinguish between finite and finitely
dominated objects [47, Remark 5.5]. Indeed, in the proof of Theorem 10.1 of [47], in
equation (21), a homotopy fiber sequence

(6:16) K�1
�

colim
n

nY
kD1

RGf .W; J.Mk; E//; h

�
!K�1

�
RGf

�
W; J..Mn/n; E/

�
; h
�
!K�1

�
RGf

�
W; J..Mn/n; E/

�
; hfin�

is established for any sequence of metric spaces .Mn/n . Then it is shown there
that, under the assumptions from Section 6.4 on .†n �G/n , the first map is a weak
equivalence by proving that the last object is weakly contractible.

Let us discuss Proposition 6.15(ii) next. It suffices to show the following:

Lemma 6.17 The map .Fn/nW J..Xn �G/n; E/! J..†n �G/n; E/ is a morphism
of coarse structures.

Proof By Lemma 6.12, it suffices to check that .Fn/n is a uniformly expanding
sequence. Since the proof is fairly lengthy (though still straightforward), we give the
details.

Let us recall the definitions. The metric dn on Xn �G was defined in Definition 6.10;
the metric n � d `

1

C dG on †n �G was chosen in Definition 6.7. Let ˛ > 0.

Let n 2N and .x; g/; .y; h/ 2Xn�G. Suppose that dn..x; g/; .y; h// < ˛ . To prove
that Fn is uniformly expanding we have to show that

n � d `
1

.gfn.x/; hfn.y//C dG.g; h/� ˇ

for some ˇ > 0 which is independent of n.
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In fact, it suffices to show this for n� ˛ . Then we have, by Definition 6.10,

˛

ƒn
D

˛ın

nC 1
�

nın

nC 1
< ın:

By definition of dn , we have dG.g; h/ < ˛ and dSn;n;ƒn..x; g/; .y; h// < ˛ . Hence,
there exist

� l 2N ,

� x0; : : : ; xl , z0; : : : ; zl 2Xn ,

� a1; : : : ; al , b1; : : : ; bl 2 Sn

such that

(i) x0 D x and zl D y ;

(ii) ga�11 b1 : : : a
�1
l
bl D h;

(iii) for each 1 � i � l there are elements r0; : : : ; rn; s0; : : : ; sn 2 Sn such that
ai D rn : : : r0 , bi D sn : : : s0 and, for some t1; : : : ; tn; u1; : : : ; un 2 Œ0; 1�,
�n.rn; tn; : : : ; t0; zi�1/D �n.sn; un; : : : ; s0; xi / holds;

(iv) l C
Pl
iD0ƒn � dXn.xi ; zi / < ˛ .

This implies l < ˛ and dXn.xi ; zi / < ˛=ƒn < ın . By Definition 6.10 of ın , this
implies d `

1

.fn.xi /; fn.zi // <
1
n

.

We proceed by induction on l . For l D 0, we have gD h and d `
1

.fn.x/; fn.y// <
1
n

.
For the induction step, with a1 D rn : : : r0 and b1 D sn : : : s0 we have

d `
1

.gfn.x/; hfn.y//

D d `
1

.gfn.x/; ga
�1
1 b1 : : : a

�1
l blfn.y//

D d `
1

.fn.x/; a
�1
1 b1 : : : a

�1
l blfn.y//

� d `
1

.fn.x0/; fn.z0//C d
`1
�
fn.z0/; a

�1
1 fn.�n.rn; 1; : : : ; 1; r0; z0//

�
C d `

1�
fn.�n.rn; 1; : : : ; 1; r0; z0//; fn.�n.rn; tn; : : : ; t1; r0; z0//

�
C d `

1�
fn.�n.sn; un; : : : ; u1; s0; x1//; fn.�n.sn; 1; : : : ; 1; s0; x1//

�
C d `

1

.fn.�n.sn; 1; : : : ; 1; s0; x1//; b1fn.x1//

C d `
1

.fn.x1/; fn.z1//

C d `
1

.fn.z1/; a
�1
2 b2 : : : a

�1
l blfn.y//:
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We give an estimate for each summand. We already know

d `
1

.fn.x0/; fn.z0// <
1

n
; d `

1

.fn.x1/; fn.z1// <
1

n
:

For the second summand, we have, by (6.5),

d `
1

.fn.z0/; a
�1
1 fn.�n.rn; 1; : : : ; 1; r0; z0///D d

`1
�
a1 �fn.z0/; fn.�n.a1; z0//

�
�
1

n
;

and similarly for d `
1�
f .�n.sn; 1; : : : ; 1; s0; x1//; b1f .x1/

�
. Furthermore, we have

d `
1�
fn.�n.rn; 1; : : : ; 1; r0; z0//; fn.�n.rn; tn; : : : ; t1; r0; z0//

�
�
2

n
;

d `
1

.fn.�n.sn; un; : : : ; u1; s0; x1//; fn.�n.sn; 1; : : : ; 1; s0; x1///�
2

n
;

by (6.6). Finally, we choose the induction hypothesis to be

d `
1

.fn.z1/; a
�1
2 b2 : : : a

�1
l blfn.y// <

8.l � 1/C 1

n
:

Thus, we obtain
d `

1

.gfn.x/; hfn.y// <
8lC1

n
:

Since we also have dG.g; h/ < ˛ , we conclude that

n � d `
1

.gfn.x/; hfn.y//C dG.g; h/ < 9˛C 1:

6.9 Injectivity of the �–map

Now we show Proposition 6.15(iv). Namely, we have to show that � induces an
injective map on algebraic K–theory. Our argument is a straightforward adaptation
of the argument used in [55, Section 5]. As usual, we abbreviate �m.K�1.: : : // by
Km.: : : /.

Lemma 6.18 The map

Km.�/ ıKm.incl/W Km
�
RGf .W; J.E//; h

�
!Km

�
RGfd

�
W; J..G/n; E/

�
; hfin�

is injective for each m� 0.

Proof The map Km.incl/W Km
�
RGf .W; J.E//; h

�
! Km

�
RGfd.W; J.E//; h

�
is an

isomorphism by [47, Remark 5.5]. Hence, we only have to show that Km.�/ is
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injective. To increase readability, we shorten RGfd.W; : : :/ to R.: : :/ in the following
commutative diagram:

Km
�
R.J.E//; h

�

Km
�Qfin R.J.E//; h

�
Km

�
R
�
J..G/n; E/

�
; h
�

Km
�
R
�
J..G/n; E/

�
; hfin

�
L
n2N

Km
�
R.J.E//; h

� Q
n2N

Km
�
R.J.E//; h

�

��
��

Š
Q
n2N pn

id�

incl

incl

The middle row is exact due to the homotopy fiber sequence (6.16), where we abbrevi-
ated colimn

Qn
kD1 as

Qfin . The left vertical map is an isomorphism, because algebraic
K–theory commutes with directed colimits and is compatible with finite products. The
map is defined using the projections onto the factors of the product. Note that after
projection on any n, the middle column is the identity. A diagram chase finishes the
proof.

6.10 Homotopy transfer reducible follows from strongly transfer
reducible

We can now prove Theorem 1.1(i) for hyperbolic and CAT.0/–groups.

In [55, Definition 3.1], Wegner defined when a group G is strongly transfer reducible
over a family F . As we will not need the precise definition here, we refer to loc. cit.
for the definition. We will use the definitions from Section 6.1.

Theorem 6.19 Let G be strongly transfer reducible over F. Then G is homotopy
transfer reducible over F and the Farrell–Jones conjecture 2.13 for A–theory with
coefficients holds for G relative to F.

Proof Assume that G is strongly transfer reducible. We show it is homotopy transfer
reducible and apply Theorem 6.14.

According to [55, Proposition 3.6], there exists N 2N such that there are, for every
n 2N ,

(i) a compact, contractible metric space .X; dX / such that for every " > 0 there is
an "–controlled domination of X by an at most N –dimensional, finite simplicial
complex;

(ii) a homotopy coherent G–action � on X ;
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(iii) a G–simplicial complex † of dimension at most N whose isotropy is contained
in F ;

(iv) a positive real number ƒ;

(v) a G–equivariant map 'W G �X !† such that

n � d `
1

.'.g; x/; '.h; y//� dSn;n;ƒ..g; x/; .h; y//

holds for all .g; x/; .h; y/ 2G �X, where G acts on the G–factor.

Fix n 2N and choose X, � , †, ƒ and ' as above. Define f WD 'jfeg�X W X !†.
Then we have, for all x 2X and s 2 Sn ,

n � d `
1�
f .�.s; x//; s �f .x/

�
D n � d `

1�
'.e; �.s; x//; '.s; x/

�
� dSn;n;ƒ

�
.e; �.s; x//; .s; x/

�
� 1:

Similarly, we find, for all x 2X, s0; : : : ; sn 2 Sn and t1; : : : ; tn; u1; : : : ; un 2 In ,

n � d `
1�
f .�.sn; tn; : : : ; s0; x//; f .�.sn; un; : : : ; s0; x//

�
D n � d `

1�
'.e; �.sn; tn; : : : ; s0; x//; '.e; �.sn; un; : : : ; s0; x//

�
� dSn;n;ƒ

�
.e; �.sn; tn; : : : ; s0; x//; .e; �.sn; un; : : : ; s0; x//

�
� 2:

Hence, G is homotopy transfer reducible over F and we can apply Theorem 6.14.

Corollary 6.20 The Farrell–Jones conjecture 2.15 for A–theory with coefficients and
finite wreath products is true for hyperbolic and CAT.0/–groups.

Proof By [55, Example 3.2 and Theorem 3.4], finitely generated hyperbolic groups
as well as CAT.0/–groups are strongly transfer reducible with respect to the family of
virtually cyclic subgroups. Thus, these groups are homotopy transfer reducible over
the same family by Theorem 6.19. If a group is homotopy transfer reducible with
respect to F, then the wreath product G oF with a finite group F is homotopy transfer
reducible over F oF . This follows as in [7, Section 5]; basically, one takes the F –fold
product of X and † and uses eg [47, Lemma 11.14] for the estimate. As the A–
theoretic Farrell–Jones conjecture with coefficients holds for virtually finitely generated
abelian groups [47, Proposition 11.9], the A–theoretic Farrell–Jones conjecture with
coefficients and finite wreath products holds for hyperbolic and CAT.0/–groups by the
transitivity principle [47, Proposition 11.2].
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7 The transfer: final part of the proof

We turn now to the construction of the transfer map whose existence was claimed
in the first part of Proposition 6.15(i). In the uncontrolled setting, these transfers are well
known and are induced by an appropriate pullback construction; see [35; 5, Appendix A]
for a description in the linear case, and [60, Section 2.4] for retractive spaces. Let X
be as in Definition 6.2, but suppose for simplicity that X carries a strict G–action. The
transfer we are considering is along the trivial bundle G �X !G, and therefore the
transfer amounts to taking the product with the fiber X. Since X is not a CW–complex
and we require retractive spaces to have a CW–structure, we replace X by the geometric
realization kS�.X/k of its singular set.

Of course, this construction does not yet make sense in the controlled setting. A
controlled refinement of the linear transfer has been employed in [5; 6; 55]. Translated
to the world of CW–complexes, the main idea is to replace the singular set of X by
the subsimplicial set Sı

�
.X/ of singular simplices whose diameter is bounded by a

sufficiently small number ı . It is a consequence of excision that this substitution does
not alter the homotopy type.

However, since G does not act isometrically on X, the simplicial set Sı
�
.X/ does not

carry a G–action. This is seemingly remedied by the fact that we chose a new metric
on G�X (Definition 6.8 and Lemma 6.9) and let G act only on the first coordinate of
G �X. Unfortunately, the problem has only been moved somewhere else. Unwinding
the definitions, one observes that if a cell c is attached to a lower-dimensional cell c0

in a retractive space Y , we have little control over the distance of the cells c � �
and c0 � � in the product Y � kSı

�
.X/k. The best we can show is that this distance

grows in a uniform fashion which only depends on the amount of bounded control Y
satisfies with respect to the G–coordinate of the control space; see Lemma 7.8 and
Corollary 7.9. This observation suggests the following solution: If we fix a bound on
both the dimension and the amount of bounded control of Y in terms of G, a controlled
version of Y �kSı

�
.X/k can be constructed in which the diameter of singular simplices

varies with the dimension of cells in Y . Since this forces us to take a product with a
different version of kSı

�
.X/k for each cell in Y and glue these products accordingly,

this construction is best expressed in the form of a coend (“balanced product”) over
the poset of cells of Y . We do this in Sections 7.2, 7.4 and 7.5.

The transfer construction sketched so far leaves us with two problems, which turn out to
have the same solution. First, the collection of controlled retractive spaces with a fixed
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bound on the amount of bounded control in terms of G is not closed under pushouts,
and hence does not form a Waldhausen subcategory of all controlled retractive spaces.
Second, while there is a candidate definition for extending the transfer construction
from objects to morphisms (see the proof of Proposition 7.20, where we do need this
construction), it is not functorial, essentially for the same reason that we could not take
the product of Y with one fixed kSı

�
.X/k.

We avoid these problems by implementing an idea due to Arthur Bartels and Paul
Bubenzer: If we only consider morphisms which are cellwise 0–controlled (which
essentially means that individual cells are not moved in terms of the G–coordinate;
see Definition 7.1 for the precise definition), pushouts along cofibrations preserve the
bounded control of retractive spaces (see Section 7.1), and the transfer construction
on morphisms becomes functorial (see Section 7.6). Moreover, restricting from the
category of all morphisms to the subcategory of cellwise 0–controlled morphisms
makes no difference in K–theory (Proposition 7.2).

In order to verify that the functor we have constructed preserves weak equivalences,
we rely on the more general transfer construction on morphisms hinted at earlier
(Proposition 7.20). The resulting map on K–theory is essentially independent of the
choices we had to make (Proposition 7.19).

Finally, to ensure that the target of the transfer is not trivial due to an Eilenberg swindle,
we prove in Section 7.9 that the transfer preserves finiteness conditions imposed on the
objects; this is essentially guaranteed by the existence of arbitrarily controlled finite
dominations of X.

The final Section 7.10 summarizes the preceding discussion to show that the desired
transfer map exists.

7.1 The domain of the transfer

We now define the appropriate subcategories of cellwise 0–controlled morphisms,
which will serve as the source of the transfer.

Let M be a metric space with a free, isometric G–action, and consider the category
RG.W; J.M;E//. For .Y; �/ 2RG.W; J.M;E//, let �M denote the composition of
the control map � with the projection map M �E � Œ1;1Œ!M.

Definition 7.1 Let f W .Y1; �1/! .Y2; �2/ be a morphism in RGf .W; J.M;E//. We
say that f is regular if the image of each open cell in Y1 is either equal to an open cell
in Y2 or completely contained in W . That is, either f .int e/D int e0 or f .int e/�W .
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We say that f is cellwise 0–controlled over M if f is regular and satisfies the property
that �1;M .e/D �2;M .f .e// for all cells e 2 ˘Y1 .

The composition of two morphisms which are cellwise 0–controlled over M is again
cellwise 0–controlled over M, so we can consider the subcategory

RGf .W; J.M;E//0 �RGf .W; J.M;E//

which has the same objects as RGf .W; J.M;E//, but contains only those morphisms
which are cellwise 0–controlled over M. The category RGf .W; J.M;E//0 inher-
its cofibrations and weak equivalences from RGf .W; J.M;E//. It is a Waldhausen
subcategory of RGf .W; J.M;E//.

For ˛ > 0, we may further restrict to the full subcategory

RGf .W; J.M;E//˛ �RGf .W; J.M;E//0

consisting only of those objects which are ˛–controlled over M, ie those .Y; �/ such
that �M .˘hei/�B˛.�M .e// for every cell e2˘Y . (Recall that hei denotes the smallest
subcomplex of Y containing e .) The category RGf .W; J.M;E//˛ also inherits the
structure of a Waldhausen category, as the pushout of ˛–controlled complexes along
cellwise 0–controlled morphisms is again ˛–controlled.

Finally, we can filter RGf .W; J.M;E//˛ by

RGf .W; J.M;E//˛;0 �RGf .W; J.M;E//˛;1 � � � � �RGf .W; J.M;E//˛;

where RGf .W; J.M;E//˛;d denotes the full subcategory of RGf .W; J.M;E//˛ con-
taining those objects whose dimension is at most d . Note that

RGf .W; J.M;E//˛ D colim
d

RGf .W; J.M;E//˛;d ;

as each object in RGf .W; J.M;E// is finite-dimensional.

Proposition 7.2 There is a natural weak equivalence

hocolim
˛;d

K
�
RGf .W; J.M;E//˛;d

�
��!K

�
RGf .W; J.M;E//

�
:

Proof We have RGf .W; J.M;E//0 D colim˛;d RGf .W; J.M;E//˛;d . Since K–
theory commutes with directed colimits, we obtain a natural weak equivalence

hocolim
˛;d

K
�
RGf .W; J.M;E//˛;d

�
��!K

�
RGf .W; J.M;E//0

�
:
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Now consider the inclusion functor RGf .W; J.M;E//0 ,! RGf .W; J.M;E//. We
show that Waldhausen’s approximation theorem [53, Theorem 1.6.7] applies.

The cylinder functor on RGf .W; J.M;E// constructed in [47, Lemma 3.14] restricts
to a cylinder functor on RGf .W; J.M;E//0 ; in particular, the inclusion of the source is
always cellwise 0–controlled. By definition, the inclusion functor satisfies the first part
of the approximation property. To verify the second part of the approximation property,
let f W Y1! Y2 be an arbitrary morphism in RGf .W; J.M;E//. Then the factorization
of f via the cylinder functor Y1�Mf ��! Y2 decomposes f into a cellwise 0–
controlled morphism and a weak equivalence. So the approximation theorem implies
that the inclusion functor induces an equivalence on algebraic K–theory.

Remark 7.3 The upshot of Proposition 7.2 is that we do not have to define a “global”
transfer functor on RGf .W; J.E//. Instead, it suffices to define a transfer functor
trans˛;d W RGf .W; J.E//˛;d !

�
RGfd

�
W; J..Xn �G/n; E/

�
; hfin

�
on each subcategory

such that the induced diagrams on K–theory

K
�
RGf .W; J.E//˛;d ; h

�
K
�
RGfd

�
W; J..Xn �G/n; E/

�
; hfin

�

K
�
RGf .W; J.E//˛C1;dC1; h

�
K.trans˛;d /

K.trans˛C1;dC1/

are homotopy-commutative.

7.2 Balanced products of CW–complexes

We introduce a slight generalization of the balanced products discussed in [13] as a
means to define the transfer in Section 7.5.

Let W be a topological space and C a small category. A C–CW–complex relative W is
a functor Y from C to topological spaces such that Y.c/ is a CW–complex relative W
and the morphisms in C are mapped to cellular maps relative W . A (relative) free
C–n–cell based at c , with c 2 C, is a pair .�; @�/ of C–CW–complexes relative W ,
where �D C.c;�/�DnqW and @�D C.c;�/�Sn�1qW . Attaching a free C–cell
� to Y means taking the pushout along a map @�! Y . Note that W itself defines a
(constant) covariant C–CW–complex relative W .

We say that Y is a free C–CW–complex relative W if it comes equipped with a
filtration W D sk�1.Y /� sk0.Y /� sk1.Y /� � � � such that Y D colimn skn.Y / and
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for every n� 0 there exists a pushout in the category of C–CW–complexes relative W� `
i2In

C.ci ;�/�Sn�1
�
qW skn�1.Y /.�/

� `
i2In

C.ci ;�/�Dn
�
qW skn.Y /.�/

Hence, a free C–CW–complex arises by attaching free C–cells. The set of free C–n–
cells is in bijection with In . Note that the attaching map of a C–n–cell based at c is the
same as a map Sn�1! skn�1.Y /.c/, hence we can consider � as a map Dn! Y.c/.

Let Y be a covariant C–CW–complex relative W and X W Cop!CW–COMPLEXES

be a contravariant C–CW–complex. Define the reduced balanced product X iC Y as
the pushout

X �C W X �C Y

��C W X iC Y

where �C denotes the balanced product from [13]. If C is connected, we have
��C W ŠW .

Proposition 7.4 Let X be a contravariant C–space, Y a covariant C–CW–complex
relative W and Z a space relative ��C W . There is a natural homeomorphism

hom��CW .X iC Y;Z/Š hom��CW
C .Y; hom.X;Z//:

Here, hom.X;Z/ is a covariant C–space relative ��CW via the inclusion that sends a
point w 2 ��C W based at c 2 C to the constant map X.c/! fwg � Z , hom��CW

C
denotes the natural transformations which are relative ��C W , and hom��CW denotes
just the set of maps relative ��C W .

Proof By definition, a map X iC Y !Z is the same as three compatible maps from
��C W  X �C W ! X �C Y to Z . Using that hom.X �C Y;Z/ is isomorphic to
homC.Y; hom.X;Z//, the result is easy to deduce.

It follows that X iC Y commutes with colimits in the “Y ”–variable. We can therefore
determine the cell structure of X iC Y . The attachment of a free C–n–cell � to Y
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gives a pushout X iC �.�/[XiC@� Y . Now

X iC �Š
�
.X �C C.c;�//�Dn

�
q .��C W /Š .X.c/�D

n/q .��C W /

and similarly for @�. First, this gives a filtration on X iC Y , namely

(7:5) � � � �X iC skn�1.Y /�X iC skn.Y /� � � � :

Second, as X.c/ is a CW–complex, we can now read off the cell structure of X iC Y :

Proposition 7.6 (cf [13, Lemma 3.19(2)]) Let Y be a free covariant C–CW–complex
relative W and X a contravariant C–CW–complex.

Then X iC Y is a CW–complex relative ��CW , and there is a canonical identification

˘.X iC Y /Š f.�; �/ j � is a free C–cell based at c and � 2 ˘X.c/g:

Let .�; �/ 2 ˘.X iC Y /. If ˆW Dp ! X.c/ and ‰W C.c;�/ � Dq ! Y.�/ are
characteristic maps for � and �, respectively, then

Dp �Dq!X iC Y; .a; b/ 7! Œˆ.a/;‰.idc ; b/�;

is a characteristic map for .�; �/.

Let .�; �/; .� 0; �0/ 2 ˘.X iC Y / be two cells, with � based at c and �0 based at c0.
Then .�; �/ � h.� 0; �0/i if and only if there exists a morphism 
 W c ! c0 such that

��� h�

0i � Y.c0/ and � � h
�� 0i �X.c/.

In greater generality, (7.5) gives a filtration for an inclusion Y1 ,! Y2 of C–spaces
in which Y2 is obtained from Y1 by the attachment of free C–cells. This observation
allows us to translate the constructions for geometric modules to CW–complexes.

Let us conclude this section with a short remark about functoriality of the balanced
product construction. In addition to the obvious functoriality properties, we have the
following: Let X be a contravariant and Y be a covariant C–space. Let F W D! C be
a functor. Then there is an induced map

�fW F
�X �D F

�Y !X �C Y; Œd; x; y� 7! ŒF .d/; x; y�:

This map is functorial in the sense that �F2 �F1D �F2F1 for any two composable functors
F1 and F2 . In particular, if F W C Š�! C is an automorphism of the indexing category,
then �f is an isomorphism.
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7.3 Conventions

For the following sections, fix the following data:

(i) Natural numbers ˛; d 2N and a natural number n >maxfd C 1; ˛g.

(ii) A natural number N 2N .

(iii) A compact and contractible metric space .X; dX / such that for every " > 0

there is an "–controlled domination of X by an at most N –dimensional, finite
simplicial complex.

(iv) A homotopy coherent G–action � on X .

(v) A positive real number ƒ.

As before, we consider X �G equipped with the metric dSn;n;ƒC dG .

7.4 Y as a ˘C Y –CW–complex and a .˘C Y /op –CW–complex from X

Let .Y; �/ 2RGf .W; J.E//˛;d . If c 2 ˘Y is a cell of Y , we will frequently need to
refer to the G–component of �.c/; we denote this by �G.c/.

Define a relation � on the set of cells ˘Y by saying that c � c0 if and only if c � hc0i.
Then ˘Y forms a poset under the relation �. We define ˘C Y as the category given
by this poset, where we add an additional initial object (which corresponds to W ). The
complex Y itself gives rise to a covariant ˘C Y –CW–complex (relative W ) CY by
setting

CY .c/ WD hci

and sending a morphism c � c0 to the obvious inclusion hci ,! hc0i. Observe that
CY is a free ˘C Y –CW–complex; the set of free ˘C Y –cells of CY is in canonical
bijection with the cells of Y . Note that a cellwise 0–controlled map Y ! Y 0 gives rise
to a functor ˘C Y !˘C Y 0. Last, each cell in ˘C Y has a dimension jcj, where we
assign the initial object the dimension �1.

The metric space X gives rise to a contravariant ˘C Y –CW–complex, but the con-
struction is more involved. We mimic the construction used in [55], but do not pass
to the cellular chain complex. Instead, we simply stick with the space of controlled
simplices.

Geometry & Topology, Volume 22 (2018)



On the Farrell–Jones conjecture for Waldhausen’s A–theory 3373

In the first step, we pass from the homotopy-coherent G–action � on X to an honest
G–action on a closely related space. This is accomplished by strictifying the homotopy-
coherent diagram � ; see [51, proof of Proposition 5.4]. Define M� to be the space

M� WD

�a
k�0

GkC1 � Œ0; 1�k �X

�.
�;

where � is the equivalence relation generated by

.
kC1; tk; 
k; : : : ; 
1; x/�

8̂̂̂<̂
ˆ̂:
.
kC1; tk; : : : ; 
2; x/ if 
1 D e;
.
kC1; : : : ; ti ti�1; : : : ; 
1; x/ if 
i D e; 2� i � k;
.
kC1; : : : ; 
iC1
i ; : : : ; 
1; x/ if ti D 1;1� i � k;
.
kC1; : : : ; 
iC1;�.
i ; : : : ; 
1; x// if ti D 0;1� i � k:

Then G acts on M� by

g � Œ
; tk; 
k; : : : ; 
1; x� WD Œg
; tk; 
k; : : : ; 
1; x�:

We have a map X!M� via x 7! Œe; x�. Let RW M�!X be the retraction induced
by � ; explicitly, R.Œ
; tk; 
k; : : : ; 
1; x�/D �.
; tk; 
k; : : : ; 
1; x/. Using the axioms
of a homotopy-coherent action from Definition 6.1, one checks this is a well-defined
map. The homotopy

(7:7)
H W M� � Œ0; 1�!M�;

.Œ
; tk; 
k; : : : ; 
1; x�; u/ 7! Œe; u; 
; tk; 
k; : : : ; 
1; x�;

then shows that X is a strong deformation retract of M� .

The space M� comes with a filtration by subspaces M� l;r , where we set

M� l;r WD fŒe; tk; 
k; : : : ; 
1; x� 2M� j k � l; 
i 2 Br.e/g:

For ı > 0, define Sı
�
.M� l;r/ to be the subsimplicial set of the singular simplicial set

S�.M� l;r/ containing those singular simplices � W �j� j!M� l;r which fulfill

diamX�G..R ı �/.�j� j/� feg/� ı;

where diameters in X �G are taken with respect to the metric dSn;n;ƒ . Note that
we could replace e by any other group element without changing the diameter, as the
metric is G–invariant.

Finally, we can define the contravariant ˘C Y –CW–complex S˛;dX;Y : Let

ıdk WD 4.d C 1� k/ and ldk WD d C 1� k:
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Typically, we will omit d from the notation. On objects, we set

S˛;dX;Y .c/ WD kS
ıjcj
� .M� ljcj;˛/k;

where jcj denotes the dimension of the cell c and k�k is fat geometric realization,
ie the realization after forgetting the degeneracies. Note that we have the canonical
inclusion �c0 of S˛;dX;Y .c

0/ into kS
�
.M� l/k. The latter has an honest G–action. For a

morphism c0! c D c � c0 in .˘C Y /op define S˛;dX;Y .c
0! c/ as the factorization of

S˛;dX;Y .c
0
! c/ WD �G.c/

�1�G.c
0/ � �c0.�/

over �c . We have to check that it is well defined, ie that it actually factors. We require
the following observation:

Lemma 7.8 Let Œe; tb; : : : ; 
1; x� 2 M� l;˛ . Suppose that l < n and ˛ � n. Let
h 2 B˛.e/. Then

dSn;n;ƒ
�
R.Œh; tb; : : : ; 
1; x�; g/; .R.Œe; tb; : : : ; 
1; x�/; gh/

�
� 2

for all g 2G.

Proof Note that b < n. We use the definition of the metric. Let x0 D z0 D

�.h; tb; 
b; : : : ; 
1; x/, x1 D z1 D x and x2 D z2 D �.e; tb; 
b; : : : ; 
1; x/. Fur-
thermore, we set a1 D e , b1 D h
b : : : 
1 , a2 D 
b : : : 
1 and b2 D e . Now we can
estimate

dSn;n;ƒ
�
.�.h; tb; 
b; : : : ; 
1; x/; g/; .�.e; tb; 
b; : : : ; 
1; x/; gh/

�
� 2Cƒ � dX .�.h; tb; 
b; : : : ; 
1; x/; �.h; tb; 
b; : : : ; 
1; x//

Cƒ � dX .x; x/Cƒ � dX .�.e; tb; 
b; : : : ; 
1; x/; �.e; tb; 
b; : : : ; 
1; x//

D 2:

Corollary 7.9 Assume ˛�n and dC1<n. Then the functor S˛;dX;Y W .˘C Y /
op!CW

is well defined.

Proof Since M� carries an honest G–action, functoriality will be clear as soon as
we have convinced ourselves that S˛;dX;Y is well defined on morphisms. Let c0! c be
a morphism in .˘Y /op and � 2 S

ıjc0j
� .M� ljc0j;˛/. We only need to check nonidentity

morphisms. Hence, we assume jc0j � jcj C 1. Let Œe; tb; 
b; : : : ; 
1; x� be a point
in the image of � . By definition, we have b � ljc0j and 
i 2 B˛.e/ for all i . Set
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c;c0 WD �G.c/
�1�G.c

0/. Note that 
c;c0 2 B˛.e/ since Y is ˛–controlled over G.
Then we obtain

c;c0 � Œe; tb; 
b; : : : ; 
1; x�D Œ
c;c0 ; tb; 
b; : : : ; 
1; x�

D Œe; 1; 
c;c0 ; tb; 
b; : : : ; 
1; x� 2M� ljc0jC1;˛ �M� ljcj;˛:

Hence, 
c;c0 � � is a singular simplex in M� ljcj;˛ .

Let Œe; t 0
b0
; 
 0
b0
; : : : ; 
 01; x

0� be another point in the image of � . Then

R.
c;c0 � Œe; tb; 
b; : : : ; 
1; x�/D �.
c;c0 ; tb; 
b; : : : ; 
1; x/;

and similarly for Œe; t 0
b0
; 
 0
b0
; : : : ; 
 01; x

0�. We calculate

dSn;n;ƒ
�
.�.
c;c0 ; tb;
b; : : : ;
1;x/;�G.c//; .�.
c;c0 ; t

0
b0 ;


0
b0 ; : : : ;


0
1;x
0/;�G.c//

�
� dSn;n;ƒ

�
.�.
c;c0 ; tb;
b; : : : ;
1;x/;�G.c//; .�.e; tb;
b; : : : ;
1;x/;�G.c

0//
�

CdSn;n;ƒ
�
.�.e; tb;
b; : : : ;
1;x/;�G.c

0//; .�.e; t 0b0 ;

0
b0 ; : : : ;


0
1;x
0/;�G.c

0//
�

CdSn;n;ƒ
�
.�.e; t 0b0 ;


0
b0 ; : : : ;


0
1;x
0/;�G.c

0//; .�.
c;c0 ; t
0
b0 ;


0
b0 ; : : : ;


0
1;x
0/;�G.c//

�
� 2Cıjc0jC2

D 4.dC1�.jc0j�1//

� 4.dC1�jcj/D ıjcj;

where we used Lemma 7.8 for the second inequality. This shows that multiplication
by 
c;c0 indeed defines a map


c;c0 � �W S
ıjc0j
� .M� ljc0j;˛/! S

ıjcj
� .M� ljcj;˛/:

So the functor S˛;dX;Y is well defined.

7.5 The transfer on objects

Recall that by our assumptions in Section 7.3 we have ˛ < n and d C 1 < n.

Definition 7.10 The transfer trans˛;dX .Y / of Y with respect to X is defined to be

trans˛;dX .Y / WD S˛;dX;Y i˘C Y CY :

If ˛ , d or both of them are understood, we abbreviate trans˛;dX .Y / to transdX .Y /,
trans˛X .Y / or transX .Y /, respectively.
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Since CY is a free ˘C Y –CW–complex, the space transX .Y / is a CW–complex relative
W by Proposition 7.6. The natural transformation S˛;dX;Y !� to the constant functor
with value the one-point space induces a map S˛;dX;Y i˘C Y CY !�i˘C Y CY Š Y of
CW–complexes relative W . We regard S˛;dX;Y i˘C Y CY as a retractive space via this
map.

We equip transX .Y / with a G–action as follows. Observe that G acts on the indexing
category ˘C Y ; let �g W ˘C Y !˘C Y denote the functor induced by the action of
g 2 G. The action of g on Y induces a natural isomorphism CY Š

�! CY ı�g , and
hence a cellular homeomorphism

�g W S˛;dX;Y i˘C Y CY Š�!S˛;dX;Y i˘C Y .CY ı�g/:

Observing that S˛;dX;Y ı �g D S˛;dX;Y , we obtain from the functoriality of i˘C Y in
Section 7.2 a cellular homeomorphism

��g W S
˛;d
X;Y i˘C Y .CY ı�g/D .S

˛;d
X;Y ı�g/i˘C Y .CY ı�g/

Š
�!S˛;dX;Y i˘C Y CY :

Define the action map of g 2G as the composition

g � � WD ��g ı �g W transX .Y /
Š
�! transX .Y /:

Explicitly, this map is given by g � Œc; x; y� 7! Œgc; x; gy�, and defines a group action
by cellular homeomorphisms.

Again by Proposition 7.6, we have a canonical identification

˘ transX .Y /Š f.�; c/ j c 2 ˘Y; � 2 S
ıjcj
� .M� ljcj;˛/g;

which translates the G–action on the set of cells of transX .Y / to g � .�; c/D .�; gc/.
Hence, transX .Y / is a free G–CW–complex.

Continuing to use the above identification of ˘ transX .Y /, we define a control map for
transX .Y /: Let p̌ denote the barycenter of the standard p–simplex. Then set

transX .�/W ˘ transX .Y /!X �G �E � Œ1;1Œ; .�; c/ 7! ..R ı �/.ˇj� j/; �.c//:

Lemma 7.11 The pair .transX .Y /; transX .�// is an object in RG.W; J.X �G;E//
which is .˛Cı0C2/–controlled over X �G.

Proof By construction, the labeled G–CW–complex .transX .Y /; transX .�// satisfies
the G–continuous control condition. It also has the correct support, since X is compact.
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So it is only necessary to check that it satisfies bounded control over X �G. Let .�; c/
and .� 0; c0/ be cells such that .�; c/� h.� 0; c0/i. By Proposition 7.6, this is equivalent
to the conditions c � hc0i and � � h�G.c/

�1�G.c
0/� 0i � kS

ıjcj
� .M� ljcj;˛/k. Set


c;c0 WD �G.c/
�1�G.c

0/. Then we have

dSn;n;ƒ..transX .�/.�; c/; transX .�/.� 0; c0//

D dSn;n;ƒ
�
..R ı �/.ˇj� j/; �G.c//; ..R ı �

0/.ˇj� 0j/; �G.c
0//
�

� dSn;n;ƒ
�
..R ı �/.ˇj� j/; �G.c//; ..R ı 
c;c0�

0/.ˇj� 0j/; �G.c//
�

C dSn;n;ƒ
�
..R ı 
c;c0�

0/.ˇj� 0j/; �G.c//; ..R ı �
0/.ˇj� 0j/; �G.c

0//
�

� ıjcjC 2� ı0C 2;

where the last inequality follows from our assumption and Lemma 7.8. Using

dG.�G.c/; �G.c
0//� ˛;

we conclude that .transX .Y /; transX .�// is .˛Cı0C2/–controlled over X �G.

7.6 The transfer on cellwise 0–controlled morphisms

In the next step, we extend the assignment .Y; �/ 7! .transX .Y /; transX .�// to a
functor RGf .W; J.E//˛;d !RG.W; J.X �G;E//. Let f W .Y1; �1/! .Y2; �2/ be a
morphism in RGf .W; J.E//˛;d . Since f is a regular map, we have an induced functor
˘C f W ˘C Y1!˘C Y2 , which is compatible with the G–actions. (G acts trivially on
the initial object.) Define a natural transformation CfW CY1 ! CY2 ı˘C f by

Cf;c W CY1.c/D hci
f
�! f .hci/D hf .c/i D .CY2 ı˘C f /.c/:

Define a natural transformation S
f
W S˛;dX;Y1 ! S˛;dX;Y2 ı˘C f by

Sf;c W kS
ıjcj.M� ljcj;˛/k � kS

ıjf.c/j
� .M� ljf.c/j;˛/k:

Then transX .f / is defined as the composition

S˛;dX;Y1 i˘C Y1 CY1
S
f

i˘C Y1Cf

��������! .S˛;dX;Y2 ı .˘C f //i˘C Y1 CY2 ı .˘C f //
�.˘C f /
�����! S˛;dX;Y2 i˘C Y2 CY2 :

Lemma 7.12 This defines a functor

transX W RGf .W; J.E//˛;d !RG.W; J.X �G;E//0:
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Proof To see that the construction of transX .f / is functorial, it is best to translate the
above formalism again into an explicit mapping rule. Concretely, transX .f / is given
by Œc; x; y� 7! Œf .c/; x; f .y/�, and functoriality becomes obvious.

We also need to check that transX .f / is a controlled map. It suffices to consider
bounded control over X �G. Note that transX .f / is regular as f and S

f;c
are regular.

Hence, it is enough to compute, for .�; c/ 2 ˘ transX .Y1/,

dSn;n;ƒ
�
transX .�1/.�; c/; transX .�2/.transX .f /.�; c//

�
C dG

�
�1;G.c/; �2;G.f .c//

�
D dSn;n;ƒ

�
..R ı �/.ˇj� j/; �1;G.c//;

�
.R ı �/.ˇj� j/; �2;G.f .c//

��
C 0

D 0:

So transX .f / is in fact cellwise 0–controlled over X �G. Hence, we have defined a
functor transX W RGf .W; J.E//˛;d !RG.W; J.X �G;E//0 .

Remark 7.13 One can adapt the constructions presented in this paper to chain com-
plexes over geometric modules to obtain a linear transfer. The linearization map, which
assigns to a CW–complex its cellular chain complex, translates our transfer functor
into its linear counterpart.

Moreover, the natural inclusion of geometric modules into chain complexes makes these
constructions compatible with the transfers defined in [5; 6; 55]. Thus, the transfer for
geometric ZŒG�–modules corresponds to our construction restricted to 0–dimensional
CW–complexes.

7.7 Transferring cofibrations

Our next aim is to show that the transfer is a functor of categories with cofibrations. Since
the cofibrations under consideration are essentially inclusions of CW–subcomplexes,
it comes as no surprise that this result relies on an analysis of the CW–structure of
transX .Y /.

Let .Y; �/ 2RGf .W; J.E// as before. It defines a ˘C Y –CW–complex CY relative W .
Let B � Y be a subcomplex. We get a ˘C Y –CW–complex CBY relative W by setting
CBY .c/ WD hci \B . As before, colim˘C Y CBY Š B .

Let A� B � Y be subcomplexes. Assume that B arises from A by attaching cells �i
for i 2 I. From Section 7.2 we get a pushout diagram
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`W
i2I @�i CAY

`W
i2I �i CBY

in ˘C Y –CW–complexes relative W . This becomes a pushout diagram in retractive
spaces if we equip everything with the retractions into W arising from Y . Now,
S˛;dX;Y i˘C Y .�/ commutes with pushouts, so we get the following result:

Lemma 7.14 There is a pushout diagram

S˛;dX;Y i˘C Y
�`W

i2I @�i
�

S˛;dX;Y i˘C Y CAY

S˛;dX;Y i˘C Y
�`W

i2I �i
�

S˛;dX;Y i˘C Y CBY

in RG.W; J.X �G;E//. Here the coproducts on the left are disjoint unions over W .
As these are cells, the space on the lower left is isomorphic toa

i2I

.kS
ıd
jci j

� .M�
ld
jci j
;˛
/k�Djci j/qW;

when �i is a cell based at ci , and similarly for the upper left.

This enables us to do inductive arguments over the cells in Y . Note that if A� Y is a
subcomplex, we can interpret A as a ˘CA–CW–complex, or as ˘C Y –CW–complex.
We can define the transfer also for A as a ˘C Y –CW–complex, and it is canonically
isomorphic to Definition 7.10.

Lemma 7.15 The functor transX preserves the zero object, cofibrations and admissible
pushout diagrams, ie it is a functor of categories with cofibrations.

Proof Let f W .Y1; �1/� .Y2; �2/ be a cofibration in RGf .W; J.E//˛;d . Without
loss of generality, we can assume that Y2 is obtained from Y1 by attaching free G–
cells, and that f is the inclusion of the subcomplex Y1 into Y2 . Then it follows from
Lemma 7.14 and interpreting Y1 as a ˘C Y2–CW–complex that transX .f / is also a
cofibration. For the same reason, transX preserves all relevant pushout squares. Last,
it maps the zero object W to W .
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7.8 The transfer on general morphisms and weak equivalences

Next, we construct natural transformations between our transfer functors for various
indices. Once we have shown that they are weak equivalences, it follows that the
diagram in Remark 7.3 is homotopy-commutative. In addition, these enter the proof
that trans˛;d preserves weak equivalences.

Definition 7.16 Let ˛0 > ˛ and d 0 > d satisfying n > maxfd 0C 1; ˛0g. Then both
S˛;dX;Y and S˛

0;d 0

X;Y are defined and give rise to transfer functors trans˛;dX and trans˛
0;d 0

X .
For every .Y; �/ 2RGf .W; J.E//˛;d , there is a natural transformation S˛;dX;Y ! S˛

0;d 0

X;Y

which is given at c 2 ˘C Y by the obvious inclusion

kS
ıd
jcj
� .M�

ld
jcj
;˛
/k � kS

ıd
0

jcj
� .M�

ld
0

jcj
;˛0
/k:

Hence, we obtain an induced natural morphism

�
˛;˛0;d;d 0

Y W trans˛;dX .Y /! trans˛
0;d 0

X .Y /:

Lemma 7.17 Let ı > 0. Consider X as a subspace of M� l;s via the embedding
x 7! Œe; x�. There exists a ı–controlled strong deformation retraction

H W kSı
�
.M� l;s/k� Œ0; 1�!kSı

�
.M� l;s/k

onto kSı
�
.X/k.

Proof There is a (topological) inclusion

i W kSı
�
.M� l;s/k� Œ0; 1�!kSı

�
.M� l;s � Œ0; 1�/k

which maps each prism �p�Œ0; 1� to its canonical triangulation. The strong deformation
retraction from (7.7) restricts to a strong deformation retraction

H 0W M� l;s � Œ0; 1�!M� l;s

of M� l;s onto X, which is given by

H 0.Œe; tk; 
k; : : : ; 
1; x�; u/ WD Œe; u � tk; 
k; : : : ; 
1; x�:

It has the property that R ıH 0.m; u/DR.m/, so

diamX�Gf.R ıH 0.m; u/; g/ j u 2 Œ0; 1�g D 0

for all m 2M� l;s and g 2G. Hence, H 0 induces a map

H 0�W kS
ı
�
.M� l;s � Œ0; 1�/k! kSı

�
.M� l;s/k:
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Then H WDH 0� ı i is a strong deformation retraction onto kSı
�
.X/k. As the target is

ı–controlled, H is ı–controlled.

Corollary 7.18 Let ı > 0, l � l 0 and s � s0. Then the canonical inclusion map
kSı
�
.M� l;s/k ,! kSı

�
.M� l

0;s0/k is a 2ı–controlled homotopy equivalence (with
respect to dSn;n;ƒ ).

Proof Lemma 7.17 yields homotopy equivalences kSı
�
.X/k ,! kSı

�
.M� l;s/k and

kSı
�
.X/k ,!kSı

�
.M� l

0;s0/k which are ı–controlled. Since the triangle

kSı
�
.X/k kSı

�
.M� l;s/k

kSı
�
.M� l

0;s0/k

commutes, the result follows.

Proposition 7.19 The morphisms �˛;˛
0;d;d 0

Y are weak equivalences.

Proof We prove that �˛;˛
0;d;d 0

Y is a weak equivalence for all Y 2RGf .W; J.E//˛;d
by induction over the dimension of Y . For .�1/–dimensional objects, which is the
start of the induction, the claim is trivial. For the induction step, we apply Lemma 7.14
to see that the inclusion of the p–skeleton into the .pC1/–skeleton induces a pushout

S˛;dX;Y i˘C Y
�`W

c2˘pC1 Y
@c
�

S˛;dX;Y i˘C Y skp.CY /

S˛;dX;Y i˘C Y
�`W

c2˘pC1 Y
c
�

S˛;dX;Y i˘C Y skpC1.CY /

in RGf .W; J.X �G;E//0 . The lower-left corner is, again by Lemma 7.14, identified
as a

c2˘pC1 Y

.kS
ıd
jcj
� .M�

ld
jcj
;˛
/k�Djcj/qW;

and similarly for the upper corner, with Djcj replaced with @Djcj . There is an analogous
pushout square with ˛ and d replaced by ˛0 and d 0, respectively. Moreover, the former
square maps to the latter via the transformation �˛;˛

0;d;d 0

Y . On the left-hand side this is
identified with the canonical inclusion maps. This transformation is a weak equivalence
on the top-right corner of the diagram by the induction hypothesis, and it is a 2ıpC1–
controlled homotopy equivalence on the top-left and bottom-left corners combining
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Corollary 7.18 and Lemma 7.21 below. Hence, the gluing lemma implies that it is also
a weak equivalence on the bottom-right corner. This finishes the induction step and
finite-dimensionality of Y proves the claim.

In order to show exactness, we will need that the transfer maps h–equivalences to
hfin –equivalences later. The following proposition implies this.

Proposition 7.20 Let f be a weak equivalence in RGf .W; J.E//˛;d which is an
˛0–controlled homotopy equivalence over G. Suppose that n >maxfd C 2; ˛; ˛0g.

Then transX .f / is a controlled homotopy equivalence.

Proof To show the proposition, we exploit the fact that maps which are not cellwise
0–controlled over G can also be transferred, but in a less functorial fashion. Let
.Y1; �1/ and .Y2; �2/ be objects of RGf .W; J.E//˛;d , and f W Y1! Y2 be an arbitrary
map in RGf .W; J.E//. Choose ˛0 > 0 such that f is ˛0–controlled over G. We
construct an induced map

trans˛;˛0.f /W trans˛;dX .Y1/! transmaxf˛;˛0g;dC1
X .Y2/:

To define trans˛;˛0.f /, consider first a single cell c 2 ˘C Y1 ; denote by �c the
corresponding ˘C Y1–n–cell of CY2 . We define the function

tc W kS
ıjcj
� .M� ljcj;˛/ki˘C Y1 �c! Smaxf˛;˛0g;dC1

X;Y2
i˘C Y2 CY2 ;

.x; y/ 7! Œsupp.f .y//; 
cy � x; f .y/�;

where supp.f .y// denotes the support of f .y/, ie the unique open cell supp.f .y//
of Y2 such that f .y/ 2 supp.f .y//, and 
cy WD �2;G.supp.f .y///�1�1;G.c/. We will
glue the different tc together to get the transfer for f .

Let us check that the target space is large enough that tc.x; y/ is contained in it: Recall
that 
cy � x is defined via the G–action which kS�.M�/k inherits from M� . Since
f is ˛0–controlled, we have 
cy 2 B˛0.e/. Therefore, we can regard multiplication
with 
cy as a map M� ljcj;˛!M� ljcjC1;maxf˛;˛0g . In addition, M� ljcjC1;maxf˛;˛0g is
contained in M� ljsupp.f.y//jC1;maxf˛;˛0g , so Œsupp.f .y//; 
cy � x; f .y/� defines a point
in the target space.

We need to check that tc is continuous. It suffices to show continuity on finite sub-
complexes. These are metrizable, so it is enough to show that tc is sequentially
continuous. Let .xl ; yl/l be a convergent sequence in kSıjcj� .M� ljcj;˛/k � �c with
limit point .x; y/. As f is continuous, f .yl/ converges against f .y/. Hence, S WD
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fsupp.f .yl// j l 2Ng is a finite set, and we can assume that for each s 2 S there are
infinitely many l such that supp.f .yl//D s . We treat the s individually and restrict to
the corresponding subsequence. If s happens to be equal to supp.f .y//, then 
cy D 


c
yl

and continuity follows. Otherwise, f .y/ must still lie in the closure of the cell s , ie
supp.f .y//� hsi. Hence,

Œsupp.f .y//; 
cy � x; f .y/�

D Œsupp.f .y//; �2;G.supp.f .y///�1�2;G.s/�2;G.s/�1�1;G.c/x; f .y/�

D Œs; �2;G.s/
�1�1;G.c/x; f .y/�;

and continuity becomes obvious.

Suppose now that c � c0 in ˘Y1 . For y 2 hci and x 2 kS
ıjc0j
� .M� ljc0j;˛/k, we obtain

tc0.x; y/D Œsupp.f .y//; 
c
0

y x; f .y/�

D Œsupp.f .y//; �2;G.supp.f .y///�1�1;G.c/�1;G.c/�1�1;G.c0/x; f .y/�

D tc.�1;G.c/
�1�1;G.c

0/x; y/:

Therefore, the collection ftcgc2˘Y1 induces a continuous, cellular map relative W ,

trans˛;˛0.f /W trans˛;dX .Y1/! transmaxf˛;˛0g;dC1
X .Y2/:

Using Lemmas 7.8 and 7.11, it is not hard to show that the map trans˛;˛0.f / is
.maxf˛; ˛0gC˛0Cı0C4/–controlled over X �G, as n > ˛0. Note that for cellwise 0–
controlled maps, trans˛;˛0.f / agrees with the previous defined transfer from Section 7.6.
The only reason we increased d is the argument which follows; it was not needed in
the construction so far.

Suppose now that f W .Y1; �1/! .Y2; �2/ is a weak equivalence in RGf .W; J.E//˛;d
which is ˛0–controlled over G as a homotopy equivalence, ie its inverses and the
homotopies are ˛0–controlled over G. Then there exists some ˛0–controlled map
xf W .Y2; �2/! .Y1; �1/ such that xff and f xf are ˛0–controlled homotopic to the

identity. Consider the diagram

trans˛;dX .Y1/ trans˛;dX .Y2/

transmaxf˛;˛0g;dC1
X .Y1/ transmaxf˛;˛0g;dC1

X .Y2/

trans˛;dX .f /

transmaxf˛;˛0g;dC1
X .f /

�
˛;maxf˛;˛0g;d;dC1
Y1

�
˛;maxf˛;˛0g;d;dC1
Y2

trans˛;˛0. xf /
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in which the outer square commutes. The vertical maps �˛;maxf˛;˛0g;d;dC1
Yi

for i D 1; 2
are weak equivalences by Proposition 7.19. We claim that the two triangles involving
the dashed diagonal map trans˛;˛0. xf / commute up to controlled homotopy. If this is
true, it follows that trans˛;dX .f / is a weak equivalence.

Let hW Y1h Œ0; 1�! Y1 be an ˛0–controlled homotopy from xf f to idY1 . Note that
trans˛;˛0. xf / ı trans˛;dX .f /D trans˛;˛0. xf f /. Since n > d C 2, we can apply trans˛;dX
also to Y1h Œ0; 1� and consider the controlled map

trans˛;˛0.h/W trans˛;dX .Y1h Œ0; 1�/! transmaxf˛;˛0g;dC1
X .Y1/:

The domain of this map is not equal to trans˛;dX .Y1/h Œ0; 1�, but it is contained in
trans˛;dX .Y1/h Œ0; 1� as a controlled strong deformation retract. This follows by an
induction argument similar to Proposition 7.19. Essentially, we can construct both
objects as the balanced products over ˘C.Y1 h Œ0; 1�/ and use that the inclusion
kSıjcj
�
.M� ljcj;˛/k ! kSıjcjC1

�
.M� ljcjC1;˛/k is a controlled deformation retraction

by Corollary 7.18 and Lemma 7.21. The retraction induces the required controlled
homotopy.

The argument for the second triangle is analogous.

7.9 Restricting the target category

Now we show that the transfer functor factors over the full subcategory of finitely dom-
inated objects. The following result was already used in the proof of Proposition 7.20.

Lemma 7.21 Let .M; d/ be a metric space.

(i) Let ı > 0. The natural inclusion map kSı
�
.M/k ! kS�.M/k is a homotopy

equivalence.

(ii) Let 0<ı�ı0. Then the inclusion map kSı
�
.M/k!kSı

0

�
.M/k is a ı0–controlled

homotopy equivalence (with respect to the metric on M, labeling simplices by
the image of their barycenter).

(iii) Suppose jKj is the realization of an ordered (abstract) simplicial complex K
and suppose that pW jKj !M is a continuous map. Let �W ˘K!M be the
labeling sending a cell (ie simplex) to the image of its barycenter under p . Let
ı > 0. Let Sı

�
.jKj; p/ denote the (semi)simplicial set of all singular simplices

� in jKj such that the diameter of p ı � is at most ı .

Geometry & Topology, Volume 22 (2018)



On the Farrell–Jones conjecture for Waldhausen’s A–theory 3385

If the characteristic maps of all simplices of K lie in Sı
�
.jKj; p/, then the

canonical map jKj ! kSı
�
.jKj; p/k is a ı–controlled homotopy equivalence

(measuring control in M via p ).

Proof The proof proceeds in analogy to [6, Lemma 6.7]. The first part follows directly
from an appropriate formulation of excision, eg [22, Theorem 4.6.9].

For the second part, let A be the poset of closed subsets of X, considered as a category.
Then the A–CW–complex SıA given by

SıA.A/ WD kS
ı
�
.A/k

is a free A–CW–complex, whose free cells are of the form homA.�.�
j� j/;�/�Dj� j

since ˘kSı
�
.A/k Š

`
�2Sı� .X/

homA.�.�
j� j/; A/. Since both kSı

�
.A/k ,! kS�.A/k

and kSı
0

�
.A/k ,! kS�.A/k are homotopy equivalences for every A 2 A, so is the

inclusion kSı
�
.A/k ,! kSı

0

�
.A/k. Hence, the natural transformation SıA! Sı 0A is a

homotopy equivalence of (free) A–CW–complexes by [13, Corollary 3.5]. This in
particular means that there is an inverse map, compatible with the structure map, as
well as compatible homotopies. It is easy to check that such a map has the right control.

The third claim follows by similar reasoning, substituting the poset of subcomplexes
for the poset of closed subsets.

Lemma 7.22 Suppose that .X; dX / admits a finite "–domination. Then kSı
�
.M� l;˛/k

is 4ıC6ƒ"–dominated over X �G (with respect to the metric dSn;n;ƒ ).

Proof By Lemma 7.17, the complex kSı
�
.X/k is a ı–controlled strong deformation

retract of kSı
�
.M� l;˛/k. Choose an appropriate controlled retraction r .

Pick an "–domination of X by a finite simplicial complex jKj, ie a sequence of maps
X �
�!jKj ��!X together with a homotopy hW � ı �' idX , and such that the diameter,

measured with respect to the original metric dX on X, of h.x; Œ0; 1�/ is at most " for
every x 2X. Then the given domination induces maps

kSı
�
.X/k

��
�!kSıC2ƒ"

�
.jKj; �/k

��
�!kSıC2ƒ"

�
.X/k;

where similarly to Section 7.4 we measure distances of points in jKj via � . These
are maps of labeled complexes over X �G : Pick an arbitrary group element g 2 G.
Then we label simplices � in Sı

�
.X/ or SıC2ƒ"

�
.X/ by .�.ˇj� j/; g/ and simplices �

in SıC2ƒ"
�

.jKj; �/ by .�.�.ˇj� j//; g/ (see Lemma 7.17 and Corollary 7.18).
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Choose an iterated barycentric subdivision K 0 of K such that the characteristic
map of each simplex of K 0 is a simplex in SıC2ƒ"

�
.jKj; �/; note that K 0 is or-

dered if we subdivide at least once. Since jK 0j is then naturally a subcomplex of
SıC2ƒ"
�

.jKj; �/, we endow it with the induced control map. The canonical inclusion
i W jK 0j ! kSıC2ƒ"

�
.jKj; �/k is a .ıC2ƒ"/–controlled homotopy equivalence over

X �G by Lemma 7.21. Choose an appropriate controlled homotopy inverse p .

Finally, the inclusion kSı
�
.X/k ,!kSıC2ƒ"

�
.X/k is a .ıC2ƒ"/–controlled homotopy

equivalence by Lemma 7.21; let f be an appropriate controlled homotopy inverse.

Then
kSı
�
.M� l;˛/k r

�!kSı
�
.X/k

��
�!kSıC2ƒ"

�
.jKj; �/k

p
�!jK 0j

and

jK 0j i�!kSıC2ƒ"
�

.jKj; �/k
��
�!kSıC2ƒ"

�
.X/k

f
�!kSı

�
.X/k ,!kSı

�
.M� l;˛/k

yield the desired domination of kSı
�
.X/k; from the previous control estimates we see

that there is a .4ıC6ƒ"/–controlled homotopy between the composition of these two
maps and the identity on kSı

�
.M� l;˛/k.

Proposition 7.23 Suppose that .X; dX / admits a finite "–domination for every ". Let
.Y; �/ 2 RGf .W; J.E//˛;d . Then transX .Y; �/ is controlled finitely dominated, ie it
defines an object in RGfd.W; J.X �G;E//. We can choose the control estimate to be
independent of the constants ƒ and n from the metric.

Proof We prove the claim by induction on the dimension of Y . The case of a .�1/–
dimensional object is trivial and provides the start of the induction.

For the induction step, we use Lemma 7.14 to obtain a pushout square

`
c2˘pC1 Y

.kS
ıd
pC1
� .M� l

d
pC1

;˛/k� @Djcj/qW S˛;dX;Y i˘C Y skp.CY /

`
c2˘pC1 Y

.kS
ıd
pC1
� .M� l

d
pC1

;˛/k�Djcj/qW S˛;dX;Y i˘C Y skpC1.CY /

in RG.W; J.X �G;E//.

By the induction hypothesis, the object at the top-right corner of this square is
finitely dominated. Thus, we only need to find a controlled finite domination for
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kS
ıpC1
� .M� lpC1;˛/k, as Y itself is (locally) finite. By Lemma 7.22, such a domination

indeed exists.

Note that the same bound works if we increase n, and we can choose " to be 1
ƒ

. Then
the estimate of the metric does not depend on n and ƒ, which finishes the proof.

Finally, we show that, after forgetting the labeling in X, the transfer does not alter the
homotopy type of a given object.

Proposition 7.24 Let P W RGfd.W; J.X �G;E//!RGfd.W; J.E// denote the functor
induced by the projection map X �G!G. Let .Y; �/ 2RGf .W; J.E//˛;d .

Then there is an ˛–controlled natural weak equivalence

P.transX .Y // ��!Y:

Proof The relevant map is induced by the projection map M� ! �. As in the
proofs of Propositions 7.20 and 7.23, the claim follows by another induction along the
skeleta of Y , using Lemmas 7.14 and 7.21 together with the fact that the projection
map kS�.X/k ! � is a homotopy equivalence. Since the bounded control is only
over .G; dG/, it is not hard to check that the weak equivalence is ˛–controlled.

7.10 The transfer map

We combine all of the results established so far to show Proposition 6.15(i).

Let N 2N . Suppose that we have chosen, for every n 2N ,

(i) a compact, contractible metric space .Xn; dXn/ such that for every " > 0 there
is an "–controlled domination of Xn by an at most N –dimensional, finite
simplicial complex;

(ii) a homotopy coherent G–action �n on Xn ;

(iii) a positive real number ƒn .

We equip Xn �G with the metric dSn;n;ƒn C dG . As in Section 7.3, we set

ık WD 4.d C 1� k/; lk WD d C 1� k:
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Proposition 7.25 Let ˛; d 2N . The assignment

.Y; �/ 7! trans˛;d .Y; �/ WD .trans˛;dXn .Y; �//n>maxfdC1;˛g;

f 7! .trans˛;dXn .f //n>maxfdC1;˛g;

defines an exact functor

trans˛;d W
�
RGf .W; J.E//; h

�
˛;d
!
�
RGfd

�
W; J..Xn �G/n; E/

�
; hfin�:

Proof According to Lemmas 7.11, 7.12 and 7.15 the assignment yields a functor of
categories with cofibrations

trans˛;d W RGf .W; J.E//˛;d !
Y
n2N

RGfd.W; J.Xn �G;E//:

We have to show that it factors over the subcategory RGfd
�
W; J..Xn�G/n; E/

�
. This is

the case if all objects and morphisms in the image of trans˛;d are uniformly boundedly
controlled over Xn �G. Essentially, we have to see that all of the necessary control
estimates are independent of n 2N .

For this, recall that the map

RGfd
�
W; J..Xn �G/n; E/

�
!

Y
n2N

RGfd.W; J.Xn �G;E//

works as follows. Essentially, an object in the source is a CW–complex relative W ,
where we have a partition of its cells into N –many sets and no boundary and no map
is allowed to hit a cell which is in a different set. Hence, we can write the object as the
coproduct (over W ), indexed by N , of CW–complexes relative W . The collection of
summands defines an element in the target. If the transfer satisfies a uniform metric
control condition, it factors over this map. Hence, we need to check that the previous
results of this section give uniform bounds for all n.

Since trans˛;dXn .Y; �/ is .˛Cı0C2/–controlled over Xn�G for every n by Lemma 7.11
and trans˛;dXn .f / is cellwise 0–controlled by Lemma 7.12, all objects and morphisms
are uniformly bounded, as desired. Proposition 7.23 shows that each component
trans˛;d .Y; �/ is finitely dominated, but we need it uniformly. For this, note that the
proof of Proposition 7.23 can actually be done with .Xn/n replacing X. Roughly, we
would get an extra coproduct over N everywhere, and everything else would need to
get an extra index, which is why Proposition 7.23 is not stated that way. However,
the control estimations come from applications of the gluing lemma and an induction
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over the cells of Y . But the gluing lemma preserves the property of everything being
uniformly controlled, and we start the induction with uniform control arising from f

and the ık , so we can do the same induction.

Proposition 7.20 tells us that trans˛;dXn sends h–equivalences to hfin –equivalences since
it applies for sufficiently large n. Again, the proof can be done for .Xn/n instead of X,
and the control estimates come from an induction over the cells of Y and the gluing
lemma, so they will be uniform.

Proposition 7.26 Let ˛; d 2N and let

i˛;d W RGf .W; J.E//˛;d ,!RGf .W; J.E//˛C1;dC1

be the obvious inclusion functor. Then there is a natural hfin –equivalence

trans˛;d ��! trans˛C1;dC1 ıi˛;d :

Proof There is a natural transformation trans˛;d ! trans˛C1;dC1 ıi˛;d given by
the sequence .�˛;˛C1;d;dC1/n>maxfdC2;˛C1g from Definition 7.16. These are ho-
motopy equivalences by Proposition 7.19, and the control estimates in the proof of
Proposition 7.19 show that they are also uniformly boundedly controlled homotopy
equivalences.

To obtain the transfer map whose existence was claimed in Proposition 6.15, we
proceed as follows. Let k 2 N . Consider the inclusion jk W RGf .W; J.E//k;k ,!
RGf .W; J.E//kC1;kC1 . By Proposition 7.26, there is a natural weak equivalence

�k W transk;k ��! transkC1;kC1 ıjk :

Hence, we obtain an induced homotopy

K.transk;k/'K.transkC1;kC1/ ıK.jk/:

Thinking of hocolimk K.RGf .W; J.E//k;k; h/ as the mapping telescope of

K
�
RGf .W; J.E//1;1; h

� K.j1/
���!K

�
RGf .W; J.E//2;2; h

� K.j2/
���!� � � ;

these homotopies serve to define a map

transW hocolim
k

K
�
RGf .W; J.E//k;k; h

�
!K

�
RGfd

�
W; J..Xn �G/n; E/

�
; hfin�:

Proposition 7.27 The map trans satisfies Proposition 6.15(i).
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Proof That trans is the required map and that the diagram commutes up to homotopy
is immediate from Propositions 7.2 and 7.24, noting again that the latter proof can be
done uniformly.
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