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Faithful actions from hyperplane arrangements

YUKI HIRANO

MICHAEL WEMYSS

We show that if X is a smooth quasiprojective 3–fold admitting a flopping contrac-
tion, then the fundamental group of an associated simplicial hyperplane arrangement
acts faithfully on the derived category of X. The main technical advance is to use
torsion pairs as an efficient mechanism to track various objects under iterations of
the flop functor (or mutation functor). This allows us to relate compositions of the
flop functor (or mutation functor) to the theory of Deligne normal form, and to give a
criterion for when a finite composition of 3–fold flops can be understood as a tilt at a
single torsion pair. We also use this technique to give a simplified proof of a result of
Brav and Thomas (Math. Ann. 351 (2011) 1005–1017) for Kleinian singularities.

18E30; 14E30, 14F05, 14J30, 20F36

1 Introduction

Autoequivalence groups of the bounded derived categories Db.cohX/ of coherent
sheaves of varieties X have been studied in many articles. On one hand, Bondal and
Orlov [2] proved that derived categories Db.cohX/ of smooth projective varieties X
with KX or �KX ample have only standard autoequivalences. On the other hand, Seidel
and Thomas [26] showed that if  W X !C2=G is a minimal resolution of a quotient
singularity C2=G by a finite group G� SL2.C/, then the derived category Db.cohX/
has nonstandard autoequivalences, called spherical twists. Across mirror symmetry,
these correspond to autoequivalences of the derived Fukaya category of a homological
mirror partner X_ of X, which arises from generalised Dehn twists along Lagrangian
spheres in X_ [26]. More precisely, if C WD  �1.0/D

Sn
iD1 Ci with Ci irreducible,

Seidel and Thomas showed that the objects OCi
.�1/Œ1� induce autoequivalences

ti 2 Auteq Db.cohX/, and that these together induce a group homomorphism

¡W B� ! Auteq Db.cohX/; si 7! ti ;

where B� D hs1; : : : ; sni is the braid group of the dual graph of exceptional curvesSn
iD1 Ci of  , which is a Dynkin diagram of type ADE. Seidel and Thomas showed
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that ¡ is injective when � is of type A, and later Brav and Thomas [3] showed that ¡
is injective in the general case. This means that there is a faithful braid group action on
Db.cohX/.

Moving up one dimension, if X ! Xcon is a flopping contraction between quasi-
projective 3–folds, where X is smooth and each of the n irreducible exceptional
curves is individually floppable, then Pinkham [23] and Wemyss [29] associate to this
data a real hyperplane arrangement H�Rn , as a certain intersection in an ADE root
system. The main result of Donovan and Wemyss [10] is that this induces an action of
the fundamental group on the derived category; more precisely, there exists a group
homomorphism

®W  1.C
n
nHC/! Auteq Db.cohX/;

where HC denotes the complexification of the real hyperplane arrangement H�Rn .
The group  1.CnnHC/ should be viewed as a form of pure braid group, since in the
case that H is a Coxeter arrangement, this is precisely what it is. However, in general,
H need not be Coxeter. Motivated by the situation of surfaces above, and also by
considerations in Bridgeland stability conditions, we prove that ® is injective, that is,
the action is also faithful.

In fact, we do more, and our proof also recovers the surfaces case of [3] in a much
simpler way. Some of the techniques in [3] are not suited to the 3–fold and more
general settings, and so we are forced to develop a new approach. There are four main
problems:

(1) In the 3–fold flops setting, the action ® is obtained by iterating flops. There is
no “formula” for the flop functor, unlike for spherical twists, and so tracking
objects under iterated flops is much more challenging.

(2) The arrangement H need not be Coxeter, so there is no finite Weyl group from
which we can use reduced expressions of elements, or Garside normal form.

(3) Higher-length braid relations exist, making it harder to induct on path length.

(4) There is no explicit presentation of  1.CnnHC/ to work with.

It turns out that these phenomena also exist for surfaces, but we need to go to partial
resolutions of Kleinian singularities in order to see them; most work to date only
considers the minimal resolution. This is addressed further in Iyama and Wemyss [16].

To obtain our main geometric results, we restrict to the formal fibre, and manipulate
tilting modules there. The following is our main result:
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Theorem 1.1 (Theorem 6.5 and Corollary 6.6) Suppose that f W X ! SpecR is
a complete local 3–fold flopping contraction, where X is smooth. Then the natural
functor from the Deligne groupoid GH to the natural flops groupoid is faithful. In
particular, the induced group homomorphism

®W  1.C
n
nHC/! Auteq Db.cohX/

is injective.

This immediately gives global corollaries, such as the following:

Corollary 6.7 Suppose that f W X!Xcon is a flopping contraction between quasipro-
jective 3–folds, where X is smooth, and all curves in the contraction f are individually
floppable. Then there is an injective group homomorphism

®W  1.C
n
nHC/! Auteq Db.cohX/:

There is a similar statement for when the curves are not individually floppable, but
being slightly more technical to state, we refer the reader to Corollary 6.8. We also
recover in Appendix A a simplified version of Brav and Thomas in the case of minimal
resolutions of Kleinian singularities.

The main technical engine in the proof is to use the order on tilting modules to control
iterations. Our new main technical result is the following, which here we state slightly
vaguely, leaving details to Section 4.

Theorem 1.2 (Theorem 4.6) With the assumptions in Theorem 1.1, suppose that
’W C !D is a positive minimal path. Then the composition of mutation functors along
this path is functorially isomorphic to a single functor induced by a tilting module.

Since tilting modules induce torsion pairs, this allows us to use torsion pairs to control
iterations. Applying this to 3–fold flops, where by Wemyss [29] the flop functor is
isomorphic to the inverse of the mutation functor, gives the following result. The first
part is implicit in Donovan and Wemyss [10], whereas the second part is new, and may
be of independent interest.

Theorem 6.9 Consider two crepant resolutions

X Y

SpecR

of SpecR , where R is an isolated cDV singularity.
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(1) Given two minimal chains of flops connecting X and Y , the composition of flop
functors associated to each chain are functorially isomorphic.

(2) Perverse sheaves on Y , namely 0Per.Y;R/, can be obtained from perverse
sheaves on X, namely 0Per.X;R/, by a single tilt at a torsion pair.

For definitions, we refer the reader to Section 6.2.

1.1 Outline of the paper

Section 2 contains background on hyperplane arrangements, arrangement groupoids
and Deligne normal form. In Section 3 we then relate this to tilting modules, under the
general setting that we will consider. So as not to disturb the flow of the paper, proofs
of some of the results in Section 3 appear in Appendix B. In Section 4 we establish in
Theorem 4.6 that compositions of tilts behave well under Deligne normal form, and
the first consequences appear in the short Section 5. In Section 6 we use this torsion
pair viewpoint to prove the faithfulness in the complete local setting, and we give all
the geometric corollaries. In Appendix A, which can be read independently, we give a
simple direct proof of faithfulness in the case of Kleinian singularities, to demonstrate
that the torsion pair viewpoint simplifies the proof.

1.2 Conventions

All rings and algebras are assumed to be noetherian, and to be k–algebras, where k
is some field. All modules are right modules, unless stated otherwise. When consid-
ering flopping contractions, the base field is assumed to be algebraically closed of
characteristic zero. Throughout:

� For a triangulated category C , and a; b 2 C , to match [3] we write

Œa; b�t WD HomC.a; bŒt �/:

� For an algebra ƒ, we write flƒ for the category of finite-length right ƒ–modules.

� For a noetherian ring R , CMR denotes the category of maximal Cohen–
Macaulay R–modules, and refR denotes the category of finitely generated
reflexive R–modules.

� For an additive category C and an object x 2 C , we write add x � C for the full
subcategory consisting of direct summands of finite direct sums of x .
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2 Preliminaries

2.1 Hyperplane arrangements

Throughout this subsection H will denote a finite set of hyperplanes in Rn , which we
will refer to as a real hyperplane arrangement. Such an arrangement is called Coxeter
if it arises as the set of reflection hyperplanes of a finite real reflection group.

Recall that H is simplicial if
T

H2HH D f0g and all chambers in RnnH are open
simplicial cones. All Coxeter arrangements are simplicial, but the converse is false.
When H is simplicial, we will write

HC WD
[

H2H

HC;

where HC denotes the complexification of H. The fundamental object of interest to us
is the fundamental group  1.CnnHC/ and, as is standard, to access this combinatorially
we will use the Deligne groupoid in the next subsection.

Remark 2.1 When H is Coxeter, it is well known that  1.CnnHC/ is the pure braid
group associated to the corresponding finite Coxeter group, that is, the kernel of the
natural morphism from the braid group to the Weyl group. When the arrangement is
simplicial but not Coxeter, there is no such description in terms of a kernel.

When H is a simplicial hyperplane arrangement, its 1–skeleton is defined to be the
graph with vertices corresponding to the chambers, and edges joining chambers which
share a codimension-one wall.
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Example 2.2 As an example, consider the following hyperplane arrangement H in R3 ,
and its 1–skeleton. It has 7 hyperplanes and 32 chambers, and is not Coxeter:

ª2

ª3

ª1

ª1 D 0;

ª2 D 0;

ª3 D 0;

ª1Cª2 D 0;

ª1Cª3 D 0;

ª2Cª3 D 0;

ª1Cª2Cª3 D 0:

This hyperplane arrangement appears for cD4 singularities with three curves meeting
at a point [29, 7.4]; an explicit example of such a cD4 singularity can be found in
[6, 11.2.19].

2.2 The Deligne groupoid

In this section we summarise some known combinatorial approaches to  1.CnnHC/.
For more detailed references, see [21; 22; 7].

Recall that a groupoid is a small category G such that for any two objects g; h 2 G , the
set of morphisms Hom.g; h/ is nonempty and, further, all morphisms are invertible.
We recall that a hyperplane arrangement H in Rn induces a groupoid GH called the
arrangement groupoid (or Deligne groupoid) of H . To define this, we first associate
an oriented graph �H to the hyperplane arrangement H .

Definition 2.3 The vertices of �H are the chambers (ie the connected components)
of Rnn

S
H2HH. There is an arrow aW v1! v2 from chamber v1 to chamber v2 if

the chambers are adjacent, otherwise there is no arrow. For an arrow aW v1! v2 , we
set s.a/ WD v1 and t .a/ WD v2 .

Example 2.4 Consider the hyperplane arrangement H in R2 , and its associated �H

in Figure 1. We have labelled the arrows in �H by abuse of notation.

A positive path of length n in �H is defined to be a formal symbol

p D an ı � � � ı a2 ı a1
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ª1

ª2

ª1Cª2

ª1C 2ª2

s1

s1

s2

s2

s1
s1

s2s2

s1

s1

s2
s2

s1 s1

s2
s2

Figure 1

whenever there exists a sequence of vertices v0; : : : ; vn of �H and arrows ai W vi�1!vi

in �H . We define s.p/ WDv0 , t .p/ WDvn and `.p/ WDn. The notation ı should remind
us of composition, but we will often drop the ı in future sections. If qDbmı� � �ıb2ıb1

is another positive path with t .p/D s.q/, we consider the formal symbol

q ıp WD bm ı � � � ı b2 ı b1 ı an ı � � � ı a2 ı a1;

and call it the composition of p and q . As usual, there are paths of length zero at each
vertex v , and by abuse of notation we will also denote the length-zero path at v by v ,
and identify the compositions t .p/ ıp and p ı s.p/ with p .

Definition 2.5 A positive path is called minimal if there is no positive path in �H of
smaller length and with the same endpoints. The positive minimal paths are called
atoms.

Example 2.6 In Example 2.4, the following are all the atoms starting in the cham-
ber CC :

CC

For each choice of start chamber, there is a similar picture.

Following [21, page 170], there is an equivalence relation � on the set of paths in �H ,
defined as the smallest equivalence relation such that the following conditions are
satisfied:
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(1) If p � q , then s.p/D s.q/ and t .p/D t .q/.

(2) If p and q are atoms with the same source and targets, then p � q .

(3) If p � q , then upr � uqr for all positive paths u and r satisfying t .r/ D
s.p/D s.q/ and s.u/D t .p/D t .q/.

Write Path�H for the set of equivalence classes of positive paths in �H with respect
to the equivalence relation �, and write Œp� for the equivalence class of a positive
path p .

Definition 2.7 When H is a simplicial hyperplane arrangement, write GCH for the
category whose objects are the vertices in �H , and whose morphisms are defined

HomGCH
.v; u/ WD fŒp� 2 Path�H j s.p/D v and t .p/D ug:

The Deligne groupoid (or the arrangement groupoid) GH is the groupoid defined as the
groupoid completion of GCH , that is, adding formal inverses of all morphisms in GCH
(see eg [9, Section 2.3.1]).

In future sections, we will abuse notation, and refer to Œ’�2 Path�H simply by ’, with
the equivalence relation being implicit. The following is well known by [7; 21; 20; 25]
(see also [22, 2.1]), and is our main reason for considering the Deligne groupoid.

Theorem 2.8 If H is simplicial, any vertex group of the groupoid GH defined above
is isomorphic to  1.CnnHC/.

2.3 Faithfulness

The faithfulness of the action of  1.CnnHC/ on Db.cohX/ will follow from a more
general faithful result on groupoids, which we briefly outline here.

Definition 2.9 [7, Section 1] Assume that H is simplicial. Let vi and vj be vertices
in �H , and let Ci and Cj be the corresponding chambers of Rn n

S
H2HH. Then we

say that vj is opposite to vi if there is a line l in Rn passing through Ci , Cj and the
origin. An opposite vertex of v is unique, and we denote it by �v .

Lemma 2.10 Assume that H is simplicial.

(1) For any atom p in �H , there is an atom p0 such that s.p0/D �t .p/, t .p0/D
s.p/ and the composition pp0 is also an atom.
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(2) Let a and b be two atoms in �H such that t .a/D t .b/. Then there are atoms p
and q such that b�1aD qp�1 in HomGH.s.a/; s.b//.

Proof (1) This follows from [21, Section 4, Corollary 2].

(2) By (1), there are atoms p and q such that s.p/D s.q/D�t .a/, and ap and bq
are atoms. Since the targets and sources of ap and bq are equal, we have ap � bq .
This implies b�1 ı aD q ıp�1 in HomGH.s.a/; s.b//.

Since GH is obtained from GCH by adding inverses, there is a natural functor

�W GCH !GH:

The following lemma is an easy analogue of [3, Lemma 2.3], and relies on the fact that
� is faithful for simplicial H .

Lemma 2.11 Assume that H is simplicial, and let F W GH! G be a functor between
groupoids. Then F is faithful if and only if F ı �W GCH ! G is faithful.

Proof By [7], �W GCH ! GH is faithful. Thus, it immediately follows that if F is
faithful, so is F ı �W GCH ! G .

For the other direction, assume that Fı�WGCH!G is faithful and let p;q2HomGH.v;w/

be morphisms. It is enough to show that if F.p/ D F.q/ then p D q . At first, we
consider the case when vDw . In this case, it is enough to show that, if F.p/D idF .v/ ,
then p D idv . By repeated use of Lemma 2.10(2), there are positive paths p1 and
p2 such that p D p1 ı p2

�1 . Since we have F.p1/ D F.p2/ and F ı � is faithful,
necessarily p1 D p2 and so p D p1 ıp2

�1 D idv . Next, we consider the general case
when F.p/D F.q/. Then we have F.pq�1/D idF .vj / . By the above argument, we
see that pq�1 D idv , and thus p D q .

Corollary 2.12 Assume that H is simplicial, F W GH ! G is a functor between
groupoids and, for any chamber C , write Autgp.FC/ WD HomG.FC; FC/. If F is a
faithful functor, then there is an injective group homomorphism

 1.C
n
nHC/! Autgp.FC/:

Proof If F is faithful, the induced group homomorphism F W HomGH.C; C / !

Autgp.FC/ is injective for any chamber C 2GH . Since HomGH.C; C / is isomorphic
to  1.CnnHC/ by Theorem 2.8, the result holds.
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2.4 Deligne normal form

By Lemma 2.11 and Corollary 2.12, our problem will reduce to proving the faithfulness
of a positive part of a groupoid action. This is a significant reduction in complexity,
since every positive path has a Deligne normal form, which we recall here. This
normal form replaces the Garside normal form in [3], which is only defined for Coxeter
arrangements. The proof of faithfulness will simply induct on the number of factors of
this normal form.

For positive paths p; q 2 �H with s.p/D s.q/, we say that p begins with q if there
exists a positive path r such that s.r/D t .q/, t .r/D t .p/ and p � rq . For a positive
path p , write Begin.p/ for the set of all atoms with which p begins. Similarly, we
can consider the set of atoms with which p ends, which is defined in the analogous
way, and we denote this set by End.p/.

Definition 2.13 For any path p 2�H , by [22, 2.2] (or [7]), there exists a unique (up to
equivalence) atom ’1 such that Begin.p/D Begin.’1/. Then, in particular, p begins
with ’1 , and so there is a positive path “ with s.“/D t .’1/ and t .“/D t .p/ such that

p � “ ı’1:

Continuing this process with “, we decompose p into atoms

p � ’n ı � � � ı’2 ı’1;

which we refer to as the Deligne normal form of p .

The following lemma is convenient, and is well known [21, Lemma 4.2].

Lemma 2.14 If p 2 �H , then p is an atom if and only if p does not cross any
hyperplane twice.

Example 2.15 Continuing the example and notation in Example 2.4, dropping the
composition symbol ı, the path p D s2s1s2s1s2s2s1s1s2s1 satisfies Begin.p/ D

Begin.s2s1s2s1/ since

� �

Continuing in this way, p has Deligne normal form s2.s2s1/.s1s2s1/.s2s1s2s1/.
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3 The tilting order and chambers

Our strategy to prove faithfulness of the action in the flops setting is to exploit the
partial order on tilting modules, due to Riedtmann and Schofield [24] and Happel and
Unger [13]. In the case of minimal resolutions of Kleinian singularities, we can bypass
this step by simply appealing to [15, Section 6], and so for the proof of faithfulness in
this case, the reader can skip immediately to Appendix A.

3.1 Tilting modules and mutation

Recall first that for an algebra A such that the category modA of finitely generated
A–modules is Krull–Schmidt, M 2modA is called basic if there is no repetition in
its Krull–Schmidt decomposition into indecomposable A–modules, and the algebra A
is called basic if it is basic as an A–module.

Throughout this section, ƒ is a basic R–algebra, where R is a complete local domain.
Note, by [28, page 566], for such rings the category modƒ is Krull–Schmidt. In our
geometric settings later, such ƒ appear when we work on the formal fibre.

Definition 3.1 T 2 modƒ is a classical tilting module if the following conditions
hold:

(1) pdƒ T � 1.

(2) Ext1ƒ.T; T /D 0.

(3) There exists a short exact sequence 0!ƒ!T1!T2! 0 with each Ti 2 addT .

We write tiltƒ for the set of basic classical tilting ƒ–modules.

We shall refer to classical tilting modules simply as tilting modules, with it being
implicit that pdƒ T � 1. When T is a tilting module, we write FacT for the full
subcategory of modƒ consisting of those modules Y such that there exists a surjection
T 0� Y with T 0 2 addT . It is known, and easy to prove from Definition 3.1(3), that

(3.A) FacT D fX 2modƒ j Ext1ƒ.T;X/D 0g;

so in particular for any X 2 FacT there is an exact sequence

0! Y ! T 0!X ! 0
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with Y 2 FacT and T 0 2 addT . It follows immediately that

(3.B) addT D fX 2 FacT j Ext1ƒ.X; FacT /D 0g:

The set tiltƒ carries the natural structure of a partially ordered set.

Notation 3.2 Let T;U 2 tiltƒ. We write T �U if Ext1ƒ.T; U /D 0, or, equivalently
by (3.A), if U 2 FacT . We write T > U if T � U and :.U � T /.

It is immediate from (3.B) and the Krull–Schmidt property that if T;U 2 tiltƒ with
T � U � T , then T Š U. We remark that T � U if and only if FacT � FacU, and
that ƒ 2 tiltƒ is the greatest element with respect to �.

Another key property of the set tiltƒ is that it admits an operation called mutation. For
T 2 tiltƒ and an indecomposable direct summand Ti of T , there exists at most one
basic tilting ƒ–module �iT D .T=Ti /˚Ui such that Ti © Ui (cf [24]). The module
�iT is called a tilting mutation of T , and in general it may or may not exist. As is
standard, mutation is encoded in the exchange graph of tiltƒ.

Notation 3.3 We write EG.ƒ/ for the exchange graph, where vertices are elements
of tiltƒ, and we draw an edge between T and �iT for all T and i such that �iT

exists. Further, for a fixed projective P, let EGP .ƒ/ denote the full subgraph of the
exchange graph of ƒ consisting of those vertices that contain P as a summand.

3.2 Chambers associated to tilting modules

To functorially control compositions of tilting mutations requires chambers, which
we now describe. We first fix notation. Let ƒ be a basic R–algebra, where R is a
complete local domain, and write K0 WDK0.Kb.projƒ//. It is well known that

(3.C) K0 Š ZnC1

since every P 2 projƒ can be uniquely written as a direct sum of indecomposable
projectives P˚a0

0 ˚� � �˚P
˚an
n for some ai . In what follows, we will fix the Z–basis

of K0 given by (3.C), namely fe0; : : : ; eng, where ei is the class of Pi in K0 .

We now fix a projective, which by convention will be P0 , and we will primarily be
interested in EG0.ƒ/ WD EGP0

.ƒ/, and its vertex set tilt0.ƒ/ consisting of all tilting
ƒ–modules that contain P0 as a summand. For this purpose, consider the following
factor R–vector space of K0˝Z RŠRnC1 , given by

Θƒ WD .K0˝Z R/=Spanfe0g ŠRn:

Geometry & Topology, Volume 22 (2018)



Faithful actions from hyperplane arrangements 3407

By abuse of notation, we write fŒP1�; : : : ; ŒPn�g for the R–basis of Θƒ induced
by (3.C), with it being implicit that the Œ�� notation works modulo Spanfe0g. From
this, we define

CC WD

� nX
iD1

ªi ŒPi �
ˇ̌̌
ªi > 0 for all 1� i � n

�
�Θƒ:

For T 2 tilt0ƒ, write T D T0˚ T1˚ � � � ˚ Tn , where by convention P0 D T0 , and
consider

CT WD

� nX
iD1

ªi ŒTi �
ˇ̌̌
ªi > 0 for all 1� i � n

�
�Θƒ:(3.D)

It is clear from the definition that Cƒ D CC .

The following is elementary, and is very similar to the arguments of [14; 8]. Since the
setting here does not involve Hom–finite categories, we give the proof in Appendix B.

Lemma 3.4 Suppose that ƒ is a basic R–algebra, where R is a complete local
domain. If T;U 2 tilt0ƒ are related by a mutation at an indecomposable summand,
then CT and CU do not overlap, and are separated by a codimension-one wall.

It is the following that will allow us to control iterations, as it relates the combinatorics
of chamber structures to the homological property of the tilting order. The result seems
to be folklore; for lack of a suitable reference, and since we are working slightly more
generally than usual, we give the proof in Theorem B.4 in Appendix B.

Theorem 3.5 Suppose that ƒ is a basic R–algebra, where R is a complete local
domain. Suppose that T;U 2 tilt0ƒ are related by a mutation at an indecomposable
summand, so, by Lemma 3.4, CT and CU are separated by H. Suppose that Œƒ� …H.
Then T > U if and only if CT lies on the same side of H as Œƒ�.

4 Compositions of mutations and flops

In this section we will describe compositions of mutation functors, or flop functors,
under Deligne normal form. This, and more generally the proof of faithfulness of the
group action, will be reduced to the formal fibre, and so for much of the paper we will
work under the following setup:

Setup 4.1 Suppose that f W U ! SpecR is a complete local 3–fold flopping contrac-
tion, where U is smooth.

Geometry & Topology, Volume 22 (2018)
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It is well known [1, 3.2.8] that in this setting Db.cohU/ admits a tilting bundle V
generated by global sections, which after setting M WD f�V, induces an equivalence
Db.cohU/Š Db.mod EndR.M//. The algebra EndR.M/ contains HomR.M;R/ as
a summand, and in the following we fix P0 WDHomR.M;R/, so that tilt0.ƒ/ consists
of those tilting ƒ–modules containing HomR.M;R/ as a summand.

4.1 CT objects and simple wall crossings

Under the above flops setup, M 2 CMR and EndR.M/ is a NCCR [1, 3.2.9–3.2.10].
It follows [17, 5.4] that M is a cluster tilting (CT) object of CMR, namely there are
equalities

addM D fX 2 CMR j Ext1R.X;M/D 0g D fY 2 CMR j Ext1R.M; Y /D 0g:

We can, and will, assume that M is basic. The class of basic cluster tilting objects
carries an operation of mutation, which involves picking an indecomposable summand
Mi of a CT module M, and uniquely replacing it with a different indecomposable
summand whilst remaining CT; the resulting module will be denoted by �iM.

By the three-dimensional Auslander–McKay correspondence [29, 6.9], the number
of CT R–modules is equal to the number of chambers of some simplicial hyper-
plane arrangement, described in detail in [29, 5.24–5.25], and furthermore, crossing a
codimension-one wall (henceforth a simple wall crossing) corresponds to mutating an
indecomposable summand of the associated CT module. Consequently, the 1–skeleton
of the arrangement equals the exchange graph of CT R–modules.

Under Setup 4.1, to fix notation we will write Hƒ for the simplicial hyperplane
arrangement associated to f , set M WDf�V, which will correspond to the chamber CC ,
and fix ƒ WD EndR.M/.

Example 4.2 There exists [19] a cD4 flop with the following simplicial hyperplane
arrangement. Under the Auslander–McKay correspondence, Figure 2 illustrates the
exchange graph of CT objects, where �i2i1

WD �i2
�i1

etc.

Thus, under Setup 4.1, via [29, 5.24–5.25] every chamber C in Hƒ has an associ-
ated CT R–module, NC say, and thus an associated derived category Db.modƒC /,
where ƒC WD EndR.NC /. The following Notation 4.3 shows that there are natural
equivalences between the categories.
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M

�1M

�21M

�121M

�1212M
�212M

�12M

�2M

Figure 2

Notation 4.3 Suppose that ’W C ! D is an atom in �Hƒ
. Then, by [17, 4.17],

TCD WD HomR.NC ; ND/ is a tilting bimodule from ƒC to ƒD , and we consider the
equivalence

Db.modƒC /
t’WDRHomƒC

.TCD ;�/

���������������! Db.modƒD/:

When ’ is a simple wall crossing, mutating the i th summand of NC say, we will write

ti WD RHomƒC
.TCD;�/;

and refer to ti as the mutation functor.

Remark 4.4 By [29, Theorem 4.2], the functor ti is functorially isomorphic to the
inverse of the flop functor, flopping a single curve Ci .

It is known [10, 3.22] that the mutation functors ti form a representation of the Deligne
groupoid, and thus they alone are enough to induce the action of the fundamental group.
However, it is the existence of the additional functors t’ for every atom ’ that will
allow us to control this action, and prove faithfulness in this paper.

Example 4.5 Continuing Example 4.2, setting ƒI WD EndR.�IM/, the mutation
functors ti are as in Figure 3.

There are more direct functors, for all atoms. As in Example 2.6, for those out of CC
these are as in Figure 4.

There are similar additional functors emerging from each of the other chambers.
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Db.ƒ/

Db.ƒ1/

Db.ƒ21/

Db.ƒ121/

Db.ƒ1212/

Db.ƒ212/

Db.ƒ12/

Db.ƒ2/

t1

t1

t2

t2

t1
t1

t2
t2

t1

t1

t2
t2

t1
t1

t2 t2

Figure 3

4.2 Atoms and the tilting order

Under the flops setup, Setup 4.1, recall from the last subsection that we associate an
algebra ƒD EndR.M/, and a simplicial hyperplane arrangement Hƒ . The functor

F WD HomR.M;�/W modR!modƒ

is fully faithful, and furthermore, by [17, 4.17, 5.11], induces an injective map

(4.A) F W fCT R-modulesg ! tilt0ƒ;

Db.ƒ/

Db.ƒ1/

Db.ƒ12/

Db.ƒ121/

Db.ƒ1212/

Db.ƒ212/

Db.ƒ12/

Db.ƒ2/

t1

RHom
ƒ
.T

12
12
;�
/

t2

Figure 4
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where recall tilt0ƒ consists of all tilting ƒ–modules containing P0 D HomR.M;R/

as a summand. By [18, 4.5(1)] this map is compatible with mutation. But, since R

is an isolated singularity, all possible mutations of a fixed CT R–module N give all
possible mutations of FN in tilt0ƒ, hence the finite connected mutation graph of CT
R–modules induces, under F , a finite connected component of tilt0ƒ. By a result of
Happel and Unger (adapted and proved in the setting here in [18, 4.9]), tilt0ƒ must
equal this finite connected component, thus (4.A) is in fact a bijection compatible with
mutation.

It follows that the exchange graph EG0ƒ from Section 3.2 equals the exchange graph
of CT R–modules, in a way compatible with mutation. Hence, by the last subsection,
EG0ƒ also equals the 1–skeleton of Hƒ , and thus the chambers of Hƒ are indexed
by tilting ƒ–modules, in a manner such that two modules that share a codimension-
one wall are related by a mutation at an indecomposable summand, in the sense of
Section 3.1. We refer the reader to Example 4.8 for an example.

The following is our main technical lemma, which uses the tilting chambers to establish
in the second part that the composition of mutation functors along Deligne normal
form is given by a direct tilt. To avoid confusion, write DT for the chamber of Hƒ

indexed by T 2 tilt0ƒ, and write CT for the chamber (3.D). We write DC WDDƒ .

Theorem 4.6 Under Setup 4.1, for any S 2 tilt0ƒ, suppose that ’W DC!DS is an
atom in �Hƒ

, and choose a decomposition of ’ into length-one positive paths

’ D Dƒ
si1�!D2! � � � !Dm

sim
�!DmC1:

For iD2; : : : ; mC1, write Mi for the CT R–module corresponding to the chamber Di ,
so that S D FMmC1 . Then the following assertions hold:

(1) As tilting ƒ–modules, ƒD FM > FM2 > � � �> FMm > FMmC1 D S.

(2) There is a bimodule isomorphism

HomR.Mm;MmC1/˝
L
� � � ˝

L HomR.M2;M3/˝
L HomR.M;M2/

Š HomR.M;MmC1/;

where, reading right to left, the tensors are over EndR.Mi / for i D 2; : : : ; m.

(3) CS WD
˚Pn

iD1 ªi ŒSi � j ªi > 0 for all 1� i � n
	

equals DS .

Proof We prove all assertions together. By induction we can assume that

(4.B) ƒD FM > � � �> FMm;
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that CX DDX for the tilting modules in (4.B), and that there is a bimodule isomorphism

(4.C) HomR.Mm�1;Mm/˝
L
� � � ˝

L HomR.M;M2/Š HomR.M;Mm/;

since the case mD 1 is clear.

Certainly the hyperplanes of Hƒ cannot pass through any chamber, in particular
Cƒ D Dƒ . Write T WD FMm , and H 0 for the wall separating CT and CS . Since
CT DDT by induction, extending H 0 to a hyperplane, H 0 is one of the hyperplanes
of Hƒ . Hence, since Œƒ� 2 Cƒ , and the hyperplanes of Hƒ cannot pass through Cƒ ,
necessarily Œƒ� …H 0.

We next crash through the wall H from DT into DS . If DC were not on the same
side of H as DT , then ’ would have to cross H twice, and so by Lemma 2.14 applied
to Hƒ , the path ’ would not be an atom. Hence, DC must be on the same side of H
as DT . Since Œƒ� 2 CC DDC and CT DDT , we conclude that Œƒ� is on the same
side of H 0 as CT .

By Theorem 3.5, necessarily T > S, ie FMm > FMmC1 , so combining with (4.B)
proves (1). Next, the induction (4.C) gives a bimodule isomorphism

HomR.Mm;MmC1/˝
L . � � � ˝L HomR.M;M2//

Š HomR.Mm;MmC1/˝
L HomR.M;Mm/;

so to prove (2) it suffices to show that there is a bimodule isomorphism

(4.D) HomR.Mm;MmC1/˝
L HomR.M;Mm/Š HomR.M;MmC1/:

Applying Proposition B.1 with T D FMm , � D EndR.Mm/ and

�i� D HomR.Mm;MmC1/

shows that the left-hand side of (4.D) is concentrated in degree zero, so to prove (2) it
suffices to show that there is a bimodule isomorphism

(4.E) HomR.Mm;MmC1/˝HomR.M;Mm/Š HomR.M;MmC1/:

But there is a chain of isomorphisms

HomR.Mm;MmC1/˝HomR.M;Mm/
��!Homƒ.T;FMmC1/˝T

��!FMmC1;

where the first is the reflexive equivalence g˝f 7! .g ı�/˝f , and the second is the
adjunction from the derived equivalence (using the last statement in Proposition B.1),
which takes ®˝ t 7! ®.t/. Composing the above shows that there is an isomorphism
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(4.E) given by g˝f 7! g ıf . By inspection, this an isomorphism in the category of
bimodules, proving (2).

Finally, to prove (3), note that the bimodule isomorphism in (2) induces a functorial
isomorphism between RHomƒ.FMmC1;�/D RHomƒ.S;�/ and the composition

(4.F) Db.modƒ/
ti1�!� � �

tim
�!Db.modƒmC1/:

Writing ƒmC1 D P0˚Q1˚ � � �˚Qn , it is easy to see that tracking

(4.G)
�X

i

ªi ŒQi �
ˇ̌̌
ªi > 0; i D 1; : : : ; n

�
through the inverse of RHomƒ.S;�/ gives�X

i

ªi ŒSi �
ˇ̌̌
ªi > 0; i D 1; : : : ; n

�
D CS :

By the functorial isomorphism, this must give the same answer as tracking (4.G) through
the inverse of (4.F). We thus claim that tracking (4.G) through the inverse of (4.F)
gives DS , as then DS D CS , and the result follows.

On one hand, by the definition of the mutation functors, tracking (4.G) through the
inverse of (4.F) precisely follows the moduli-tracking rules laid out in [29, 5.14–5.15].
On the other hand, it is known [29, 5.25] that after possibly replacing some of the

tj D RHomEndR.N /.HomR.N; �jN/;�/

in (4.F) by
t 0j WD �˝

L
EndR.N / HomR.�jN;N/;

tracking (4.G) back through the inverse of the replacement chain does indeed give the
simplicial cone DS . Crucially, since the combinatorial rules for tracking through tj
and through t 0j are the same in this flops setting (see [29, 5.15]), the replacements
do not matter, and so tracking (4.G) through the inverse of (4.F) also gives DS , as
required.

Remark 4.7 The initial choice of decomposition of ’ in Theorem 4.6 does not matter,
as the theorem shows that all choices are functorially isomorphic to t’ .

Example 4.8 Continuing the flopping contraction example in Example 4.5, the cham-
bers of Hƒ can be indexed by elements of tilt0ƒ, as illustrated in the left-hand side
of the following picture, where �i2i1

ƒD HomR.M; �i2i1
M/ etc:
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ƒ

�1ƒ

�21ƒ

�121ƒ

�1212ƒ
�212ƒ

�12ƒ

�2ƒ

EG0.ƒ/

ƒ

�1ƒ

�21ƒ

�121ƒ

�1212ƒ
�212ƒ

�12ƒ

�2ƒ

<
<

<
< <

<

<

<

Order

The ordering, which is illustrated in the right-hand side, is forced by Theorem 4.6(1).

Since the positive path below corresponding to the composition t2t1t2 is an atom,
it also follows from Theorem 4.6(2) (applied to ƒ1 ) that the composition t2t1t2 is
functorially isomorphic to the direct functor shown:

Db.ƒ1/

Db.ƒ21/

Db.ƒ121/

Db.ƒ1212/

RHomƒ1
.HomR.�1M; �1212M/;�/

t2

t1

t2

For future use, a useful corollary of Theorem 4.6 is the following:

Corollary 4.9 Under Setup 4.1, let ’W C ! D be an atom, and let N 2 modƒC .
Then H i .t’N/D 0 for all i ¤ 0; 1.

5 Tracking via torsion pairs

Under the flops setup of Setup 4.1, suppose that C is a chamber of Hƒ . It follows
from Theorem 4.6 applied to ƒC D EndR.NC / that if ’W C ! D is an atom, then
the composition of mutation functors along the path ’ is functorially isomorphic to
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t’ D RHomƒC
.T’;�/, where T’ WD �’ƒC 2 tilt0ƒC . We will use this implicitly

from now on.

As is standard (see eg [27, 2.7]), T’ induces two torsion pairs, which restrict to torsion
pairs on finite-length modules flƒC and flƒD . These are .T’;F’/ and .X’;Y’/,
where

T’ WD fN 2 flƒC j Ext1ƒC
.T’; N /D 0g;

F’ WD fN 2 flƒC j HomƒC
.T’; N /D 0g;

and
X’ WD fN 2 flƒD jN ˝ƒD

T’ D 0g;

Y’ WD fN 2 flƒD j TorƒD

1 .N; T’/D 0g:

The Brenner–Butler theorem for finite-dimensional algebras (proved in the module-
finite setting here in [27, 2.9]) asserts that these tilting modules not only induce the
above two torsion pairs, but also induce the following categorical equivalences:

(5.A) T’ Y’

HomƒC
.T’;�/

˝ƒD
T’

and F’ X’:

Ext1ƒC
.T’;�/

TorƒD
1 .�; T’/

To control the functors t’ requires us to track various objects, which we do here. The
following lemma is a standard fact about Deligne normal form, which precisely mirrors
the Coxeter version.

Lemma 5.1 Suppose that ’ is an atom. Then:

(1) ’si is an atom() si … Begin.’/.

(2) sj’ is an atom() sj … End.’/.

Proof For lack of a suitable reference, we give the proof of (1), with (2) being similar.

.D)/ This is clear, using Lemma 2.14.

. D)/ We prove the contrapositive. Suppose that the composition

A
si
�!B ’

�!C

is not an atom, and write H for the hyperplane separating A and B . By Lemma 2.14,
’si must cross some hyperplane at least twice. But, since ’ is an atom, again by
Lemma 2.14, the hyperplanes that ’ crosses must be distinct. Hence, the only possibility
is that ’si crosses H precisely twice.
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In particular, ’ must cross H, and so, since it cannot cross H twice by Lemma 2.14,
t .’/D C must be on the same side of H as A. If we write “ for the smallest positive
path (atom) from A to C , then “ cannot cross H by Lemma 2.14, since A and C lie
on the same side of H. Since si W B! A obviously only crosses H, it follows again
by Lemma 2.14 that the composition

B
si
�!A

“
�!C

is an atom. Hence, ’�“si , since both are atoms from B to C , and so si 2Begin.’/.

Notation 5.2 In each chamber D of EG0.ƒ/ there is an algebra ƒD with precisely
nC 1 simples. By abuse of notation we will denote these simples by S0; S1; : : : ; Sn ,
where S0 always corresponds to P0 , and performing the simple wall crossing si

corresponds to the tilting mutation at the projective cover of Si . We will use the same
notation Si for every ƒD , and will often consider S WD

Ln
iD0 Si , with it being implicit

from the context which ƒD to view this as a module over.

Lemma 5.3 Under Setup 4.1, ti .Si /Š Si Œ�1� for all 1� i � n.

Proof Say si W C !D, so that ti D RHomƒC
.�iƒC ;�/. Since ƒC > �iƒC , as in

Appendix B there exists a short exact sequence

0! Pi ! P 0! Ci ! 0

with P 0 2 add.ƒC =Pi / such that �iƒC D .ƒC =Pi /˚Ci . Applying HomƒC
.�; Si /

to the above sequence yields the result, exactly as in [29, 4.15(2)].

For our purposes later, we require more than Lemma 5.3, namely for atoms ’W C !D

we need to track all summands of S under the inverse functor t�1
’ Š�˝

L
ƒD

T’ . Since
.X’;Y’/ is a torsion pair on flƒD , and each Si is simple, either Si 2 X’ or Si 2 Y’ .
Using the categorical equivalences (5.A) it thus follows that

(5.B) t�1
’ .Si /D

�
TorƒD

1 .Si ; T’/Œ1� if Si 2 X’;

Si ˝ƒD
T’ if Si 2 Y’:

In the top case, t�1
’ .Si / is the shift of a module in F’ , and in the bottom case, t�1

’ .Si /

is a module in T’ .

The following is our key preparatory lemma, which says that the torsion pairs .T’;F’/

and .X’;Y’/ detect both how ’ starts and how ’ ends.
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Lemma 5.4 Under Setup 4.1, suppose that ’W C !D is an atom. Then, for i ¤ 0,
the following statements hold:

(1) Si 2 F’() si 2 Begin.’/.

(2) Si 2 T’() si … Begin.’/.

(3) Si 2 X’() si 2 End.’/.

(4) Si 2 Y’() si … End.’/.

Proof We prove (1), with all others being similar.

. D)/ Suppose that ’ starts with si , and write ’D “ ı si . Then t’.Si /D t“.Si /Œ�1�

by Lemma 5.3. Applying Corollary 4.9 to both sides, it follows that H j .t’.Si //D 0

for all j ¤ 1, so Si 2 F’ .

.D)/ Suppose that ’ does not start with si ; then, by Lemma 5.1, ’ ı si is still
an atom. Hence, t’si

D t’ ı tsi
, and so t’si

.Si / D t’.Si /Œ�1� by Lemma 5.3. Thus
t’.Si / D t’si

.Si /Œ1�, so again applying Corollary 4.9 to both sides, it follows that
H j .t’.Si //D 0 for all j ¤ 0, so Si 2 T’ . In particular, Si … F’ .

Lemma 5.5 Under Setup 4.1, suppose that ’W C !D is an atom. Then S0 2 T’ and
S0 2 Y’ .

Proof The first statement holds since P0 is a summand of T’ , so HomƒC
.T’; S0/¤0.

Thus, S0 … F’ and so, since S0 is simple, necessarily S0 2 T’ .

The second statement is similar, but uses the duality on tilting modules, so we sketch
the proof. To ease notation set A WDƒC , B WDƒD , and T WD T’ . By convention the
simple right A–module S0 corresponds to the indecomposable projective P0 of A,
so consider the idempotent e0 such that P0 D e0A. Similarly, B Š EndA.T / has an
idempotent e00 corresponding to the summand e0A in the decomposition T D e0A˚X

as right A–modules. By convention S0 is the simple right B –module corresponding
to e00B , so that the k–dual DS0 is the simple left B –module corresponding to Be00 .
It follows that HomBop.Be00;DS0/¤ 0.

We first claim that Be00 is a summand of BT . By construction, it is clear that Be00 D
HomA.e0A; T / as left B –modules. As in [4, page 33], the functor

?.�/ WD HomA.�; T /W modA!modBop

clearly takes AA 7! BT , and thus, since e0A is a summand of AA , by applying ?.�/

we see that ?.e0A/Š Be
0
0 is a summand of BT .

Geometry & Topology, Volume 22 (2018)



3418 Yuki Hirano and Michael Wemyss

Now, by [5, VI.5.1] there is an isomorphism

D.S0˝B Be
0
0/Š HomBop.Be00;DS0/;

which is nonzero by the above. Thus S0˝B Be
0
0 ¤ 0. Since, by the above, S0˝B T

has summand S0˝B Be
0
0 , it follows that S0˝B T ¤ 0. Hence S0 … X’ , so again

since S0 is simple, necessarily S0 2 Y’ .

Corollary 5.6 Under Setup 4.1, suppose that ’W C ! D is an atom. If N 2 F’

is nonzero, then there exists some j ¤ 0 such that ’ starts with sj and, further,
HomƒC

.Sj ; N /¤ 0.

Proof Certainly N is filtered by simples, so there exists some 0� j �n with Sj ,!N.
In particular, Hom.Sj ; N /¤ 0. Since F’ is closed under submodules Sj 2 F’ , and
so, by Lemma 5.5, necessarily j ¤ 0. The result then follows from Lemma 5.4(1).

6 Proof of faithfulness

Keeping the notation in the previous sections, under the flops setup of Setup 4.1, recall
from Notation 5.2 that every chamber D has an associated algebra ƒD and simple
modules S0; S1; : : : ; Sn , and we set S WD

Ln
iD0 Si . As in the conventions, we write

Œa; b�t D HomDb.ƒD/.a; bŒt �/. Although the D is suppressed in this notation, it will
be clear from the context in which category to view S .

We will reduce to a key technical lemma in Proposition 6.3, which is an analogue of
[3, Proposition 3.1]. The key point of Brav and Thomas is to first find an object b such
that

(6.A) ŒS; b��dC1 D 0;

where d D dimR. For this there are many choices. To ensure that the method below
can be used in future papers to cover situations where ƒ has infinite global dimension
(or flopping contractions U ! SpecR where U need not be smooth), throughout we
choose b Dƒ, as is justified in the following lemma.

Lemma 6.1 Suppose that R is a d –dimensional complete local Gorenstein ring, and
that ƒŠ EndR.M/ for some M 2 refR, with ƒ 2 CMR (that is, ƒ is a modifying
R–algebra). Then b WDƒ satisfies

(6.B) ŒSi ; b�d ¤ 0 for all 0� i � n and ŒS; b��dC1 D 0:
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Proof We know that Exttƒ.Si ; b/ WD Exttƒ.Si ; ƒ/ Š ExttR.Si ;R/, where the last
isomorphism is [15, 3.4(5)]. Hence, by local duality,

depthR Si D d � supft � 0 j ŒSi ; b�t ¤ 0g:

Clearly, being of finite length, depthR Si D 0, so we deduce that (6.B) holds.

6.1 The main result

Throughout this subsection we will work under the setting of Setup 4.1, and write
b WDƒ. The initial step requires the following elementary lemma:

Lemma 6.2 Suppose that 0¤N 2 flƒD .

(1) If y 2 Db.modƒD/ is such that ŒS; y��p D 0, then ŒN; y��p D 0.

(2) ŒN; b�d ¤ 0 and ŒN; b��dC1 D 0.

Proof (1) This is an easy induction on the length of the filtration of N, using the
long exact sequence from Œ�; y�.

(2) By Lemma 6.1, ŒS; b��dC1 D 0, so the second statement is a consequence of (1).
The first also follows by an induction on the length of the filtration of N, using
ŒSi ; b�d ¤ 0 and ŒSi ; b�dC1 D 0 for all 0� i � n.

Now, for ’2GCH , we can decompose ’ into length-one atoms ’D sin
� � � si1

and define
t’ WD tin

ı � � � ı ti1
(where the tit

are as defined in Notation 4.3), or alternatively we can
decompose ’ into Deligne normal form ’D ’k � � �’1 and define t’ WD t’k

ı � � � ı t’1

(where the t’i
are also as defined in Notation 4.3). The crucial point in the proof of

faithfulness is that by Theorem 4.6(2) these yield the same functor.

The following is our analogue of the main technical lemma of Brav and Thomas
[3, Proposition 3.1]. Using torsion pairs, the proof only needs to induct on the number
of Deligne factors, whereas Brav and Thomas use a more complicated double induction.

Proposition 6.3 Let 1¤ ’ 2GCH have Deligne normal form ’D ’k ı � � � ı’1 . Then:

(1) ŒS; t’b��kCdC1 D 0.

(2) ŒSi ; t’b�kCd ¤ 0 if and only if i ¤ 0 and the atom ’k ends (up to the relations
in GCH ) by passing through wall i . In particular, ŒS; t’b�kCd ¤ 0.

(3) The maximal p such that ŒS; t’b�p ¤ 0 is precisely p D kC d .
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Proof Statement (3) follows immediately from (1) and (2), so we prove both (1) and
(2) together using induction on the number of Deligne factors.

Base case (k D 1, ie ’ is an atom) Since Si is simple, there are only two cases,
namely Si 2 Y’ or Si 2 X’ , and using Lemmas 5.4 and 5.5 we can characterise these:

(a) (Si 2 Y’ ; equivalently, i D 0, or i ¤ 0 and ’ does not end with si ) By (5.B),
t�1
’ .Si /ŠN for some finite-length module N. Hence, by Lemma 6.2(2),

ŒSi ; t’b��dC1 D ŒN; b��dC1 D 0:

(b) (Si 2 X’ ; equivalently, i ¤ 0 and ’ ends with si ) By (5.B), t�1
’ .Si / Š NŒ1�

for some finite-length module N. Hence, again by Lemma 6.2(2),

ŒSi ; t’b��dC2 D ŒN Œ1�; b��dC2 D ŒN; b��dC1 D 0

and
ŒSi ; t’b�dC1 D ŒN; b�d ¤ 0:

Combining (a) and (b) proves (1)–(2) in the case k D 1.

Induction step We assume that the result is true for all paths with at most k � 1
Deligne factors. Write ’D ’k ı “, where “ WD ’k�1 ı � � � ı’1 . By induction,

ŒS; t“b��kCd D 0

and ŒSj ; t“b�kCd�1 ¤ 0 if and only if j ¤ 0 and ’k�1 ends with sj . Again there are
only two cases:

(a) (Si 2 Y’k
; equivalently, i D 0, or i ¤ 0 and ’k does not end with si ) By (5.B),

t�1
’k
.Si /ŠN for some finite-length module N. Hence,

ŒSi ; t’b��kCd D Œt
�1
’k
Si ; t“b��kCd D ŒN; t“b��kCd D 0 by Lemma 6.2(1).

(b) (Si 2 X’k
; equivalently, i ¤ 0 and ’k ends with si ) By (5.B), t�1

’k
.Si /ŠNŒ1�

for some finite-length module N. Thus,

ŒSi ; t’b��kCdC1 D ŒN Œ1�; t“b��kCdC1 D ŒN; t“b��kCd D 0 by Lemma 6.2(1).

Similarly,
ŒSi ; t’b�kCd D ŒN Œ1�; t“b�kCd D ŒN; t“b�kCd�1;

so it remains to show that ŒN; t“b�kCd�1¤ 0. But, by Corollary 5.6, there exists j ¤ 0
such that ’k starts with sj , and Sj ,!N. Write C for the cokernel, which necessarily
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has finite length, and consider the long exact sequence

� � � ! ŒC; t“b�kCd�1! ŒN; t“b�kCd�1! ŒSj ; t“b�kCd�1! ŒC; t“b�kCd D 0:

Since ’k starts with sj , necessarily ’k�1 ends with sj , otherwise sj ı˛k�1 is an atom
by Lemma 5.1, which would contradict the fact that ’k ı’k�1 ı � � � ı’1 is in Deligne
normal form. Thus, ŒSj ; t“b�kCd�1 ¤ 0 by the inductive hypothesis. It follows that
ŒN; t“b�kCd�1 ¤ 0.

Combining (a) and (b) proves (1)–(2) in the case of k factors, so by induction the result
follows.

The remainder of the proof of faithfulness is straightforward.

Definition 6.4 Define the groupoid Gƒ as follows:

(1) The vertices are Db.modƒC / for chambers C of H .

(2) The morphisms between any two vertices are all triangle equivalences between
the corresponding derived categories.

By Theorem 4.6(2) and Remark 4.7, there is a natural functor

FƒW GH! Gƒ

which sends a simple wall crossing si to the corresponding equivalence ti .

Theorem 6.5 The functor Fƒ is faithful.

Proof This is an easy induction. We use Lemma 2.11, so suppose that

t’ D t“W Db.modƒC /! Db.modƒD/

for some ’; “ 2GCH . Since t’ D t“ , we deduce from Proposition 6.3(3) that ’ and “
have the same number of Deligne factors, so write

’D ’k � � �’1 and “D “k � � � “1

in Deligne normal form. By induction, it is enough to show that ’kD“k and t’k�1���’1
D

t“k�1���“1
. We may assume that ` WD `.’k/ � `.“k/. By Proposition 6.3(2), since

t’ D t“ , both ’k and “k end with the same simple wall crossing, say si1
, so we can

write ’k D si1
z’k and “k D si1

z“k . Hence, applying t�1
i1

to t’ D t“ , we deduce that
tz’k’k�1���’1

D tz“k“k�1���“1
.
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Repeating the above argument, we can write ’k D si1
� � � si`

and “k D si1
� � � si`

” for
some ” 2GCH , and so we have t’k�1���’1

D t”“k�1���“1
. But, again by Proposition 6.3(3),

” must be a length-zero path. Hence, we have ’k D si1
� � � si`

D “k and t’k�1���’1
D

t“k�1���“1
, as required.

Corollary 6.6 For every chamber C , the induced map

 1.C
n
nHC/! Auteq Db.modƒC /

is an injective group homomorphism

Proof By Corollary 2.12, this follows immediately from Theorem 6.5.

6.2 Geometric corollaries

Although the above results were stated in the formal fibre setting, they easily imply the
following global results:

Corollary 6.7 Suppose that f W X !Xcon is a flopping contraction between 3–folds,
where X is smooth and all curves in the contraction f are individually floppable. Then
there is an injective group homomorphism

®W  1.C
n
nHC/! Auteq Db.cohX/:

Proof As in [10, Proposition 6.2], the functors in the image of ® fix the skyscraper
sheaves away from the flopping curves. Hence, the relations can be detected on the
formal fibre, where the result is Corollary 6.6.

In the case when the n curves are not individually floppable, there is still a group
action, but only by a subgroup S of  1.CnnHC/ defined to be the subgroup generated
by the J –twists of [10], where J runs through all subsets of f1; : : : ; ng. The proof of
faithfulness extends to this case too.

Corollary 6.8 Suppose that f W X !Xcon is a flopping contraction between 3–folds,
where X is smooth. Then there is an injective group homomorphism

S ! Auteq Db.cohX/:

Proof Again, by [10, Proposition 6.2], the functors in the image of the above homo-
morphism fix the skyscraper sheaves away from the flopping curves. Hence, the
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relations can be detected on the formal fibre. Since there  1.CnnHC/ acts faithfully
by Corollary 6.6, so does any subgroup.

Recall that if A is the heart of a bounded t –structure on a triangulated category D ,
and A admits a torsion pair .T ;F/, then the tilt of A with respect to this torsion pair
is defined to be

A]
WD fE 2 D jH i .E/D 0 for i … f�1; 0g; H�1.E/ 2 F and H 0.E/ 2 T g:

By [12, Proposition I.2.1], A] is also the heart of a bounded t –structure on D .

Now, for a 3–fold flopping contraction f W X !Xcon , consider the full subcategories

T0 WD fT 2 cohX jR1f�.T /D 0g;

F0 WD fF 2 cohX j f�.F /D 0;Hom.C; F /D 0g;

where C� cohX is the full subcategory consisting of objects E such that Rf�.E/D 0.
Then .T0;F0/ is a torsion pair by [1, Lemma 3.1.2], and the category of perverse sheaves
relative to f is defined to be

0Per.X;Xcon/ WD .cohX/];

namely the tilt of the standard heart cohX � Db.cohX/ with respect to the torsion
pair .T0;F0/.

The following is a further consequence of the results in this paper, and may be of
independent interest. The first part is implicit in [10]; the second part is new.

Theorem 6.9 Consider two crepant resolutions

X Y

SpecR

of SpecR , where R is an isolated cDV singularity.

(1) Given two minimal chains of flops connecting X and Y , the composition of flop
functors associated to each chain are functorially isomorphic.

(2) Perverse sheaves on Y , namely 0Per.Y;R/, can be obtained from perverse
sheaves on X, namely 0Per.X;R/, by a single tilt at a torsion pair.
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Proof (1) By [7, 1.10, 1.12], any two minimal paths can be identified provided
that in the Deligne groupoid the codimension-two relations hold. By [10, 3.20], the
codimension-two relations precisely correspond to the braiding of the 2–curve flop
functors, which is proved in [10, 3.9, 3.20].

(2) Consider a minimal path of flops

Db.cohX/
Fi1
��!Db.cohXi1

/
Fi2
��!� � �

Fin
��!Db.cohY /

connecting X and Y . By [1], X is derived equivalent to EndR.M/, say, and Y is
derived equivalent to EndR.N /, say, and under this identification 0Per.X;R/ corre-
sponds to mod EndR.M/, and 0Per.Y;R/ corresponds to mod EndR.N /. Hence, it
suffices to show that mod EndR.N / can be obtained from mod EndR.M/ by a tilt at a
torsion pair.

Consider T WD HomR.M;N /. This is a tilting EndR.M/–module, by [17, 4.17]. But,
since EndR.M/ is noetherian,

T WD fX 2mod EndR.M/ j Ext1EndR.M/.T;X/D 0g;

F WD fX 2mod EndR.M/ j HomEndR.M/.T;X/D 0g

gives a torsion pair .T ;F ) on mod EndR.M/; the proof is identical to [27, 2.7(3)].
Using the finitely generated version of the equivalences (5.A), it is then clear that
mod EndR.N / is obtained from mod EndR.M/ by tilting at .T ;F/.

Appendix A: Brav and Thomas revisited

In this appendix, which can be read independently of the previous sections, we give a
direct proof of the faithfulness of the braid action on the minimal resolution of Kleinian
singularities, just to demonstrate that our torsion pairs viewpoint simplifies the [3]
proof. Thus in this section we consider the minimal resolution X ! SpecR of a
Kleinian singularity, let ƒ denote the completion of the preprojective algebra of the
corresponding extended Dynkin diagram, and set b WD S , where S is the direct sum of
the vertex simples S0; S1; : : : ; Sn .

The initial step requires the following elementary lemma, which replaces Lemma 6.2.

Lemma A.1 Suppose that M 2 flƒ.

(1) If y 2 Db.modƒ/ is such that ŒS; y��p D 0, then ŒM; y��p D 0.

(2) ŒM;S�2 ¤ 0 and ŒM;S��3 D 0.
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Proof (1) This is an easy induction on the length of the filtration of M, using the
long exact sequence from Œ�; y�.

(2) Since ƒ is 2–CY, ŒS;S��3 D 0, so the second statement is a consequence of (1).
The first also follows by an induction on the length of the filtration of M, using the
fact that ŒSi ;S�2 ¤ 0 for all 0� i � n.

For every primitive idempotent ei corresponding to a vertex of the extended Dynkin
diagram, following [15, Section 6] we set

Ii WDƒ.1� ei /ƒ:

It is known by [11, Section 6] that RHomƒ.Ii ;�/ is functorially isomorphic to the
twist functor ti . To control iterations, for any ’ 2W , where W is the associated Weyl
group, choose a reduced expression ’D sin

ı � � � ı si1
and define

I’ WD Iin
� � � Ii1

:

Since the expression is reduced,

I’ Š Iin
˝

L
ƒ � � � ˝

L
ƒ Ii1

by [27, 2.21], so that

(A.A) t’ WD RHomƒ.I’;�/Š tin
ı � � � ı ti1

:

By the usual torsion pair associated to a tilting module, as in [27, 2.9] and Section 5,
for any vertex simple Si , either Si 2 X’ or Si 2 Y’ , where

X’ WD fN 2 flƒ jN ˝ƒ I’ D 0g;

Y’ WD fN 2 flƒ j Torƒ
1 .N; I’/D 0g;

and furthermore the equivalence (A.A) forces

(A.B) t�1
’ .Si /D

�
Tor1.Si ; I’/Œ1� if Si 2 X’;

Si ˝ I’ if Si 2 Y’:

There is a corresponding version of Lemmas 5.4 and 5.5 and Corollary 5.6, which we
will use freely below, since these were already very well known [27, 2.28, 5.4] in the
preprojective algebra setting. With this, we can now prove the main technical lemma
[3, Proposition 3.1] in the setting of minimal resolutions of Kleinian singularities.

Proposition A.2 Let 1¤ ’ 2GCH have Deligne normal form ’D ’k ı � � � ı’1 . Then:

(1) ŒS; t’S��kC3 D 0.
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(2) ŒSi ; t’S�kC2 ¤ 0 if and only if i ¤ 0 and the atom ’k ends (up to the relations
in GCH ) by passing through wall i . In particular, ŒS; t’S�kC2 ¤ 0.

(3) The maximal p such that ŒS; t’S�p ¤ 0 is precisely p D kC 2.

Proof Statement (3) follows immediately from (1) and (2), so we prove both (1) and
(2) together using induction on the number of Deligne factors.

Base case (k D 1, ie ’ is an atom) Since Si is simple, there are only two cases,
namely Si 2 Y’ or Si 2 X’ , and using Lemmas 5.4 and 5.5 we can characterise these:

(a) (Si 2 Y’ ; equivalently, i D 0, or i ¤ 0 and ’ does not end with si ) By (A.B),
t�1
’ .Si /ŠM for some finite-length module M. Hence, by Lemma A.1(2),

ŒSi ; t’S��3 D ŒM;S��3 D 0:

(b) (Si 2 X’ ; equivalently, i ¤ 0 and ’ ends with si ) By (A.B), t�1
’ .Si /ŠMŒ1�

for some finite-length module M. Hence, again by Lemma A.1(2),

ŒSi ; t’S��4 D ŒM Œ1�;S��4 D ŒM;S��3 D 0

and
ŒSi ; t’S�3 D ŒM;S�2 ¤ 0:

Combining (a) and (b) proves (1)–(2) in the case k D 1.

Induction step We assume that the result is true for all paths with at most k � 1
Deligne factors. Write ’D ’k ı “, where “ WD ’k�1 ı � � � ı’1 . By induction,

ŒS; t“S��kC2 D 0

and ŒSj ; t“S�kC1 ¤ 0 if and only if j ¤ 0 and ’k�1 ends with sj . Again there are
only two cases:

(a) (Si 2 Y’k
; equivalently, i D 0, or i ¤ 0 and ’k does not end with si ) By (A.B),

t�1
’k
.Si /ŠM for some finite-length module M. Hence,

ŒSi ; t’S��kC2 D Œt
�1
’k
Si ; t“S��kC2 D ŒM; t“S��kC2 D 0 by Lemma A.1(1).

(b) (Si 2X’k
; equivalently, i ¤ 0 and ’k ends with si ) By (A.B), t�1

’k
.Si /ŠMŒ1�

for some finite-length module M. Thus,

ŒSi ; t’S��kC3 D ŒM Œ1�; t“S��kC3 D ŒM; t“S��kC2 D 0 by Lemma A.1(1).

Similarly,
ŒSi ; t’S�kC2 D ŒM Œ1�; t“S�kC2 D ŒM; t“S�kC1;
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so it remains to show that ŒM; t“S�kC1 ¤ 0. But, by Corollary 5.6, there exists j ¤ 0
such that ’k starts at sj , and Sj ,!M. Write C for the cokernel, which necessarily
has finite length, and consider the long exact sequence

� � � ! ŒC; t“S�kC1! ŒM; t“S�kC1! ŒSj ; t“S�kC1! ŒC; t“S�kC2 D 0:

Since ’k starts with sj , necessarily ’k�1 ends with sj , otherwise sj ı ˛k�1 is an
atom by Lemma 5.1, which would contradict the fact that ’k ı ’k�1 ı � � � ı ’1 is in
Deligne normal form. Thus, ŒSj ; t“S�kC1 ¤ 0 by the inductive hypothesis. It follows
that ŒM; t“S�kC1 ¤ 0.

Combining (a) and (b) proves (1)–(2) in the case of k factors, so by induction the result
follows.

From here, the proof of faithfulness follows exactly as in [3, Theorem 3.1]. Alternatively,
we can use Lemma 2.11 as in Theorem 6.5 to deduce that the groupoid action is faithful.
Since B� Š  1..CnnHC/=W�/, and each vertex of G is by definition the same
Db.cohX/, as is standard by identifying all vertices we can simply reinterpret the
faithful groupoid action as an injective group homomorphism B�!Auteq Db.cohX/.

Appendix B: Tilting background

In this appendix, which is logically independent of all other sections, we give some
known tilting results that were used in the text, and we also prove Lemma 3.4 and
Theorem 3.5.

Throughout ƒ is a basic R–algebra, where R is a complete local domain. Recall that
if T 2 tilt0ƒ and its mutation �iT at a direct summand Ti exists, either there is an
exact sequence

0! Ti
f
�!T 0! Ui ! 0;

where f is a minimal left add.T=Ti /–approximation, or an exact sequence

0! Ui ! T 0
g
�!Ti ! 0;

where g is a minimal right add.T=Ti /–approximation. By definition, T > �iT in the
former case, and T < �iT in the latter case.

Suppose that T 2 tiltƒ with Endƒ.T /Š � . By projectivisation, the indecomposable
summands of � correspond to the indecomposable summands of T . Hence, we can
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try to mutate T 2 tiltƒ to form �iT , and similarly we can try to mutate � 2 tilt� to
form �i� . Although the following is elementary and is known to experts, references to
the literature only exist when modƒ is Hom–finite, so here we give the proof in full.

Proposition B.1 Suppose that T 2 tiltƒ, and set � WD Endƒ.T /. If �iT exists and,
further, T > �iT , then �i� 2 tilt� exists, there is an isomorphism �iT Š �i�˝

L
� T

in Db.modƒ/, and, further, �iT 2 T WD fN 2modƒ j Ext1ƒ.T;N /D 0g.

Proof To ease notation write V WD T=Ti .

Since �iT D V ˚Ui exists and T > �iT , as above there exists an exact sequence

0! Ti
f
�!T 0! Ui ! 0;

where f is a minimal left addV –approximation. Applying Homƒ.T;�/ gives an
exact sequence

(B.A) 0! Homƒ.T; Ti /
f ı
�!Homƒ.T; T

0/! Homƒ.T; Ui /! 0:

Write � D Homƒ.T; T / D Homƒ.T; V /˚Homƒ.T; Ti / WD �V ˚ �i ; then, by pro-
jectivisation, (B.A) is a projective resolution of Homƒ.T; Ui /. We claim that .f ı /
is a minimal left add�V –approximation. To see this, simply apply Hom�.�; �V / to
(B.A) to obtain a commutative diagram

Hom�.�i ; �V / Hom�.Homƒ.T; T
0/; �V /

Homƒ.Ti ; V / Homƒ.T
0; V /

ıf

��

where the vertical maps are isomorphisms by projectivisation, and the bottom map
is surjective since f is an addV –approximation. It follows that the top map is
surjective, and hence .f ı / is a left add�V –approximation. The minimality of
.f ı / follows since the left addV –approximation f is minimal, and the functor
Homƒ.T;�/W addT ! proj� is fully faithful.

As is standard [17, 6.6], since .f ı / in (B.A) is injective and an approximation, it
follows that �V ˚Homƒ.T; Ui / 2 tilt� , and evidently �i� Š �V ˚Homƒ.T; Ui /

since �i� and � differ at only one indecomposable summand.

Now, using (B.A) to compute the derived tensor in Db.modƒ/, observe first that
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Homƒ.T; Ui /˝
L
� T Š � � �!0!Homƒ.T; Ti /˝�T!Homƒ.T; T

0/˝�T!0!� � �

Š � � �!0!Ti
f
�!T 0!0!� � � ;

which, since f is injective, is clearly isomorphic to Ui (in degree zero). Hence,

�i�˝
L
� T Š .Homƒ.T; V /˝� T /˚ .Homƒ.T; Ui /˝

L
� T /Š V ˚Ui ;

where Homƒ.T; V /˝� T Š V holds since T is tilting and V is projective. It follows
that �i�˝

L
� T Š �iT in Db.modƒ/. Applying RHomƒ.T;�/ gives the final state-

ment.

Lemma B.2 (Lemma 3.4) Suppose that ƒ is a basic R–algebra, where R is a
complete local domain. If T;U 2 tilt0ƒ are related by a mutation at an indecomposable
summand, then CT and CU do not overlap, and are separated by a codimension-one
wall.

Proof By assumption, there are indecomposable modules T0; : : : ; Tn and Un such
that T D T<n˚ Tn and U D T<n˚Un , where T<n WD

Ln�1
iD0 Ti . We may assume

that T > U, and then there is an exact sequence

0! Tn!X<n! Un! 0;

where X<n 2 addT<n , say X<n WD T
˚a0

0 ˚ T
˚a1

1 ˚ � � � ˚ T
˚an�1

n�1 . Thus, recalling
that the Œ�� notation works modulo Spanfe0g, we see that

ŒTn�D�ŒUn�C

n�1X
iD1

ai ŒTi �

in Θƒ , and so

CT WD

� nX
iD1

ªi ŒTi �
ˇ̌̌
ªi > 0 for all 1� i � n

�

D

�n�1X
iD1

.ªi C aiªn/ŒTi ��ªnŒUn�
ˇ̌̌
ªi > 0 for all 1� i � n

�
:

Since U is tilting, the classes ŒT0�; : : : ; ŒTn�1� and ŒUn� of indecomposable summands
of U span K0˝Z RŠRnC1 . Hence, they form a basis of K0˝Z R, and in particular
the classes ŒT1�; : : : ; ŒTn�1� and ŒUn� in Θƒ form a basis of Θƒ .

Write H � Θƒ for the linear subspace spanned by ŒT1�; : : : ; ŒTn�1�. Then H sep-
arates Θƒ into two halfspaces HC WD

˚Pn�1
iD1 bi ŒTi �C aŒUn� j a > 0

	
and H� WD˚Pn�1

iD1 bi ŒTi �CaŒUn� j a < 0
	

. Since CT �H� , CU �HC and HC\H�D∅, we
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obtain CT \CU D∅. It is clear that CT and CU are separated by a codimension-one
wall contained in H.

Lemma B.3 Suppose that ƒ is a basic R–algebra, where R is a complete local
domain. Suppose that T;U 2 tilt0ƒ are related by a mutation at an indecomposable
summand Tn . If T > U, then there exists an exact sequence 0!ƒ! T 0! T 00! 0

such that Tn … addT 00.

Proof By the definition of tilting modules, there is an exact sequence 0!ƒ! T 0!

T 00! 0 with T 0; T 00 2 addT , and this induces the following triangle in Db.modƒ/:

ƒ! T 0! T 00
f
�!ƒŒ1�:

Since Ext1.T; T / D 0, we see that f W T 00 ! ƒŒ1� is a right addT –approximation.
Replacing T 0 and T 00 if necessary, we may assume that the approximation f is right-
minimal, and we will show that, for such a sequence 0! ƒ! T 0! T 00! 0, we
have Tn … addT 00.

Suppose that Tn 2 addT 00, and let Y be the summand of T 00 such that Tn … addY and
T 00 D .Tn/

˚a˚ Y for some a > 0. Let fnW .Tn/
˚a! ƒŒ1� and fY W Y ! ƒŒ1� be

the components of f . By assumption, there are indecomposable modules Tn and Un

such that T DX ˚Tn and U DX ˚Un . Since T > U, there is an exact sequence

0! Tn
g
�!X 0! Un! 0;

where X 0 2 addX. Applying HomDb.mod ƒ/.�; ƒŒ1�/ to the above gives an exact
sequence

HomDb.mod ƒ/.X
0; ƒŒ1�/

ıg
�!HomDb.mod ƒ/.Tn; ƒŒ1�/

! HomDb.mod ƒ/.UnŒ�1�;ƒŒ1�/D 0;

since pdƒ Un � 1. Hence, there exists a morphism hW X 0˚a!ƒŒ1� such that fn D

h ı g˚a . But h C fY W X
0˚a ˚ Y ! ƒŒ1� is a right addT –approximation, with

X 0˚a˚Y 2 addX, and so Tn … add.X 0˚a˚Y /. This contradicts the minimality of
f W T 00!ƒŒ1�, since Tn 2 addT 00. Hence, Tn … addT 00.

Theorem B.4 (Theorem 3.5) Suppose that ƒ is a basic R–algebra, where R is
a complete local domain. Suppose that T;U 2 tilt0ƒ are related by a mutation at
an indecomposable summand, so, by Lemma B.2, CT and CU are separated by H.
Suppose that Œƒ� … H. Then T > U if and only if CT lies on the same side of H
as Œƒ�.
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Proof .D)/ Suppose that T > U. Since the summands of T (excluding T0 D P0 )
form a basis for Θƒ , we can write

Œƒ�D b1ŒT1�C � � �C bn�1ŒTn�1�C bnŒTn�:

Certainly bn¤0, otherwise Œƒ�2H, which is false by assumption. Since by Lemma B.3
there are objects T 0; T 00 2 addT such that Œƒ�D ŒT 0�� ŒT 00� and Tn … addT 00, neces-
sarily bn > 0 given that it is nonzero. It follows that Œƒ� is on the same side of H
as CT .

. D)/ If :.T > U /, then since by the assumption T and U are the mutation of each
other at an indecomposable summand, necessarily U > T . Replicating the above proof
word-for-word, we conclude that CU is on the same side of H as Œƒ�. Since CT is
on the other side of H than CU , it follows that CT is not on the same side of H
as Œƒ�.
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