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Generators for a complex hyperbolic braid group
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We give generators for a certain complex hyperbolic braid group. That is, we remove a
hyperplane arrangement from complex hyperbolic 13–space, take the quotient of the
remaining space by a discrete group, and find generators for the orbifold fundamental
group of the quotient space. These generators have the most natural form: loops
corresponding to the hyperplanes which come nearest the basepoint. Our results
support the conjecture that motivated this study, the “monstrous proposal”, which
posits a relationship between this braid group and the monster finite simple group.
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1 Introduction

We are interested in finding generators and relations for complex hyperbolic braid
groups. Complex hyperbolic space Bn is a complex manifold, diffeomorphic to the unit
ball in Cn , and closely analogous to real hyperbolic space. Both are negatively curved
manifolds with transitive isometry groups. For us the main conceptual difference is
that real hyperbolic space gets cut into pieces by hyperplanes, while hyperplanes in Bn

have complex codimension 1, so their removal leaves a connected space. (In fact,
Bn has no totally geodesic submanifolds of real codimension 1, which causes great
difficulty in constructing fundamental domains for discrete groups.)
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3436 Daniel Allcock and Tathagata Basak

Our braid groups, which we called braid-like in [5], arise by removing a locally finite
arrangement of complex hyperplanes, quotienting the remaining space by the action
of a discrete group, and then taking the fundamental group. This is like a well-known
construction of the classical braid group (see Fox and Neuwirth [21]): remove the
hyperplanes xi D xj from Cn , and quotient what’s left by the symmetric group Sn .
A similar construction, with Sn replaced by any other Coxeter group, yields the Artin
groups; see Brieskorn [15] and van der Lek [24]. In a different direction, replacing Sn by
a finite complex reflection group leads to the complex braid groups, whose presentations
and key properties were worked out only recently; see Bessis [13]. One can generalize
the classical braid group in both these ways simultaneously, and our paper studies a
case of this double generalization.

Our main result, Theorem 1.2, gives a natural set of generators for a particular complex
hyperbolic braid group coming from B13 . Finding enough relations that give a presen-
tation of the fundamental group appears to be rather harder. We will explain why this
example is interesting, but to set the scene we begin with our broader motivations. In a
sense these are detours, since we do not develop them further in this paper.

The first motivation involves singularity theory. The Artin groups of types An , Dn

and En appear in nature as the fundamental groups of the discriminant complements
of the simple singularities, which are also called An , Dn and En . Under a technical
assumption that often holds, this has the following consequence. Suppose we are given
a family of complex varieties over a base variety B . Write B0 � B for the set of
smooth fibers, and suppose the fiber over b 2 B has some simple singularities but
no worse singularities. Then these singularities have types An , Dn and En for some
choices of subscripts, and there is a neighborhood U of b such that �1.B0 \U / is
the direct product of the corresponding Artin groups. Informally: the An , Dn and
En Artin groups appear “locally” in the fundamental groups of “most” families of
algebraic varieties. For example, by considering families of Riemann surfaces, one
automatically expects suitable elements of mapping class groups to satisfy the braid
relation; an expectation fulfilled by Dehn twists around curves that meet just once (and
transversely). See Libgober [25], Looijenga [29] and Allcock, Carlson and Toledo
[6, (3.5)–(3.7); 7, Lemma 1.5 and Theorem 7.1] for examples and applications of
these ideas; the needed technical assumption is that the family B should provide a
simultaneous versal deformation of all the singularities.

Now, singularities well beyond the simple ones have been classified, and at the next
level of complexity are the affine singularities zAn , zDn , zEn . From the notation one
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naturally expects that the fundamental groups of their discriminant complements are the
corresponding affine Artin groups. But they are not quite the same; see van der Lek [24].
And more-singular singularities have discriminant complements whose fundamental
groups are even further from the Artin groups. For example, Lönne [26, Theorem 4.3]
gives presentations in the case of the Brieskorn–Pham singularities x

d1

1
C� � �Cx

dn
n D 0,

where each di is at least 2. These presentations include Artin relations but also addi-
tional relations. But in many cases, for example in Looijenga [27] and [28, Section 10],
and Laza [23], these fundamental groups are braid groups in our sense, with Bn

replaced by the symmetric space SO.2; n/=S.O.2/�O.n//. The reasoning we used
for simple singularities generalizes to any singularity, so these new braid groups appear
automatically when considering families of complex varieties. In particular, they appear
in nature in a way that the infinite-type Artin groups do not. Brieskorn [16] has asked
for presentations for more discriminant complements, and we hope our methods will
contribute to this. We regard braid groups coming from hyperplane arrangements in
Bn' SU.n; 1/=S.U.n/�U.1// as an easier analogue of the SO.2; n/=S.O.2/�O.n//
case, hence a test-bed for our ideas.

Our second motivation is the braid groups of the finite complex reflection groups. The
known presentations (see Bessis [13]) are obtained from Lefschetz pencils, and we
suspect that “better” presentations might be obtained directly from the arrangement of
the hyperplanes. For example, in the case of Artin groups, the standard basepoint lies
in the interior of the Weyl chamber, and the standard generators are the following paths,
called meridians. Each starts at the basepoint, moves directly toward a facet F of the
chamber until close to it, then travels along a semicircle around the complexification
of F , and then moves directly to the image of the basepoint under the reflection
across F . Although this is not a loop, it becomes one after quotienting by the Weyl
group. In this way the standard generators correspond to the mirrors nearest the
basepoint. We hope that there are analogous good generating sets for the complex
braid groups. The Weyl chamber is not available in this context, but there may still be
natural basepoints (possibly the Weyl vectors of Basak [10]), and generators like those
for Artin groups, coming from the mirrors nearest the basepoint.

Now we discuss the braid group that is the subject of this paper. It comes from a group
P� acting on B13 with finite covolume, generated by triflections (complex reflections
of order 3). The hyperplane arrangement H is the union of the mirrors of the triflections.
In a sense this is the hardest example available, because nD 13 is the highest dimension
for which there is a known finite-covolume complex hyperbolic reflection group on Bn .
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Our main result, Theorem 1.2, concerns a particular basepoint � 2 B13 (defined in
Section 2.6) and the meridians based there. Meridians are defined below, and more
generally in Section 3, but they are similar to the Artin group case. The main difference
is that the circular-arc portion of the path is only one third of a circle, not half, because
the complex reflections in P� have order 3, not 2. Theorem 1.2 says that the braid
group G� D �

orb
1
..B13�H/=P�; �/ is generated by the meridians associated to the

26 mirrors nearest � . The notation �orb
1

indicates the orbifold fundamental group,
which is needed because P� does not act freely on B13�H . See Section 2.9 for our
conventions about orbifold fundamental groups.

The motivation to study this particular example is the first author’s monstrous proposal,
namely the following conjecture concerning the sporadic finite simple group M known
as the monster; see Allcock [2] for background.

Conjecture 1.1 (monstrous proposal) The quotient of G� by the subgroup N nor-
mally generated by the squares of the meridians is isomorphic to the bimonster
B D .M �M /Ì Z=2, where M is the monster finite simple group and Z=2 acts by
exchanging the factors in the obvious way.

A known presentation of B has 26 generators of order 2, corresponding to the thirteen
points and thirteen lines of the projective plane P2F3 over F3 . Two of these generators
braid or commute according to whether the corresponding points/lines are incident in
the usual sense of projective geometry. There is one additional relation, called deflation;
see Conway and Simons [19]. The amazing coincidence is that the 26 generators of G�

may be indexed by the points and lines of P2F3 in the same way, and they satisfy
exactly the same commutation and braid relations; see Basak [11, Theorem 4.7]. And
although it has not yet been verified, there are good geometric grounds to expect that
our 26 generators for G� also satisfy the deflation relation, or one equivalent to it
modulo the .meridian/2 D 1 relations. Checking this relation is difficult, because it
amounts to finding a disk in the hyperplane complement, bounding a particular loop. If
the deflation relation holds, then G�=N is a quotient of B , hence is isomorphic to B

or Z=2 or the trivial group. To prove Conjecture 1.1 one would need to rule out the last
two cases. So we regard Theorem 1.2 as significant progress toward Conjecture 1.1.

Of course, ultimately we would like to find relations for G� , not just generators. Then
one could check whether the relations in G� hold in B . If they do then the conjecture
holds. We remark that the natural surjection G� ! P� (see Section 2.9) can be

Geometry & Topology, Volume 22 (2018)



Generators for a complex hyperbolic braid group 3439

described by imposing the relations (meridian)3
D 1. This is essentially the same as the

fact that killing the squares of the standard generators of the usual braid group yields
the symmetric group. (The exponent 3 in the P� case comes from the generating
reflections having order 3 rather than 2.) We do not know yet how to find defining
relators for G� or even P� . We also don’t know whether B13�H has contractible
universal cover, which would be analogous to the main results of Bessis [13] for finite
complex reflection groups. (A local condition on H from Allcock [4] would imply
this, but we don’t know how to check it.)

Now we develop just enough background to make precise the objects we have discussed.
For additional background see Section 2, in particular Sections 2.4 and 2.6. We write E

for the ring ZŒe2� i=3� of Eisenstein integers. The central player in this paper is a
particular hermitian E–lattice L, namely the unique one that has signature .13; 1/ and
equals

p
�3 times its dual lattice. A concrete model for L appears in Section 2.4;

here is a summary. It is described in terms of the projective plane over the field of
order 3. An old-fashioned approach to P2F3 is enough for this paper: it has 13 points
and 13 lines, each point lies on 4 lines, each line contains 4 points, any two points lie
on a unique line, and any two lines meet at a unique point. Often we speak of a point
and line being incident, rather than the line containing the point, because of symmetry:
one can exchange the set of points with the set of lines in a manner which preserves
incidence. The projective linear group PGL3 F3 , of order 5616, permutes the points
among themselves and the lines among themselves, also preserving incidence.

We will build L as a lattice in C14 . We choose the standard hermitian form of
signature �C � � �C, and index the last 13 coordinates by the points of P2F3 . In
Section 2.6 we define the point-roots as the 13 vectors .0I

p
�3; 0; : : : ; 0/, where the

p
�3 may appear in any of the last 13 positions. And for each of the 13 lines, we define

the corresponding line-root as the vector .1I (0 or 1); : : : ; (0 or 1//, where each of the
last 13 entries is 1 or 0 according to whether the corresponding point of P2F3 lies on
the line or not. We can now define L: it is the E–span of the point- and line-roots.

The complex ball B13 means the set of complex lines of negative norm in C14 . A root
means a lattice vector of norm 3, for example a point- or line-root. If r is any root then
we write Rr for the triflection in r , meaning the isometry of L which multiplies r

by e2�i=3 and fixes r? pointwise. The mirror of this complex reflection means the
fixed-point set in B13 . The hyperplane arrangement H is the union of the mirrors, and
P� is the subgroup of Aut B13 generated by the triflections. The braid group we will
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study in this paper is �orb
1
..B13�H/=P�/, but before stating our main result we must

choose a basepoint.

The mirrors of the 13 point-roots meet orthogonally at a point of B13 , and similarly
for the 13 line-roots. The basepoint � is the midpoint of the segment joining these two
points, and the mirrors nearest � are exactly these 26 mirrors; see Lemma A.5. For
any point- or line-root r , the corresponding meridian in G� D �

orb
1
..B13�H/=P�; �/

is represented by the following three-part path. Let p be the projection of � to the
mirror r? , and let U be an open ball centered at p , small enough so that the only
mirror it meets is r? . Let d be a point of the geodesic �p , lying in U and different
from p . The first part of the meridian is the geodesic �d . The second part is the
circular arc having angle 2�

3
from d to Rr .d/, centered at p and positively oriented

in the complex line containing �p . The third part of the meridian is the geodesic
Rr .d/Rr .�/. We call these elements of G� the point- and line-meridians. Now our
main theorem has precise meaning:

Theorem 1.2 (main theorem) The 13 point-meridians and the 13 line-meridians
generate the orbifold fundamental group of .B13�H/=P� , based at � .

Our starting point for the proof is Theorem 1.5 of our paper [5], which gives a specific
infinite generating set for this orbifold fundamental group, but based “at” a certain cusp �
of P� . This generating set consists of the meridians based “at” � and corresponding
to the infinitely many mirrors which come closest to it. (See Theorem 4.1 for a precise
statement, and Section 3 for what we mean by taking the basepoint at a cusp.)

Beyond this result, we will require only one fleeting reference to [5]: the proof of
Lemma 5.2 uses Theorem 1.2 from that paper to give explicit generators for the braid
group of a certain finite complex reflection group. That theorem gives such a result
for any hyperplane arrangement and basepoint that satisfy a certain condition, which
we will verify for this finite complex reflection group. (Sadly, that condition fails
badly for H and � , which is why the additional work in this paper is necessary to
prove Theorem 1.2.) Other references to [5] are meant to be informative but are not
dependencies.

Starting from Theorem 1.5 from [5], our first step is to reduce the infinite generating set
to a finite subset. This occupies Section 4, and the key argument concerns generators for
the P� –stabilizer of � . Our second step is to show that the meridians corresponding
to the point- and line-roots, but based at � rather than � , are also a generating set. This
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is Section 5, and the method is to show that the subgroup of the orbifold fundamental
group they generate contains all the generators from Section 4. Finally, in Section 6 we
show that moving the basepoint from � to � along the geodesic �� identifies the point-
and line-meridians based at � with those based at � , in the obvious way. This implies
Theorem 1.2. At heart, all of our arguments involve concrete homotopies between
various paths in B13 �H . Besides setting up our general definition of meridians,
Section 3 contains several theorems saying that such homotopies exist, provided that
certain totally geodesic triangles in B13 miss H . The paper rests on the verification of
this property for a total of 10 triangles, in the appendices.

Part of this verification relies on computer calculation; we also used the computer to
verify the paper’s many hand calculations involving vectors in C14 . These calculations
are involved enough that a reader skimming over them might imagine that the main
theorem is a numerical accident. In fact, behind most of these calculations lurk special
properties of the Leech lattice, such as inequalities that are exactly what is needed to
complete a proof. So we will emphasize these properties when they arise; they lend
the calculations a certain sense of inevitability.

Acknowledgements The authors are grateful to the RIMS (Kyoto University) for its
hospitality during part of this work. Basak is grateful to the Kavli IPMU (University of
Tokyo) for its hospitality during part of this work, and also wishes to thank Professor
Kyoji Saito for his encouragement and many interesting discussions.

2 Background, conventions, notation

2.1 Eisenstein lattices

Let ! D e2� i=3 and � D!� x! D
p
�3. Let E be the ring ZŒ!� of Eisenstein integers.

An Eisenstein lattice K means an hermitian E–lattice, ie a free E–module with an
hermitian form h j iW K �K!Q.!/, linear in the first variable and antilinear in the
second. We abbreviate K˝E C to K˝C . If K is nondegenerate then its dual lattice
is defined as K� D fx 2K˝C W hx jki 2 E for all k 2Kg. The norm v2 of v 2K

means hv jvi. If X is a subset of a lattice then we write X? for the set of lattice
vectors orthogonal to it. If x;y; : : : lie in an E–lattice, then hx;y; : : : i means their
E–span.

In the appendices, starting with Lemma A.8, the Eisenstein integer  D 1� 3x! plays
an important role.
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2.2 Complex hyperbolic space

We call an Eisenstein lattice K Lorentzian if it has signature .n; 1/. In that case we
let B.K/ � P .K˝C/ denote the set of complex lines of negative norm in K˝C .
Topologically it is a complex ball of dimension n. It has a natural Riemannian metric
with negative sectional curvature called the Bergman metric, and is sometimes called
complex hyperbolic space. For background on negative curvature geometry and complex
hyperbolic space, see [14] and [22]. If it is clear what lattice we mean then we sometimes
write Bn in place of B.K/. In particular, B13 will always mean B.L/ for the lattice L

defined in Section 2.4 below. An inclusion of Lorentzian lattices induces an inclusion
of their complex balls. If this inclusion has codimension 1 then we call the smaller
ball a hyperplane.

Any vector v of negative norm in K˝C determines a point Cv in B.K/. Often we
use the same symbol for the point and the vector. The distance between two points
of B.K/ is given by

(2-1) d.v; w/D cosh�1

s ˇ̌
hv jwi

ˇ̌2
v2w2

;

where v and w are two negative-norm vectors of K˝C . Similarly, if v; s 2K˝C

have negative and positive norm respectively, then

(2-2) d.v;B.s?//D sinh�1

s
�

ˇ̌
hv jsi

ˇ̌2
v2 s2

:

When s is a root (see Section 2.5 below) we usually write s? in place of B.s?/

when it is clear that we mean this rather than the orthogonal complement in the lattice.
Formulas (2-1) and (2-2) differ from those in [22] by an unimportant factor of 2.

The boundary @B.K/ of B.K/ in P .K˝C/ is a real .2n�1/–sphere. Its points are
the projectivizations of null vectors, meaning nonzero vectors in K˝C of norm 0.
Given such a vector � , we define a sort of distance-to-� function on B.K/, called the
height:

(2-3) ht�.v/D�

ˇ̌
hv j�i

ˇ̌2
v2

:

This is invariant under scaling v , so it descends to a function on B.K/. We will
say that one point of B.K/ is closer to � than another point is, if its value of ht�
is smaller. The horosphere centered at � , of height h, means the set of v 2 B.K/

with ht�.v/ D h. We define open and closed horoballs the same way, replacing D
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by < and �. Scaling � by � 2C scales the function ht� by j�j2 . But for us there will
be a canonical normalization, because we will always take � to be a primitive lattice
vector. Under this condition, the only allowed scaling of � is by sixth roots of unity,
which does not affect the height function. We call the point of @B.K/ represented by a
primitive lattice vector a cusp, and for convenience we also call that vector itself a cusp.
We write B.K/ for the topological closure B.K/[ @B.K/ of B.K/ in P .K˝C/.

2.3 Geodesics and totally geodesic triangles

Continuing to take K as above, suppose v;w 2K˝C represent points of B.K/. Then
the geodesic joining them may be described as follows. First we rescale one or both
of v;w so that hv jwi 2 .�1; 0�; this inner product will be negative unless v and w
both represent the same point of @B.K/. After this rescaling, the geodesic is the image
in projective space of the real line segment in K˝C joining the vectors. If we have in
mind a third point of B.K/, represented by x 2K˝C , then there may or may not be
a totally geodesic surface in B.K/ whose closure contains all three points. If there is
one then we write 4vwx for their convex hull. There are two cases in which we use
this notation. One is when v;w;x all lie in some complex 2–space in K˝C . Then
they lie in (the closure of) some B1 . In this case we call 4vwx a complex triangle.

The other case occurs when it is possible to scale v;w;x so that their pairwise inner
products lie in .�1; 0�. Suppose this has been accomplished. The image in B.K/ of
the set of negative-norm vectors in the real span of v;w;x is a totally geodesic copy of
the real hyperbolic plane. In this case the projectivization of the convex hull of v;w;x
in K˝C is the convex hull of their images in B.K/. In this case we call 4vwx a
totally real triangle, and don’t usually distinguish between the triangle in K˝C and
its image in B.K/.

For us this situation occurs as follows. Let b be a point of B.K/, H be a hyperplane
in B.K/, p be the point of H closest to b , and q be another point of H . We claim
that 4bpq is totally real. We use the same letters for vectors representing these points,
and s for a positive-norm vector orthogonal to H . We first scale b so that its inner
product with s is real, and then scale q so that its inner product with b lies in .�1; 0�.
Then p D b� hb jsis=s2 has inner product b2� hb jsi2=s2 � 0 with b , and by s ? q

we have hp jqi D hb jqi � 0. After these scalings, the vectors b , p and q have norms
and inner products in .�1; 0�, so the triangle is totally real.
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2.4 The P 2F3 model of the lattice L

Now we set up an explicit model for the E–lattice L that governs everything in
this paper, called the P2F3 model. It was implicit in [9, Equation 25 in proof of
Proposition 6.1] and was defined explicitly in [3]. Most of our computations will be
done in this coordinate system. See Section 2.7 for an alternative model of L, the
Leech model.

We write elements of C14 as vectors x D .x0Ix1; : : : ;x13/ and use the standard
hermitian form of signature .13; 1/ on C14 , namely

hx jyi D �x0 xy0Cx1 xy1C � � �Cx13 xy13:

We index the last 13 coordinates by the points of P2F3 . L consists of all vectors
x 2 E14 such that x0 Š x1C � � �Cx13 mod � and that .x1; : : : ;x13/, modulo � , is
an element of the line code, meaning the 7–dimensional subspace of F13

3
spanned

by the characteristic functions of the lines of P2F3 . The elements of the line code
appear in Tables 2 and 3 of [3]; the explicit list is not needed in this paper. We write �
for Aut L. It contains the simple group L3.3/D PGL3.F3/, acting by permuting the
points of P2F3 in the obvious way. It also contains the group 313 D .Z=3/13 , acting
by multiplying the last 13 coordinates by cube roots of unity.

An important property of L is that it equals � �L� . The proof amounts to checking
that all inner products are divisible by � and that det LD�37 . The first part is easy,
using the point- and line-roots from Section 2.6. The second part follows from the fact
that L=.�E/14 Š F7

3
.

2.5 Roots, mirrors and the hyperplane arrangement H

A root of L means a lattice vector of norm 3. What makes roots special is that
their triflections preserve L. That is, supposing s is a root, we define Rs as the
automorphism of L˝C that fixes s? pointwise and multiplies s by the cube root of
unity ! . A formula is

(2-4) RsW x 7! x� .1�!/
hx jsi

s2
s:

One can show that this isometry of L˝C preserves L. (The key is that all inner
products in L are divisible by � .) It is called the !–reflection in s . Replacing ! by
x! gives the x!–reflection, which is also R�1

s . Both of these isometries are complex
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reflections of order 3, sometimes called triflections. Although we don’t need it, we
remark that � is generated by the triflections in the roots of L; see [9] or [3].

As the fixed-point set of the reflection Rs , the hyperplane B.s?/ � B.L/ is called
the mirror of s . Sometimes, when there is no chance of confusion, we shall write s?

instead of B.s?/. In this paper we use the word mirror exclusively for hyperplanes
orthogonal to roots. The union of all mirrors is called H . This hyperplane arrangement
is central to the paper, since our goal is to study the orbifold fundamental group of
.B13�H/=P� .

2.6 Point-roots, line-roots, 13–points and 26–points

It is possible to number the points and lines of P2F3 by the numbers 1; : : : ; 13, such
that the j th line is the set of points fj ; j C 1; j C 3; j C 9g. Here the indices should
be read modulo 13. We adopt this numbering for the following important roots of L.
First, the 13 point-roots pi are the vectors

p1 D .0I �; 0; : : : ; 0/; : : : ; p13 D .0I 0; : : : ; 0; �/:

And second, for j D 1; : : : ; 13, the line-root lj is the vector of the form

.1I .0 or 1/; : : : ; .0 or 1//;

with entries of 1 along the j th line of P2F3 . Explicitly,

l1 D .1I 1101000001000/;

l2 D .1I 0110100000100/;

l3 D .1I 0011010000010/;

l4 D .1I 0001101000001/;

l5 D .1I 1000110100000/;

l6 D .1I 0100011010000/;

l7 D .1I 0010001101000/;

l8 D .1I 0001000110100/;

l9 D .1I 0000100011010/;

l10 D .1I 0000010001101/;

l11 D .1I 1000001000110/;

l12 D .1I 0100000100011/;

l13 D .1I 1010000010001/:

It is easy to see that the point- and line-roots span L. We speak of a point-root pi and
a line-root lj as being incident when the corresponding point and line of P2F3 are. In
particular, whether pi and lj are incident depends on the geometry of P2F3 rather
than whether the corresponding hyperplanes meet in B13 . In fact, these hyperplanes
always meet, but how they meet depends on incidence: hpi jlj i D � or 0 according to
whether or not pi and lj are incident. Also, distinct point-roots are orthogonal, as are
distinct line-roots.
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There is some obvious symmetry preserving this configuration of roots: L3.3/ sends
point-roots to point-roots and line-roots to line-roots. But there is additional symmetry.
From a correlation of P2F3 , ie an incidence-preserving exchange of points with
lines, one can construct an isometry of L that sends the point-roots to line-roots and
the line-roots to negated point-roots. (We give such an isometry explicitly in the
proof of Lemma A.13.) Together with scalars and L3.3/, this generates a subgroup
.6�L3.3// � 2 of � , whose image in P� is L3.3/W2. Here we are using ATLAS [18]
notation: a group has structure A:B if it has a normal subgroup isomorphic to a
group A, with quotient isomorphic to a group B . If the extension splits then one
can indicate this by writing AWB instead. If it does not split then one can write A�B .
We are also using another piece of ATLAS notation: writing n to indicate a cyclic group
of order n.

We define the point- and line-mirrors to be the mirrors of the point- and line-roots.
The 13 point-mirrors are mutually orthogonal and intersect at a single point of B13 ,
represented by

p1 D .x� I 0
13/:

For lack of a better name we call it a 13–point to indicate the 13 mirrors passing
through it. (It is easy to see that there are no mirrors through it except the point-mirrors.)
We apply the same term to its � –translates, such as the intersection point of the 13

line-mirrors, represented by
l1 D .4I 1

13/:

We summarize the inner product information about p1;p1; : : : ;p13; l1; l1; : : : ; l13

as follows. First, all have norm 3 except for p1 and l1 , which have norm �3. Second,
if i ¤ j then pi ? pj and li ? lj . Third, hp1 jl1i D 4� . Finally, if i and j are not
both 1, then hpi jlj i is � or 0 according to whether or not pi and lj are incident.
Here we are regarding p1 as incident to every lj , and l1 as incident to every pi .

We define the basepoint � used in Theorem 1.2 as the midpoint of the segment joining
p1 and l1 . It is represented by the vector

� D l1C ip1 D .4C
p

3I 113/

of norm �6�8
p

3, and is the unique fixed point of L3.3/W2�P� . It is known that the
mirrors closest to � are exactly the 26 point- and line-mirrors. (See [9, Proposition 1.2],
where � was called x� , or Lemma A.5 in this paper.) Two consequences of this are that
no mirrors pass through � , and that L3.3/W2 is the full P� –stabilizer of � . For lack
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of a better name, we call � a 26–point to indicate these 26 nearest mirrors. We use
the same language for its � –translates.

2.7 The Leech model of L

By the Leech lattice we mean what might more properly be called the complex Leech
lattice ƒ. It is a 12–dimensional positive-definite E–lattice, described in detail in [31].
At the smallest scale at which it is integral as an E–lattice, it has minimal norm 6 and
satisfies ƒD� �ƒ� and detƒD36 . Also see [31] for a thorough study of Autƒ, which
is the universal central extension 6 � Suz of Suzuki’s sporadic finite simple group Suz.
At one point we will need the fact that 6 � Suz acts transitively on the lattice vectors of
norm 6 and those of norm 9 (see [31, page 155] and note that these are his “type 2”
and “type 3” vectors). We postpone an explicit description of ƒ until the second half
of Appendix A, because we won’t need it until then.

The Leech model of L is useful when one has in mind a Leech cusp (see below). It is:
LŠ ƒ˚

�
0
�

x�
0

�
. This means that we write lattice vectors as .xIy; z/, where x 2 ƒ

and y; z 2 E, with the inner product given by

(2-5) h.xIy; z/j.x0Iy0; z0/i D hx jx0iC .y z/
�

0 x�
� 0

��
xy 0

xz 0

�
:

This model of L was introduced in [1], and proven to be isometric to the P2F3 model
in [9, Lemma 2.6]. We give an explicit isomorphism in Lemma A.10. In the Leech
model, the Leech cusp �D .0I 0; 1/ is distinguished, and the mirrors nearest it can be
conveniently parametrized as explained in Section 2.8.

2.8 Leech cusps and Leech roots

Earlier we declared that if v 2L is a primitive null vector then we call it (or the point of
@B13 it represents) a cusp. We refine this to Leech cusp in the special case that v?=hvi
is isometric to the Leech lattice. An example which will play a key role in this paper
is the primitive null vector � defined as .0I 0; 1/ in the Leech model. Although we
don’t need it, for background we remark that there are five � –orbits on primitive null
vectors v 2L, corresponding to the five possibilities for the isometry class of v?=hvi,
which are the Eisenstein Niemeier lattices. In particular, there is a unique � –orbit of
Leech cusps. (See Lemma 2 and Theorem 4 of [3].)

In the P2F3 model it is harder to find a Leech cusp, but an example is

�D .3! � 1I �1; : : : ;�1/:
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(Proof sketch, following the proof of [3, Theorem 1]: �?=h�i is an Eisenstein Niemeier
lattice, and its isometry group obviously contains L3.3/. By [3, Theorem 4] the
Leech lattice is the only Eisenstein Niemeier lattice whose symmetry group con-
tains L3.3/.) We hope that the simultaneous use of � for .0I 0; 1/ in the Leech model
and .3! � 1I �1; : : : ;�1/ in the P2F3 model is helpful rather than confusing: we
think of the models as two ways to describe a single lattice. In Lemma A.10 we
complete the identification of the two models by explicitly writing down the point- and
line-roots in the Leech model.

The following description of vectors s 2 L˝C not orthogonal to � is very useful:
every such s can be written uniquely in the form

(2-6) s D
�
� Im;

�

Sm

�
�2�N

6
C �

��
;

where � 2 ƒ˝ C , m 2 C � f0g, N is the norm s2 , and � is purely imaginary.
Restricting the first component to ƒ and the others to E gives the elements of L��? .
Further restricting N to 3 gives the roots of L, and finally restricting m to 1 gives
the Leech roots (see Equation (2-8) below). We remark that scaling s by � 2C�f0g

scales � and m by �, and scales N and � by j�j2 .

The elaborate form of the last coordinate in (2-6) allows the following interpretation
of hs js0i, where s is from (2-6) and similarly s0 :

(2-7) hs js0i D

mSm0
h

1

2

�
N 0

jm0j2
C

N

jmj2
�

�
�

m
�
� 0

m0

�2�
C Im

D
�

m

ˇ̌ � 0
m0

E
C3

�
�0

jm0j2
�

�

jmj2

�i
:

The content of this is that hs js0i is governed by the relative positions of �=m and
� 0=m0 in ƒ˝C , with � and �0 influencing only the imaginary part of the bracketed
term. (Caution: we are using the convention that the imaginary part of a complex
number is imaginary; for example Im � is � rather than

p
3.) One proves the formula

by writing out hs js0i, completing the square and patiently rearranging.

Because the Leech lattice has no vectors of norm 3, a Leech cusp � 2 @B13 lies in
(the closures of) no mirrors. The mirrors which come closest to it are called first-shell
mirrors, and the second- and third-shell mirrors are defined similarly. We use the same
language for their corresponding roots. In particular, s is a first-, second- or third-shell
root if jh� jsij2 is 3, 9 or 12 respectively. It will be useful to fix a scaling of the
first-shell roots: a Leech root (with respect to �) means a root s with h� jsi D � , and
we call its mirror a Leech mirror.
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In the Leech model, the Leech roots (with respect to �) are the vectors

(2-8) s D
�
� I 1; �

�
�2�3

6
C �

��
with � 2ƒ and � 2 1

�
ZC 1

2�
if �2 is divisible by 6, or � 2 1

�
Z otherwise. This is a

specialization of (2-6). We note that if .� I 1; ˛/ is a Leech root, then the Leech roots
of the form .� I 1;�/ are .� I 1; ˛C n/ as n runs over Z. In the P2F3 model there
is no simple formula for the Leech roots, but (with respect to �) the point-roots are
examples of Leech roots, and the line-roots are examples of second-shell roots. For
later use, we record the inner products

h� jpii D � and h� jlii D 3x!

for i D 1; : : : ; 13.

In Section 3 we will choose a closed horoball A centered at � and disjoint from H ,
and choose a point a 2A. We will speak of “meridians” to refer to certain elements
Ma;A;H of the orbifold fundamental group (see below) of .B13 �H/=P� , or their
underlying paths �a;A;H . The definition of a meridian involves a choice of a mirror H ;
we will call the meridian a Leech meridian if H is a Leech mirror.

2.9 Meridians and the orbifold fundamental group

The orbifold fundamental group Gb D �
orb
1

�
.B13�H/=P�; b

�
depends on the choice

of a base point b 2B13�H . It is defined as the following set of equivalence classes of
pairs .;g/, where g 2P� and  is a path in B13�H from b to g.b/. One such pair
is equivalent to another one . 0;g0/ if gD g0 and  and  0 are homotopic in B13�H ,
rel endpoints. The group operation is .;g/ � . 0;g0/D . followed by g ı  0 ;gg0/.
Inversion is given by .;g/�1 D .g�1 ı reverse. /;g�1/. Projection of .;g/ to g

defines a homomorphism Gb!P� . It is surjective because B13�H is path-connected.
The kernel is obviously �1.B

13�H; b/, yielding the exact sequence

(2-9) 1! �1.B
13
�H; b/!Gb! P�! 1:

The elements of Gb we will use are the meridians Mb;H and Mb;q;H , where H is a
mirror and q is a point of H . These are defined in Section 3. Their underlying paths are
written �b;H and �b;q;H and are also called meridians. The meridians associated to
the point- and line-mirrors are called the point- and line-meridians. The main theorem
of this paper is that G� is generated by these 26 meridians, when the basepoint � is
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the 26–point from Section 2.6. There are also fat basepoint versions of meridians:
Ma;A;H , Ma;A;q;H , �a;A;H and �a;A;q;H with A a horoball centered at a Leech
cusp, small enough to miss H , and a a point of A. These are also defined in Section 3.
Of the meridians of this sort, we mostly use those with H a Leech mirror, which we
call Leech meridians. We also speak of second-shell meridians, with the corresponding
meaning.

In any �::: or M::: , we write just s instead of s? in the subscript when the hyperplane
is the mirror s? of a root. For example, �b;s rather than �b;s? . Here we are also
following the convention from Section 2.5 of writing just s? for B.s?/.

3 Meridians and homotopies between them

At its heart this paper consists of explicit manipulations of paths in B13�H . In this
section we describe the most important paths and manipulations. For concreteness
we work only with our particular arrangement H in B13 , but it will be obvious that
everything works equally well in the generality of [5]. (In particular, for the mirror
arrangements of finite complex reflection groups.) The ideas are simple, and we hope
the following summary will enable the reader to skip the technical details.

Our basic path is called a meridian and written �b;q;H . Here b is a point of B13�H ,
H is a mirror, and q is a point of H . The path begins at b and travels along a geodesic
towards q , stopping near it. (If this geodesic meets some other mirror then detours are
required; see the technical definition later in this section.) Next it travels directly toward
H along the shortest geodesic segment to H , stopping very near it. (Again, detours
might be necessary.) Then it travels 2�

3
of the way around H , on a positively oriented

circular arc. Finally it “returns” by retracing the paths in the first two steps of the
construction (or rather their images under the !–reflection in H ). See Figure 3.1. This
path �b;q;H is not a loop, but it becomes a loop upon quotienting by the P� action;
this is why we used quote marks around “returns”. The term meridian is from knot
theory: we think of the image of H in B13=P� as a sort of knot. “Meridian” indicates
that (the image of) �b;q;H is a loop, freely homotopic to a circle around (the image
of) H .

We abbreviate the notation to �b;H when q is the point of H nearest b . This is also
pictured in Figure 3.1. The �b;H are the meridians considered in our earlier paper [5],
where we did not need the flexibility to take q to be an arbitrary point of H .
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p

p0

q

H
b

d

c0

d 0

R.b/

R.d/

R.c0/

R.d 0/

Figure 3.1: The meridians �b;q;H (top) and �b;H (bottom) go left to right
from b to R.b/ . Here b is the basepoint, H is a mirror, R is its !–reflection,
q 2H , and p is the point of H nearest b . The semicircular arcs in the paths
indicate possible diversions around points of H .

Lemmas 3.2 and 3.8 are the main results of this section. The conceptual content of
Lemma 3.2 is the following. Consider a second basepoint b0 , and join b to it by some
path bt2Œ0;1� that misses H . One expects that under reasonable hypotheses, the family
of paths �bt ;q;H will form a homotopy between �b;q;H and �b0;q;H . Lemma 3.2
gives sufficient conditions for this, and Lemma 3.4 gives stronger but simpler sufficient
conditions. Example 3.3 shows that these hypotheses can’t be omitted.

The conceptual content of Lemma 3.8 is the following. Consider the first turning point
of �b;q;H , which we recall lies near q . It is called c0 in Figure 3.1. If we used a point
slightly further from q in place of c0 , then we would obtain a homotopic path. If we
gradually moved the turning point all the way back to b , and all the intermediate paths
missed H , then we would have a homotopy from �b;q;H to �b;H . Lemma 3.8 shows
that this applies if 4bpq misses H except at the obvious intersection points. Here p

is the point of H closest to b .

Informally we think of the meridians �b;q;H and �b;H as elements of the orbifold
fundamental group Gb D �

orb
1
..B13�H/=P�; b/. But strictly speaking, an element of

this group is an ordered pair (see Section 2.9). So we also say meridian for the ordered
pairs .�b;q;H ;RH / and .�b;H ;RH /, where RH is the !–reflection with mirror H .
We write Mb;q;H and Mb;H for these ordered pairs.
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In our applications the hyperplane H is always the mirror of a root s . As mentioned
in Section 2.9, when writing �::: or M::: we will write just s in the subscript rather
than s? , when s is a root and the hyperplane is its mirror. For example, �b;s rather
than �b;s? .

Our informal statements of Lemmas 3.2 and 3.8 are natural enough that the reader
may wonder what else there is to say. There are three things to fuss over. First, the
basepoint might not be in general position with respect to the hyperplanes. Working
with basepoints in special position is essential for us, since both of our basepoints (� and
the cusp �) have large stabilizers, which we make essential use of. Allowing basepoints
in special position forces the proper definition of �b;q;H to include detours around any
hyperplanes met by the informal definition of �b;q;H given above. Then it requires
work even to show that the resulting homotopy class is well-defined (Lemma 3.1).
Second, we would like to use the Leech cusp � as a sort of basepoint, even though � is
not a point of B13 . We accomplish this by using the closed horoball A centered at �
and disjoint from H , and a point a 2A. Informally we think of � as the basepoint, but
a is the official basepoint. In the end one can work with the resulting meridians just
like the ones above. But the notation acquires an extra subscript: �a;A;q;H , �a;A;H ,
Ma;A;q;H and Ma;A;H . Third, we must make precise the conditions under which
moving the basepoint from one point b0 to another point b1 identifies the meridians
based at b0 with those based at b1 . See Lemmas 3.2 and 3.4.

Now we begin the technical content of the section. For b; c 2 B13 we write bc for the
geodesic segment from b to c . Now suppose b; c 62H . It may happen that bc meets H ,
so we define a perturbation bc of bc in the following obvious way. The notation may
be pronounced “b dodge c” or “b detour c”. We write bcC for the complex line
containing bc . By the local finiteness of the mirror arrangement, bcC\H is a discrete
set. Consider the path obtained from bc by using positively oriented semicircular
detours in bcC , around the points of bc \H , in place of the corresponding segments
of bc . By bc we mean this path, with the radius of these detours taken to be small
enough. (This means: small enough for the construction to make sense and the resulting
homotopy class in B13 �H , rel endpoints, to be radius-independent.) Note: cb is
not the same as reverse.bc/, because bc followed by cb encircles any mirrors that
meet bc , while bc followed by reverse.bc/ is nullhomotopic.

Now we define �b;H for b 2 B13 �H and H a hyperplane of H . See the bottom
path in Figure 3.1. Write p for the point of H nearest b and R for the !–reflection
with mirror H . Choose an open ball U around p , small enough to miss all the mirrors
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except those through p , and choose some d 2 U \ .bp � fpg/. (Unless otherwise
stated, a ball around p always means a complex hyperbolic metric ball centered at p .)
If d were to lie in H , then by choice of U it would follow that d lies on a mirror H 0

that passes through p . This would imply that the geodesic ray joining d and p lies
entirely in H 0, forcing b 2 H 0, which is a contradiction. Thus, from b 62H we get
d 62 H . So we define �b;H as bd , followed by the positively oriented circular arc
in bpC from d to R.d/, centered at p , followed by R.reverse.bd//.

It is easy to see that the resulting path is independent of our choices of U and d ,
up to homotopy rel endpoints in B13 �H . As mentioned above, Mb;H means the
element .�b;H ;R/ of the orbifold fundamental group, and is also called a meridian.
Although we don’t need it, we mention for background that M 3

b;H
is the loop in B13�H

that we called bH (read “b loop H ”) in [5]. It goes from b to d , encircles H in bpC ,
and then returns to b .

Next we define �b;q;H , where q is a point of H . See the top path in Figure 3.1.
Choose an open ball U around q that is small enough to miss all the mirrors except
those through q , and choose some point c0 2 U \ .bq � fqg/. From b 62 H we
get c0 62H , so �c0;H is defined. Define �b;q;H as bc0 followed by �c0;H followed by
R.reverse.bc0//. Figure 3.1 also shows primed versions of the points p and d from
the previous paragraph’s definition of �c0;H . The next lemma shows that �b;q;H is
well-defined as a homotopy class. The tricky part is dealing with possible detours in
the subpath �c0;H . (For the meridians in this paper, it happens that no such detours
occur, in which case the lemma is obvious.) Just as with Mb;H , we refer to the element
Mb;q;H D .�b;q;H ;R/ of the orbifold fundamental group as a meridian.

Lemma 3.1 (well-definedness of �b;q;H ) The homotopy class of �b;q;H , rel end-
points, is independent of the choices of U and c0 .

Proof We will refer to Figure 3.2. Suppose U is a ball around q as above, and write
c0; c1 2 U \ .bq�fqg/ for two candidates for c0 . We choose the subscripts so that c0

is further from q than c1 is. We will show that the version of �b;q;H defined using
c0D c0 is homotopic rel endpoints to the version of �b;q;H defined using c0D c1 . The
shaded surface in Figure 3.2 is the homotopy that we will construct. It is a homotopy
from �c0;H to �c1;H that moves c0 along c0c1 . This is enough to build a homotopy
between the two versions of �b;q;H . The only properties of U , c0 and c1 that we will
use in this argument are that U meets no mirrors except those containing q , and that
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q

p1

p0

H

b

c0

c1

d0

d1

u0

u1

H 0

R.b/

R.H 0/

Figure 3.2: The well-definedness of �b;q;H ; see Lemma 3.1. The unlabeled
points on the right side are the R–images of c0 , c1 , u0 , u1 , d0 and d1 .

c0; c1 2 U \
�
bq�fqg

�
. It follows that the homotopy class of �b;q;H is independent

of the choices of U and c .

We parametrize c0c1 by t 7! ct with t varying over Œ0; 1�. We write pt for the point
of H nearest ct . The issue we must deal with is the following. If ctpt�fptg meets H ,
then varying t will move the intersection points but not eliminate them. This is visible
in Figure 3.2, where H 0 is a mirror giving rise to such intersections. The last paragraph
of Section 2.3 shows that c0 , p0 and q span a totally real triangle 4c0p0q , and also
that all the pt lie on the segment p0q . By the nonpositive curvature of B13 , projection
to the hyperplane H is distance-nonincreasing. Therefore p0 is closer to q than c0 is.
So 4c0p0q lies in U . In particular, the mirrors meeting this triangle are the same as
those containing q .

It follows that H meets 4c0p0q in the union of finitely many geodesic segments
from its vertex q to the opposite edge c0p0 . Now restrict this to the quadrilateral
with vertices c0 , c1 , p1 and p0 . Its intersection with any mirror is either empty or
a segment u0u1 , which we may parametrize by t 7! ut with ut 2 ctpt as shown in
Figure 3.2. If there is more than one such segment then they are disjoint from each
other.

Now, by definition of U , any mirror that meets p0p1 contains all of p0p1 . So we
may choose " > 0 such that every mirror meeting the closed "–neighborhood of p0p1

Geometry & Topology, Volume 22 (2018)



Generators for a complex hyperbolic braid group 3455

contains p0p1 . Now let Dt be the closed "–disk in the complex geodesic ctpt
C ,

centered at pt . The only mirrors it meets are the ones containing p0p1 . All of these
mirrors contain pt , and thus contain no other points of Dt . So Dt\HDfptg. Write dt

for the point where ctpt enters Dt . Because Dt misses H except at pt , we may take
�ct ;H to be ctdt , followed by the positively oriented arc in @Dt from dt to R.dt /,
followed by R.reverse.ctdt //. The @Dt portions of these paths vary continuously
with t , sweeping out the 1

3
–tube in the center of Figure 3.2.

The shaded surface to the left of this in Figure 3.2 is obtained by modifying the
quadrilateral with edges d1c1 , c1c0 , c0d0 and fdt j t 2 Œ0; 1�g. The modification is to
replace a strip around each segment u0u1 (notation as above and in Figure 3.2) by a
semicylindrical strip that dodges H . More precisely, we may take this semicylindrical
strip to be a union of positively oriented semicircles St , where St lies in the complex
geodesic ctpt

C and has center ut and some small constant radius. Each St misses H

by reasoning similar to the previous paragraph. Because the ut and the ctpt
C vary

continuously with t , the St do too.

The part of the homotopy on the right side of the figure is the R–image of the part on
the left. The verifications on the left-hand side carry over to the right-hand side since
R is an isometry that preserves H and fixes H pointwise. The left, right and middle
parts fit together to give the promised homotopy from �c0;H to �c1;H .

Lemma 3.2 (homotopy between meridians under change of basepoint) Suppose H

is a mirror, q is a point of H , and b W Œ0; 1�! B13�H is a path, written t 7! bt . We
suppose that each geodesic btq meets H only at q . We also assume the following
hypothesis, which is expressed in terms of the point rt of H nearest to bt :

(?) rt is the only point of bt rt that lies on a mirror containing q .

Then Mb0;q;H is identified with Mb1;q;H under the isomorphism of orbifold funda-
mental groups Gb0

ŠGb1
induced by b .

Example 3.3 We show how the failure of hypothesis (?) can lead to the failure of the
conclusion of Lemma 3.2; this might give more insight than the proof of the lemma.
Take H to be the union of the mirrors in C2 for the dihedral group of order 8, with
H being the mirror x D 0. All of our paths will lie in the real 3–dimensional space
Im y D 0 pictured in Figure 3.3. The direction of increasing Im x is into the page,
so the semicircular arcs, traversed left to right, travel positively around H . We have
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not drawn the mirror y D 0 because it is irrelevant. But we have drawn H and the
remaining two mirrors y D˙x . We take q to be the origin, and b0 D .�3� "i;�2/

and b1D .�3C"i;�1/, where "> 0. We take b to be the segment b0b1 , and define ct ,
dt and pt as in the definition of �bt ;q;H . The figure shows �b0;q;H (resp. �b1;q;H )
going from left to right from b0 to R.b0/ (resp. b1 to R.b1/). The key feature in the
figure is that c0d0 (resp. c1d1 ) passes in front of (resp. behind) the mirror H 0 (or rather,
the intersection of H 0 with the pictured R3 ). This is a consequence of the sign of the
imaginary part of the x–coordinate of b0 (resp. b1 ). It is easy to see that the pictured
loop is not contractible in C2 �H (or even C2 �H 0 ). This is a way of saying that
Mb0;q;H does not correspond to Mb1;q;H under the identification Gb0

ŠGb1
induced

by b . In this example, the hypothesis (?) fails because bt rt meets H 0 when t D 1
2

.

q

p0

p1

HH 0
b0

b1

c0

c1

d0

d1

R.b0/

R.b1/

Figure 3.3: Illustration for Example 3.3. The paths �b0;q;H
and �b1;q;H

go
from left to right across the bottom and top respectively. The unlabeled points
on the right are the R–images of the corresponding points on the left.

Proof of Lemma 3.2 Take U to be a ball centered at q , small enough to miss all
mirrors except the ones containing q . The definition of �bt ;q;H begins with the choice
of a point ct 2 U \ .btq�fqg/. By hypothesis, all the paths btct miss H . The next
step in the construction of �bt ;q;H is the definition of pt as the point of H nearest
to ct . The essential step in the proof is this: ctpt meets H only at pt . Otherwise,
some mirror H 0 would contain an interior point of ctpt . Since ctpt lies in U , this
H 0 must also pass through q . So H 0 contains the geodesic from q to an interior
point of ctpt . Since ctpt lies in the totally real triangle 4bt rtq , extending this
geodesic shows that H 0 also contains an interior point of bt rt . Which is contrary
to (?).
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Without loss of generality we may suppose that ct varies continuously with respect
to t , and it follows that pt does also. Continuing to follow the definition of �bt ;q;H ,
we choose a point dt of ctpt very close to pt but distinct from it. We may suppose
that dt also varies continuously with respect to t . Now, �bt ;q;H is the concatenation
of five paths: first btct , then ctdt , then a circular arc from dt to R.dt / in dtpt

C

centered at pt , then R.dtct /, and finally R.ctbt /. All these paths miss H , and the
ingredients in their definitions vary continuously with respect to t . So we have found a
homotopy in B13�H from �b0;q;H to �b1;q;H . Since the track of b0 is b , the proof
is complete.

Lemma 3.4 (a variation) Lemma 3.2 remains true if its hypothesis (?) is replaced
by: H is orthogonal to all other mirrors through q .

Proof It suffices to show that (?) holds, because then we can quote Lemma 3.2. We
establish (?) by deriving a contradiction from its negation. So we suppose that H

is orthogonal to all other mirrors through q , and that there exists a t 2 Œ0; 1� and an
interior point v of bt rt such that v lies in a mirror H 0 that contains q . We have
H 0¤H because otherwise H would contain the geodesic line through v and rt , hence
contain bt . Now we use the hypothesis H 0?H : it implies that for every point of H 0,
its projection to H also lies in H 0. We apply this to v , whose projection to H is rt

because v 2 bt rt . Therefore rt 2 H 0. Since H 0 contains both rt and v , it contains
the geodesic line containing them. But bt lies on this line, which is a contradiction
since bt 62H .

Now we turn our attention to using the Leech cusp � as a basepoint for analyzing the
orbifold fundamental group of .B13�H/=P� . We must work around the difficulty
that � is not a point of B13 . To do this we follow the “fat basepoint” strategy of [5],
by choosing a closed horoball A centered at � and small enough to miss H . Such a
horoball exists because no mirrors pass through � ; if one wants to be more concrete
then one can refer to Lemma 4.3 of [5], which shows that we may take A to be the
closed horoball of any height < 1. We also choose some point a of A.

We continue to suppose that H is a mirror and R is its !–reflection. Now we take p

to be the point in H closest to � . (See Section 2.2 for the meaning of “closest”.)
Informally, the horoball A is a sort of infinite-radius ball centered at the cusp � . In
particular, it is convex and the geodesics orthogonal to @A are the same as the geodesics
having � as a limit point. If the meridian based at � were defined then it would begin
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p

p0

q

H

A

a�

b

b0 d

c0
d 0

R.A/

R.a/ R.�/

R.b/

R.b0/

R.d/

R.c0/

R.d 0/

Figure 3.4: Illustration of the meridians �a;A;H , left to right across the
bottom, and �a;A;q;H , left to right across the top. The dark region indicates
the homotopy between them constructed in Lemma 3.7. The light gray balls
are horoballs centered at Leech cusps � and R.�/ .

with a geodesic (possibly with small detours) from � to a point near p . Because the
geodesics through � are orthogonal to the horosphere, this path would pierce @A at the
point of @A nearest to p , which we will call b . To define the corresponding path based
at a we simply replace the nonexistent segment �b by ab . Formally, �a;A;H is ab

followed by �b;H followed by R.ba/. See Figure 3.4 for a picture: �a;A;H travels
from left to right across the bottom. The point marked d comes from the definition
of �b;H .

Similarly, if q is any point of H then we define b0 as the point of @A nearest to q , and
then define �a;A;q;H as ab0 followed by �b0;q;H followed by R.b0a/. This travels
from left to right across the top of Figure 3.4. The point marked c0 comes from the
definition of �b0;q;H , and the points marked d 0 and p0 come from the definition of
the subpath �c0;H of �b0;q;H . Just as for ordinary basepoints, we refer to the orbifold
fundamental group elements Ma;A;H D .�a;A;H ;R/ and Ma;A;q;H D .�a;A;q;H ;R/

as meridians.

Remark 3.5 In several places it will clarify an argument to assume “without loss of
generality” that a is some particular point of A. One should expect that the exact
location of a is unimportant: if a0 is another point of A then Ga and Ga0 are canonically
isomorphic. One just moves the basepoint from a to a0 along any path in the simply
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connected subspace A. But more is true: this isomorphism identifies each meridian
Ma;A;q;H 2 Ga with Ma0;A;q;H 2 Ga0 . It is easy to see that this holds. In fact,
arranging for it to be true was the main reason for introducing A into the definition of
the meridians. This was necessary because the canonical isomorphism Ga ŠGa0 does
not identify every Ma;q;H with the corresponding Ma0;q;H .

Remark 3.6 There is a more elegant treatment of fat basepoints in [13, Appendix A].
This treats A itself as the basepoint and avoids mention of a. But this approach is not
well-suited for moving the basepoint from a to the 26–point � (a point outside A).
We do this in Section 6, and it is an essential part of our proof of Theorem 1.2.

Lemma 3.7 (homotopies between meridians based “at” a cusp) Suppose � 2 @B13

is a Leech cusp, A is a closed horoball centered at � and disjoint from H , and a is a
basepoint in A. Let H be a mirror, p be the point of H closest to � , and q be another
point of H . Our key assumption is that the totally real triangle 4�pq is disjoint from H

except that pq lies in H and that q might lie in additional mirrors. Then �a;A;H and
�a;A;q;H are homotopic rel endpoints in B13�H , and Ma;A;H DMa;A;q;H in Ga .

Proof We hope Figure 3.4 will help the reader; we will use the notation b , d , b0 , c0 ,
d 0 , p0 , R from the definitions given above. The paths �a;A;q;H and �a;A;H are the
upper and lower paths around the dark gray region, traversed from left to right. This
region indicates the homotopy between them that we will construct.

By hypothesis, for small enough " > 0, the "–neighborhood of pp0 meets no mirrors
except H . This neighborhood, which we call U , is convex by the nonpositive curvature
of B13 (see the remark after Proposition II.2.4 of [14]). By moving d closer to p and
d 0 closer to p0 we may suppose without loss of generality that they lie in U . The
portion of the homotopy that appears in the figure as 1

3
of a tube is the surface swept

out by dd 0 under the rotations around H by angles in
�
0; 2�

3

�
. It lies in U since

dd 0 does. It misses H because it misses H , which is the only mirror that meets U .
The pentagonal surface with vertices b0 , c0 , d 0 , d and b misses H because it lies
in 4�pq �pq . (It makes sense to speak of this surface because all these points lie
in 4�pq , which is totally geodesic by Section 2.3.) The triangle with vertices a, b

and b0 might not be totally geodesic, but it lies in A and therefore spans a disk that
misses H . Since R preserves H , the R–images of this pentagon and triangle also
miss H . The 1

3
–tube, two pentagons and two triangles fit together to give a homotopy

between �a;A;H and �a;A;q;H .
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We will also need a version of this where the basepoint is an ordinary point of B13�H

rather than a Leech cusp. The picture and proof differ from Lemma 3.7 only by
replacing all of � , A, a, b and b0 by a single point b .

Lemma 3.8 (homotopies between meridians based at a point of B13 ) Suppose
b 2 B13�H . Let H be a mirror, p be the point of H closest to b , and q be another
point of H . Suppose that the totally real triangle 4bpq is disjoint from H except
that pq lies in H and that q might lie in additional mirrors. Then �b;H ' �b;q;H rel
endpoints in B13�H , and Mb;H DMb;q;H in Gb .

4 Finitely many generators based “at” a cusp

In this section we begin the proof of our main result, Theorem 1.2. Our starting point
is Theorem 1.5 from [5]:

Theorem 4.1 Let � be the Leech cusp .0I 0; 1/ of the Eisenstein lattice L (in Leech
coordinates), and let A be a closed horoball neighborhood of it, disjoint from the mirror
arrangement H . Choose a basepoint a 2A. Then the orbifold fundamental group

Ga D �
orb
1 ..B13

�H/=P�; a/

is generated by the set of all Leech meridians.

Recall from Sections 2.8–2.9 that the Leech roots are the roots r satisfying h� jri D � ,
and the Leech meridians are the meridians Ma;A;s with s varying over the Leech roots.
This is an infinite generating set, which we improve in Theorem 4.2 by exhibiting
an explicit finite set of Leech meridians that generates Ga . The exact nature of this
generating set is not so important, but it must be explicit and finite so that we will be
able to further improve the generating set in Theorem 5.1.

We use P2F3 coordinates in Theorem 4.2 because that is how it is used in the next
section. We use Leech coordinates everywhere else in this section.

Theorem 4.2 (130 generators based “at” a cusp) Suppose �D .3!�1I �1; : : : ;�1/

is the Leech cusp from Section 2.8, written in the P2F3 coordinate system, A is a
closed horoball centered at � and disjoint from H , and a is an element of A. Write S

for the set of 130 Leech roots

pi ; pi � �; x!pi � lj ; x!pi � lj � �;
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with i; j D1; : : : ; 13 and pi and lj incident in the last two cases. Then Ga is generated
by the Leech meridians Ma;A;s , where s varies over S .

In this section we will write G for the subgroup of Ga generated by these particular
Leech meridians, and our goal is to show that G is all of Ga . Informally, the strategy
is to show that the “G–stabilizer of �” acts transitively on the Leech roots. Since
G contains a Leech meridian, it follows that every Leech meridian is G–conjugate
into G , hence lies in G . From Theorem 4.1 we know that the set of all Leech meridians
generates Ga . It follows that G is all of Ga , as desired.

In order to express this idea precisely we must make sense of the “G –stabilizer of �”.
The problem is that Ga is an orbifold fundamental group, not a group of isometries
of B13, so we must say what we mean by Ga “containing” certain isometries of B13.
We will explain this and then develop the details of the strategy just outlined. The idea
is that the subgroup P�A of P� � Isom.B13/ preserving A can be thought of as a
subgroup of Ga . To see this, consider the obvious homomorphism

(4-1) P�A D �
orb
1 .A=P�A; a/! �orb

1 ..B13
�H/=P�; a/DGa:

The first equality holds because A is simply connected, and the map exists because A

misses H . This map P�A!Ga is an embedding, because following it by the natural
map Ga! P� (see Section 2.9) gives the identity on P�A . In this manner, we may
regard P�A as a subgroup of Ga . Concretely, if g 2 P�A , then the corresponding
element of Ga is .;g/ where  is any path in A from a to g.a/. The choice of  is
unimportant since A is simply connected.

The elements of P�A we will need are the following translations T�;z . The language
comes from their analogy with the isometries of real hyperbolic space which look like
Euclidean translations in the upper half-space model. Given � 2ƒ and z 2 Im C such
that z� 1

2
�2 2 �E, the definition is

(4-2) T�;z W

8̂̂<̂
:̂
. l I 0; 0/ 7! .l I 0; x��1

hl j�i/;

.0I 1; 0/ 7!
�
�I 1; ��1

�
z� 1

2
�2
��
;

.0I 0; 1/ 7! .0I 0; 1/:

One can see that the translations form a Heisenberg group by checking the identities

T�;zT�0;z0 D T�C�0;zCz0CImh�j�0i;(4-3)

.T�;z/
�1
D T��;�z;(4-4)
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T�;zT�0;z0T �1
�;z T �1

�0;z0 D T0;2 Imh�j�0i:(4-5)

Lemma 4.3 The group of translations T�;z preserves A and � and acts simply transi-
tively on the Leech roots. Its center consists of the T0;z with z 2 �Z.

Proof Preservation of � is obvious, and A is defined in terms of � . The simple
transitivity follows by computing the image of the Leech root .0I 1;�!/ under T�;z .
This turns out to be the Leech root

�
� I 1; �

�
1
6
.�2� 3/C �

��
from (2-8), where � D �

and � D 1
2�
�

1
3
z . This accounts for every Leech root exactly once. (If 2j�2 then the

conditions z 2 Im C and z� 1
2
�2 2 �E on z are equivalent to the condition � 2 1

�
ZC 1

2�

on � in (2-8). And similarly if 2−�2 .)

Equation (4-5) shows that T�;z is central if and only if �?ƒ, ie if and only if �D 0.

The next lemma, which is the crucial trick in this section, obtains some elements of
P�A as products of Leech meridians. Then we combine these in Lemma 4.5 to obtain
translations.

Lemma 4.4 Suppose � 2L is a Leech cusp, A is a closed horoball centered at � and
disjoint from H , and a 2A. Suppose s is a Leech root, and write s0 for the Leech root
s� � . Write H and H 0 for their mirrors and R and R0 for their !–reflections. Then

(4-6) Ma;A;H 0 �Ma;A;H DR0 �R:

Here the product of meridians on the left is evaluated in the orbifold fundamental
group Ga , and the product of reflections on the right is evaluated in P� , with result
in P�A . When stating equality we are regarding P�A as a subgroup of Ga via (4-1).

Proof We use the Leech model of L, with �D .0I 0; 1/ as usual. By the transitivity
of translations on Leech roots (Lemma 4.3), we may suppose without loss of generality
that sD .0I 1;�!/, so s0D .0I 1; x!/. Consider the subspace V Df.0Ix;y/g of L˝C .
We plot the point in P .V /Š P1 represented by .0Ix;y/ as y=x 2C[f1g. Using
this, we have drawn the situation in Figure 4.1. In particular, � corresponds to the
point at infinity and B1 D B.V / to the upper half-plane. The orthogonal complements
in V of s and s0 are spanned by .0I 1;�x!/ and .0I 1; !/, respectively. So H D s?

and H 0 D s0
? correspond to �x! and ! in the upper half-plane. The triflections R0

and R act by counterclockwise hyperbolic rotations by 2�
3

around these points. It is
easy to see that R.1/D 0, R0.0/D1 and R0.1/D�1. In particular, R0R 2P�A ,
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a

H 0 H

R0.a/
R.a/

0 DR.�/�1 DR0.�/�2 1

�a;A;H 0 �a;A;H

Figure 4.1: The Leech meridians appearing in (4-6). The cusp � is at infinity
and the hyperplanes H and H 0 appear as the points where they meet the
pictured B1 . The top gray region is the horoball A , and the regions below it
are its images under R and R0 .

which is part of the lemma. The closed horoball A and its images under R and R0

also appear in Figure 4.1. To draw the paths we have assumed that a, a priori any point
of A, actually lies in B1 and has real part 0. This is harmless, by Remark 3.5.

By definition (Section 2.9), the left side of (4-6) is equal to

.�a;A;H 0 ;R0/ � .�a;A;H ;R/D .�a;A;H 0 followed by R0 ı�a;A;H ; R0R/

The path part of the right side appears in Figure 4.2. This figure is the same as Figure 4.1
except as follows. First, we have drawn R0 ı�a;A;H instead of �a;A;H . Second, we
have drawn the height 1 open horoballs around � D 1 and R0.�/ D �1, instead
of A and its translates. It is easy to see that �a;A;H 0 followed by R0 ı�a;A;H lies
in the union of these two horoballs. (One must check that s0 and R0.s/ are first-shell
roots with respect to R0.�/, which is almost obvious.) The union of these horoballs
is contractible and misses H . So our path from a to R0R.a/ may be homotoped
(rel endpoints and missing H) to a path in A. We have proven that the left side of (4-6)
is equal to

.some path in A from a to R0R.a/;R0R/

in the orbifold fundamental group Ga . This is exactly what the equality (4-6) asserts,
so the proof is complete.
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aR0R.a/

H 0 H
R0.H /

R0.a/

0�1 DR0.�/�2

�a;A;H 0R0.�a;A;H /

Figure 4.2: The proof of Lemma 4.4. The gray region is the union of the
open height 1 horoballs around � and R.�/ . Since these horoballs miss H ,
the path from a to R0R.a/ is homotopic into A .

Remark Figures 4.1 and 4.2 bring to mind the classical action of SL2Z on the
upper half-plane. This is because the projective isometry group of

�
0
�

x�
0

�
happens to

be PSL2Z. The dashed lines indicate some fundamental domains for the index 2

subgroup generated by triflections.

Lemma 4.5 Suppose � , A and a are as in Lemma 4.4, and S0 is a set of Leech roots
whose differences span �?=h�i. Then the subgroup of P�A generated by the products
R0R of Lemma 4.4, with s varying over S0 , contains all the translations (4-2). In
particular, it acts transitively on the Leech roots.

Proof At heart this is Lemma 8 of [3]. But the statement there, and conventions and
notation, are different enough that we indicate the proof. Write G for the specified
subgroup of P�A .

We begin by taking r to be the Leech root .0I 1;�!/ and using primes as in Lemma 4.4.
So r 0 means r � � D .0I 1; x!/. Write Rr ;R

0
r for the !–reflections in r , r 0 . One

checks that on the span of these roots, R0r Rr acts by �!T0;�2� . Obviously R0r Rr

acts trivially on ƒ. We re-express this by saying that R0r Rr acts on L by �!QT0;�2� ,
where Q scales ƒ � L by �x! and fixes r and r 0 . One checks that QT�;zQ�1 D

T�x!�;z for every translation T�;z .

Now suppose s 2 S0 . As a Leech root, we have s D T�;y.r/ for some translation
T�;y by Lemma 4.3. We also have s0 D T�;y.r

0/ because s0 D s� � and r 0 D r � � .
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Therefore,

R0sRs D T�;y.R
0
r Rr /T

�1
�;y D T�;y � �x!QT0;�2� �T

�1
�;y :

Choosing another element t of S0 and writing it as T�;z.r/, we get a similar description
of R0tRt . So

.R0sRs/.R
0
tRt /

�1
D T�;y � .�!QT0;�2� / �T

�1
�;y �T�;z � .�x!T0;2�Q�1/ �T �1

�;z

D T�;yQ.T��;�yT�;z/Q
�1T �1

�;z

D T�;yTx!�;�yT�x!�;zT �1
�;z

D T�Cx!��x!���;?

D T�!.���/;?;

where the value of ? could be worked out but is unimportant for us.

We have shown that for each pair s; t 2 S0 , the subgroup G contains a translation
T�!.���/;? . So it also contains a translation .R0sRs/T�!.���/;?.R

0
sRs/

�1 D T���;?:

We have shown that for all s; t 2 S0 , the subgroup G contains a translation T���;?

and a translation T�!.���/;? . It follows from (4-3) that for every � in the E–span of
the differences � � � , the subgroup G contains a translation T�;? .

By hypothesis the differences s�t , with s; t 2S0 , projected into �?=h�i, span �?=h�i
over E. Another way to say this is the E–span of the corresponding differences � � �
is all of ƒ. So we have shown that for every � 2 ƒ, the subgroup G contains a
translation T�;? . Using these in the commutator formula (4-5), and using ƒD �ƒ�,
shows that G also contains T0;z for every z 2 ImE. It follows that G contains all
translations.

Lemma 4.6 Suppose � , A, a and S0 are as in Lemma 4.5, and define

S D fs; s� � j s 2 S0g:

Then Ga is generated by the Leech meridians Ma;A;s , where s varies over S .

Proof Write G for the subgroup of Ga generated by these Leech meridians. Also,
fix some s 2 S . For any other Leech root t , there is a translation g 2 P�A that sends
s to t . We choose a path  in A from a to g.a/, and identify g with the element
.;g/ of the orbifold fundamental group Ga , via (4-1). By the previous lemma we
know that .;g/ lies in G . By drawing a picture, it is easy to see that

.;g/ � .�a;A;s;Rs/ � .;g/
�1
D .�a;A;t ;Rt /

Geometry & Topology, Volume 22 (2018)



3466 Daniel Allcock and Tathagata Basak

in Ga , so G also contains the Leech meridian associated to t . Since t was an arbitrary
Leech root, G contains all the Leech meridians. These generate Ga by Theorem 4.1,
completing the proof that G DGa .

Proof of Theorem 4.2 This follows from the previous lemma with S0 equal to the
set of Leech roots pi and x!pi � lj , where i; j D 1; : : : ; 13 and pi and lj are incident.
To apply the lemma, we must show that the image of K in �?=h�i is equal to �?=h�i,
where K is the E–span of fs� t W s; t 2 S0g. We show that in fact K D �? .

Note that � has the same inner product with all elements of S0 . So K � �? . For
the converse, let K1 be the E–span of f.pi �p1/; .li � l1/ W i D 1; : : : ; 13g. Observe
that K contains .p1�pi/. Given a line-root li , let pj be the point-root incident to li

and l1 . Writing .li � l1/D .x!pj � l1/� .x!pj � li/ we find that K contains .li � l1/

too. We have now shown that K1 �K .

Now suppose v 2 �? ; we must show that it lies in K . By adding a multiple of
.x!p1� l1/�p1 2K , which has inner product � with p1 , we may suppose without
loss of generality that v ? p1 . Being orthogonal to � and p1 , the vector v is also
orthogonal to l1 . Since L is spanned by the point- and line-roots, we may write
v D yC ap1C bl1 for some y 2K1 and a; b 2 E. Taking the inner product with p1

and l1 and using the fact that p1; l1 2K?
1

shows aDbD0. So vDy 2K1�K .

5 Twenty-six generators based “at” a cusp

The goal of this section is to prove the Theorem 5.1 below, which improves the 130
generators of Theorem 4.2 to the 26 meridians associated to the point- and line-roots.
This establishes our main theorem (Theorem 1.2), except with the wrong basepoint,
which we will change to the correct basepoint in the next section. We recall that in
the P2F3 model of L from Section 2.4, the point-roots are the 13 vectors of the form
.0I �; 012/ and the line-roots are the 13 vectors of the form .1I 14; 09/. We also recall
from Section 2.8 that the null vector � D .3! � 1I �1; : : : ;�1/ represents a Leech
cusp, that A indicates a closed horoball centered at � , small enough to miss H , and
that a 2A indicates the basepoint. Finally, recall that if s is a point- or line-root, then
we will call the corresponding meridian Ma;A;s 2Ga a point- or line-meridian (based
at a).

Theorem 5.1 (26 generators based “at” a cusp) The 26 point- and line-meridians
Ma;A;s , based at a, generate the orbifold fundamental group Ga .
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To prove it we will show that the subgroup G of Ga generated by the point- and
line-meridians contains the 130 Leech meridians from Theorem 4.2. That theorem
says that the 130 meridians generate Ga , so Theorem 5.1 follows. We remark that
the point-roots are Leech roots with respect to � , so their corresponding meridians are
Leech meridians. The line-roots are 2nd –shell roots rather than Leech roots.

Here is an overview of our recipe for getting additional Leech meridians from the point-
and line-meridians. Suppose x and y are Leech roots with inner product ˙� , or a
point-root and an incident line-root, in which case they also have inner product ˙� .
The span of two roots with inner product ˙� is a well-known Eisenstein lattice, called
DE

4
because its underlying Z–lattice is a copy of the usual D4 root lattice, scaled

to have minimal norm 3. Up to scale, this lattice has just four roots: x , y , Rx.y/

and Ry.x/. One can work these out explicitly, and it turns out that there is exactly
one Leech root that is not a scalar multiple of x or y . Call it z . We will show that
the subgroup of Ga generated by Ma;A;x and Ma;A;y also contains Ma;A;z . “New”
Leech meridians obtained this way can be combined with old ones using the same
method, to obtain even more Leech meridians. Repeating the process many times
enables us to prove that G contains the 130 Leech meridians of Theorem 4.2.

This idea suggested itself because the braid group associated to the group generated
by the triflections in Aut DE

4
is known to be isomorphic to the usual 3–strand braid

group B3 , with the conjugacy class of our meridians corresponding to the conjugacy
class of the standard generators of B3 . Although we don’t need it, we remark that the
origin of this isomorphism is the fact that the hyperplane complement for this finite
complex reflection group, modulo the group, is diffeomorphic to the corresponding
space for the usual action of the symmetric group S3 on C2 . This coincidence was
first noticed by Orlik and Solomon [30].

So it was natural to hope that the meridians Ma;A;x , Ma;A;y and Ma;A;z all lie in a
single copy of B3 , with the first two of them serving as generators. So our first result
is that this braid group is generated by two specific meridians, for either of two specific
basepoints. It seems silly to have to prove this, since the braid groups of finite complex
reflections groups are well understood [8; 13; 17]. But we do not know of any quotable
result stating generation by particular loops with particular basepoints.

Lemma 5.2 (generators for the braid group of DE
4

) Consider the lattice DE
4

in C2 ,
namely the E–span of ˛ D .�; 0/ and ˇ D .1;

p
2/ under the usual inner product. Let
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H be the union of the mirrors orthogonal to the 24 roots of DE
4

, and let c be any scalar
multiple of .�1;�x!

p
2/ or 1

2
!.� C 1; .� � 2/

p
2/. Then

Jc D �
orb
1 ..C2

�H/=hR˛;Rˇi; c/

is generated by Mc;˛ and Mc;ˇ .

Remark The factors of
p

2 can be avoided by using three coordinates with the last
two being equal: ˛ D .�; 0; 0/ and ˇ D .1; 1; 1/.

Proof We begin by remarking that ˛2 D ˇ2 D 3 and h˛ jˇi D � . Let us write
 D .1; x!

p
2/ and ı D .1; !

p
2/ for the remaining roots of DE

4
, up to scale. We will

begin the proof by establishing the lemma for a different basepoint c0D .�2;
p

2C
p

6/.
This basepoint is probably the most natural: when one plots the situation in CP1ŠS2 ,
the four mirrors form the vertices of a regular tetrahedron and c0 corresponds to the
midpoint of the edge between ˛? and ˇ? . We will suppress the subscript 0 until we
need to refer to the other ci .

One checks that hc j˛i and hc jˇi are equal in absolute value, and smaller in absolute
value than hc j i and hc jıi. Therefore ˛? and ˇ? are the mirrors nearest c . Write J

for the subgroup of Jc generated by Mc;˛ D .�c;˛;R˛/ and Mc;ˇ D .�c;ˇ;Rˇ/. We
are claiming that J is all of Jc . Theorem 1.2 of [5] gives the following sufficient
conditions for this. First, J should surject to hR˛;Rˇi, which is obvious. Second,
some triflection in ˛ or ˇ should move c closer to c ’s projection to ? , and some
triflection should do the same with ı in place of  . Direct calculation reveals that R˛

does this for ? and R�1
˛ does it for ı? . This finishes the proof of the lemma for the

basepoint c0 .

A different method is required for the other basepoints. First we suppose the basepoint c

is a scalar multiple of .�1;�x!
p

2/. It does not matter which multiple, because scaling
permutes the possibilities (and transforms their meridians accordingly). We choose c

to be the particular multiple c1 D .� x! �!
p

3/.�1;�x!
p

2/. The advantage of this
scaling is that hc0 jc1i is positive, so the angle between c0 and c1 is as small as possible.
We regard this as saying that c1 is “as close as possible” to c0 , which is desirable
because we will study the identification of Jc0

with Jc1
obtained by moving c0 to c1

along c0c1 . Namely, we will show that Mc0;˛ 2 Jc0
corresponds to Mc1;˛ 2 Jc1

, and
similarly with ˇ in place of ˛ . From this correspondence and the previous paragraph
it follows immediately that Mc1;˛ and Mc1;ˇ generate Jc1

.
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We will use Lemmas 3.2 and 3.8 to show that c0c1 identifies Mc0;˛ 2 Jc0
with

Mc1;˛ 2 Jc1
. For concreteness we only stated these lemmas for complex hyperbolic

space, but they apply equally well in complex Euclidean space. The reason is that
their proofs and the definition of the meridians rely only on general concepts like
geodesics, projections to hyperplanes, complex lines and totally real triangles, and the
only property of the underlying space we need is nonpositive curvature.

We will write pi for the projection of ci to ˛? . We begin by using Lemma 3.2 to
show that c0c1 identifies Mc0;p0;˛ 2 Jc0

with Mc1;p0;˛ 2 Jc1
. (Note that Mc0;p0;˛ is

the same as Mc0;˛ , since p0 is c0 ’s projection to ˛? .) To apply this lemma we must
check that the triangle T D 4c0c1p0 meets H only at p0 , and that hypothesis (?)
of that lemma holds. The latter is trivial because there are no mirrors through p0

except ˛? . To show H\T D fp0g, one checks that ˛? meets T only at p0 and that
ˇ? , ? and ı? are disjoint from T . To carry out this check for ˛? , one observes that
the triangle in C with vertices hc0 j˛i, hc1 j˛i and hp0 j˛i touches the origin only at
its vertex hp0 j˛i. The corresponding triangles in C for ˇ ,  and ı do not contain the
origin at all. This completes the identification of Mc0;˛ 2 Jc0

with Mc1;p0;˛ 2 Jc1
.

Next we use Lemma 3.8 to prove the equality Mc1;p0;˛ DMc1;˛ in Jc1
. This requires

checking H\4c1p0p1 D p0p1 , which uses the same method as the check in the
previous paragraph. This completes the proof that c0c1 identifies Mc0;˛ 2 Jc0

with
Mc1;˛ 2 Jc1

. The same method applies with ˇ in place of ˛ . Since Mc0;˛ and Mc0;ˇ

generate Jc0
, this completes the proof that Mc1;˛ and Mc1;ˇ generate Jc1

.

Exactly the same analysis applies to the second possibility for c . The scalar multiple
of 1

2
!.� C 1; .� � 2/

p
2/ that we used was

c2 D�.3C 2
p

3C �
p

3/.� C 1; .� � 2/
p

2/;

for the same reason as before.

As explained above, our method starts with two Leech meridians, corresponding to
Leech roots with inner product ˙� , and shows that the group they generate contains a
third Leech meridian. So naturally we will need to understand such pairs of Leech roots.
At the same time we will classify the pairs of Leech roots with inner product �3

2
˙
�
2

.
We do not care about these pairs themselves. But they turn out to be key for the other
half of our method: using a point-meridian and a line-meridian to generate another
Leech meridian. The precise statements of our constructions of “new” Leech meridians
are Lemmas 5.4(3) and 5.6.
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Lemma 5.3 Under the �–stabilizer �� of � , there are four orbits of ordered pairs
.s; s0/ of Leech roots with jhs js0ijD

p
3. In the Leech model of L, orbit representatives

are the pairs .s; s0/ of the form

s D .0I 1;�!/ and s0 D

�
.�6I 1; !/ with hs js0i D �;
.�9I 1; �/ with hs js0i D �3

2
C
�
2
D x!x�;

and the pairs obtained from these by exchanging s; s0 . Here �6 and �9 are any fixed
vectors of norms 6 and 9 in ƒ.

Proof Suppose .s; s0/ is such an ordered pair. In the Leech model, the Leech roots
are parametrized by (2-8). So s has the form

�
� I 1; �

�
1
6
.�2� 3/C �

��
, where � lies

in the Leech lattice and � is purely imaginary and chosen so that the last coordinate
lies in E. And similarly for s0 . By the transitivity of �� on Leech roots (Lemma 4.3),
we may take � D 0 and � D 1

2�
, yielding s D

�
0I 1; �

�
�

1
2
C

1
2�

��
D .0I 1;�!/. The

inner product hs js0i is best understood using (2-7), which in this case reduces to

hs js0i D 1
2
.6� � 02/C 3

�
�0� 1

2�

�
:

The first term is real and the second is imaginary. Now we consider the elements of E
of absolute value

p
3. First, 3

2
˙
�
2

cannot occur, because � 0 would have to have
norm 3 in order for hs js0i to have real part 3

2
. This is impossible since the Leech

lattice has minimal norm 6. By the same reasoning, ˙� can occur only when � 0

has norm 6, and �3
2
˙
�
2

can occur only when � 0 has norm 9. Wilson proved that
Autƒ D 6 � Suz acts transitively on the norm 6 (resp. norm 9) elements of ƒ; see
[31, page 155] and note that these are his “type 2” (resp. “type 3”) vectors. Thus we
may suppose without loss of generality that � 0 D �6 or �9 . Then �0 is determined by
the imaginary part of hs js0i. When hs js0i D � we get 3

�
�0� 1

2�

�
D � , so �0 D� 1

2�

and s0 is as displayed. Similarly, when hs js0i D �3
2
C
�
2

one gets �0 D 0.

The proofs of the next two lemmas depend on how certain totally real triangles in B13

meet H . Because the calculations are long, and similar computations will be needed
later, we moved the verifications to Appendix A. Lemma 5.4 relies on Lemma A.3 and
Lemma 5.5 relies on Lemma A.4.

Lemma 5.4 Suppose x;y are Leech roots with hx jyi D � . Let p be the projection
of � to x? , and q the projection of � to x?\y? . Then:

(1) Of the four mirrors of the reflection group hRx;Ryi, three are Leech mirrors
(corresponding to the Leech roots x , y and z D �x!x � !y ) and one is a
second-shell mirror.
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(2) These four mirrors are the only ones containing q .

(3) The subgroup of Ga generated by the Leech meridians Ma;A;x and Ma;A;y also
contains the Leech meridian Ma;A;z .

Remark An example of the situation described in this lemma is given by xD�Rp2
.l/

and y D p , where l is a line-root and p , p2 are two point-roots incident to l . We
formulated our notion of meridian to include cases where the basepoint is not in general
position. The situation in this lemma is such a case, because q is the projection of � to
the second-shell mirror in (1), and 4 mirrors pass through q . One can prove that this is
the only sort of nongenericity that occurs for our lattice L, but we shall not need this.

Proof By Lemma 5.3 we may suppose without loss of generality that x D .0I 1;�!/

and y D .�6I 1; !/. And we suppose without loss of generality that our basepoint a

lies in �q\A; see Remark 3.5.

(1) Using x2 D y2 D 3 and hx jyi D � , one checks that z and !x � x!y are roots.
Then, using h� jxi D h� jyi D � , one checks that h� jzi D � , so that z is also a Leech
root, and that h� j!x� x!yi D 3, so that .!x� x!y/? is a second-shell mirror.

(2) Lemma A.3 identifies all the mirrors that meet the totally real triangle 4�pq . The
only ones that do are the four from (1). So they are the only ones that can contain q .

Before proving (3) we establish two preparatory results. First, there is an isometry
of L that fixes � and permutes x , y and z cyclically. To see this, one checks that
hy jzi D � and applies the transitivity in Lemma 5.3 to conclude that some g 2 ��

sends .x;y/ to .y; z/. Now, g must permute the three Leech roots in the sublattice
ExCEy D EyCEz . Since g sends x to y and y to z , it must also send z to x .

Second, we claim that �a;A;x is homotopic to �a;A;q;x in B13 �H , rel endpoints,
and similarly with y or z in place of x . By the symmetry just established, the y and z

cases follow from the x case. Lemma A.3 describes how the mirrors of H meet 4�qp .
Namely, x? contains pq , the other three mirrors from (1) meet the triangle at q only,
and all other mirrors miss it completely. This verifies the hypothesis of Lemma 3.7,
whose conclusion is that �a;A;x ' �a;A;q;x , as claimed.

(3) Let U be an open ball around q , small enough that the only mirrors meeting it
are the ones through q . We also take it small enough to miss A. Let c be any point
of �q\U other than q . Examining the definition of the meridian shows that we may
suppose without loss of generality that c is the “turning point” of �a;A;q;x . Formally,
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�a;A;q;x equals ac followed by �c;x followed by Rx.ca/. (We write ac in place
of ac because they are the same: ac��q misses H by our choice of a at the beginning
of the proof.) Another way to state the homotopy �a;A;x ' �a;A;q;x of the previous
paragraph is that Ma;A;xD .�a;A;x;Rx/2Ga corresponds to Mc;xD .�c;x;Rx/2Gc

under the identification of Ga with Gc induced by ac . And similarly with y or z in
place of x , by the x! y! z! x symmetry established earlier. Therefore proving (3)
is equivalent to proving that Mc;z lies in the subgroup of Gc generated by Mc;x

and Mc;y .

We focus attention on U by defining a “local” analogue of Gc , namely

Jc D �
orb
1 ..U �H/=hRx;Ryi; c/:

By considering the natural map Jc ! Gc , it suffices to prove that Mc;z lies in the
subgroup of Jc generated by Mc;x and Mc;y . We convert this into a problem in the
Euclidean space TqB13 as follows. We write g0 for the Riemannian metric on B13

obtained by identifying B13 with TqB13 under the exponential map. This metric is
Euclidean, so we write �Euc

c;x for the path defined like �c;x , but using this Euclidean
metric in place of the hyperbolic metric. We claim that �Euc

c;x and �c;x are homotopic
rel endpoints in U �H . In particular, Mc;x D .�c;x;Rx/ and M Euc

c;x D .�
Euc
c;x;Rx/

are the same element of Jc , and similarly with y or z in place of x . After proving
this claim, it will suffice to prove that M Euc

c;x and M Euc
c;y generate Jc .

To prove the claim, we define for each t 2 .0; 1� a diffeomorphism St of B13 , namely the
one corresponding to the scaling-by-t map on TqB13 . Let gt be the Riemannian metric
obtained by pulling back the complex hyperbolic metric under St and multiplying it
by 1=t . It is easy to see that the gt converge to g0 as t!0. For any t 2 Œ0; 1� we define
�t

c;x just as we did for �c;x , except that we use gt in place of the hyperbolic metric.
For t D 0 this is just �Euc

c;x , and for t > 0 this definition makes sense because .B13;gt /

is isometric to B13 with its metric scaled. All the ingredients in this definition (nearest
points, geodesics, etc) vary continuously with t , so the �t

c;x provide a homotopy
between �1

c;x D �c;x and �0
c;x D �

Euc
c;x , as desired.

It remains to show that M Euc
c;z lies in the group generated by M Euc

c;x and M Euc
c;y . Obvi-

ously we may restrict attention to the B2 orthogonal to hx;yi? at q . We will identify
TqB2 with the C2 from Lemma 5.2, in a way which lets us quote that result. We first
note that B2 D B.V /, where V is the complex span of � , x and y . We write W for
the subspace of V spanned by x and y , and Q for the linear projection of � to W ? .
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This is a vector representing q 2 B2 . Identify B2 with a neighborhood of 0 in W , by

.w 2W /$ .the image in PV of QCw/:

Up to a scaling factor, this correspondence is essentially the exponential map of B13 at q .
This yields an identification of TqB2 with T0W DW , in which the mirrors through q

correspond to the mirrors of the DE
4

spanned by x and y , and this identification is
equivariant under the action of the finite group generated by Rx and Ry . (We saw in (2)
that no more mirrors pass through q .) Furthermore, c lies in P .CQCC�/, whose
corresponding complex line in W is spanned by the projection �W .�/ of � to W . This
projection can be worked out from h� jxi D h� jyi D � , namely �W .�/D !x� x!y .

Now we identify x (resp. y ) with ˛ (resp. ˇ ) in Lemma 5.2. Under this identification,
TqB2�TqH is identified with the mirror complement of DE

4
, with c corresponding

to some scalar multiple of !˛� x!ˇ D .�1;�x!
p

2/. Lemma 5.2 tells us that M Euc
c;˛

and M Euc
c;ˇ

generate �orb
1
..C2 �H/=hR˛;Rˇi; c/. Transferring this back to U �H

finishes the proof.

Lemma 5.5 Suppose x; z are Leech roots with hx jzi D �3
2
C
�
2

, and let q be the
projection of � to the intersection of their mirrors. Then:

(1) Of the four mirrors of the reflection group hRx;Rzi, two are Leech mirrors
.x? and z?/, one is a second-shell mirror .y? for y D x!x � z/, and one is a
third-shell mirror.

(2) These mirrors are the only ones containing q .

(3) The subgroup of Ga generated by the Leech meridian Ma;A;x and the second-
shell meridian Ma;A;y also contains the Leech meridian Ma;A;z .

Proof This is very similar to the proof of Lemma 5.4. By Lemma 5.3 we may suppose
without loss of generality that x D .0I 1;�!/ and z D .�9I 1; �/, and as before we
take a 2 �q .

(1) Using x2 D z2 D 3 and hx jzi D �3
2
C

�
2

, one checks that y and x C z are
roots. So the 24 roots in hx; zi are their unit multiples together with those of x and z .
Using h� jxi D h� jzi D � , one computes h� jyi D 3x! and h� jxC zi D 2� . So y is a
second-shell root and xC z is a third-shell root.

(2) This is just like the corresponding part of the previous lemma, except that we refer
to Lemma A.4 in place of Lemma A.3.
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In preparation for (3), we claim that �a;A;x is homotopic to �a;A;q;x in B13 �H ,
rel endpoints, and similarly with y or z in place of x . This is just like the corresponding
part of the previous proof, except that there is no cyclic symmetry. So one has to analyze
three triangles rather than just one. This is done in Lemma A.4.

(3) This is just like the corresponding part of the previous lemma. The only difference is
in the very last step: now h� jxiD� and h� jyiD3x! , so �W .�/D�

�
2
!xC

�
�
2
�1
�
!y .

We still identify TqB2 with C2 by taking x and y to correspond to the ˛ and ˇ of
Lemma 5.2. This makes sense since one can check hx jyiD� . Under this identification,
�W .�/ corresponds to 1

2
!.�C1; .� �2/

p
2/ 2C2 , and we can apply Lemma 5.2 just

as before.

Lemma 5.6 Suppose x is a point-root and y is an incident line-root. Then zD x!x�y

is a Leech root, and the subgroup of Ga generated by Ma;A;x and Ma;A;y contains
the Leech meridian Ma;A;z .

Proof Using x2 D y2 D 3 and hx jyi D � , one checks z2 D 3, so z is a root. Using
h� jxi D � and h� jyi D 3x! , one checks h� jzi D � , so z is a Leech root. Similarly,
one checks that hx jzi D �3

2
C
�
2

. So we may apply Lemma 5.5 to x and z . One
checks that the root called y there is the same as the one we call y here. To finish the
proof we appeal to Lemma 5.5(3).

Proof of Theorem 5.1 Let G denote the subgroup of Ga generated by the 26 point-
and line-meridians Ma;A;s based at a. We must prove G D Ga . By Theorem 4.2 it
suffices to show that G contains the Leech meridians associated to the Leech roots pi ,
x!pi � lj , pi �� and x!pi � lj �� , where i; j D 1; : : : ; 13 and pi and lj are incident.
G contains the Leech meridians associated to the pi by definition, and those associated
to the x!pi � lj by Lemma 5.6.

Recall that the finite projective linear group L3.3/ permutes the point- and line-roots
in the same way that it permutes the points and lines of P2F3 . (See Section 2.6.) This
group preserves � , hence A, and Remark 3.5 lets us suppose the basepoint a 2A is
also L3.3/–invariant. So L3.3/ permutes the point- and line-meridians in the same
way it permutes the points and lines of P2F3 , and therefore sends G to itself. We
must prove that G contains the Leech meridians associated to the Leech roots pi � �

and x!pi � lj � � . By using the L3.3/ symmetry, it suffices to do this for p1� � and
x!p1� l1� � .
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For p1� � , consider the sequence of Leech roots

s1 D x!p1� l1;

s2 D x!p1� l11;

s3 D x!p1� l13;

s4 D x!p2� l2;

s5 D x!p5� l5;

s6 D x!p11� l11;

s7 D�x!s1�!p4;

s8 D�x!s4�!p3;

s9 D�x!s4�!p5;

s10 D�x!s5�!s8;

s11 D�x!s6�!s9;

s12 D�x!s2�!s10;

s13 D�x!s12�!s11;

s14 D�x!s13�!p1;

s15 D�x!s3�!s14;

s16 D�x!s15�!s7;

s17 D�x!s16�!p10:

In each equation in the left column, the point- and line-root on the right-hand side are
incident. By Lemma 5.6, G contains the Leech meridian associated to the Leech root
defined by that equation. In each equation in the other two columns, the roots appearing
on the right side are Leech roots and hthe first onej the secondi D � . By repeated use
of Lemma 5.4(3), G contains the meridians associated to the Leech roots defined by
these equations. And one checks that s17 D p1� � .

For x!p1� l1� � the argument is the same, defining

s1 D x!p3� l2;

s2 D x!p6� l5;

s3 D x!p8� l5;

s4 D x!p2� l6;

s5 D x!p2� l12;

s6 D�x!s1�!p5;

s7 D�x!s5�!p12;

s8 D�x!s4�!s6;

s9 D�x!s3�!s7;

s10 D�x!s9�!p13;

s11 D�x!s8�!s10;

s12 D�x!s2�!s11;

s13 D�x!s12�!s1;

s14 D�x!s13�!p11;

and checking that s14 D x!p1� l1� � . We found these sequences of Leech roots by a
rather intensive computer search. But their validity can be verified easily.

6 Change of basepoint

In this section we prove the main theorem of the paper, Theorem 1.2: the orbifold
fundamental group G� D�

orb
1
..B13�H/=P�; �/ is generated by the 26 point- and line-

meridians M�;H . Here � D .4C
p

3I 1; : : : ; 1/ is the 26–point specified in Section 2.6
and H varies over the point- and line-mirrors. The starting point of the proof is
Theorem 5.1: for any basepoint a in the horoball A centered at the Leech cusp � , the
26 point- and line-meridians Ma;A;H generate Ga . Here � D .3! � 1I �1; : : : ;�1/

is the Leech cusp defined in Section 2.8 and used throughout Section 5, and H varies
over the same 26 mirrors. By Remark 3.5 we may choose a to be a point of �� very
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� � �

a

b

�

l1

p0

@B13

@A

H

p

Figure 6.1: The regions correspond to the four steps in the proof of
Lemma 6.1, starting from the bottom. We use the upper half-space model
with the Leech cusp � at vertical infinity and A being the horoball centered
there, whose boundary is the horizontal line. Each of the regions misses H

except for obvious intersection points.

close to � ; exactly how close will be specified later. So �a is a subsegment of �� . In
light of Theorem 5.1, Theorem 1.2 follows immediately from the next lemma.

Lemma 6.1 Suppose H is a point- or line-mirror. Then the meridian M�;H 2 G�

corresponds to the meridian Ma;A;H 2Ga under the isomorphism G� ŠGa induced
by the path �a.

For the lemma to make sense, one must verify that �a misses H . Because �a� �� ,
this follows from the stronger result (Lemma B.2) that the complex triangle 4�� l1

misses H except at l1 .

Proof We will give the proof when H is a line-mirror, and then remark on the changes
needed for the point-mirror case. Recall from Section 2.6 that l1 is where all 13
line-mirrors intersect. We will use a 4–step homotopy. The first step corresponds to
the bottom region (shaded darkly) in Figure 6.1, the second step to the region above
it (lighter), the third to the next (dark again), and the fourth to the rightmost region
(light again). The key fact is that these regions miss H except at known points. These
verifications are Lemmas A.6, A.13 and B.2 in the appendices.
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Step 1 The first step is to prove that M�;H is equal to M�;l1;H in G� . This follows
from Lemma 3.8 once one checks that 4�pl1 misses H , except that pl1 lies in H

and l1 may lie in additional hyperplanes. Here p means the point of H closest to � .
This check is Lemma A.6.

Step 2 The second step is to prove that the isomorphism G� ŠGa identifies M�;l1;H

with Ma;l1;H . This follows from Lemma 3.4, once one checks that the (complex)
triangle 4a� l1 misses H except at l1 . This check is Lemma B.2: it proves the
corresponding result for 4�� l1 , which contains 4a� l1 .

Step 3 The third step is to prove that Ma;l1;H is equal to Ma;A;l1;H in Ga . By
taking a very far up in Figure 6.1 this becomes almost obvious. Namely, the uni-
form distance between al1 and the concatenation of ab and bl1 tends to 0 as a

approaches � . Here b is the point of A closest to l1 . Therefore, by taking a close
enough to � , we may take the uniform distance between Ma;l1;H and Ma;A;l1;H to
be arbitrarily small. We take it small enough that the straight-line homotopy misses H .
(This uses the fact verified in Lemma A.13 that the geodesic segment joining b and
l1 misses H except at l1 .)

Step 4 The final step is like the first: Ma;A;l1;H is equal in Ga to Ma;A;H . This fol-
lows from Lemma 3.7, once one checks that 4�l1p0 misses H except that p0l1 �H

and that l1 may lie in additional mirrors. Here p0 is the point of H nearest � . This
check is Lemma A.13.

Putting these four steps together gives

M�;H DM�;l1;H $Ma;l1;H DMa;A;l1;H DMa;A;H :

Here the first two terms are equal in G� by the first step of the homotopy. The second
and third terms correspond under the isomorphism G� Š Ga induced by �a, by the
second step. And the last three terms are equal in Ga by the third and fourth steps.
This finishes the proof for line-meridians.

The point-meridian case is exactly the same. Now H is a point-mirror and p and p0

are the projections of � and � to it. And we replace l1 by p1 . In Step 1, 4�pl1

gets replaced by 4�pp1 , whose intersection with H is also given by Lemma A.6. In
Step 2, 4��l1 gets replaced by 4��p1 , whose intersection with H is also given
by Lemma B.2. In Step 4, 4�p0l1 gets replaced by 4�p0p1 , whose intersection
with H is given by Lemma A.11 rather than Lemma A.13.
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Appendix A: How eight totally real triangles meet the
mirrors

In this appendix we examine how certain totally real triangles in B13 meet the mirror
arrangement H . This was needed in the proofs of Lemmas 5.4, 5.5 and 6.1. Recall from
Section 2.3 that if x;y; z 2L˝C�f0g have norms and inner products in .�1; 0�,
then the convex hull of the corresponding points in B13 is the projectivization of the
convex hull of x , y and z in L˝C . In Section 2.3 we called such a triangle in B13

totally real. For totally real triangles we don’t usually distinguish between the triangle
in L˝C and the triangle in B13 . The following lemma is trivial but crucial.

Lemma A.1 (how to intersect a totally real triangle and a hyperplane) Suppose
x;y; z 2L˝C have norms and inner products in .�1; 0�. Let T be the totally real
triangle 4xyz , and let s 2L˝C . Then T \ s? is the preimage of the origin under
the map T !C given by v 7! hv jsi.

In particular, if the convex hull in C of hx jsi, hy jsi and hz jsi does not contain the
origin, then T \ s? D∅.

In the situation of the lemma we will write hT jsi for the convex hull in C of hx jsi,
hy jsi and hz jsi. Most arguments in this appendix amount to showing that 0 62 hT jsi for
various triangles T and roots s . In all our applications, the vertices of the triangle hT jsi
lie in Q.!;

p
3/. For some of the calculations we used the computer library PARI [12];

checking whether hT jsi contains the origin can be done with exact arithmetic in this
field. Some other calculations were not computerizable because we had to consider
infinitely many mirrors, for example finding which Leech mirrors meet a given triangle.
For these cases we used Lemma A.1 together with special properties of the Leech
lattice. For example, Lemmas A.3 and A.13 use the next result. Several times it seemed
miraculous that some such property was exactly what we needed.

Lemma A.2 (Leech lattice points near �6=� and �9=� ) Suppose �6 and �9 are
vectors in ƒ with norms 6 and 9. Then the nearest points of ƒ to �6=� are three in
number, at distance

p
2. And the nearest points of ƒ to �9=� are 36 in number, at

distance
p

3.

Proof The essential point is that the shortest elements of ƒ which are congruent
mod � to a given lattice vector of norm 6 (resp. 9) are 3 (resp. 36) in number, all of
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norm 6 (resp. 9). This is the lemma that is split between pages 153 and 155 of [31]
but not related to the table on page 154. Also, his “type” is one third of our norm, so
his type 2 and 3 vectors are the same as our norm 6 and 9 vectors.

We abbreviate �6=� to C . The lattice ƒ contains the vector C � �6=� , which lies
at distance

p
2 from C . (It lies in ƒ because it is the zero vector.) Now consider

any lattice point at distance �
p

2 from C , and write it as C Cx=� with x 2ƒ˝C

of norm � 6. Since ƒ contains the difference between this point and the one just
mentioned, it contains .x C �6/=� . That is, x lies in ƒ and is congruent to ��6

mod � . By Wilson’s result, the possibilities for x are the three minimal representatives
of ��6 ’s congruence class mod � . This finishes the �6 case. The �9 case is similar.

When we have a Leech cusp � in mind, we will call a horosphere centered there a
critical horosphere if it is tangent to some mirror. We use the same language for the
(open or closed) horoball it bounds. Recall the definition of a horosphere of height h

given in the discussion following Equation (2-3). If s is a root then it is easy to see
that the horosphere tangent to its mirror is the one of height 1

3
jh� jsij2 . (Compute the

inner product of � with its projection onto s? .) So the heights of the first four critical
horospheres are 1, 3, 4 and 7. The first-, second- and third-shell mirrors (defined in
Section 2.8) are the mirrors tangent to the first, second and third critical horoballs.

The following lemma is the first of several in this appendix having the general form:
prove that some particular triangle misses the mirrors except for some obvious inter-
section points. The general strategy is to start by showing that the triangle is covered
by the union of a ball and a horoball. We enumerate the finitely many mirrors that
meet the ball, and check by direct computation that they miss the triangle. Then we
enumerate the mirrors that meet the horoball; there are infinitely many such mirrors,
but they correspond to roots of small height and therefore they may be parametrized.
Checking that these mirrors miss the triangle requires some intricate analysis rather
than just direct computation.

Lemma A.3 (the triangle needed in Lemma 5.4) In the Leech model, consider the
Leech roots x D .0I 1;�!/ and y D .�6I 1; !/, where �6 is a norm 6 vector in ƒ.
Define p (resp. q ) as the projection of � to x? (resp. hx;yi? ). Then the totally real
triangle T D4�pq meets H as follows: x? meets T in pq , the other three mirrors
of hRx;Ryi meet T only at q , and all other mirrors miss T .

Geometry & Topology, Volume 22 (2018)



3480 Daniel Allcock and Tathagata Basak

Proof First we introduce various important points. Recall that � D .0I 0; 1/. By
definition,

p D ��
h� jxi

x2
x D

�
0I

1

�
;�
x!

�

�
;

and one can compute p2 D h� jpi D �1. For later calculations, we also write p in
the form (2-6), writing �p , mp , Np and �p in place of the unsubscripted letters that
appear there. Obviously we have �p D 0 and mp D

1
�

. And Np is p2 , which we
just computed to be �1. One can then solve for �p by equating the last coordinate
of p with the form given in (2-6) and obtain �p D� �

18
. One can verify the following

formula for q by checking that it is orthogonal to x and y :

q D �� .!x� x!y/D .x!�6I
x�; � x!/:

One can check q2 D h� jqi D hp jqi D �3. Since the vectors we have chosen to
represent the three vertices of 4�pq have inner products in .�1; 0�, we will be able
to apply Lemma A.1. Also, writing q in the form (2-6), just as we did for p , gives
�q D x!�6 , mq D

x� , Nq D�3, �q D�
1
2
� . The four mirrors of the group hRx;Ryi

generated by Rx and Ry obviously meet T as claimed, so it suffices to show that
no other mirrors meet T . By construction, p lies on the boundary of the first critical
horoball. And ht.q/D 3, so q lies on the boundary of the second. Therefore only one
mirror not in the first shell could meet the triangle, and then only at q . This mirror
corresponds to the second-shell root !x � x!y in ExCEy that we left unnamed in
Lemma 5.4(1). So it suffices to show that no Leech mirrors meet the triangle except
the three coming from the sublattice ExCEy .

Our strategy is to write a general Leech root s in the form (2-8), namely

s D
�
� I 1; �

�
1
6
.�2
� 3/C �

��
;

and compute its inner products with � , p and q , and then apply Lemma A.1 to gain
control over � and � . To find hp jsi and hq jsi we appeal to formula (2-7); being able
to apply this is the reason we computed �p; : : : ; �q . By (2-7), we have

hp jsi D
�

6
�2
C

�
1

2
� ��

�
;(A-1)

hq jsi D
�

2

��
� C x!

�6

�

�2

� 2

�
�

�
� Im

�
�
ˇ̌̌
x!
�6

�

�
�

3

2
C 3��

�
:(A-2)

In each of these, the first term is imaginary and the second is real. Our goal is to show
that only three possible pairs � , � allow 0 to lie in the triangle hT jsi � C whose
vertices are (A-1), (A-2) and h� jsi D � .
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First we consider the case � D 0. Then (A-1) and (A-2) simplify dramatically, and
hT jsi is the triangle in C with vertices 1

2
��� , 3

�
1
2
���

�
and � . Since the last vertex

is above the real axis, while the first two are real and differ by a factor of 3, the triangle
hT jsi can only contain 0 if both of its first two vertices are 0. This forces � D 1

2�
,

which leads to s D x , whose mirror we already know meets T .

Now we suppose � ¤ 0. So (A-1) lies above the real axis, just as h� jsi does. If �
lies at distance >

p
2 from �x!�6=� then (A-2) also lies above the real axis. In this

case it is obvious that 0 62 hT jsi. By Lemma A.2, the only other possibility is that �
is one of the three elements of ƒ that lie at distance

p
2 from �x!�6=� , in which case

hq jsi is real. One of these nearest neighbors is 02ƒ, which we treated in the previous
paragraph. In each of the other two cases, hp jsi and h� jsi are still above the x–axis
and hq jsi is on the x–axis. So the only way the origin can lie in hT jsi is for it to be
the vertex hq jsi. Then � is determined in terms of � using (A-2), since hq jsi D 0.
We have shown that there are at most three Leech mirrors that meet the triangle. Since
we know three Leech mirrors that do meet it, coming from roots in hx;yi, the proof is
complete.

Lemma A.4 (three triangles needed in Lemma 5.5) Let us consider the Leech roots
x D .0I 1;�!/ and z D .�9I 1; �/, where we are using the Leech model of L, and �9

is some norm 9 vector in the Leech lattice. Define the second-shell root y as x!x� z .
Write X , Y and Z for the projections of � to x? , y? and z? respectively, and q

for the projection of � to hx;yi? . Then the only mirrors of H which meet any of the
totally real triangles 4�qX , 4�qY and 4�qZ are the four mirrors of hRx;Ryi.

Proof We begin by finding basic data about various important points. In addition to
x and z given in the statement, we have

�D .0I 0; 1/ and y D .��9I �!; 2x!/:

Recall that x and z are Leech roots, so h� jxi D h� jzi D � . Also, hx jzi D �3
2
C
�
2

and y is a second-shell root with h� jyi D 3x! . The projections X , Y , Z are

X D ��
h� jxi

x2
x D �C

x

�
D

�
0I

1

�
;�
x!

�

�
;

Y D ��
h� jyi

y2
y D �� x!y D .x!�9I

x�; 1� 2!/;

Z D ��
h� jzi

z2
z D �C

z

�
D

�
�9

�
I

1

�
; 2

�
:
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Using these one checks

X 2
DZ2

D�1; h� jX i D h� jZi D �1; hX jyi D 1C 3x!;

Y 2
D�3; h� jY i D �3; hY jxi D �!�:

Because X ? x and Y ? y , a formula for the projection q of � to hx;yi? is

q D .2! � 1/

�
��
h� jxi

hY jxi
Y �

h� jyi

hX jyi
X

�
D ..2x! �!/�9I 3x�; 3� 3!/:

(The initial factor 2! � 1 makes h� jqi negative, and also makes q a primitive lattice
vector.) Using this one can check

q2
D�18 and hq j�i D hq jX i D hq jY i D hq jZi D �9:

We will be able to apply Lemma A.1 to 4�qX because � , q and X have negative
inner products. And similarly with Y or Z in place of X .

We first claim that 4�qX [4�qY [4�qZ lies in the interior of the fourth critical
horoball. It suffices to show that X , Y , Z and q do. By definition, Y lies on the
boundary of the 2nd critical horoball and X and Z lie on the boundary of the 1st .
For q , we use q2 D�18 and hq j�i D �9 to get ht.q/D 9

2
< 7, as desired.

Let QX be 4�qX minus the first (open) critical horoball around � , and similarly for
QY and QZ . By working in the hyperbolic plane containing 4�qX , it is obvious
that the point of QX furthest from q is X . By the distance formula (2-1), we have
d.q;X /Dcosh�1

p
9=2. Similarly, Z is the point of QZ furthest from q , and d.q;Z/

is also cosh�1
p

9=2. Finally, the furthest point of QY from q is where Y� intersects
the first critical horosphere. We can find this point by parametrizing Y��f�g by Y Ct�

for t 2 Œ0;1/. The intersection point is defined by the condition ht�.Y C t�/ D 1.
Writing this out explicitly using (2-3) and solving for t gives t D 1. So the point is
Y C � . The distance formula gives d.q;Y C �/ D cosh�1

p
2. This is smaller than

cosh�1
p

9=2, so we conclude that QX [QY [QZ lies in the closed ball around q

of radius cosh�1
p

9=2.

Now suppose s is a root whose mirror meets 4�qX [4�qY [4�qZ . Since these
triangles lie in the fourth (open) critical horoball, s must be a 1st –, 2nd – or 3rd –shell
root. By scaling s we may suppose h� jsi 2 f�; 3; 2�g. We will work with many
projections of s , so we name them all at once:

� sq D .hs jqi=q
2/q; the projection of s to the span of q ;

� sq? D s� sq; the projection to the orthogonal complement of this;
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� sxy ; the projection to the span of x and y ;

� sqxy D sqC sxy ; the projection to the span of q , x and y ;

� sqxy? D s� sqxy ; the projection to the orthogonal complement of this;

� s�x; the projection to the span of � and x ;

� s9; the projection to the span of �9 2ƒ;

� sƒ D s9C sqxy?; the projection to the summand ƒD h�;xi? of L.

Because all mirrors miss the first (open) critical horoball, s? must meet QX[QY [QZ .
This set lies in the closed .cosh�1

p
9=2/–ball around q , so d.q; s?/� cosh�1

p
9=2.

Using the second distance formula (2-2) gives

sinh�1

s
�

ˇ̌
hq jsi

ˇ̌2
q2s2

� cosh�1

r
9

2
:

Now s2 D 3, q2 D �18 and sinh.cosh�1.?// D
p
.?/2� 1 give us the inequality

jhq jsij2 � 189. Using q2 D�18 a second time shows that the most negative s2
q can

be is �189
18
D �

21
2

. Next, 3 D s2 D s2
q C .sq?/

2 , so .sq?/
2 �

27
2

. Since sxy is a
projection of sq? inside the positive definite space q? , it follows that s2

xy �
27
2

.

We recall that hx;yi is a copy of the Eisenstein lattice DE
4

, for which one can introduce
explicit coordinates, for example as in Lemma 5.2. Since all inner products in L are
divisible by � , we have sxy 2 �.D

E
4
/� . One can check that �.DE

4
/� is a copy of DE

4

scaled to have minimal norm 3
2

. An E–basis consists of 1
2
.�xC y/ and 1

2
.�y �x/.

Write Sxy for the set of vectors in this lattice with norm � 27
2

. We have shown that
the projection sxy of s must lie in Sxy . This set can be enumerated on a computer and
turns out to have size 937. (PARI has a built-in function to do this. It is most natural to
rescale by multiplying all inner products by 4

3
, to work with a copy of the standard D4

lattice over Z. Then one enumerates all lattice vectors of norm � 4
3
�

27
2
D 18. The

number 937 matches what one expects from [20, Table 4.8].)

Now we consider the possibilities for sqxy . We claim it lies in

Sqxy D

�
sxy C tq

ˇ̌̌
sxy 2 Sxy and t D

.one of x� , 3 and 2x� /� hsxy j�i

�9

�
:

This is easy: sqxy equals sxy plus some multiple of q , and the multiple of q is
determined by the condition h� jsqxyi D h� jsi 2 f�; 3; 2�g. So Sqxy has cardinality
937 � 3D 2811.
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We are working here under the assumption that s is orthogonal to some point of
QX [QY [QZ . Now, sqxy has the same inner products as s with all elements of the
span of q;x;y , which contains QX [QY [QZ . It follows that s?qxy meets one of
the triangles 4�qX , 4�qY and 4�qZ . Of the 2811 possibilities for sqxy , only 460

satisfy this condition. And the following considerations further restrict the possibilities.

Because the span of q , x and y is the same as the span of � , x and �9 , and �9 is orthog-
onal to the span of � and x , we have sqxy D s9Csx� and hence sD sqxy?Cs9Csx� .
It follows that sƒ D sqxy?C s9 . Note that the projection s9 of s to C�9 coincides
with the corresponding projection of sqxy . Furthermore, the equalities

s2
ƒ D .sqxy?/

2
C s2

9 D .3� s2
qxy/C s2

9 ;

hsƒ j�9i D hsqxy j�9i;

show that sqxy determines s2
ƒ

and hsƒ j�9i. Therefore sqxy determines all inner
products in the span of sƒ and �9 . Also, note that sƒ lies in ƒ, not just ƒ˝C ,
because ƒ is an orthogonal summand of L.

Of the 460 possibilities for sqxy , 449 lead to jhsƒ j�9ij
2 > 9s2

ƒ
, which violates the

Cauchy–Schwarz inequality. Of the remaining 11 possibilities, 4 lead to s2
ƒ
D 3,

which contradicts the fact that ƒ has minimal norm 6. Of the remaining 7 possibilities,
3 lead to the similar contradiction that .�sƒ � �9/

2 D 3 for some unit � of E. The
remaining 4 possibilities for sqxy turn out to be x , x!y , z and xC z , all of which are
roots of hx;yi. In particular, they all have norm 3. It follows that

s2
qxy? D s2

� s2
qxy D 3� 3D 0:

Since sqxy? lies in the positive-definite space q? , we conclude sqxy?D 0. Therefore
s D sqxy , which we have already observed is a root of hx;yi.

For the rest of the results in this section we will need to understand the mirrors near the
intersection point p1 of all 13 point-mirrors. Just as we spoke of critical horoballs
around � , we will speak of critical balls around p1 . They are defined the same way:
the balls that are centered at p1 and tangent to some mirror. The radii of the critical
balls are called critical radii. Even though some mirrors pass through p1 , we don’t
regard 0 as a critical radius.

For this analysis we use the P2F3 model, in which p1 D .x� I 0; : : : ; 0/. For a given
root s of L, the distance formula (2-2) gives d.p1; s

?/ in terms of p2
1 D �3,
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s2 D 3 and jhp1 jsij2 . Since the inner product lies in �E and hence has norm in
3 � f0; 1; 3; 4; 7; 9; 12; : : : g, one can work out the critical radii as

r1; r2; r3; r4; r5; r6; : : :D sinh�1
q

1
3
.1; 3; 4; 7; 9; 12; : : : /:

This assumes that there are indeed roots in L having the appropriate inner products
with p1 , which is easy to check in the range we care about, which is r1; : : : ; r6

(see Lemma A.12 below). Numerically, the first six critical radii are approximately
:549, :881, :987, 1:210, 1:317 and 1:444. We call the mirrors tangent to the nth

critical ball around p1 the batch n mirrors. For completeness we also refer to the
point-mirrors as the batch 0 mirrors. Lemma A.12 below describes batches 0; : : : ; 5

explicitly, but until Lemma A.13 we only need batches 0, 1 and 2. These are easy to
enumerate and appear in Table 1. As an example application we reprove the following
result from [9]. Although this result helps motivate the main theorem of the paper
(Theorem 1.2), it is not logically necessary for us.

Lemma A.5 (mirrors near a 26–point [9, Proposition 1.2]) The mirrors of L closest
to the 26–point � are the point- and line-mirrors, at distance sinh�1.6C8

p
3/�

1
2 � :223.

Proof First we use (2-1) to compute

d.�;p1/D cosh�1

s ˇ̌
h� jp1i

ˇ̌2
p2
1 �

2
D cosh�1

s
19C 8

p
3

6C 8
p

3
� :740:

That the point- and line-mirrors lie at distance sinh�1.6C 8
p

3/�
1
2 � :223 from � is

a similar calculation, using (2-2) in place of (2-1). Any mirror which passes as near or
nearer to � as these do must lie at distance at most

d.�;p1/C sinh�1

r
1

6C8
p

3
� :740C :223D :963

from p1 . This is less than r3 D sinh�1
p

4=3 � :987, so all such mirrors occur in
batches 0, 1 and 2. Our computer iterated over these batches and found that the mirrors
closest to � are just the point- and line-mirrors.

Lemma A.6 (two triangles needed for Step 1 of Lemma 6.1) Let s be a point-root
and x be the projection of the 26–point � to its mirror. Then the only mirrors of L

that meet the totally real triangle 4�xp1 are the point-mirrors. The intersection of
4�xp1 with each of them is p1 , except that the intersection with s? is xp1 . The
same results hold if s is a line-mirror, provided we replace p1 by l1 .
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distance(s?,p1) representative j313WL3.3/–orbitj

0 .0I �; 012/ 13

sinh�1
p

1=3� :549 .1I 14; 09/ 1053D 13 � 34

sinh�1
p

3=3� :881 .� I 13;�13; 07/ 113724D 156 � 36

.� I �; x�; 011/ 1404D 13 � 12 � 32

.� I �; �; 011/ 702D
�
13
2

�
� 32

.� I x�; x�; 011/ 702

Table 1: The 313WL3.3/–orbits of batch 0 , 1 and 2 roots, up to units. Their
mirrors pass through or near the 13–point p1 . The last 13 coordinates, read
modulo � , must give an element of the line code.

Proof We prove the point-mirror case; the line-mirror case follows by applying an
element of L3.3/W2 that swaps the point- and line-mirrors. We gave d.p1; �/� :740

in the previous lemma, and x is closer to p1 than � is. So the triangle lies within
d.p1; �/ of p1 . This is less than r2 D sinh�1 1� :881, so only the batch 0 and 1

mirrors might meet the triangle. The batch 0 mirrors are the point-mirrors, which
obviously meet the triangle as stated. For the batch 1 roots we used our computer to
check (using Lemma A.1) that none of their mirrors meet the triangle. When doing this
we replaced the vector .x� I 013/ representing p1 by �p1D .3I 013/. Then the vectors
representing � , x and p1 have negative inner products, so Lemma A.1 applies.

So far we have not needed a concrete description of the Leech lattice. But we need one
to check that H is disjoint from the homotopies in Step 4 of the proof of Lemma 6.1.
We will use Wilson’s L3.3/–invariant model from [31, page 188]. Its description
involves  D 1� 3x! 2 E from [31, page 154], and uses 13 coordinates in E, indexed
by the points of P2F3 . The line difference code means the subspace of F13

3
generated

by the differences of the characteristic functions of the 13 lines of P2F3 . Although
we don’t need it, we mention that the elements of this code are tabulated in [3, Table 2].
Wilson’s definition is that .x1; : : : ;x13/ 2 E

13 lies in ƒ just if x1C� � �Cx13 D 0, all
coordinates are congruent modulo x , and the element of F13

3
obtained by reducing

the components mod � is an element of the line difference code. The inner product is
the usual one divided by 13.

The following Leech lattice vectors play a key role in the rest of this appendix. For
i D 1; : : : ; 13 we define Pi as the Leech lattice vector .12�; x�12/ with the 12� in
the i th position. And for j D 1; : : : ; 13 we define Lj as the Leech lattice vector
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�
.�9/4; 49

�
with the .�9/ entries in the positions corresponding to the points of P2F3

that lie on the j th line. Even though the Pi and Lj are vectors, we will write Pi 2Lj

as shorthand for “the i th point and j th line of P2F3 are incident”. It is easy to check
that the Pi and Lj satisfy Wilson’s conditions, and in the next lemma we will use
them to show that Wilson’s lattice is indeed a copy of the (complex) Leech lattice. We
also record the following useful data: the Pi and Lj have norm 36, and for i ¤ j we
have hPi jPj i D hLi jLj i D �3. Also, hPi jLj i D �9� or 4� according to whether
or not Pi 2Lj .

Lemma A.7 The lattice just described is isometric to the complex Leech lattice.

Proof Write ƒ for the E–lattice defined above. We will show that it is isomet-
ric to the complex Leech lattice, which we have denoted ƒ elsewhere in the pa-
per. First, define ıij D Li � Lj and "ij D .Pi � Pj /= . The "ij have the form
.0; : : : ; 0; x �; 0; : : : ; 0;�x �; 0; : : : ; 0/, so they lie in ƒ. We claim that ƒ is spanned
by the ıij , "ij and any one Pi , say P1 . To see this, given x 2ƒ, the reduction of its
components modulo � lies in the line difference code. By adding suitable multiples
of ıij D Li �Lj , we may suppose without loss of generality that this codeword is
the zero codeword. That is, all coordinates are divisible by � . By adding a multiple
of P1 , we may suppose that the last component is 0. It follows that all components
are zero mod x . Since all coordinates are divisible by x � , and the coordinate sum is
zero, x may be expressed as a linear combination of the "ij .

Second, all inner products in ƒ lie in �E; in particular, ƒ is integral. This is just a
computation using the inner product data given above. Third, the determinant of ƒ
is 36 . To see this, note that the E–span of the "ij is a scaled copy of E˝A12 , with
determinant 312 � 13.

�
Recall the factor 1

13
in ƒ’s inner product.

�
Adjoining the ıij

gives a larger lattice, whose quotient by this copy of E˝A12 is isomorphic to the
line difference code F6

3
, and whose determinant is 36 � 13. Finally, adjoining P1

reduces the determinant to 36 . Since ƒ has determinant 36 , and all inner products are
divisible by � , it is an Eisenstein Niemeier lattice; see [3, Section 2]. And the only
Eisenstein Niemeier lattice whose isometry group contains L3.3/ is the Leech lattice;
see [3, Theorem 4].

Correction to [3] This proof is similar to that of Lemma 6 in [3], which asserts that
there is a unique L3.3/–invariant integral lattice properly containing �E˝A12 . That
is wrong because it neglects the 13–part of the discriminant group of �E˝A12 . A
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counterexample is ƒ as defined above. That lemma was used only once in [3], in the
proof of Lemma 9, where it is used to recognize a certain lattice as the complex Leech
lattice. That result can be saved by addressing the 13–part in a manner similar to the
proof above.

We will need to understand the lattice points near a particular point C of ƒ˝ C

that is not in ƒ itself. This will allow us to write down Leech model versions of the
point-roots, line-roots and 13–points, and thereby identify the P2F3 and Leech models
of L. The name centroid in the next lemma is explained after Lemma A.10.

Lemma A.8 (the centroid C ) Define C D �P1= . Then the only points of ƒ at
distance <

p
42=13 from C are the points

C C
1

 
Pi D

Pi �P1

 
D

�
.0; : : : ; 0/ if i D 1,
.�x �; 0; : : : ; 0; x �; 0; : : : ; 0/ if i D 2; : : : ; 13,

all of which lie at distance
p

36=13.

Similarly, the only points of 1
�
ƒ at distance <

p
14=13 from C are the points

C �
x!

� 
Lj D

(
1
�
. �!; .�3 or �x!/; : : : ; .�3 or �x!// if P1 2Lj ,

1
�
.4� 8!; .�3 or �x!/; : : : ; .�3 or �x!// otherwise,

where �3 appears exactly three times among the last twelve coordinates if P1 2Lj , or
four times otherwise. All of these points lie at distance

p
12=13 from C .

Remark A.9 The norm of .C C .1= /Pi/� .C � .x!=� /Lj / is 3 or 4, according
to whether or not Pi 2Lj . In particular, since P1 2L1 and C CP1= D 0, we have
.C � .x!=� /L1/

2 D 3.

Proof of Lemma A.8 To show that these vectors lie in ƒ
�
resp. 1

�
ƒ
�
, one just checks

the conditions in Wilson’s definition. Their distances from C are as stated because
P2

i DL2
j D 36 for all i and j . It is easy to check that all the Pi (resp. all the Lj ) are

congruent mod  . The rest of the proof is like the proof of Lemma A.2. That is, the
lemma follows from the claim: the Pi (resp. Lj ) are the only norm<42 representatives
of their mod  congruence class. We treat the Pi case; the Lj case is the same.

Let v be a Leech vector, distinct from all the C C .1= /Pi , such that .v�C /2 < 42
13

.
Let x D  .v � C /. Then x 2 ƒ has norm < 42 and is distinct from all the Pi ,
but congruent to them mod  . As a nonzero member of  ƒ, x �Pi has norm at
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least 6 � 13D 78. Since P2
i D 36 and x2 < 42, the angle between x and Pi is obtuse.

That is, in the real Euclidean space underlying ƒ˝C , the inner product of x and Pi

is negative. This holds for all i . So x has negative inner product (in this real Euclidean
space) with P1C � � �CP13 D 0, which is absurd.

Caution From Section 2.7 recall that the Leech model for our lattice is L'ƒ˚H ,
where H has Gram matrix

�
0
�

x�
0

�
. Wilson’s definition of ƒ gives an L3.3/ action

on L. The P2F3 model of L gives another L3.3/ action on L. These two copies
of L3.3/ are not conjugate in Aut.L/. The lattices fixed pointwise by them are H

and .Ep1CEl1/, respectively, which are not isometric.

Now we can write down the point- and line-roots in the Leech model. We define pi to
be the Leech root obtained by using � D C C 1

 
Pi and � D 1

2�
in (2-8). Explicitly,

pi D

�
.0; : : : ; 0I 1;�!/ if i D 1,
.�x �; 0; : : : ; 0; x �; 0; : : : ; 0I 1;�x!/ if i D 2; : : : ; 13,

where the x � appears in the i th position. Similarly, we define lj as the root obtained
from (2-6) by taking � D .C � .x!=� /Lj /�! , mD �! , N D 3, and � D x� or 1

2
x�

according to whether P1 2Lj or not. Explicitly, lj has the form

lj D

�
. � 9x!; .�3! or �1/; : : : ; .�3! or �1/I �!; 2x!/ if P1 2Lj ,
.4! � 8x!; .�3! or �1/; : : : ; .�3! or �1/I �!; x� / otherwise.

Here the �9x! or 4! � 8x! appears in the first position, and the .�1/ entries appear in
positions corresponding to points of P2F3 not lying on the j th line of P2F3 . There
are nine .�1/ entries if P1 2Lj and eight otherwise. One verifies the next lemma by
direct computation.

Lemma A.10 (the point- and line-roots in the Leech model) The vectors pi , lj and �
in the Leech model have the same inner products with each other as do the vectors with
the same names in the P2F3 model. This defines an isometry of the two models, which
identifies their point-roots, line-roots and Leech cusp � . Under this identification, in
the Leech model we have

p1 D . C I ;�x! /D .12x�; �; : : : ; � I ;�x! /;

l1 D .�x!� C I �x!� ; 6x! �!/D .�36x!; 3x!; : : : ; 3x!I �x!� ; 6x! �!/:

Writing these vectors in the form (2-6), their values of � and m are their entries before
and immediately after the semicolon, their values of N are both �3, and their values
of � are �13

6
� and �17

2
� , respectively.
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Remarks Here is how we found this identification. For each i we have h� jpii D �

in the P2F3 model, so their analogues in the Leech model should have the form
.�i I 1; : : : / for suitable �i 2 ƒ. The inner product formula (2-7) shows that the
differences between the �i must be minimal vectors of ƒ. So the �i are the vertices
of a 12–simplex in C12 . This suggested looking for their centroid, expecting it to
have stabilizer L3.3/ in the affine isometry group ƒW 6Suz of the Leech lattice. We
were already familiar with the principle used in Lemma A.2: the lattice vectors near
an element of the rational span of a lattice are related to the short lattice vectors in a
suitable congruence class. This suggested looking for a congruence class in ƒ with
stabilizer L3.3/ and exactly 13 minimal representatives. In Wilson’s model of ƒ
the Pi form an L3.3/–orbit of size 13. So we investigated and found that they are
congruent mod  . This suggested that the centroid should be C from Lemma A.8, and
that �1; : : : ; �13 should be its nearest neighbors. This determined the pi up to their
values of � . For p1 we chose � D 1

2�
arbitrarily, and then used the orthogonality of

the pi and (2-7) to compute the � values of the other pi . Since � and the point-roots
span L up to finite index, the expressions for all the other vectors follow. Although
we do not need it, we also remark that with additional work it is possible to introduce
a version of the Leech model “centered at C ”, to avoid hiding some of the L3.3/

symmetry.

As we mentioned after (2-7), inner products with a vector .� Im; : : : / in the Leech
model can be expressed in terms of �=m2ƒ˝C . For p1 and l1 this point is C . And
Lemma A.8 shows that for the point-roots (resp. line-roots), the corresponding points
of ƒ˝C are the nearest neighbors of C in ƒ

�
resp. 1

�
ƒ
�
. This part of Lemma A.8

will be crucial in the proofs of Lemmas A.11 and A.13.

Lemma A.11 (the triangle needed for Step 4 in Lemma 6.1, point-mirror case) Let x

be the projection of � onto a point-mirror, and T be the totally real triangle 4�xp1 .
Then T meets that point-mirror in xp1 , meets the other point-mirrors in p1 only,
and misses all other mirrors.

Proof By L3.3/ symmetry it suffices to treat the point-root p1 . Using the Leech
model, and the formula for p1 given just before Lemma A.10, we find

x D
�
0I 1
�
;�1

�
x!
�
D ��1p1C �;

which has x2Dh� jxiD�1. The other two vertices of T are represented by p1 from
Lemma A.10 and � D .0I 0; 1/. In calculations we will use x� x p1 rather than p1 ,
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because it has negative inner product (namely �39) with both � and x . So we will be
able to apply Lemma A.1.

First we claim that T lies in the union of the second critical horoball around � and
the second critical ball around p1 . To see this, note that ht�.x/D 1, so x lies on the
boundary of the first critical horoball. (In fact this holds by construction.) Also, one
checks ht�.p1/D 13> 3, so p1 lies outside the second critical horoball. Therefore
it suffices to find where the boundary of this horoball intersects p1� and p1x , and
check that both intersection points lie in the second critical ball around p1 . Since
p1� travels directly toward the horoball, its intersection point is closer to p1 than
is the intersection point of p1x . So it suffices to show that the second one lies in
the second critical horoball. We found this intersection point by the method from
the proof of Lemma A.4, obtaining x� x p1C .9

p
26� 39/x . This can be verified by

checking that it has height 3. It has norm �702 and its inner product with x� x p1 is
1404� 351

p
26. So the point of B13 it represents lies at distance

cosh�1

q
63� 12

p
26� :810

from the point p1 . This is less than r2 D sinh�1.1/� :881, so this point lies in the
second critical ball, as desired.

Therefore the only mirrors that might meet T are the Leech mirrors (which include
the batch 0 roots, namely the point-roots) and the batch 1 mirrors around p1 . We
used computer calculations in the P2F3 model, and Lemma A.1, to check that the
batch 1 mirrors miss T . So it remains to examine how the mirror of a Leech root s can
meet T . This part of the proof is similar to the proof of Lemma A.3: we will compute
hT jsi �C and examine whether it contains the origin. For use in the calculation we
tabulate the parameters of the important vectors when they are written as in (2-6):

� m N �

x .a vertex of T / 0 1
�

�1 �
1

18
�

x� x p1 .a vertex of T / �13�C �13� �117 �
169

2
�

s .a Leech root/ � 1 3 �

The inner product formula (2-7) and some simplification gives

hx jsi D 1
6
��2
�

1
3
�
�
3�C 1

2
�
�
;

hx� x p1 jsi D
13
2
�
�
.C � �/2� 36

13

�
� 13�

�
ImhC j�iC 3

�
�C 1

6
�
��
:
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The first terms are their imaginary parts. So hx jsi lies on the real axis (if � D 0) or
above it (otherwise). Also, Lemma A.8 gives exactly the inequality needed to make
hx� x p1 jsi lie on or above the real axis, namely that C � � has norm � 36

13
. It is

something of a miracle that the geometry of the Leech lattice gives us exactly the bound
that we need for our argument to work. Finally, h� jsi D � since s is a Leech root. So
hT jsi lies in the closed upper half-plane. If � ¤ 0 then two of its vertices lie strictly
above the real axis, so hT jsi misses the origin unless the third vertex coincides with
the origin, ie unless hx� x p1 jsi D 0. But then s is a point-root, since these are the
only roots orthogonal to p1 . So suppose � D 0. Then the above formulas simplify
to the real numbers hx jsi D ��

�
� C 1

6
�
�

and hx� x p1 jsi D �39�
�
� C 1

6
�
�
.
�
The

latter uses C 2 D
36
13

.
�

Since these differ by a positive factor, the only way hT jsi can
contain the origin is for both of them to vanish. In particular hp1 jsi D 0, so again
s is a point-root, indeed p1 .

The analogue of Lemma A.11 for a line-mirror requires a much larger tabulation of the
mirrors near p1 than we have needed so far. The following lemma describes batches
0; : : : ; 5 in a manner suitable for machine computation. Batches 0, 1 and 2 appear
in Table 1. In batches 3, 4 and 5 there are 743 418, 107 953 560 and 480 961 338

mirrors. To actually construct the batches one should refer to the tabulation of the line
code in Tables 2 and 3 of [3].

Lemma A.12 (mirrors near a 13–point) Write vectors of L in the P2F3 model.
Then the mirrors in batches b D 0; : : : ; 5, ie those at distance < sinh�1 2 � 1:444

from p1 , are the orthogonal complements of the roots s D .s0I s1; : : : ; s13/ described
in the next paragraph. For b D 0 this gives all roots, while for the other cases it gives
one from each scalar class.

Define the desired norm N D 3, 4, 6, 7, 10, or 12 and the required coordinate
sum S D 0, 1, 0, 1, 1, or 0 2 F3 according to the value of b D 0; : : : ; 5. Choose
any codeword w D .w1; : : : ; w13/ in the line code whose weight (number of nonzero
coordinates) is at most N and whose coordinate sum is S . Choose e1; : : : ; e13 with
ei 2 f0; 3; 6g if wi ¤ 0 and ei 2 f0; 3; 9; 12g if wi D 0, such that the sum of the ei

equals N �weight.w/. Choose any Eisenstein integers s1; : : : ; s13 such that si mod �
is wi , and jsi j

2 is either ei or ei C 1 according to whether wi D 0 or wi ¤ 0. Prefix
the coordinates .s1; : : : ; s13/ by a coordinate s0 D 0, 1, � , �2, 2� .! or x!/, or 3

according to the value of b D 0; : : : ; 5.
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Proof Suppose s D .s0I s1; : : : ; s13/ is a root in one of the batches 0; : : : ; 5. Then
it follows that jhs jp1ij2 < 3 � 12, which boils down to the condition js0j

2 < 12,
ie js0j

2 2 f0; 1; 3; 4; 7; 9g. If js0j
2D 0 then of course s0D 0. In the other cases there is

a unique way to scale s by a unit so that s0 is as described at the end of the lemma. In
all cases, s2D 3 says that the vector .s1; : : : ; s13/ has norm N , and the definition of L

requires that its reduction w modulo � is in the line code and has coordinate sum S .
For i D 1; : : : ; 13 we take ei to be defined as jsi j

2 if wi D 0, or jsi j
2�1 if wi ¤ 0. If

wi D 0 then si must be divisible by � , and jsi j
2 � 12, so ei 2 f0; 3; 9; 12g. If wi ¤ 0

then N � 12 gives jsi j
2 � 9 since wi has weight at least 4 (so there are at least 3

other nonzero coordinates). An element of E not divisible by � , and having norm � 9,
must have norm 1, 4 or 7. That is, when wi ¤ 0 we have proven ei 2 f0; 3; 6g. We
have just established the lemma’s constraints on the ei . The constraints on the si in
terms of the ei are satisfied because of the construction of the ei . Conversely, if one
follows the instructions in choosing w; e1; : : : ; e13; s1; : : : ; s13; s0 then one obtains a
norm 3 vector of L in the specified batch.

Lemma A.13 (the triangle needed for Step 4 in Lemma 6.1, line-mirror case) Let x

be the projection of � onto a line-mirror, and T be the totally real triangle 4�xl1 .
Then T meets that line-mirror in xl1 , meets the other line-mirrors in l1 only, and
misses all other mirrors.

Proof This is similar to Lemma A.11 but some new issues arise. By symmetry we may
take the line-root to be l1 . Computation gives x D �� x!l1 , with x2 D h� jxi D �3.
In computations we use ! x l1 in place of l1 because it has negative inner product
with � and x , namely �39. This is also its norm.

We claim that T lies in the union of the sixth critical ball around l1 and the third critical
horoball around � . Following the proof of Lemma A.11, it is enough to check that the
point where l1x pierces the boundary of the 3rd critical horoball lies in the 6th critical
ball. One checks that this point is represented by the vector ! x l1C .4

p
39� 13/x ,

by computing that its height is 4. Its norm is �1404 and its inner product with ! x l1

is 468� 156
p

39. This lets us compute the distance from this point to l1 , namely

cosh�1
q

64
3
�

8
3

p
39 � 1:407:

This is less than r6 D sinh�1.2/� 1:444, as desired.

So the only mirrors that could meet T are the first- and second-shell mirrors around �
(this includes the line-mirrors, which are the batch 0 roots around l1 ), and the mirrors
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in batches 1; : : : ; 5 around l1 . The latter checks are done in the P2F3 model. We
applied an isometry F of L that exchanges the point- and line-roots up to signs, namely
pi 7! l14�i and lj 7! �p14�j . (It follows that F.p1/ D l1 and F.l1/ D �p1 ,
which is useful for writing down a matrix for F .) So it suffices to check that the triangle
with vertices F.�/, F.x/ and F.! x l1/ misses all batch 1; : : : ; 5 mirrors around p1 .
For this we enumerated these mirrors in the P2F3 model by using Lemma A.12, and
checked that they all miss this triangle by using Lemma A.1. This was the only computer
calculation in the paper that took more than a moment: sixteen hours on a laptop.

To examine how the Leech mirrors and second-shell mirrors meet T , we return to the
Leech model. We begin by writing down the parameters � , m, N and � when we
write the following important vectors in the form (2-6):

� m N �

x (a vertex of T ) �
�
C � .x!=� /L1

�
� �� �3 ��

! x l1 (a vertex of T ) �13�C �13� �39 �
221

2
�

s (a Leech root) � 1 3 �

or s (a second-shell root) � � 3 �

Again we will use Lemma A.1 to determine whether s? meets T . We begin with the
case of s a second-shell root because it is simpler. The real part of the inner product
formula (2-7) is

Rehx jsi D 3

2

�
�

�
�

�
C �

x!

� 
L1

��2
;(A-3)

Reh! x l1 jsi D
39

2

��
�

�
�C

�2
�

12

13

�
:(A-4)

We see that (A-3) is at least 0, with equality if and only if �=� DC �.x!=� /L1 . And
(A-4) is at least 0 by Lemma A.8. Together with Reh� jsi D 3, we see that hT jsi lies
in the closed right half-plane. If �=� ¤ C � .x!=� /L1 then (A-3) is strictly positive,
so the only way hT jsi could contain the origin is for its vertex h! x l1 jsi to be the
origin. That is, s ? l1 , so s is a line-root.

The remaining possibility for �=� is C � .x!=� /L1 . Then .s � x!l1/ is a multiple
of � (just write s and l1 in the Leech coordinate system). Since s and l1 both have
norm 3, it quickly follows that s D x!l1C n�� for some integer n. Using the known
inner products between points, lines, l1 and � , we find that

h! x l1 jsi D 39n� and hx jsi D 3n�:
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Since these differ by a positive factor, the only way 0 could lie in hT jsi is for both of
them to be 0. Then s is a line-root, indeed l1 .

Now suppose s is a Leech root. The imaginary part of (2-7) is

Imhx jsi D �

2

h�
� �

�
C �

x!

� 
L1

��2
� 2

i
;(A-5)

Imh! x l1 jsi D
13�

2

�
.C � �/2�

38

13

�
:(A-6)

We have h� jsi D � , which lies above the real axis. We claim that (A-5) does also. To
see this, recall from Remark A.9 that C � .x!=� /L1 2

1
�
ƒ has norm 3. So it equals a

norm 9 vector of ƒ, divided by � . By Lemma A.2, the distance from C � .x!=� /L1

to ƒ is
p

3. So the first term in the brackets in (A-5) is at least 3. So (A-5) lies above
the real axis. Next, Lemma A.8 says that either .C � �/2 � 42

13
or else � D C C 1

 
Pi

for some i D 1; : : : ; 13. In the first case we see that (A-6) lies above the real axis, so
T does too, so it cannot contain the origin.

The remaining possibility for � is C C 1
 

Pi . Then s�pi is a multiple of � . Since s

and p1 both have norm 3, it follows that s D pi C n� for some integer n. Using the
known inner products between points, lines, l1 and � , we find that

hx jsi D

�
� � 3nC x!� if Pi 2L1,
� � 3n otherwise;

(A-7)

h! x l1 jsi D x� C 6� 39n:(A-8)

(Note that (A-7) is above the real axis and (A-8) is below it.) We want to determine
whether the origin lies in the triangle hT jsi that has (A-8), (A-7) and h� jsi D � for
vertices. We can find the intersection of hT jsi with R by writing A (resp. B ) for the
convex combination of

˝
! x l1

ˇ̌
s
˛

and h� jsi (resp. hx jsi) that has no imaginary part.
Then the origin lies in hT jsi just if it lies in the interval with endpoints A and B . One
works out A and B , with the result

AD 3� 39
2

n; BD

�
3� 15n if Pi 2L1,
3� 21n otherwise.

If n� 0 then A and B are both positive. And if n� 1 then A and B are both negative.
So the origin does not lie in hT jsi.
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Appendix B: How two complex triangles meet the mirrors

In this appendix we prove Lemma B.2: the complex triangles 4��p1 and 4�� l1

miss the mirror arrangement except at p1 and l1 respectively. This is the key fact
in Step 2 in the proof of Lemma 6.1. Because these triangles are complex instead of
totally real, we cannot use the machinery in Appendix A. Instead we exploit the fact
that they lie in B.F /Š B1 , where F is the L3.3/–invariant sublattice of L. Our first
step is to understand how this B1 meets the mirrors.

Lemma B.1 Suppose x 2 B1\H . Then either x is represented by a norm �3 vector
of F , or is orthogonal to a norm 3 vector of F .

Proof Write M for the sublattice of L spanned by the roots orthogonal to x . The
lattice M is nonempty because x 2H . So 1 � dim M � 13. As an E–lattice with
all inner products divisible by � , and spanned by roots, M is a direct sum of copies
of the Eisenstein root lattices AE

2
, DE

4
, EE

6
and EE

8
; see [3, Theorem 3]. There are

at most 13 direct summands of M and L3.3/ acts on the set of them. Since L3.3/

is simple and contains an element of order 13, the smallest nontrivial permutation
representations of L3.3/ are on 13 objects. Therefore either (a) L3.3/ preserves each
direct summand of M , or (b) M is the sum of 13 copies of AE

2
and L3.3/ permutes

them transitively.

First we treat case (a). The action of L3.3/ on F? is known and irreducible: it is
the deleted permutation representation coming from the L3.3/ action on the points of
P2F3 . So as an L3.3/ representation, x? decomposes into two irreducible represen-
tations: the spaces F? and x?\F of dimensions 12 and 1, respectively. In case (a)
we are assuming that the underlying vector space of each direct summand of M is
preserved by L3.3/ and so must contain one of these irreducible factors. Since each
summand of M has dimension at most 4, it follows that M must be isomorphic to
AE

2
and lie in the fixed space of L3.3/. So F contains a root orthogonal to x .

Now we treat case (b). As the orthogonal complement of 13 mutually orthogonal roots,
the line in L˝C corresponding to x is represented by a lattice vector; we choose a
primitive one and use the same name x for it. The product of the x!–reflections in the
13 roots, times the scalar ! , acts on L by scaling x by ! and fixing x? pointwise. So
it is given by the same formula (2-4) as a reflection, namely v 7! v�.1�!/hv jxix=x2 .
(This differs from a reflection in that its fixed set in B13 is a point not a hyperplane.)
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Since this preserves L, we have .1�!/hv jxi=x22E for every v2L. Since LD� �L� ,
there exists v 2L with hv jxi D 1� x! . So 3=x2 2 E, which forces x2 D�3.

It is easy to see that F is spanned by �D .�x I �1; : : : ;�1/ and p1 D .x� I 0; : : : ; 0/.
These have norms 0 and �3, and h� jp1i D � x . We will also use a second null
vector �0 , which is defined as �! times the image of � under the “!–reflection” in p1 .
(As in the proof above, this fixes a single point of B13 rather than a hyperplane.) One
checks that �0 D x p1�!�D .x! x I!; : : : ; !/ and h� j�0i D 13� .

Everything becomes easier if we work in a certain superlattice E of F , namely the
one spanned by �= x and �0= x . We use the notation Œu; v� to mean .u�0C v�/= x .
Obviously E contains � , and it also contains p1 by our formula for �0 in terms
of p1 and � . So E does indeed contain F . The main advantage of working in E is
that the inner product has the simple form˝

Œu; v� j Œu0; v0�
˛
D .u v/

�
0 x�
� 0

��
xu0

xv0

�
;

which is the same as in (2-5). One can check that p1 D Œ1; !� and l1 D Œx� x!;! � 2�.
Now we can prove the main result of this appendix:

Lemma B.2 (two triangles needed in Step 2 of Lemma 6.1) The only point of H in
4��p1 (resp. 4�� l1 ) is p1 (resp. l1 ).

Proof Because � is the midpoint of p1l1 , the union of these two triangles is the
larger triangle T D4�p1l1 . So it suffices to show that this triangle misses H except
at p1 and l1 . We identify the projective space of F˝C with C[f1g by plotting a
vector Œu; v� as v=u. Then B1 corresponds to the upper half-plane, and � , p1 and l1

correspond to1, ! and 3
2
C
�
6

, respectively. So T is the hyperbolic triangle they span.
The edges of T are the vertical line through ! , the vertical line through

�
3
2
C
�
6

�
and

an arc C of the circle
˚
z W
ˇ̌
z� 1

3

ˇ̌2
D

13
9

	
. The image of � in the upper half-plane

is .1C i/, which is the (hyperbolic) midpoint of the circular arc C .

Our strategy is to find all the norm �3 vectors of F representing points of T , and all
norm 3 vectors orthogonal to points of T , and then apply Lemma B.1. It is convenient
to find all such vectors of E first, and then discard the ones that lie outside F . We
begin by writing an arbitrary norm �3 vector of E as

x D

�
m;

�

xm

�
0� .�3/

6
C �

��
;
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where m 2 E� f0g, and � 2 Im C is chosen so that the second component lies in E.
(This is just like the analysis leading to (2-6).) The corresponding point of B1 has
imaginary part �=2jmj2 . Now suppose x 2 T . The only point of T with imaginary
part �

6
is l1 , and all its other points have larger imaginary part. Therefore either x

is a multiple of l1 , or else jmj D 1. In the latter case we scale x so that mD 1, so
x D

�
1; �

�
1
2
C �

��
. Since the second component lies in E, we have � D 1

2�
C

n
�

for
some n 2 Z. Then the point of B1 represented by x is n� x! . Since every point of T

has real part at least �1
2

and at most 3
2

, the only possibilities for n are �1, 0 and 1.
The case nD�1 yields x D p1 . The case nD 0 does not actually arise, because �x!
lies below the circular arc C . The case nD 1 yields a point of T . We have shown that
the only points of T represented by norm �3 vectors of E are p1 , l1 and Œ1; 1� x!�.
The last of these is not in F . Therefore the only points of T represented by norm �3

vectors of F are p1 and l1 .

Now consider a point x 2 T orthogonal to some norm 3 vector Œu; v� of E . The
orthogonal complement of Œu; v� in E is generated by Œxu; xv�, which therefore repre-
sents x . Also, Œxu; xv� has norm �3, so the previous paragraph shows that x is one of
p1 , l1 and Œ1; 1� x!�. To finish the proof we observe that Œ1; 1� x!� is orthogonal to
no norm 3 vector of F , since the norm 3 vector Œ1; 1�!� 2E orthogonal to it does
not lie in F .

More information about the lattice F can be found in Section 5 of [11]. In particular,
its � –stabilizer acts on B.F /D B1 as �0.13/� PSL2Z.

References
[1] D Allcock, The Leech lattice and complex hyperbolic reflections, Invent. Math. 140

(2000) 283–301 MR

[2] D Allcock, A monstrous proposal, from “Groups and symmetries: from neolithic Scots
to John McKay” (J Harnad, P Winternitz, editors), CRM Proc. Lecture Notes 47, Amer.
Math. Soc., Providence, RI (2009) 17–24 MR

[3] D Allcock, On the Y555 complex reflection group, J. Algebra 322 (2009) 1454–1465
MR

[4] D Allcock, Completions, branched covers, Artin groups, and singularity theory, Duke
Math. J. 162 (2013) 2645–2689 MR

[5] D Allcock, T Basak, Geometric generators for braid-like groups, Geom. Topol. 20
(2016) 747–778 MR

Geometry & Topology, Volume 22 (2018)

http://dx.doi.org/10.1007/s002220050363
http://msp.org/idx/mr/1756997
http://dx.doi.org/10.1090/crmp/047
http://msp.org/idx/mr/2500552
http://dx.doi.org/10.1016/j.jalgebra.2009.05.027
http://msp.org/idx/mr/2543618
http://dx.doi.org/10.1215/00127094-2380977
http://msp.org/idx/mr/3127810
http://dx.doi.org/10.2140/gt.2016.20.747
http://msp.org/idx/mr/3493096


Generators for a complex hyperbolic braid group 3499

[6] D Allcock, J A Carlson, D Toledo, The complex hyperbolic geometry of the moduli
space of cubic surfaces, J. Algebraic Geom. 11 (2002) 659–724 MR

[7] D Allcock, J A Carlson, D Toledo, The moduli space of cubic threefolds as a ball
quotient, Mem. Amer. Math. Soc. 985, Amer. Math. Soc., Providence, RI (2011) MR

[8] E Bannai, Fundamental groups of the spaces of regular orbits of the finite unitary
reflection groups of dimension 2 , J. Math. Soc. Japan 28 (1976) 447–454 MR

[9] T Basak, The complex Lorentzian Leech lattice and the bimonster, J. Algebra 309
(2007) 32–56 MR

[10] T Basak, On Coxeter diagrams of complex reflection groups, Trans. Amer. Math. Soc.
364 (2012) 4909–4936 MR

[11] T Basak, The complex Lorentzian Leech lattice and the bimonster, II, Trans. Amer.
Math. Soc. 368 (2016) 4171–4195 MR

[12] C Batut, K Belabas, D Benardi, H Cohen, M Olivier, User’s guide to PARI/GP,
Université de Bordeaux (2016) https://pari.math.u-bordeaux.fr/doc.html

[13] D Bessis, Finite complex reflection arrangements are K.�; 1/ , Ann. of Math. 181
(2015) 809–904 MR

[14] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math.
Wissen. 319, Springer (1999) MR

[15] E Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen
komplexen Spiegelungsgruppe, Invent. Math. 12 (1971) 57–61 MR

[16] E Brieskorn, Vue d’ensemble sur les problèmes de monodromie, from “Singularités
à Cargèse (rencontre sur les singularités en géométrie analytique)”, Astérisque 7 et 8,
Soc. Math. France, Paris (1973) 393–413 MR

[17] M Broué, Introduction to complex reflection groups and their braid groups, Lecture
Notes in Mathematics 1988, Springer (2010) MR

[18] J H Conway, R T Curtis, S P Norton, R A Parker, R A Wilson, Atlas of finite groups:
maximal subgroups and ordinary characters for simple groups, Oxford Univ. Press
(1985) MR

[19] J H Conway, C S Simons, 26 implies the Bimonster, J. Algebra 235 (2001) 805–814
MR

[20] J H Conway, N J A Sloane, Sphere packings, lattices and groups, 3rd edition, Grundl.
Math. Wissen. 290, Springer (1999) MR

[21] R Fox, L Neuwirth, The braid groups, Math. Scand. 10 (1962) 119–126 MR

[22] W M Goldman, Complex hyperbolic geometry, Oxford Univ. Press (1999) MR

[23] R Laza, Deformations of singularities and variation of GIT quotients, Trans. Amer.
Math. Soc. 361 (2009) 2109–2161 MR

Geometry & Topology, Volume 22 (2018)

http://dx.doi.org/10.1090/S1056-3911-02-00314-4
http://dx.doi.org/10.1090/S1056-3911-02-00314-4
http://msp.org/idx/mr/1910264
http://dx.doi.org/10.1090/S0065-9266-10-00591-0
http://dx.doi.org/10.1090/S0065-9266-10-00591-0
http://msp.org/idx/mr/2789835
http://dx.doi.org/10.2969/jmsj/02830447
http://dx.doi.org/10.2969/jmsj/02830447
http://msp.org/idx/mr/0407199
http://dx.doi.org/10.1016/j.jalgebra.2006.05.033
http://msp.org/idx/mr/2301231
http://dx.doi.org/10.1090/S0002-9947-2012-05517-6
http://msp.org/idx/mr/2922614
http://dx.doi.org/10.1090/tran/6558
http://msp.org/idx/mr/3453368
https://pari.math.u-bordeaux.fr/doc.html
http://dx.doi.org/10.4007/annals.2015.181.3.1
http://msp.org/idx/mr/3296817
http://dx.doi.org/10.1007/978-3-662-12494-9
http://msp.org/idx/mr/1744486
http://dx.doi.org/10.1007/BF01389827
http://dx.doi.org/10.1007/BF01389827
http://msp.org/idx/mr/0293615
http://msp.org/idx/mr/0417168
http://dx.doi.org/10.1007/978-3-642-11175-4
http://msp.org/idx/mr/2590895
http://msp.org/idx/mr/827219
http://dx.doi.org/10.1006/jabr.2000.8494
http://msp.org/idx/mr/1805481
http://dx.doi.org/10.1007/978-1-4757-6568-7
http://msp.org/idx/mr/1662447
http://dx.doi.org/10.7146/math.scand.a-10518
http://msp.org/idx/mr/0150755
http://msp.org/idx/mr/1695450
http://dx.doi.org/10.1090/S0002-9947-08-04660-6
http://msp.org/idx/mr/2465831


3500 Daniel Allcock and Tathagata Basak

[24] H van der Lek, The homotopy type of complex hyperplane complements, PhD the-
sis, Katholieke Universiteit Nijmegen (1983) http://repository.ubn.ru.nl/
handle/2066/148301

[25] A Libgober, On the fundamental group of the space of cubic surfaces, Math. Z. 162
(1978) 63–67 MR

[26] M Lönne, Fundamental group of discriminant complements of Brieskorn–Pham poly-
nomials, C. R. Math. Acad. Sci. Paris 345 (2007) 93–96 MR

[27] E Looijenga, The smoothing components of a triangle singularity, II, Math. Ann. 269
(1984) 357–387 MR

[28] E Looijenga, Compactifications defined by arrangements, II: Locally symmetric vari-
eties of type IV , Duke Math. J. 119 (2003) 527–588 MR

[29] E Looijenga, Artin groups and the fundamental groups of some moduli spaces, J. Topol.
1 (2008) 187–216 MR

[30] P Orlik, L Solomon, Discriminants in the invariant theory of reflection groups, Nagoya
Math. J. 109 (1988) 23–45 MR

[31] R A Wilson, The complex Leech lattice and maximal subgroups of the Suzuki group,
J. Algebra 84 (1983) 151–188 MR

Department of Mathematics, University of Texas at Austin
Austin, TX, United States

Department of Mathematics, Iowa State University
Ames, IA, United States

allcock@math.utexas.edu, tathagat@iastate.edu

http://www.math.utexas.edu/~allcock,
http://orion.math.iastate.edu/tathagat

Proposed: Walter Neumann Received: 18 February 2017
Seconded: Anna Wienhard, Benson Farb Revised: 14 September 2017

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://repository.ubn.ru.nl/handle/2066/148301
http://repository.ubn.ru.nl/handle/2066/148301
http://dx.doi.org/10.1007/BF01437823
http://msp.org/idx/mr/505917
http://dx.doi.org/10.1016/j.crma.2007.05.022
http://dx.doi.org/10.1016/j.crma.2007.05.022
http://msp.org/idx/mr/2343559
http://dx.doi.org/10.1007/BF01450700
http://msp.org/idx/mr/761312
http://dx.doi.org/10.1215/S0012-7094-03-11933-X
http://dx.doi.org/10.1215/S0012-7094-03-11933-X
http://msp.org/idx/mr/2003125
http://dx.doi.org/10.1112/jtopol/jtm009
http://msp.org/idx/mr/2365657
http://dx.doi.org/10.1017/S0027763000002749
http://msp.org/idx/mr/931949
http://dx.doi.org/10.1016/0021-8693(83)90074-1
http://msp.org/idx/mr/716777
mailto:allcock@math.utexas.edu
mailto:tathagat@iastate.edu
http://www.math.utexas.edu/~allcock
http://orion.math.iastate.edu/tathagat
http://msp.org
http://msp.org

	1. Introduction
	2. Background, conventions, notation
	2.1. Eisenstein lattices
	2.2. Complex hyperbolic space
	2.3. Geodesics and totally geodesic triangles
	2.4. The P2F3 model of the lattice L
	2.5. Roots, mirrors and the hyperplane arrangement H
	2.6. Point-roots, line-roots, 13–points and 26–points
	2.7. The Leech model of L
	2.8. Leech cusps and Leech roots
	2.9. Meridians and the orbifold fundamental group

	3. Meridians and homotopies between them
	4. Finitely many generators based "at" a cusp
	5. Twenty-six generators based "at" a cusp
	6. Change of basepoint
	Appendix A. How eight totally real triangles meet the mirrors
	Appendix B. How two complex triangles meet the mirrors
	References

