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A formal Riemannian structure on conformal classes and
uniqueness for the �2–Yamabe problem

MATTHEW GURSKY

JEFFREY STREETS

We define a new formal Riemannian metric on a conformal classes of four-manifolds
in the context of the �2 –Yamabe problem. Exploiting this new variational structure
we show that solutions are unique unless the manifold is conformally equivalent to
the round sphere.

58J05; 53C44, 58B20

1 Introduction

1.1 Background

In [20], we defined a formal Riemannian metric on the space of conformal metrics on
surfaces of positive (or negative) Gauss curvature. Our goal in this paper is to show
that one can extend this definition to conformal classes of metrics on four-manifolds,
and to explore the geometric properties of this metric and their applications. The
definition we give can be extended to higher (even) dimensions, but this will be pursued
in a subsequent article since there are technical issues that do not arise in two or four
dimensions; see Gursky and Streets [21].

In addition to verifying the formal properties of this metric we prove a remarkable
geometric consequence: namely, solutions of the �2 –Yamabe problem — whose exis-
tence follows from our positivity assumption and Chang, Gursky and Yang [6] — are
unique, unless the manifold is conformally equivalent to the sphere. This is a surprising
departure from the classical (or �1 –) Yamabe problem, where explicit examples of
nonuniqueness are known (see Remarks 1.6 and 1.7 below). Thus, positive conformal
classes on four-manifolds have a unique conformal representative whose �2 –curvature
is constant; moreover, the value of this constant (after normalizing the volume) can be
expressed in terms of the Euler characteristic and the L2 –norm of the Weyl tensor (see
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the introduction of Chang, Gursky and Yang [7]). We also remark that this representative
has positive Ricci curvature.

To give a more detailed description it will be helpful to return to the setting of surfaces.
Let .M;g0/ be a compact Riemannian surface with positive Gauss curvature K0 > 0,
and let Œg0� denote the conformal class of g0 . Define

CC D fgu D e2ug0 2 Œg0� WKu DKgu
> 0g:(1-1)

Formally, the tangent space to Œg0� at any metric gu 2 Œg0� is given by C1.M /. For
�; 2 C1.M /Š Tu.Œg0�/ we define

hh�; iiu D

Z
M

� Ku dAu;(1-2)

where Ku is the Gauss curvature and dAu is the area form of gu .

The definition (1-2) is inspired by the Mabuchi–Semmes–Donaldson metric [27; 32;
12; 13] of Kähler geometry, wherein a formal Riemann metric is put on a Kähler class
by imposing on the tangent space to a given Kähler potential the L2 metric with respect
to the associated Kähler metric. As observed in [27], this metric enjoys many nice
formal properties, for instance nonpositive sectional curvature. Moreover, it has a
profound relationship to natural functionals in Kähler geometry such as the Mabuchi
K–energy and the Calabi energy, as well as their gradient flow, the Calabi flow.

In [20] we established a number of analogous properties for the metric defined by (1-2).
For example, CC endowed with the metric in (1-5) has nonpositive curvature in the sense
of Alexandrov. We also showed that the normalized Liouville energy F W W 1;2!R,
defined by

(1-3) F Œu�D

Z
M

jr0uj2 dA0C2

Z
M

K0u dA0�

�Z
M

K0 dA0

�
log
�
�

Z
M

e2u dA0

�
;

is geodesically convex. Recall that critical points of F, which are precisely the con-
formal metrics of constant Gauss curvature, are minimizers and unique up to Möbius
transformation. Many of these global geometric properties are based on existence
and partial regularity results for geodesics in CC (see Section 4 of [20] for precise
statements).

In this paper we study a natural generalization of the inner product (1-5). For an
n–dimensional Riemannian manifold (n� 3), we denote the Schouten tensor by

AD
1

n�2

�
Ric� 1

2.n�1/
Rg

�
;
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where Ric is the Ricci tensor and R is the scalar curvature. Let �k.g
�1A/ denote the

k th symmetric function of the eigenvalues of the .1; 1/–tensor obtained by raising an
index of A, ie

A
j
i D gjkAik :

The quantity �k.g
�1A/ is called the �k –curvature or the k –scalar curvature. For

example,

(1-4) �1.g
�1A/D

R

2.n�1/
:

For 1 � k � n, we write AD Ag 2 �
C

k
if �j .g

�1A/ > 0 on M n for all 1 � j � k .
By (1-4), we have Ag 2 �

C

1
if g has positive scalar curvature, while Ag 2 �

C
n if the

Schouten tensor of g is positive definite.

We will be interested in the case where nD 4 and k D 2. To this end, let .M 4;g0/

be a compact Riemannian four-manifold such that Ag0
2 �C

2
. Given u 2 C1.M /, let

Au denote the Schouten tensor of the conformal metric gu D e�2ug0 . We will say
that u is admissible if Au 2 �

C

2
. Let

CC D CC.Œg0�/D fgu 2 Œg0� jAu 2 �
C

2
g:

By a result of Guan, Viaclovsky and Wang [18], if gu 2 CC then gu has positive Ricci
curvature. As noted above, the tangent space to CC at any point is given by C1.M /.
Thus, in analogy with (1-5) we define, for �; 2 C1.M /,

(1-5) h�; iu D

Z
M

� �2.g
�1
u Au/ dVu:

Remark 1.1 To simplify the notation we will write �2.A/ instead of �2.g
�1A/. Since

we will be working with conformal metrics, we will also need to distinguish between
g�1Au and g�1

u Au , ie whether we are using g or gu to raise an index. Therefore, we
will adopt the usual convention that �2.Au/D �2.g

�1Au/, but write �2.g
�1
u Au/ when

we are using gu to raise an index. Note that

�2.g
�1
u Au/D e4u�2.Au/:(1-6)

In particular,

�2.g
�1
u Au/ dVu D �2.Au/ dV:
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Remark 1.2 There is a sharp characterization of conformal classes for which CC is
nonempty. In view of the conformal invariance of the integral

� WD

Z
�2.g

�1Ag/ dVg;

a necessary condition for Œg� to admit a metric gu 2 Œg� with Au 2 �
C

2
is the positivity

of the Yamabe invariant and the positivity of � . In Chang, Gursky and Yang [7] these
conditions were shown to be sufficient. Thus we have an exact parallel with the case
of two dimensions, since a conformal class of metrics on a surface admits a metric of
positive Gauss curvature if and only if the total Gauss curvature is positive.

1.2 Formal metric properties

We begin by establishing in Section 3 some fundamental formal properties of the metric
defined in (1-5). We first introduce a formal path derivative which can be regarded
as the Levi-Civita connection associated to the metric. Using this we compute the
curvature tensor, and furthermore show that the curvature is nonpositive:

Theorem 1.3 Given .M 4;g/ a compact Riemannian manifold, with Ag 2 �
C

2
. Then

(1-5) defines a metric with nonpositive sectional curvature on CC .

Next, we derive the geodesic equation. Formal calculations derived using either the
path derivative or variations of the length functional yield that a one-parameter family
of conformal factors is a geodesic if and only if

ut t �
1

�2.Au/
hT1.Au/;rut ˝rut i D 0;(1-7)

where T1 is the Newton transform and h � ; � i denotes the inner product on tensor
bundles induced by g (the background metric). This is a degenerate fully nonlinear
equation, which is related to a �2 –type problem for the spacetime Hessian of u, in
direct analogy to the .nC1/–dimensional degenerate Monge–Ampère interpretation of
the Mabuchi geodesic equation in Kähler geometry. We also show that one parameter
families of conformal transformations are automatically geodesics (Proposition 3.12).
This is again in analogy with the fact that one-parameter families of biholomorphisms
generate families of Kähler potentials which are Mabuchi geodesics.

In the Kähler setting, the Mabuchi metric and its geodesics are intimately related
to Mabuchi’s K–energy functional. This is a “relative functional” defined via path
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integration of a closed 1–form on a Kähler class. It was shown in Mabuchi [26; 27]
that this functional is geodesically convex, leading to the conjecture that extremal
Kähler metrics are unique up to biholomorphism in a fixed Kähler class. Confirming
this conjecture requires extensive existence and regularity results for the geodesic
equation. An initial theory of C 1;1 was developed in Błocki [1], Calabi and Chen [5]
and Chen [9], and eventually a more refined regularity theory was developed and the
conjecture finally confirmed in Chen and Tian [10].

In our setting there is a natural analogue of Mabuchi’s functional. For surfaces it is
given by the Liouville energy, or regularized determinant (1-3). In four dimensions this
functional was written down by Chang and Yang [8] (although it appears implicitly in
Chang, Gursky and Yang [7]):

(1-8) F Œu�D

Z
f2�ujruj2� jruj4� 2 Ric.ru;ru/CRjruj2� 8u�2.Ag/g dV

� 2

�Z
�2.Ag/ dV

�
log
�
�

Z
e�4u dV

�
:

After this, Brendle and Viaclovsky [4] give a path-integration derivation of this func-
tional which makes clearer the analogy between it and the Mabuchi functional in
Kähler geometry. We will not need the precise formula, only the fact that it provides a
conformal primitive for �2.A/; ie if us is a path with dus=dsjsD0 D u0, then

d

ds
F Œus �

ˇ̌̌
sD0
D

Z
u0Œ��2.g

�1
u Au/Cx�� dVu:(1-9)

Consequently, u is a critical point of F if and only if gu D e�2ug is a solution of the
�2 –Yamabe problem:

�2.g
�1
u Au/� const:(1-10)

In four dimensions the existence of solutions to (1-10) in conformal classes with
CC ¤∅ was first proved by Chang, Gursky and Yang [6] (for surveys on solving the
�k –Yamabe problem for general 2� k � n see Viaclovsky [37] and Sheng, Trudinger
and Wang [33]). In particular, if CC.Œg�/ is nonempty, then Œg� always admits a critical
point of F. Our next result gives us deeper insight into the variational structure of F :

Theorem 1.4 The functional F in (1-8) is geodesically convex.

The proof of this theorem requires the use of a sharp curvature-weighted Poincaré
inequality due to Andrews (unpublished). In fact, it follows from Andrews’ inequality
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that F is strictly convex, up to one-parameter families of conformal automorphisms
on the round sphere. This sharp characterization naturally leads one to conjecture that
critical points of F are unique, except in the case of the sphere. We are able to confirm
this surprising fact:

Theorem 1.5 Let .M 4;g/ be a compact Riemannian manifold such that CC.Œg�/¤∅.

(1) If .M 4;g/ is not conformal to .S4;gS4/, then there exists a unique solution to
the �2 –Yamabe problem in Œg�.

(2) In ŒgS4 �, all solutions to the �2 –Yamabe problem are round metrics.

Remark 1.6 This uniqueness property is in stark contrast to the Yamabe problem,
in which generic conformal classes admit arbitrarily many distinct solutions (see
Pollack [29]). In dimensions n� 25 the solution space may even be noncompact; see
Brendle and Marques [2; 3].

Remark 1.7 Explicit examples of nonuniqueness for the Yamabe problem were con-
structed by Schoen [31], in which he constructed Delaunay-type solutions on Sn�1�S1 .
By lifting to the universal cover Sn�1�R and imposing symmetry, he reduced the Yam-
abe equation to an ODE and studied the phase portrait. Interestingly, Viaclovsky [35]
carried out a similar construction for solutions of the �k –Yamabe problem when k < n

2
.

However, once k � n
2

the construction fails, since the admissibility condition implies
the Ricci curvature of any solution would have to be positive, and Sn�1�S1 does not
admit a metric with positive Ricci curvature.

The proof of Theorem 1.5 consists of two main phases. First we develop a weak
existence/regularity theory for the geodesic equation (1-7). In general for degenerate
Monge–Ampère equations one typically expects at best C 1;1 control, and indeed this
is verified in the Kähler setting by Chen [9] (with compliments due to Błocki [1]).
Where Mabuchi geodesics can be interpreted as solutions of a degenerate complex
Monge–Ampère equation, our geodesics are solutions to a degenerate �2 –equation
(Proposition 4.1), and so one at best again expects C 1;1 regularity. However, due to
some technical issues arising from the presence of first-order terms in the Schouten
tensor, we are not able to establish such estimates. Rather, we are forced to regularize
the equation by rendering the right-hand side positive (which is a standard trick),
but also perturbing the coefficients on the time direction term, to further break the
nondegeneracy. This leads to full C1 regularity, but only the C 1 estimates persist as
the regularization parameters go to zero.
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Given this, one cannot directly rigorously establish properties of F related to the
geodesic convexity.1 Nonetheless we are able to improve the regularity of an approxi-
mate geodesic connecting any two solutions to the �2 –problem by smoothing via the
parabolic flow introduced by Guan and Wang [19]. In particular we are able to take a
sequence of approximate geodesics connecting two critical points for F, smooth them
for a short time with this flow, and then show that this process yields a path of critical
points for F, although not necessarily a geodesic. Combining this with arguments using
the geodesic convexity shows that the existence of this path implies that the critical
points are all round metrics on S4 , finishing the proof.

1.3 Outline

In Section 2 we establish notation and record some basic properties of the Schouten
tensor and of elementary symmetric polynomials. Next, in Section 3 we establish the
basic properties of the �2 metric defined in (1-5). In particular we prove Theorem 1.3
and establish the geodesic convexity of the functional F. Then, in Section 4 we
develop estimates for approximate solutions to the geodesic equation, leading to a weak
existence theory. In Section 5 we show a short-time smoothing result, which we will
use to improve the regularity of approximate geodesics connecting any two critical
points of the F –functional. We combine these two main technical tools in Section 6 to
establish Theorem 1.5.

2 Background

In this section we establish our notation and some basic formulas. Although we are
primarily interested in four dimensions, we will state most of the standard results for
symmetric functions we will need for general n and k .

2.1 The Schouten tensor

Given a Riemannian manifold .M n;g/ let A denote the Schouten tensor of g . Given
a conformal metric gu D e�2ug , the tensor A transforms according to

(2-1) Au DACr2uCru˝ru� 1
2
jruj2g:

1Recently Weiyong He [22] has established the existence of C 1;1 geodesics, leading to a more direct
proof of the uniqueness statement. This work also corrects a technical problem with an earlier version of
this paper (compare Theorem 4.18).
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Let guD e�2u.t/g be a one-parameter family of conformal metrics. Then using formula
(2-1) it follows that

(2-2) @

@t
.g�1

u Au/
j
i D 2

�
@u

@t

�
.g�1

u Au/
j
i C

�
r

2
u
@u

@t

�j

i
;

where the Hessian is with respect to gu . A direct calculation [30] yields

(2-3) @

@t
�k.g

�1
u Au/D

D
Tk�1.g

�1
u Au/;r

2
u
@u

@t

E
gu

C 2k
@u

@t
�k.g

�1
u Au/;

where Tk�1 is the Newton transform. Since the Newton transform is a .1; 1/–tensor, for
the pairing in (2-3) we lower an index of Tk�1.g

�1
u Au/ and view it as a .0; 2/–tensor,

and use the inner product induced by gu . For example, if nD 4 and k D 2,

T1.guAu/D�AuC �1.g
�1
u Au/gu:(2-4)

Combining (2-3) with the variation of the volume form yields

(2-5) @

@t
Œ�k.g

�1
u Au/ dVu�

D

D
Tk�1.g

�1
u Au/;r

2
u
@u

@t

E
gu

dVuC .n� 2k/
@u

@t
�k.g

�1
u Au/ dVu:

A key property we will use throughout is the following:

Lemma 2.1 If k D 2 or if the manifold is locally conformally flat, then Tk�1.g
�1A/

is divergence-free.

Remark 2.2 This was proved in [34]. The essential idea also appears in [30], where
the Schouten tensor is replaced with the second fundamental form of a hypersurface of
a space of constant curvature. In both cases one needs that the tensor is Codazzi, ie

rkAij Drj Aik :

Note that the conformal invariance of the integral

� D

Z
M

�2.g
�1
u Au/ dVu

follows from the variational formula (2-5) and Lemma 2.1. We denote the average
value by

x� D �V �1
u :(2-6)
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2.2 Properties of elementary symmetric polynomials

We record some lemmas concerning elementary symmetric polynomials and Newton
transforms. To begin we record basic facts which are well known from Garding’s
theory of hyperbolic polynomials [15]. We use these to derive some further properties
of generalized Newton transforms required for our estimates of the geodesic equation.
First, given A 2 �C

k
we let �k.A/ denote the k th elementary polynomial in the

eigenvalues of A. Moreover, given A1; : : : ;Ak we define the generalized Newton
transformation by

ŒTk �ij .A1; : : : ;Ak/ WD
1

k!
ı

i;i1;:::;ik

j ;j1;:::;jk
.A1/i1j1

� � � .Ak/ikjk
;

where here ı denotes the generalized Kronecker delta function. Moreover, we set

†k.A1; : : : ;Ak/D
1

.k�1/!
ı

i1;:::;ik

j1;:::;jk
.A1/i1j1

� � � .Ak/ikjk
:

Lemma 2.3 One has:

(1) If A1; : : : ;Ak 2 �
C

k
, then ŒTk �ij .A1; : : : ;Ak/ > 0.

(2) If A1; : : : ;Ak 2 �
C

k
, then †.A1; : : : ;Ak/ > 0.

(3) If A�B 2 �C
k

and A2; : : : ;Ak 2 �
C

k
, then

†.B;A2; : : : ;Ak/ < †.A;A2; : : : ;Ak/:

Lemma 2.4 Given A;B 2 �C
k

A< B , one has Tk�1.A/ < Tk�1.B/.

Proof From Lemma 2.3, for Ai 2 �k one has Tk.A1; : : : ;Ak/ > 0. Now consider
Mt DAC t.B�A/. Since B�A is positive definite, certainly it lies in �C

k
. It follows

that

d

dt
Tk.Mt /D

d

dt
ŒTk �.Mt ; : : : ;Mt /D

kX
jD1

ŒTk �.Mt ; : : : ;B �A; : : :Mt /� 0:

The result follows.

Lemma 2.5 Given A a symmetric matrix and X a vector, one has for k � 1,

hTk.A�X ˝X /;X ˝X i D hTk.A/;X ˝X i;

�k.A�X ˝X /D �k.A/� hTk�1.A/;X ˝X i:
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Proof If we express the matrix Bt DA� tX ˝X in a basis where X is the first basis
vector, it is clear that the function

f .t/D �k.Bt /

is a linear function of t . It follows that its time derivative is constant, hence

C D f 0.t/D�hTk�1.A� tX ˝X /;X ˝X i:

Hence,

hTk�1.A/;X ˝X i D �f 0.0/D�f 0.1/D hTk�1.A�X ˝X /;X ˝X i:

Moreover, this shows that

�k.A�X ˝X /D f .1/D f .0/C

Z 1

0

f 0.s/ ds D �k.A/� hTk�1.A/;X ˝X i:

Lemma 2.6 Given A;B 2 Sym2.R4/ with A;B 2 �C
2

one has

hT1.B/;Ai
2
� 4�2.A/�2.B/:

Proof We compute that

�1.A/

�1.B/
hT1.B/;Ai D �

�1.A/

�1.B/
hB;AiC �1.A/

2

� �
1

2

�
�1.A/

�1.B/

�2

jBj2�
1

2
jAj2C Œ�1.A/�

2

D�
1

2
�1.A/

2

�
jBj2� �1.B/

2C �1.B/
2

�1.B/2

�
C �2.A/C

1

2
�1.A/

2

D
�1.A/

2

�1.B/2
�2.B/C �2.A/:

Rearranging this and applying Cauchy–Schwarz yields

�2.A/�
�1.A/

�1.B/
hT1.B/;Ai �

�1.A/
2

�1.B/2
�2.B/�

1

4�2.B/
hT1.B/;Ai

2;

as required.
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3 The �2 metric

In this section we define the �2 metric and establish fundamental properties of this
metric concerning connections, torsion, curvature and distance. We end by showing
the crucial geodesic convexity property of the functional F of Chang and Yang.

3.1 Metric, connection and curvature

As in the introduction, let

CC D CC.Œg�/D fgu D e�2ug WAu 2 �
C

2
g:

Definition 3.1 Let .M 4;g/ be a compact Riemannian four-manifold. The �k metric
is the formal Riemannian metric defined for gu 2 CC.Œg�/D CC and ˛; ˇ 2 TuCC Š
C1.M / via

h˛; ˇiu D
1

�

Z
M

˛ˇ�2.g
�1
u Au/ dVu:

Moreover, given a path ut in CC and a one-parameter family ˛t of tangent vectors
with ˛t 2 Tut

CC , we define the directional derivative along the path ut by

(3-1) D

@t
˛ WD ˛t � �2.g

�1
u Au/

�1
hT1.g

�1
u Au/;r˛˝rut igu

D ˛t � �2.Au/
�1
hT1.Au/;r˛˝rut i;

where we have used (1-6), and the convention that T1.g
�1Au/D T1.Au/.

Lemma 3.2 The connection defined by (3-1) is metric-compatible and torsion-free.

Proof First we check metric compatibility. We compute, using (2-5) and Lemma 2.1,

d

dt
h˛t ; ˇt iut

D
d

dt

Z
M

˛ˇ�2.g
�1
u Au/ dVu

D h P̨ ; ˇiC h˛; P̌i C

Z
M

˛ˇ
D
T1.g

�1
u Au/;r

2
u
@u

@t

E
dVu

D h P̨ ; ˇiC h˛; P̌i �

Z
M

D
T1.g

�1
u Au/; .˛rˇCˇr˛/˝ru

@u

@t

E
dVu

D

D
D

@t
˛; ˇ

E
C

D
˛;

D

@t
ˇ
E
:
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Next, to compute the torsion, let us;t be a two parameter family of conformal factors.
Then

D

@s

@u

@t
�

D

@t

@u

@s
D
@2u

@s@t
� �2.g

�1
u Au/

�1
D
T1.g

�1
u Au/;r

@u

@s
˝r

@u

@t

E
u

�
@2u

@s@t
C �2.g

�1
u Au/

�1
D
T1.g

�1
u Au/;r

@u

@t
˝r

@u

@s

E
u

D 0:

The lemma follows.

Next we compute the sectional curvature, and conclude that it is nonpositive. We first
record an integral identity in Lemma 3.3 and a certain general quadratic inequality in
Lemma 3.4. We then obtain the curvature inequality by exploiting these identities.

Lemma 3.3 If �; 2 C1.M /, thenZ
fr

2�.r ;r /���jr j2�r2 .r ;r�/C� hr ;r�ig� dV

D

Z
f�jhr�;r ij2Cjr�j2jr j2g dV:

Proof Consider the vector field

Xi D hr�;r iri � jr j
2
ri�:

Taking the divergence gives

ıX DriXi

Dr
2�.r ;r /Cr2 .r�;r /C� hr�;r i�2r2 .r ;r�/���jr j2

Dr
2�.r ;r /���jr j2�r2 .r ;r�/C� hr ;r�i:

Therefore,

I �

Z
fr

2�.r ;r /���jr j2�r2 .r ;r�/C� hr ;r�ig� dV

D

Z
.ıX /� dV:

On the other hand, integrating by parts gives

I D

Z
.ıX /� dV D�

Z
hX;r�i dV D

Z
f�jhr�;r ij2Cjr�j2jr j2g dV;

as claimed.
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Lemma 3.4 Let T1D T1.A/ denote the first Newton transformation of the symmetric
linear map AW V ! V , where V is a real inner product space of dimension four.
Assume A 2 �C

2
. Then, for all X;Y 2 V ,

�T1.X;X /T1.Y;Y /CT1.X;Y /
2
C �2.A/ŒjX j

2
jY j2� hX;Y i2�� 0:

Proof Choose an orthonormal basis for V which diagonalizes T1 , and let f�1; : : : ; �4g

denote the eigenvalues of T1 . Note by our assumption on A we know that �i � 0

for each i . With respect to this orthonormal basis, write X D .x1; : : : ;x4/ and
Y D .y1; : : : ;y4/. Then, expanding and collecting terms, we get

�T1.X;X /T1.Y;Y /CT1.X;Y /
2

D�f�1x2
1 C � � �C�4x2

4gf�1y2
1 C � � �C�4y2

4gC f�1x1y1C � � �C�4x4y4g
2

D��1�2.x
2
1y2

2 Cx2
2y2

1 � 2x1x2y1y2/��1�3.x
2
1y2

3 Cx2
3y2

1 � 2x1x3y1y3/

� � � � ��3�4.x
2
3y2

4 Cx2
4y2

3 � 2x3x4y3y4/:

Next, let

Z DX ^Y;

whose components are

zij D xiyj �xj yi :

In terms of Z , we can rewrite the above as

�T1.X;X /T1.Y;Y /CT1.X;Y /
2
D��1�2z2

12��1�3z2
13� � � � ��3�4z2

34:

At the same time,

jX j2jY j2� hX;Y i2 D 1
2
jZj2 D z2

12C z2
13C � � �C z2

34:

Therefore,

(3-2) �T1.X;X /T1.Y;Y /CT1.X;Y /
2
C �2.A/ŒjX j

2
jY j2� hX;Y i2�

D��1�2z2
12��1�3z2

13� � � � ��3�4z2
34C �2.A/Œz

2
12C z2

13C � � �C z2
34�:

We need to express �2.A/ in terms of the eigenvalues of T1 . Since

T1 D�AC �1.A/ � I;(3-3)

taking the trace it follows that

�1C � � �C�4 D 3�1.A/:
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Also, taking the norm-squared in (3-3),

jT1j
2
D jAj2C 2�1.A/

2:

Therefore,

�2.A/D
1
3
.��2

1� � � � ��
2
4C�1�2C�1�3C � � �C�3�4/:

Substituting this into (3-2),

(3-4) �T1.X;X /T1.Y;Y /CT1.X;Y /
2
C�2.A/ŒjX j

2
jY j2�hX;Y i2�

D��1�2z2
12��1�3z2

13�� � ���3�4z2
34

C
1
3
.��2

1�� � ���
2
4C�1�2C�1�3C� � �C�3�4/Œz

2
12Cz2

13C� � �Cz2
34�

D
1
3
.��2

1�� � ���
2
4�2�1�2C�1�3C� � �C�3�4/z

2
12

C
1
3
.��2

1�� � ���
2
4C�1�2�2�1�3C�1�4C� � �C�3�4/z

2
13

C� � �C
1
3
.��2

1�� � ���
2
4C�1�2C� � �C�2�4�2�3�4/z

2
34:

We claim that the coefficients of the z2
ij –terms are all nonpositive. To see this, consider

the first one:

(3-5) ��2
1� � � � ��

2
4� 2�1�2C�1�3C�1�4C�2�3C�2�4C�3�4

D�.�1C�2/
2
��2

3��
2
4C .�1C�2/�3C .�1C�2/�4C�3�4

� �.�1C�2/
2
��2

3��
2
4C

1
2
.�1C�2/

2
C

1
2
�2

3C
1
2
.�1C�2/

2

C
1
2
�2

4C
1
2
�2

3C
1
2
�2

4

D 0:

Finally, we prove the required curvature inequality, which is a more precise statement
of Theorem 1.3.

Theorem 3.5 Let .M 4;g/ be a compact Riemannian manifold such that Ag 2 �
C

2
.

Given u 2 �C
2

and �; 2 Tu�
C

2
, we have

K.�;  /

D

Z
1

�2.g�1
u Au/

˚
�hT1.g

�1
u Au/;r�˝r�ihT1.g

�1
u Au/;r ˝r i

ChT1.g
�1
u Au/;r�˝r i

2
C�2.g

�1
u Au/jr�j

2
jr j2

��2.g
�1
u Au/jhr�;r ij

2
	

dVu

� 0;

where the inner products are with respect to gu
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Proof Let u.s; t/ be a 2–parameter family of conformal factors, and ˛ D ˛.s; t/ 2
Tu.s;t/CC .

For economy, we use the notation

�D
1

�2.g�1
u Au/

:

Using the formula for the directional derivative in (3-1), we have

(3-6) D

@s

D

@t
˛ D

@

@s

�
D

@t
˛
�
��

D
T1.g

�1
u Au/;r

�
D

@t
˛
�
˝r

�
@u

@s

�E
u

D
@

@s

n
@˛

@t
��

D
T1.g

�1
u Au/;r˛˝r

�
@u

@t

�E
u

o
��

D
T1.g

�1
u Au/;r

�
D

@t
˛
�
˝r

�
@u

@s

�E
u

D
@2˛

@s@t
C�2

D
T1.g

�1
u Au/;r

2
�
@u

@s

�E
u

D
T1.g

�1
u Au/;r˛˝r

�
@u

@t

�E
u

��
D
@

@s
T1.g

�1
u Au/;r˛˝r

�
@u

@t

�E
u

��
D
T1.g

�1
u Au/;r

�
@˛

@s

�
˝r

�
@u

@t

�
Cr˛˝r

�
@2u

@s@t

�E
u

��
D
T1.g

�1
u Au/;r

�
D

@t
˛
�
˝r

�
@u

@s

�E
u
:

In the above, we have used the fact that the inner product on symmetric 2–tensors
satisfies

@

@s
h � ; � iu D 4

@u

@s
h � ; � iu:

For the last term in (3-6), we have

��
D
T1.g

�1
u Au/;r

�
D

@t
˛
�
˝r

�
@u

@s

�E
u

D ��

�
T1.g

�1
u Au/;r

n
@˛

@t
��

D
T1.g

�1
u Au/;r˛˝r

�
@u

@t

�E
u

o
˝r

�
@u

@s

��
u

D ��
D
T1.g

�1
u Au/;r

�
@˛

@t

�
˝r

�
@u

@s

�E
u

C�

�
T1.g

�1
u Au/;r

n
�
D
T1.g

�1
u Au/;r˛˝r

�
@u

@t

�E
u

o
˝r

�
@u

@s

��
u

:
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By (2-4) and (2-2),

@

@s
T1.g

�1
u Au/D

@

@s
f�AuC �1.g

�1
u Au/gug D �r

2
u

�
@u

@s

�
C�u

�
@u

@s

�
gu:

Substituting this into (3-6), we get

D

@s

D

@t
˛ D

@2˛

@s@t
C�

�
�
D
T1.g

�1
u Au/;r

2
�
@u

@s

�E
u

D
T1.g

�1
u Au/;r˛˝r

�
@u

@t

�E
u

C

D
r

2
u

�
@u

@s

�
��u

�
@u

@s

�
gu;r˛˝r

�
@u

@t

�E
u

�

D
T1.g

�1
u Au/;r

�
@˛

@s

�
˝r

�
@u

@t

�E
u

C

D
T1.g

�1
u Au/;r˛˝r

�
@2u

@s@t

�E
u

�

D
T1.g

�1
u Au/;r

�
@˛

@t

�
˝r

�
@u

@s

�E
u

C

�
T1.g

�1
u Au/;r

n
�
D
T1.g

�1
u Au/;r˛˝r

�
@u

@t

�E
u

o
˝r

�
@u

@s

��
u

�
:

Next, we rearrange the terms into two groups: those symmetric in s and t , and those
that are not:

D

@s

D

@t
˛ D

@2˛

@s@t
C�

n
�

D
T1.g

�1
u Au/;r

�
@˛

@s

�
˝r

�
@u

@t

�E
u

�

D
T1.g

�1
u Au/;r

�
@˛

@t

�
˝r

�
@u

@s

�E
u

C

D
T1.g

�1
u Au/;r˛˝r

�
@2u

@s@t

�E
u

o
C�

�
�
D
T1.g

�1
u Au/;r

2
�
@u

@s

�E
u

D
T1.g

�1
u Au/;r˛˝r

�
@u

@t

�E
u

C

D
r

2
u

�
@u

@s

�
��u

�
@u

@s

�
gu;r˛˝r

�
@u

@t

�E
u

C

�
T1.g

�1
u Au/;r

n
�
D
T1.g

�1
u Au/;r˛˝r

�
@u

@t

�E
u

o
˝r

�
@u

@s

��
u

�
:
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Therefore,

(3-7)
�

D

@s

D

@t
�

D

@t

D

@s

�
˛

D �

�
�
D
T1.g

�1
u Au/;r

2
�
@u

@s

�E
u

D
T1.g

�1
u Au/;r˛˝r

�
@u

@t

�E
u

��
D
T1.g

�1
u Au/;r

2
�
@u

@t

�E
u

D
T1.g

�1
u Au/;r˛˝r

�
@u

@s

�E
u

C

D
r

2
u

�
@u

@s

�
��u

�
@u

@s

�
gu;r˛˝r

�
@u

@t

�E
u

�

D
r

2
u

�
@u

@t

�
��u

�
@u

@t

�
gu;r˛˝r

�
@u

@s

�E
u

C

D
T1.g

�1
u Au/;r

n
�
D
T1.g

�1
u Au/;r˛˝r

�
@u

@t

�E
u

o
˝r

�
@u

@s

�E
u

�

�
T1.g

�1
u Au/;r

n
�
D
T1.g

�1
u Au/;r˛˝r

�
@u

@s

�E
u

o
˝r

�
@u

@t

��
u

�
:

To compute the sectional curvature of the plane spanned by
˚
@u
@s
; @u
@t

	
, we take ˛ D @u

@t

in the formula above, then take the inner product with @u
@s

:D�
D

@s

D

@t
�

D

@t

D

@s

�
@u

@t
;
@u

@s

E
u

D

Z �
�
D
T1.g

�1
u Au/;r

2
u

�
@u

@s

�E
u

D
T1.g

�1
u Au/;r

�
@u

@t

�
˝r

�
@u

@t

�E
u

@u

@s

��
D
T1.g

�1
u Au/;r

2
u

�
@u

@t

�E
u

D
T1.g

�1
u Au/;r

�
@u

@t

�
˝r

�
@u

@s

�E
u

@u

@s

C

D
r

2
u

�
@u

@s

�
��u

�
@u

@s

�
gu;r

�
@u

@t

�
˝r

�
@u

@t

�E
u

@u

@s

�

D
r

2
u

�
@u

@t

�
��u

�
@u

@t

�
gu;r

�
@u

@t

�
˝r

�
@u

@s

�E
u

@u

@s

C

�
T1.g

�1
u Au/;r

n
�
D
T1.g

�1
u Au/;r

�
@u

@t

�
˝r

�
@u

@t

�E
u

o
˝r

�
@u

@s

��
u

@u

@s

�

�
T1.g

�1
u Au/;r

n
�
D
T1.g

�1
u Au/;r

�
@u

@t

�
˝r

�
@u

@s

�E
u

o
˝r

�
@u

@t

��
u

@u

@s

�
dVu:
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Consider the last two lines above. Integrating by parts and using the fact that T1.g
�1
u Au/

is divergence-free, we getZ �D
T1.g

�1
u Au/;r

n
�
D
T1.g

�1
u Au/;r

�
@u

@t

�
˝r

�
@u

@t

�E
u

o
˝r

�
@u

@s

�E
u

@u

@s

�

D
T1.g

�1
u Au/;r

n
�
D
T1.g

�1
u Au/;r

�
@u

@t

�
˝r

�
@u

@s

�E
u

o
˝r

�
@u

@t

�E
u

@u

@s

�
dVu

D

Z �
��

D
T1.g

�1
u Au/;r

2
u

�
@u

@s

�E
u

D
T1.g

�1
u Au/;r

�
@u

@t

�
˝r

�
@u

@t

�E
u

@u

@s

��
D
T1.g

�1
u Au/;r

�
@u

@s

�
˝r

�
@u

@s

�E
u

D
T1.g

�1
u Au/;r

�
@u

@t

�
˝r

�
@u

@t

�E
u

C�
D
T1.g

�1
u Au/;r

2
u

�
@u

@t

�E
u

D
T1.g

�1
u Au/;r

�
@u

@t

�
˝r

�
@u

@s

�E
u

@u

@s

C�
D
T1.g

�1
u Au/;r

�
@u

@s

�
˝r

�
@u

@t

�E2
u

�
dVu:

Substituting this into (3-7) we find that the first two lines there cancel, and we arrive atD�
D

@s

D

@t
�

D

@t

D

@s

�
@u

@s
;
@u

@t

E
u

D

Z nD
r

2
u

�
@u

@s

�
��u

�
@u

@s

�
gu;r

�
@u

@t

�
˝r

�
@u

@t

�E
u

�

D
r

2
u

�
@u

@t

�
��u

�
@u

@t

�
gu;r

�
@u

@t

�
˝r

�
@u

@s

�E
u

o
@u

@s
dVu

C

Z
�
n
�

D
T1.g

�1
u Au/;r

�
@u

@s

�
˝r

�
@u

@s

�E
u

D
T1.g

�1
u Au/;r

�
@u

@t

�
˝r

�
@u

@t

�E
u

C

D
T1.g

�1
u Au/;r

�
@u

@s

�
˝r

�
@u

@t

�E2
u

o
dVu:

From Lemmas 3.3 and 3.4 we concludeD�
D

@s

D

@t
�

D

@t

D

@s

�
@u

@s
;
@u

@t

E
u

D

Z
�
n
�

D
T1.g

�1
u Au/;r

�
@u

@s

�
˝r

�
@u

@s

�E
u

D
T1.g

�1
u Au/;r

�
@u

@t

�
˝r

�
@u

@t

�E
u

C

D
T1.g

�1
u Au/;r

�
@u

@s

�
˝r

�
@u

@t

�E2
u

C�2.g
�1
u Au/

ˇ̌̌
r
@u

@s

ˇ̌̌2
u

ˇ̌̌
r
@u

@t

ˇ̌̌2
u
��2.g

�1
u Au/

ˇ̌̌D
r
@u

@s
;r
@u

@t

E
u

ˇ̌̌
u

o
dVu

� 0;

as required.
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Remark 3.6 The Mabuchi metric turns out to be formally an infinite-dimensional
symmetric space, evidenced by the sectional curvatures admitting an interpretation as
the square norm of the Poisson bracket of the two tangent vector functions. There does
not seem to be such an interpretation in this setting.

3.2 Formal metric space structure

In this subsection we observe some fundamental properties of lengths of curves and
distances in the �2 metric.

Definition 3.7 Given a path uW Œa; b�! CC , the length of u is

L.u/ WD
Z b

a

h˛; ˇi
1
2 dt D

Z b

a

�Z
M

�
@u

@t

�2
�2.g

�1
u Au/ dVu

� 1
2

dt:

A curve is a geodesic if it is a critical point for L.

Lemma 3.8 A curve ut 2 CC is a geodesic if and only if

ut t �
1

�2.Au/
hT1.Au/;rut ˝rut i D 0:(3-8)

Proof Formally, by Lemma 3.2 the connection is indeed the Riemannian connection
and so a curve is a geodesic if and only if

0D
D

@t

@u

@t
D ut t �

1

�2.Au/
hT1.Au/;rut ˝rut i:

This can also be derived by directly taking the first variation of the length functional.

Remark 3.9 We observe a canonical isometric splitting of TuCC with respect to
the �k metric. In particular, the real line R � TuCC given by constant functions is
orthogonal to

T 0
u CC WD

�
˛
ˇ̌̌ Z

M

˛�2.g
�1
u Au/ dVu D 0

�
:

In the next lemma we show two basic properties of geodesics, namely that they preserve
this isometric splitting, and are automatically parametrized with constant speed.

Lemma 3.10 Let ut be a solution to (3-8). Then

d

dt

Z
M

ut�2.g
�1
u Au/ dVu D 0;

d

dt

Z
M

u2
t �2.g

�1
u Au/ dVu D 0:
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Proof Differentiating and using (2-5),

d

dt

Z
M

ut�2.g
�1
u Au/ dVu

D

Z
M

.ut t�2.g
�1
u Au/Cut hT1.g

�1
u Au/;r

2ut iu/ dVu

D

Z
M

.ut t � �2.g
�1
u Au/

�1
hT1.g

�1
u Au/;rut ˝rut iu/�2.g

�1
u Au/ dVu

D 0:

Next,

d

dt

Z
M

u2
t �2.g

�1
u Au/ dVu

D

Z
M

Œ2�2.g
�1
u Au/ut tut Cu2

t hT1.g
�1
u Au/;r

2ut iu� dVu

D 2

Z
M

�2.g
�1
u Au/ut

�
ut t �

1

�2.g�1
u Au/

hT1.g
�1
u Au/;rut ˝rut iu

�
dVu

D 0:

Proposition 3.11 Given u0;u1 2 C1.M / and ut W Œ0; 1�! CC a geodesic, one has

L.u/�

��
1
2 max

�Z
u1>u0

.u1�u0/�2.g
�1
u1

Au1
/ dVu1

;

Z
u0>u1

.u0�u1/�2.g
�1
u0

Au0
/ dVu0

�
:

Proof Observe that the geodesic equation implies ut t � 0, and so we obtain the
pointwise inequality

ut .0/� u1�u0 � ut .1/:

Thus using Hölder’s inequality we have

E.1/D

�Z
M

u2
t �2.g

�1
u1

Au1
/ dVu1

� 1
2

� ��
1
2

Z
M

jut j�2.g
�1
u1

Au1
/ dVu1

� ��
1
2

Z
u1>u0

.u1�u0/�2.g
�1
u1

Au1
/ dVu1

:

A similar argument yields

E.0/� ��
1
2

Z
u0>u1

.u0�u1/�2.g
�1
u0

Au0
/ dVu0

:

Since geodesics are automatically constant speed by Lemma 3.10, the result follows.
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3.3 Geodesics and the conformal group of the sphere

As in the two-dimensional case, we will show that the one-parameter family of transfor-
mations that generate the conformal group of the sphere are geodesics. In anticipation
of our forthcoming article on the higher-dimensional case we will prove a more general
result.

Let .Sn;g0/ denote the round sphere. Using stereographic projection � W SnnfN g!Rn,
where N 2 Sn denotes the north pole, one can define a one-parameter of conformal
maps of Sn by conjugating the dilation map ı˛W x 7! ˛�1x on Rn with � :

�˛ D �
�1
ı ı˛ ı � W S

n
! Sn:

Taking ˛.t/D e�t , where � is a fixed real number, we can define the path of conformal
metrics

g.t/D e�2ug0 D �
�
˛g0 D

�
2˛.t/

.1C �/C˛.t/2.1� �/

�2

;(3-9)

where � D xnC1 is the .nC1/–coordinate function, ie N D .0; : : : ; 0; 1/ (see [24]).

Proposition 3.12 If k D n
2

, the path g.t/D e�2u.t/g0W .�1;C1/! CC satisfies

ut t �
1

�k.Au/
hTk�1.Au/;rut ˝rut i D 0:(3-10)

In particular, when nD 4, this path defines a geodesic.

Proof The proof is by a direct calculation. There is a more geometric approach, which
is used in the two-dimensional case (see [20, Proposition 3.7]). However, this would
require us to introduce a certain gradient flow on paths, and verify that the length is
nonincreasing under the flow. To avoid the additional machinery we will just verify
that (3-10) holds.

By (3-9),
uD u.t/D� log 2˛C logŒ.1C �/C˛2.1� �/�:

This yields

ut D�
P̨

˛
C

2˛ P̨ .1� �/

.1C �/C˛2.1� �/
and hence

ut t D�
˛t t

˛
C

�
˛t

˛

�2

C
Œ.1C �/C˛2.1� �/�.2˛˛t t C 2˛2

t /.1� �/� 4˛2˛2
t .1� �/

2

Œ.1C �/C˛2.1� �/�2
:
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Since ˛.t/D e�t , we have

ut t D 4�2e2�t 1� �2

Œ.1C �/C˛2.1� �/�2
:(3-11)

Also,

rut D�
2˛˛tr�

.1C �/C˛2.1� �/
�

2˛˛t .1� �/

Œ.1C �/C˛2.1� �/�2
Œ.1�˛2/r��

D
�2˛˛tr�

Œ.1C �/C˛2.1� �/�2
Œ.1C �/C˛2.1� �/C .1� �/.1�˛2/�

D
�4˛˛tr�

Œ.1C �/C˛2.1� �/�2

D
�4�e2�tr�

Œ.1C �/C˛2.1� �/�2
:

On Sn , the Schouten tensor is a multiple of the identity; in fact, A.g0/ D
1
2
g0 .

Therefore, using standard identities for the symmetric functions,

1

�k.g.t/
�1Ag.t//

T1.g.t/
�1Ag.t//D

2k

n
g.t/D g.t/;

since k D n
2

. Thus,

(3-12)
1

�k.g.t/
�1Ag.t//

hTk�1.g.t/
�1Ag.t//;rut ˝rut i

D 4�2e2�t jr�j2

Œ.1C �/C˛2.1� �/�2
:

Since jr�j2 D 1� �2 , comparing (3-11) and (3-12) we see that u satisfies (3-10).

Remark 3.13 We do not expect conformal vector fields on general backgrounds to
generate nontrivial geodesics, and thus nonuniqueness of solutions. It follows from
a result of Lelong-Ferrand [25] and Obata [28] that if .M n;g/ is not conformally
equivalent to the round sphere, then any conformal Killing field is a Killing field for a
conformally related metric. Expressed with respect to this background metric, pullback
by a family of isometries will result in no change on the level of conformal factors.

3.4 The F –functional and geodesic convexity

We now derive the geodesic convexity of the F –functional of Chang and Yang. The
crucial input is a sharp curvature-weighted Poincaré inequality due to Andrews:
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Proposition 3.14 (Andrews; see [11, page 517]) Let .M n;g/ be a closed Riemann-
ian manifold with positive Ricci curvature. Given � 2C1.M / such that

R
M � dV D0,

n

n�1

Z
M

�2 dV �

Z
M

.Ric�1/ijri�rj� dV;

with equality if and only if � � 0 or .M n;g/ is isometric to the round sphere.

The convexity of F will follow from a weaker form of this inequality:

Corollary 3.15 Let .M 4;g/ be a closed Riemannian manifold such that Ag 2 �
C

2
.

Given � 2 C1.M / such that
R

M � dV D 0,Z
M

1

�2.Ag/
T1.Ag/

ij
ri�rj� dVg � 4

Z
M

�2 dVg �

�
4R

M dVg

��Z
M

� dVg

�2

;

with equality if and only if � � 0 or .M n;g/ is isometric to the round sphere.

Proof We assume
R

M � dVg D 0. By Andrews’ Poincaré inequality we have

4

3

Z
M

�2 dVg �

Z
M

.Ric�1/ijri�rj� dVg:

To show the claim it suffices to show that

3 Ric�1.X;X /�
1

�2.A/
T1.X;X /:

Since Ric and T1.A/ commute, it suffices to show that Ric ıT1 � 3�2.A/g . Since
RicD 2AC �1.A/g , this is equivalent to

�2A ıAC �1.A/AC �1.A/
2g � 3�2.A/g:

Now let Z DA� 1
4
�1.A/g ; then we can rewrite this as

�2Z2
C

9
8
�1.A/

2g � 3�2g:

Now, a Lagrange multiplier argument shows that

Z ıZ � 3
4
jZj2g:

Thus,
�2Z2

C
9
8
�1.A/

2g � �3
2
jZj2gC 9

8
�1.A/

2g D 3�2.A/g:

Proposition 3.16 The functional F is geodesically convex.
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Proof It follows from [8] that, for a path of conformal metrics uD u.t/,

(3-13) d

dt
F Œu�D

Z
M

ut Œ��2.g
�1
u Au/Cx�� dVu:

Assuming the path is a geodesic, then differentiating again and using Lemma 3.10 we
have

d2

dt2
F Œu�D

d

dt

Z
M

ut Œ��2.g
�1
u Au/Cx�� dVu

D �
d

dt

Z
M

utV
�1

u dVu

D �

Z
M

�
ut tV

�1
u CV �2

u ut

�Z
M

4utdVu

�
� 4V �1

u u2
t

�
dVu

D �V �1
u

�Z
M

1

�2.g�1
u Au/

hT1.g
�1
u Au/;rut ˝rut iu dVu

� 4

�Z
M

u2
t dVu�V �1

u

�Z
M

ut dVu

�2 ��
� 0;

where the last line follows from Corollary 3.15.

4 Estimates of the geodesic equation

In this section we establish several fundamental properties of the geodesic equation (3-8).
Once again, for future reference we will consider a more general equation which reduces
to (3-8) when nD 4 and k D 2:

ut t D
1

�k.Au/
hTk�1.Au/;rut ˝rut i:

To begin, we define a certain regularization of this equation. In particular, let

ˆ.u/ WD ut t�k.Au/� hTk�1.Au/;rut ˝rut i:

Furthermore, let

ˆ�.u/D .1C �/ut t�k.Au/� hTk�1.Au/;rut ˝rut i:

We will fix two parameters � and s , and study a priori estimates for

ˆ�.u. � ; � ; s//D sf:
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To obtain estimates though we will simply fix a function f 2 C1.M � Œ0; 1�/ and
study the equation

(?�;f ) G�f .u/Dˆ�.u/�f D 0:

As remarked above, in the setting of Mabuchi geodesics, as observed by Semmes [32]
if one complexifies the time direction, the equation admits an interpretation as a certain
modification of the tensor A will show up naturally in the linearized operator. Let

(4-1) E DE�
u D .1C �/ut tAu�rut ˝rut :

Proposition 4.1 A path u 2 C 2 satisfies (?�;f ) if and only if

Œ.1C �/ut t �
1�k�k.E

�
u/D f:(4-2)

Proof Using Lemma 2.5 and homogeneity properties of elementary symmetric poly-
nomials, we compute

�k.E
�
u/D �k..1C �/ut tAu�rut ˝rut /

D �k..1C �/ut tAu/� hTk�1..1C �/ut tAu/;rut ˝rut i

D Œ.1C �/ut t �
k�1Œ.1C �/ut t�k.Au/� hTk�1.Au/;rut ˝rut i�:

The proposition follows.

We will say that a solution u of (?�;f ) is admissible if E�
u 2�

C

k
. As we will see below,

(?�;f ) is elliptic for admissible solutions.

Lemma 4.2 Let uD u.s; � / 2 C1.M � Œ0; 1�/ be a one-parameter family of smooth
functions such that d

ds
u.s; � /

ˇ̌
sD0
D v . Then

d

ds
u1�k

tt �k.E
�
u.s; � //

ˇ̌̌
sD0
D L.v/;

where

(4-3) L.v/D .1C�/k�1u�1
t t f vt t

Cu1�k
tt

˝
Tk�1.E

�
u/; .1C�/ut t .r

2vCrv˝ruCru˝rv�hrv;ruig/

�rvt˝rut�rut˝rvtCu�1
t t vt trut˝rut

˛
:
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Proof We compute

(4-4) d

ds
u1�k

tt �k.E
�
us
/

D .1�k/u�k
tt �k.E

�
u/vt tCu1�k

tt

D
Tk�1.E

�
u/;

d

ds
E�

u

E
D .1�k/u�k

tt �k.E
�
u/vt t

Cu1�k
tt

D
Tk�1.E

�
u/;

.1C�/vt tAuC.1C�/ut t
d

ds
Au�rvt˝rut�rut˝rvt

E
:

The second term can be simplified using Lemma 2.5 to

(4-5) .1C �/u1�k
tt hTk�1.E

�
u/; vt tAui

D vt t .1C �/u
1�k
tt Œu�1

t t .1C �/
�1
hTk�1.E

�
u/;E

�
uCrut ˝rut i�

D vt tu
�k
tt Œk�k.E

�
u/ChTk�1.Eu/;rut ˝rut i�

D kvt tu
�k
tt �k.E

�
u/C vt tu

�1
t t .1C �/

k�1
hTk�1.Au/;rut ˝rut i

D kvt tu
�k
tt �k.E

�
u/C vt t Œ.1C �/

k�k.Au/�f .1C �/
k�1u�1

t t �

D vt t Œu
�k
tt .k � 1/�k.E

�
u/C .1C �/

k�k.Au/�:

Hence, the overall term involving vt t in (4-4) is vt t .1C �/
k�k.Au/. However, we can

furthermore express, again using the geodesic equation and Lemma 2.5, that

.1C �/k�k.Au/D .1C �/
k�1u�1

t t f C .1C �/
k�1u�1

t t hTk�1.Au/;rut ˝rut i

D .1C �/k�1u�1
t t f Cu�k

tt hTk�1.E
�
u/;rut ˝rut i:

Likewise, we simplify the third term of (4-4) as

.ut t C �/
1�k
hTk�1.Eu/; .1C �/ut t .r

2vCrv˝ruCru˝rv� hrv;ruig/i:

Collecting these calculations yields the result.

Lemma 4.3 Given f � 0, equation (?�;f ) for admissible u is strictly elliptic for
� > 0, and weakly elliptic for � D 0.

Proof We compute the principal symbol of L. We will ignore the first term of (4-3),
which has weakly positive symbol. Now fix a vector V D .�;X / 2 T Œ0; 1��TM. It
follows from (4-3) that the principal symbol of L acts via

L.V;V /D u1�k
tt

˝
Tk�1.E

�
u/; .1C �/ut tX ˝X �rut ˝ .�X /� .�X /˝rut

Cu�1
t t rut ˝rut .�

2/
˛
:

Geometry & Topology, Volume 22 (2018)



A formal Riemannian structure on conformal classes and the �2 –Yamabe problem 3527

It follows from the Cauchy–Schwarz inequality that for any � > 0, as an inequality of
matrices one has

��X ˝rut ��rut ˝X � �X ˝X C ��1�2
rut ˝rut :

Applying this inequality with �D
�
1C �

2

�
ut t yields

.1C �/ut tX ˝X �rut ˝ .�X /� .�X /˝rut Cu�1
t t rut ˝rut .�

2/

�
1
2
�ut tX ˝X C 1

2
�u�1

t t �
2:

Since u is admissible, we have Tk�1.E
�
u/ > 0, and the result follows.

4.1 C 0 estimate

To prove a C 0 estimate we begin with two technical lemmas:

Lemma 4.4 Suppose � D �.t/. Then

L� D �t t .1C �/
k�k.Au/:

Proof We directly compute using (4-3), Lemma 2.5 and the geodesic equation that

L� D �t tf.1C �/
k�1u�1

t t f Cu1�k
tt hTk�1.E

�
u/;u

�1
t t rut ˝rut ig

D �t tf.1C �/
k�1u�1

t t f Cu1�k
tt hTk�1..1C �/ut tAu/;u

�1
t t rut ˝rut ig

D �t t .1C �/
k�1
fu�1

t t f Cu�1
t t hTk�1.Au/;rut ˝rut ig

D �t t .1C �/
k�k.Au/:

Lemma 4.5 Let u be an admissible solution to (?�;f ). Then

LuD .kC 1/.1C �/k�1f C .1C �/u2�k
tt

˝
Tk�1.Eu/;�ACru˝ru� 1

2
jruj2g

˛
:

Proof To begin we directly compute using (4-3) that

LuD .1C �/k�1f Cu1�k
tt

˝
Tk�1.E

�
u/; .1C �/ut t .r

2uC 2ru˝ru� jruj2g/

�rut ˝rut

˛
:
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For the second term we simplify

.1C �/u2�k
tt hTk�1.E

�
u/;r

2ui

D .1C �/u2�k
tt

˝
Tk�1.Eu/;Au�A�ru˝ruC 1

2
jruj2g

˛
D u2�k

tt hTk�1.Eu/;u
�1
t t ŒEuCrut ˝rut �i

C .1C �/u2�k
tt

˝
Tk�1.E/;�A�ru˝ruC 1

2
jruj2g

˛
D ku1�k

tt �k.E/Cu1�k
tt hTk�1.Eu/;rut ˝rut i

C .1C �/u2�k
tt

˝
Tk�1.Eu/;�A�ru˝ruC 1

2
jruj2g

˛
D k.1C �/k�1f Cu1�k

tt hTk�1.Eu/;rut ˝rut i

C .1C �/u2�k
tt

˝
Tk�1.Eu/;�A�ru˝ruC 1

2
jruj2g

˛
:

Combining these calculations yields the result.

Proposition 4.6 Let u be an admissible solution to (?�;f ). Then

sup
M�Œ0;1�

juj � C
�
ujM�f0;1g;max

M
f
�
:

Proof We first observe that an admissible solution to (?�;f ) satisfies ut t � 0, and
hence by convexity one has supM�Œ0;1� u� supM�f0;1g u. To obtain the lower bound,
fix a constant ƒ and let

‰ D uCƒt.1� t/:

Observe that at an interior spacetime minimum of ‰ one has

0Dru; r2u> 0:

Using this and Lemma 4.5 yields, at such a spacetime minimum,

L‰ D .kC 1/.1C �/k�1f � .1C �/u2�k
tt hTk�1.Eu/;Ai

� 2ƒŒ.1C �/k�1u�1
t t f Cu1�k

tt hTk�1.E
�
u/;u

�1
t t rut ˝rut i�:

Next we claim

‰t tr
2‰�r‰t ˝r‰t � 0:

Since we are at a minimum for ‰ , the matrix ‰t tr
2‰ is positive semidefinite. The

expression above is thus the difference between a positive semidefinite matrix and a
negative definite rank 1 matrix. The lemma follows if we establish positivity in the
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nondegenerate direction of the rank 1 matrix we subtracted, ie r‰t . In particular, it
then suffices to show

‰t tr
k
r

l‰rk‰trl‰t � jr‰t j
4
� 0:

To establish this we use that ‰ is actually a spacetime minimum. This implies that the
spacetime Hessian is positive semidefinite. Testing this condition against the vector

�
p
‰t tr‰t ˚

jr‰t j
2

p
‰t t

@

@t
yields

0�‰t tr
k
r

l‰rk‰trl‰t � 2jr‰t j
4
Cjr‰t j

4;

as required. However, using the explicit form of ‰ we see that this implies

.ut t �ƒ/r
2u�rut ˝rut � 0;

which, since r2u> 0, implies

ut tr
2u�rut ˝rut � 0:

Hence Eu � ut tA, and then we obtain using Lemma 2.3 that

u2�k
tt hTk�1.Eu/;Ai D u2�k

tt †.Eu; : : : ;Eu;A/

� u2�k
tt †.ut tA; : : : ;ut tA;A/

D ut t�k.A/

� 0:

We can also simplify

u1�k
tt hTk�1.E

�
u/;u

�1
t t rut ˝rut i D .1C �/

k�1u�1
t t hTk�1.Au/;rut ˝rut i

D �.1C �/k�1u�1
t t f C .1C �/

k�1�k.Au/:

Combining these observations yields, at the interior minimum,

L‰ � .kC 1/.1C �/k�1f � 2ƒ.1C �/k�1�k.Au/

� .kC 1/.1C �/k�1f � 2ƒ.1C �/k�1�k.A/

� Cf � 2ıƒ

for some constants C and ı depending only on the background data and maximum
of f . Choosing ƒ sufficiently large with respect to these constants yields L‰ < 0.
Hence, ‰ cannot have an interior minimum, and the result follows.
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Remark 4.7 In the following estimates, all bounds on solutions be understood to
depend on

max
M

�
f C
jft j

f
C
jrf j

f
C
jft t j

f
C
jr2f j

f

�
;

but this dependence will be suppressed to simplify the exposition.

4.2 C 1 estimates

Proposition 4.8 Given an admissible solution u to (?�;f ), one has

sup
M�Œ0;1�

jut j � C:

Proof First we observe that, since ut t � 0, there is a constant such that ut .0/ � C

by direct integration. Now fix constants ƒ1 and ƒ2 and consider

ˆ.x; t/D u.x; t/�u.x; 0/�ƒ1t2
Cƒ2t;

where ƒ1 is chosen large below, and ƒ2 is chosen still larger so that ˆ.x; 1/ � 0.
First note using (4-3) that

Lu0D u1�k
tt

˝
Tk�1.E

�
u/; .1C�/ut t .r

2u0Cru0˝ruCru˝ru0�hru0;ruig/
˛
:

Combining this with Lemmas 4.4 and 4.5 we obtain

LˆD Lu�Lu0�ƒ1Lt2

D .1C �/u2�k
tt

�
˝
Tk�1.Eu/;�A�r2u0Cru˝ru�2ru˝ru0�

1
2
jruj2gChru0;ruig

˛
C.kC1/.1C�/k�1f �2ƒ1.1C�/

k�1u�1
t t f �2ƒ1u�k

tt hTk�1.E
�
u/;rut˝rut i:

Also we have ruDru0 at the minimum, so we can simplify to

LˆD�u2�k
tt

˝
Tk�1.E/;ACr

2u0Cru0˝ru0�
1
2
jru0j

2g
˛

C .kC 1/.1C �/k�1f � 2ƒ1.1C �/
k�k.Au/

D�u2�k
tt hTk�1.E/;Au0

iC .kC 1/.1C �/k�1f � 2ƒ1.1C �/
k�k.Au/:

At a spacetime minimum for ˆ we have r2.u�u0/� 0, and hence

0�ˆt tr
2ˆ�rˆt ˝rˆt

D .ut t � 2ƒ1/r
2.u�u0/�rut ˝rut

� ut tr
2.u�u0/�rut ˝rut :
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Using this yields

Eu D Œ.1C �/ut tAu�rut ˝rut �

D
�
.1C �/ut t

�
ACr2uCru˝ru� 1

2
jruj2g

�
�rut ˝rut

�
�
�
.1C �/ut t

�
ACr2u0Cru˝ru� 1

2
jruj2g

��
D
�
.1C �/ut t

�
ACr2u0Cru0˝ru0�

1
2
jru0j

2g
��
:

It follows from Lemma 2.4 that

hTk�1.E/;Ai � 0:

A similar calculation shows that at the minimum point under consideration we have

�k.Au/� �k.Au0
/:

Putting these estimates together yields

Lˆ� .kC 1/.1C �/k�1f � 2ƒ1.1C �/
k�k.Au0

/:

If we choose ƒ1 sufficiently large with respect to the positive lower bound for �k.Au0
/

and the maximum of f , we obtain Lˆ < 0, and hence ˆ cannot have an interior
minimum. Thus, it follows that ˆt .x; 0/� 0 for all x , and thus the lower bound for
ut .0/ follows. A very similar estimate yields a two-sided bound for ut .1/. Since
ut t � 0 everywhere we have a two-sided bound for ut everywhere.

We next proceed to obtain the interior spatial gradient estimate. To do this we need
two preliminary calculations.

Lemma 4.9 Let u be an admissible solution to (?�;f ). Then

Le��u
� ��e��uLuC 1

2
�2e��uu2�k

tt hTk�1.E
�
u/;ru˝rui �C�2e��u�k.Au/u

2
t :

Proof To begin we directly compute using (4-3) that

Le��u
D .1C �/k�1u�1

t t f .e
��u/t t

Cu1�k
tt

˝
Tk�1.E

�
u/; .1C �/ut t .r

2e��u
Cre��u

˝ruCru˝re��u

� hre��u;rui/�r.e��u/t ˝rut

�rut ˝r.e
��u/t Cu�1

t t rut ˝rut .e
��u/t t

˛
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D��e��uLuC .1C �/k�1u�1
t t f �

2e��uu2
t

C�2e��uu1�k
tt

˝
Tk�1.E

�
u/; .1C �/ut tru˝ru�utru˝rut

�utrut ˝ruCu�1
t t u2

trut ˝rut

˛
:

Next we observe using the Cauchy–Schwarz inequality and equation (?�;f ) that

u1�k
tt

˝
Tk�1.E

�
u/; .1C�/ut tru˝ru�utru˝rut�utrut˝ruCu�1

t t u2
trut˝rut

˛
D �k.Au/u

2
t � 2utu

1�k
tt hTk�1.Eu/;rut ˝ruiCu2�k

tt hTk�1.Eu/;ru˝rui

� �C�k.Au/u
2
t C

1
2
u2�k

tt hTk�1.Eu/;ru˝rui:

Combining these calculations yields the result.

Lemma 4.10 Given an admissible solution u to (?�;f ), one has

Lu2
t D 2utft C 2.1C �/k�1f ut t C 2�u2�k

tt Tk�1.E/
jk
rj utrkut :

Proof It follows directly from the definition of L that Lut D ft . It follows that

Lu2
t D 2utLutC2.1C�/k�1f ut t

C2u1�k
tt Tk�1.E/

jk
f.1C�/ut trj utrkut�2rj utrkutut tCrj utrkutut tg

D 2utftC2.1C�/k�1f ut tC2�u2�k
tt Tk�1.E/

jk
rj utrkut ;

as required.

Lemma 4.11 Given an admissible solution u to (?�;f ), one has

Ljruj2 D 2u1�k
tt Tk�1.E/

jk
˚
.1C �/ut trirj urirku� 2rirj urkutriut

Cu�1
t t rj utrkut jrut j

2
	

C 2.1C �/k�1u�1
t t f jrut j

2
C 2hrf;rui

� 2.1C �/u2�k
tt hTk�1.E/;r

iuriACRl
ijkr

iurlui:

Proof To begin we take the gradient of the geodesic equation to yield

rif Dri Œu
1�k
tt �k.E

�
u/�

D .1� k/u�k
tt riut t�k.E

�
u/Cu1�k

tt hTk�1.E
�
u/;riE

�
ui

D .1� k/u�k
tt riut t�k.Eu/

Cu1�k
tt

˝
Tk�1.E

�
u/; .1C�/riut tAuC .1C�/ut triAu�rirut˝rut

�rut ˝rirut

˛
:
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A calculation similar to (4-5) shows that

.1� k/u�k
tt riut t�k.Eu/Cu1�k

tt hTk�1.Eu/; .1C �/riut tAui

D .1C �/k�1u�1
t t f riut t Cu�k

tt hTk�1.E/;rut ˝rut iriut t :

Next we simplify via

ri.Au/jk

Dri

�
Ajk CrjrkuCrj urku� 1

2
jruj2gjk

�
DriAjk CrirjrkuCrirj urkuCrj urirku� 1

2
ri jruj2gjk

DriAjk CrjrkriuCRl
ijkrluCrirj urkuCrj urirku� 1

2
ri jruj2gjk :

Hence, we obtain the identity

LriuDrif � .1C �/u
2�k
tt Tk�1.E/

jk
friAjk CRl

ijkrlug:(4-6)

On the other hand, using (4-3) we have

Ljruj2 D 2hLru;ruiC 2.1C �/k�1u�1
t t f jrut j

2

C 2u1�k
tt Tk�1.E/

jk
˚
.1C �/ut trirj urirku� 2rirj urkutriut

Cu�1
t t rj utrkut jrut j

2
	

D 2u1�k
tt Tk�1.E/

jk
˚
.1C �/ut trirj urirku� 2rirj urkutriut

Cu�1
t t rj utrkut jrut j

2
	

C 2.1C �/k�1u�1
t t f jrut j

2
C 2hrf;rui

� 2.1C �/u2�k
tt hTk�1.E/;r

iuriACRl
ijkr

iurlui;

as required.

Proposition 4.12 Given an admissible solution u to (?�;f ), one has

sup
M�Œ0;1�

jruj2 � C:

Proof Without loss of generality we can assume u< 0. Choose �1; �2; �3 2R and
let

ˆD jruj2C�1u2
t C e��2u

C�3t.t � 1/:

Lemmas 4.4, 4.9, 4.10 and 4.11 show that

Lˆ�Ljruj2C2�1ŒftutC.1C�/
k�1fut tC�u

2�k
tt Tk�1.E/

jk
rj utrkut ���2Lue��2u

C
1
2
�2

2e��2uu2�k
tt hTk�1.E

�
u/;ru˝rui �C�2

2e��2u�k.Au/u
2
t C�3�k.Au/
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�2hrf;ruiC 2�k.Au/jrut j
2
C 2u2�k

tt hTk�1.Eu/;rjriurkriui

� 4u1�k
tt hTk�1.Eu/ij ;riutrkutrjrkui

� 2u2�k
tt hTk�1.Eu/jkriu;riAjk CRl

ijkrlui �C�1ft C�1f ut t

��2e��2u
�
f �u2�k

tt hTk�1.Eu/;Ai

Cu2�k
tt

�
hTk�1.Eu/;ru˝rui � 1

2
tr Tk�1.Eu/jruj2

��
C

1
2
�2

2e��2uu2�k
tt hTk�1.E

�
u/;ru˝rui �C�2

2e��2u�k.Au/u
2
t C�3�k.Au/:

First we observe that, using the Cauchy–Schwarz inequality and Lemma 2.5,

4u1�k
tt hTk�1.Eu/ij ;riutrkutrjrkui

D 4u1�k
tt ŒhTk�1.Eu/

1
2 � r

2u;Tk�1.Eu/
1
2 � rut ˝rut i�

� 2u2�k
tt hTk�1.Eu/;r

2u � r2uiC 2u�k
tt hTk�1.Eu/;rut ˝rut ijrut j

2

D 2u2�k
tt hTk�1.Eu/;r

2u � r2uiC 2u�1
t t hTk�1.Au/;rut ˝rut ijrut j

2

D 2u2�k
tt hTk�1.Eu/;r

2u � r2uiC 2Œ�k.Au/�f u�1
t t �jrut j

2:

Observe the preliminary inequality

u2�k
tt tr Tk�1.Eu/D u2�k

tt �k�1.Eu/

� u2�k
tt Œ�k.Eu/

.k�1/=k �

D u2�k
tt Œf uk�1

t t �.k�1/=k

D f .k�1/=ku
2�kC.k2�2kC1/=k
tt

D f .k�1/=ku
1=k
tt :

Next observe the estimate

hrf;rui � Cf u
�1=k
tt CCf u

1=k
tt jruj2

� Cf u�1
t t CCf ut t CCf u

1=k
tt jruj2

� Cf u�1
t t CCf ut t CCf .k�1/=ku

1=k
tt jruj2:

Next observe that

�2u2�k
tt hTk�1.Eu/jkriu;riAjk CRl

ijkrlui � �C u2�k
tt tr Tk�1.Eu/Œ1Cjruj2�:
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Combining these preliminary observations and using Proposition 4.8 yields

Lˆ� .�3�C /f u�1
t t C.�1�C /f ut tC

�
1
4
�2e��2u

�C
�
f .k�1/=ku

1=k
tt jruj2�C�1f

C e��2uu2�k
tt

�
1
2
�2

2��2

�
hTk�1.Eu/;ru˝rui

Cu2�k
tt tr Tk�1.Eu/

�
�C�C jruj2C1

4
�2e��2u

jruj2
�
C�k.Au/Œ�3�C�2

2�

�
1
2
�3f u�1

t t C
1
2
�1f ut t �C�1f Cu2�k

tt tr Tk�1.Eu/Œ�C Cjruj2�

� u2�k
tt tr Tk�1.Eu/Œ�C Cjruj2�;

where the second inequality follows by choosing �1 and �2 large with respect to
universal constants and noting that e��2u> 1 for every choice of �2 , and then choosing
�3 large with respect to these choices. The third inequality follows by choosing �3

large with respect to �1 . Using the previously establishing a priori estimates for u

and ut , at a sufficiently large maximum of ˆ we will have jruj2 � C , and hence we
see that Lˆ> 0 at a sufficiently large maximum, a contradiction. The a priori estimate
for jruj2 follows.

4.3 C 2 estimates

Lemma 4.13 Given an admissible solution u of (?�;f ), we have

Lut t D�kf
k

k�1 ut t .1C�/
kF ij ;kl Œ.Eu/t �ij Œ.Eu/t �kl

Cu1�k
tt

˝
Tk�1.E/; 2.1C�/u

�2
t t u2

t t trut˝rut�4u�1
t t ut t trut t˝rut

C2rut t˝rut t�2ut trut˝rutC.1C�/ut t jrut j
2g
˛

C.1C�/k�1kf
k�1

k .f
1
k /t tC2.k�1/.1C�/k�1u�1

t t f
k�1

k .f
1
k /tut t t

�2.1C�/k�1u�1
t t ut t tftC.1C�/

k�1 kC1

k
f u�2

t t u2
t t t :

Proof First we compute using (4-3) that

(4-7) Lut t D .1C�/
k�1u�1

t t f ut t t t

Cu1�k
tt

˝
Tk�1.E/; .1C�/ut t .r

2ut tCrut t˝ruCru˝rut t

�hrut truig/�rut t t˝rut�rut˝rut t t

Cu�1
t t rut˝rutut t t t

˛
:

To simplify notation we adopt the following (standard) conventions: for an n � n

symmetric matrix r D rij we write

F.r/D �k.r/
1=k ;
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and denote the derivatives of F with respect to the entries of r by

@

@rpq
F.r/D F.r/pq;

@2

@rpq@rrs
F.r/D F.r/pq;rs:

We next need to differentiate the equation, which we can rewrite as

c�f
1
k u

k�1
k

t t D �k.Eu/
1
k D F.Eu/;

where c� D .1C �/
k�1

k . Differentiating this yields

c�.f
1
k /tu

k�1
k

t t C c�
k�1

k
f

1
k u
� 1

k

t t ut t t D F ij
h
@

@t
Eu

i
ij

D
1

k
�k.Eu/

1�k
k hTk�1.Eu/; .Eu/t i:

Differentiating again yields

(4-8) F ij Œ.Eu/t t �ij CF ij ;kl Œ.Eu/t �ij Œ.Eu/t �kl

D c�

�
.f

1
k /t tu

k�1
k

t t C 2
k�1

k
.f

1
k /tu

� 1
k

t t ut t t �
1

k

�
k�1

k

�
f

1
k u
�

1Ck
k

t t u2
t t t

C
k�1

k
f

1
k u
� 1

k

t t ut t t t

�
:

Next we want to get an explicit formula for .Eu/t t , which we build up to in stages.
We first observe the preliminary computation

(4-9) .1C �/.Au/t D Œu
�1
t t EuCu�1

t t rut ˝rut �t

D�u�2
t t ut t tEuCu�1

t t .Eu/t �u�2
t t ut t trut ˝rut

Cu�1
t t rut t ˝rut Cu�1

t t rut ˝rut t :

Next we compute that

Œ.Eu/t �D .1C �/ut t tAuC .1C �/ut t .Au/t �rut t ˝rut �rut ˝rut t

D .1C�/ut t tAuC.1C�/ut t Œr
2utCrut˝ruCru˝rut�hrut ;ruig�

�rut t ˝rut �rut ˝rut t :
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Next we have, using (4-9),

Œ.Eu/t t �D .1C �/ut t t tAuC 2.1C �/ut t t .Au/t C .1C �/ut t .Au/t t

�rut t t ˝rut � 2rut t ˝rut t �rut ˝rut t t

D .1C �/ut t t tAuC 2.1C �/ut t t .Au/t

C .1C �/ut t

�
r

2ut t Crut t ˝ruC 2rut ˝rut Cru˝rut t

� jrut j
2g� hru;rut t ig

�
�rut t t ˝rut � 2rut t ˝rut t �rut ˝rut t t

D .1C �/ut t t tAu

C 2ut t t

�
�u�2

t t ut t tEuCu�1
t t .Eu/t �u�2

t t ut t trut ˝rut

Cu�1
t t rut t ˝rut Cu�1

t t rut ˝rut t

�
C .1C �/ut t

�
r

2ut t Crut t ˝ruC 2rut ˝rut Cru˝rut t

� jrut j
2g� hru;rut t ig

�
�rut t t ˝rut � 2rut t ˝rut t �rut ˝rut t t :

Hence,

k�k.Eu/
k�1

k u1�k
tt F ij Œ.Eu/t t �ij

D u1�k
tt

˝
Tk�1.Eu/; .1C �/ut t t tAu� 2u�2

t t u2
t t tEuC 2u�1

t t ut t t .Eu/t
� 2u�2

t t u2
t t trut ˝rut C 4u�1

t t ut t trut t ˝rut

C.1C�/
˚
ut tr

2ut tC2ut trut t˝ruC2ut trut˝rut

�ut t jrut j
2g�ut t hru;rut t ig

	
� 2rut t t ˝rut � 2rut t ˝rut t

˛
D

12X
iD1

Ai :

Comparing against (4-7) yields

Lut tDA1CA6CA7CA10CA11Cut t t tu
1�k
tt hTk�1.E/;�.1C�/AuCu�1

t t rut˝rut i

C .1C �/k�1u�1
t t f ut t t t

DA1CA6CA7CA10CA11Cut t t t Œu
�k
tt hTk�1.E/;�EiC .1C �/k�1u�1

t t f �

DA1CA6CA7CA10CA11Cut t t t Œku�k
tt �k.E/C .1C �/

k�1u�1
t t f �

DA1CA6CA7CA10CA11Cf .1C �/
k�1.1� k/u�1

t t ut t t t :
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Hence, we obtain

(4-10) Lut t

D k�k.Eu/
k�1

k u1�k
tt F ij Œ.Eu/t t �ij

�u1�k
tt

˝
Tk�1.Eu/;�2u�2

t t u2
t t tEuC2u�1

t t ut t t .Eu/t

�2.1C�/u�2
t t u2

t t trut˝rutC4u�1
t t ut t trut t˝rut

C2ut trut˝rut�.1C�/ut t jrut j
2g�2rut t˝rut t

˛
Cf .1C�/k�1.1�k/u�1

t t ut t t t

D k�k.Eu/
k�1

k u1�k
tt

�

h
�F ij ;kl Œ.Eu/t �ij Œ.Eu/t �kl

Cc�

h
.f

1
k /t tu

k�1
k

t t C2
k�1

k
.f

1
k /tu

� 1
k

t t ut t t�
1

k

�
k�1

k

�
f

1
k u
�

1Ck
k

t t u2
t t t

C
k�1

k
f

1
k u
� 1

k

t t ut t t t

ii
Cu1�k

tt

˝
Tk�1.E/; 2u�2

t t u2
t t tEu�2u�1

t t ut t t .Eu/t

C2.1C�/u�2
t t u2

t t trut˝rut�4u�1
t t ut t trut t˝rut

�2ut trut˝rutC.1C�/ut t jrut j
2gC2rut t˝rut t

˛
Cf .1C�/k�1.1�k/u�1

t t ut t t t

D

13X
iD1

Ai :

We now clean up some of the lower-order terms. In particular we express

k�k.E/
k�1

k u1�k
tt D kŒf uk�1

t t .1C �/k�1�
k�1

k u1�k
tt

D kf
k�1

k u
1�k

k

t t .1C �/.k�1/2=k :

Then observe

A2 D .k�k.E/
k�1

k u1�k
tt /..1C �/

k�1
k .f

1
k /t tu

k�1
k

t t /

D .kf
k�1

k u
1�k

k

t t .1C �/.k�1/2=k/..1C �/
k�1

k .f
1
k /t tu

k�1
k

t t /

D .1C �/k�1kf
k�1

k .f
1
k /t t :
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Next,

A3 D .k�k.E/
k�1

k u1�k
tt /

�
.1C �/

k�1
k 2

k�1

k
.f

1
k /tu

� 1
k

t t ut t t

�
D .kf

k�1
k u

1�k
k

t t .1C �/.k�1/2=k/
�
.1C �/

k�1
k 2

k�1

k
.f

1
k /tu

� 1
k

t t ut t t

�
D 2.k � 1/.1C �/k�1u�1

t t f
k�1

k .f
1
k /tut t t :

Next,

A4 D .kf
k�1

k u
1�k

k

t t .1C �/.k�1/2=k/
�
�.1C �/

k�1
k

1

k

�
k�1

k

�
f

1
k u
�

1Ck
k

t t u2
t t t

�
D�.1C �/k�1

�
k�1

k

�
f u�2

t t u2
t t t :

Next note that

A5D k�k.Eu/
k�1

k u1�k
tt c�

k�1

k
f

1
k u
� 1

k

t t ut t t t D .k�1/.1C�/k�1f u�1
t t ut t t t D�A13:

Also observe
A6 D u1�k

tt hTk�1.E/; 2u�2
t t u2

t t tEui

D 2ku�1�k
tt u2

t t t�k.E/

D 2ku�1�k
tt u2

t t t Œf uk�1
t t .1C �/k�1�

D 2k.1C �/k�1u�2
t t u2

t t tf:

Lastly,
A7 D�2u1�k

tt hTk�1.E/;u
�1
t t ut t t .Eu/t i

D �2u�k
tt ut t t Œ�k.E/�t

D�2.1C �/k�1u�k
tt ut t t Œf uk�1

t t �t

D�2.1C �/k�1u�k
tt ut t t Œftu

k�1
t t C .k � 1/f uk�2

t t ut t t �

D�2.1C �/k�1u�1
t t ut t t Œft C .k � 1/f u�1

t t ut t t �:

Inserting these simplifications into (4-9) yields the result.

Proposition 4.14 Given an admissible solution u to (?�;f ), one has

sup
M�Œ0;1�

ut t � C��1:

Proof Let’s begin with a preliminary estimate for Lut t . Returning to Lemma 4.13
and considering the terms in order, one first observes by convexity of F that

�kf
k

k�1 ut t .1C �/
kF ij ;kl Œ.Eu/t �ij Œ.Eu/t �kl � 0:
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Also, by an application of the Cauchy–Schwarz inequality one has the matrix inequality

2u�2
t t u2

t t trut ˝rut � 4u�1
t t ut t trut t ˝rut C 2rut t ˝rut t � 0:

Also, since u is an admissible solution we have

u1�k
tt hTk�1.E/;ut t jrut j

2gi D u2�k
tt jrut j

2 tr Tk�1.E/� 0:

Also we observe

.1C �/k�1kf
k�1

k .f
1
k /t t � Cf

k�1
k Œf

1
k
�1ft t Cf

1
k
�2f 2

t �� Cf:

Next,

2.k � 1/.1C �/k�1u�1
t t f

k�1
k .f

1
k /tut t t � Cf

k�1
k .f

1
k
�1ft /u

�1
t t ut t t

� Cf u�1
t t ut t t

� Cı�1f CCıf u�2
t t u2

t t t :

Also,

�2.1C �/k�1u�1
t t ut t tft � Cf u�1

t t ut t t � Cı�1f CCıf u�2
t t u2

t t t :

Combining these estimates and choosing ı sufficiently small leads to the preliminary
estimate

Lut t � �2u2�k
tt hTk�1.E/;rut ˝rut i �Cf:(4-11)

Similar considerations with the result of Lemma 4.10 lead to the preliminary estimate

Lu2
t � �Cf C 2f ut t C 2�u2�k

tt hTk�1.E/;rut ˝rut i:(4-12)

Now fix constants �i and let

ˆD ut t C�1�
�1u2

t C�2t.t � 1/:

Choosing �1 � 1, combining Lemma 4.4 with (4-11) and (4-12) yields

Lˆ�2u2�k
tt hTk�1.E/; .�1�1/rut˝rut i�f .CCC�1�

�1/C2�1�
�1f ut tC�2fu�1

t t

�f
�
.2�1�

�1
� ı.C CC�1�

�1//ut t C .�2� ı
�1.C CC�1�

�1//
�
:

If we now choose ı small above with respect to universal constants and then choose
�2 large with respect to ı , we conclude

Lˆ> 0;

and hence ˆ cannot have an interior maximum. The proposition follows.
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Lemma 4.15 Given an admissible solution u of (?�;f ), we have

L.�u/D�k�k.E/
k�1

k u1�k
tt F .ij/;.kl/

rp.Eu/ijrp.Eu/kl

Cu1�k
tt Tk�1.E/

ij
˚
2u�2

t t jrut t j
2
riut˝rj ut�4u�1

t t rput trirputrj ut

C 2rirputrjrput � 2.1C �/ut trirpurjrpu

C .1C�/ut t jr
2uj2gijCut tO.jr2ujCjruj2C1/

	
C k.1C �/k�1f

k�1
k �.f

1
k /� .1C �/k�1 2

k
u�1

t t hrf;rut t i

C .1C �/k�1
�

kC1

k

�
f u�2

t t jrut t j
2:

Proof To begin we compute, using (4-3),

(4-13) L.�u/D

.1C�/k�1u�1
t t f�ut t

Cu1�k
tt

˝
Tk�1.E/;

.1C�/ut t

�
r

2�uCr�u˝ruCru˝r�u�hr�u;ruig
�

�r�ut˝rut�rut˝r�utCu�1
t t rut˝rut�ut t

˛
:

Next we differentiate the equation, which we rewrite as

c�f
1
k u

k�1
k

t t D �k.Eu/
1
k DW F.Eu/:

Differentiating yields

c�rp.f
1
k /u

k�1
k

t t C c�

�
k�1

k

�
f

1
k u
� 1

k

t t rput t D F ij
rp.Eu/ij :

Differentiating again yields

F ij .�Eu/ij CF .ij/;.kl/
rp.Eu/ijrp.Eu/kl

D c�

h
�.f

1
k /u

k�1
k

t t C 2
�

k�1

k

�
hr.f

1
k /;rut t iu

� 1
k

t t

�
1

k

�
k�1

k

�
f

1
k u
�

1Ck
k

t t jrut t j
2
C

�
k�1

k

�
f

1
k u
� 1

k

t t �ut t

i
:

Next we have

rp.Eu/ij Drp Œ.1C�/ut t .Au/ij�riutrj ut �

D .1C�/rput t .Au/ijC.1C�/ut trp.Au/ij�rpriutrj ut�riutrprj ut :
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Differentiating again and commuting derivatives yields

.�Eu/ij D .1C �/�ut t .Au/ij C 2.1C �/rput trp.Au/ij C .1C �/ut t�.Au/ij

�ri�utrj ut �riutrj�ut � 2rirputrjrput

�Riprputrj ut �Rjprputriut :

Differentiating the equation for the Schouten tensor yields

rp.Au/ij DrpAij Crprirj uCrirpurj uCriurjrpu� 1
2
rpjruj2g:

This implies

(4-14) �.Au/ij D�Aij Crirj�uCri�urj uCriurj�uC 2rirpurjrpu

� jr
2uj2gij � hru;r�uigij CO.jr2ujC jruj2C 1/:

On the other hand it is also useful to express

.1C �/rp.Au/ij Drp Œu
�1
t t .Eu/ij Cu�1

t t riutrj ut �

D u�1
t t rp.Eu/ij �u�2

t t .Eu/ijrput t �u�2
t t rput triutrj ut

Cu�1
t t rirputrj ut Cu�1

t t riutrjrput :

Combining the above calculations yields

�.Eu/ij

D .1C �/�ut t .Au/ij

C 2rput t

�
u�1

t t rp.Eu/ij �u�2
t t .Eu/ijrput t �u�2

t t rput triutrj ut

Cu�1
t t rirputrj ut Cu�1

t t riutrjrput

�
C .1C �/ut t

�
rirj�uCri�urj uCriurj�uC 2rirpurjrpu

� jr
2uj2gij � hru;r�uigij CO.jr2ujC jruj2C 1/

�
�ri�utrj ut �riutrj�ut � 2rirputrjrput

D .1C �/�ut t .Au/ij C 2u�1
t t rput trp.Eu/ij � 2u�2

t t jrut t j
2.Eu/ij

� 2u�2
t t jrut t j

2
riut ˝rj ut C 2u�1

t t rput trirputrj ut

C 2u�1
t t rput trjrputriut C .1C �/ut trirj�u

C .1C �/ut tri�urj uC .1C �/ut triurj�uC 2.1C �/ut trirpurjrpu

� .1C �/ut t jr
2uj2gij � .1C �/ut t hru;r�uigij Cut tO.jr2ujC jruj2C 1/

�ri�utrj ut �riutrj�ut � 2rirputrjrput :
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Thus,

k�k.E/
k�1

k u1�k
tt F ij .�Eu/ij

D u1�k
tt

˝
Tk�1.E/;.1C�/�ut t .Au/ijC2u�1

t t rput trp.Eu/ij

�2u�2
t t jrut t j

2.Eu/ij�2u�2
t t jrut t j

2
riut˝rj ut

C4u�1
t t rput trirputrj utC.1C�/ut trirj�u

C2.1C�/ut tri�urj uC2.1C�/ut trirpurjrpu

�.1C�/ut t jr
2uj2gij�.1C�/ut t hru;r�uigij

�2ri�utrj ut�2rirputrjrputCut tO.jr2ujCjruj2C1/
˛

D

13X
iD1

Ai :

Comparing this against (4-13) yields

(4-15) L.�u/DA1CA6CA7CA10CA11

Cu1�k
tt �ut t hTk�1.E/;�.1C �/AuCrut ˝rut i

C .1C �/k�1u�1
t t f�ut t

DA1CA6CA7CA10CA11Cu�k
tt �ut t hTk�1.E/;�Ei

C .1C �/k�1u�1
t t f�ut t

DA1CA6CA7CA10CA11C�ut t Œ�ku�k
tt �k.E/C.1C�/

k�1u�1
t t f �

DA1CA6CA7CA10CA11C .1� k/.1C �/k�1u�1
t t f�ut t :

Hence, collecting these calculations yields

L.�u/D k�k.E/
k�1

k u1�k
tt F.�Eu/ij

�u1�k
tt

˝
Tk�1.E/; 2u�1

t t rput trp.Eu/ij � 2u�2
t t jrut t j

2.Eu/ij

�2u�2
t t jrut t j

2
riut˝rj utC4u�1

t t rput trirputrj ut

C2.1C �/ut trirpurjrpu� .1C �/ut t jr
2uj2gij

� 2rirputrjrput Cut tO.jr2ujC jruj2C 1/
˛

C .1� k/.1C �/k�1u�1
t t f�ut t
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D�k�k.E/
k�1

k u1�k
tt F .ij/;.kl/

rp.Eu/ijrp.Eu/kl

C c�k�k.E/
k�1

k u1�k
tt

�

h
�.f

1
k /u

k�1
k

t t C 2
�

k�1

k

�
hr.f

1
k /;rut t iu

� 1
k

t t

�
1

k

�
k�1

k

�
f

1
k u
�

1Ck
k

t t jrut t j
2
C

�
k�1

k

�
f

1
k u
� 1

k

t t �ut t

i
Cu1�k

tt

˝
Tk�1.E/;�2u�1

t t rput trp.Eu/ij C 2u�2
t t jrut t j

2.Eu/ij

C 2u�2
t t jrut t j

2
riut˝rj ut�4u�1

t t rput trirputrj ut

C 2rirputrjrput � 2.1C �/ut trirpurjrpu

C .1C �/ut t jr
2uj2gij Cut tO.jr2ujC jruj2C 1/

˛
C .1� k/.1C �/k�1u�1

t t f�ut t

D

14X
iD1

Ai :

Now we simplify:

A2 D .k�k.E/
k�1

k u1�k
tt /.c�u

k�1
k

t t �.f
1
k //

D .kf
k�1

k u
1�k

k

t t .1C �/.k�1/2=k/..1C �/
k�1

k u
k�1

k

t t �.f
1
k //

D k.1C �/k�1f
k�1

k �.f
1
k /:

Next,

A3 D .k�k.E/
k�1

k u1�k
tt /

�
2c�

�
k�1

k

�
hr.f

1
k /;rut t iu

� 1
k

t t

�
D .kf

k�1
k u

1�k
k

t t .1C �/.k�1/2=k/
�
2.1C �/

k�1
k

�
k�1

k

�
hr.f

1
k /;rut t iu

� 1
k

t t

�
D 2.1C �/k�1.k � 1/f

k�1
k u�1

t t hr.f
1
k /;rut t i

D .1C �/k�1
�
2�

2

k

�
u�1

t t hrf;rut t i:

Next,

A4 D�.k�k.E/
k�1

k u1�k
tt /

�
c�

1

k

�
k�1

k

�
f

1
k u
�

1Ck
k

t t jrut t j
2
�

D�.kf
k�1

k u
1�k

k

t t .1C �/.k�1/2=k/
�
.1C �/

k�1
k

1

k

�
k�1

k

�
f

1
k u
�

1Ck
k

t t jrut t j
2
�

D�.1C �/k�1
�

k�1

k

�
f u�2

t t jrut t j
2:

Geometry & Topology, Volume 22 (2018)



A formal Riemannian structure on conformal classes and the �2 –Yamabe problem 3545

Next,

A5 D .k�k.E/
k�1

k u1�k
tt /

�
c�

�
k�1

k

�
f

1
k u
� 1

k

t t �ut t

�
D .kf

k�1
k u

1�k
k

t t .1C �/.k�1/2=k/
�
.1C �/

k�1
k

�
k�1

k

�
f

1
k u
� 1

k

t t �ut t

�
D .k � 1/.1C �/k�1f u�1

t t �ut t

D�A14:

Next,

A6 D�2u1�k
tt rput t hTk�1.E/;u

�1
t t rp.Eu/ij i

D �2u�k
tt rput trp�k.E/

D�2.1C �/k�1u�k
tt rput trp Œf uk�1

t t �

D�2.1C �/k�1u�1
t t hrf;rut t i � 2.1C �/k�1.k � 1/f u�2

t t jrut t j
2:

Lastly,
A7 D 2u1�k

tt u�2
t t jrut t j

2
hTk�1.E/;Ei

D 2ku1�k
tt u�2

t t jrut t j
2�k.E/

D 2k.1C �/k�1f u�2
t t jrut t j

2:

Collecting these simplifications yields the result.

Proposition 4.16 Given an admissible solution u to (?�;f ), one has

sup
M�Œ0;1�

�u� C��1:

Proof We begin with a preliminary estimate for L�u. Returning to Lemma 4.15 and
considering the terms in order, one first observes by convexity of F that

�kf
k

k�1 ut t .1C �/
kF ij ;kl Œrp.Eu/�ij Œrp.Eu/�kl � 0:

Also, by an application of the Cauchy–Schwarz inequality one has the matrix inequality

2u�2
t t jrut t j

2
riutrj ut � 4u�1

t t rput trirputrj ut C 2rirputrjrput � 0:

Also we observe

.1C �/k�1kf
k�1

k �.f
1
k /� Cf

k�1
k Œf

1
k
�1�f Cf

1
k
�2
jrf j2�� Cf:

Next,

�
2

k
.1C �/k�1u�1

t t hrf;rut t i � Cf u�1
t t jrut t j � Cı�1f CCıu�2

t t jrut t j
2:
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Combining these estimates and choosing ı sufficiently small leads to the preliminary
estimate

(4-16) L�u� �2.1C �/u2�k
tt hTk�1.E/;rirpurjrpui

Cu2�k
tt hTk�1.E/; jr

2uj2gCO.jr2ujC jruj2C 1/i �Cf:

Similar considerations applied to Lemma 4.11 yield

Ljruj2 � 2�u2�k
tt Tk�1.E/

jk
rirj urirku�Cf �u2�k

tt hTk�1.E/;O.1/i:(4-17)

Now fix a constant � 2R and consider

ˆD�uC ��1Œ.1C �/jruj2Cu2
t C�t.t � 1/�:

Combining Lemma 4.4 with (4-12), (4-16) and (4-17) yields

Lˆ� u2�k
tt hTk�1.E/; jr

2uj2gCO.jr2ujC jruj2C 1/C ��1O.1/i

�C��1f C 2��1f ut t C��
�1f u�1

t t :

First we observe that at a sufficiently large maximum of ˆ, the existing a priori estimates
imply that �u is also large. In particular, at a maximum for ˆ where jr2uj � C��

1
2

we obtain

jr
2uj2gCO.jr2ujC jruj2C 1/C ��1O.1/� 1

2
jr

2uj2g;

and hence, since u is an admissible solution, we have

u2�k
tt hTk�1.E/; jr

2uj2gCO.jr2ujC jruj2C 1/C ��1O.1/i

�
1
2
u2�k

tt jr
2uj2 tr Tk�1.E/

� 0:

But then we can estimate

C��1f � ��1f ut t CC��1f u�1
t t :

Hence, choosing � sufficiently large we obtain, at a sufficiently large maximum for ˆ
which satisfies �u� C��

1
2 , that one has

Lˆ> 0;

a contradiction. The a priori estimate for �u follows directly.
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4.4 Boundary estimates

By Proposition 4.8 we already have the boundary estimate

sup
M�f0;1g

ŒjujC jut jC jruj�� C:

In this section we prove boundary estimates for second-order derivatives. Our barrier
function methods have a parallel with work of Guan [17].

Proposition 4.17 Given an admissible solution u to (?�;f ), one has

sup
M�f0;1g

Œjut t jC jrut jC jr
2uj�� C:

Proof A bound for jr2uj is immediate. If we can prove a bound for the “mixed”
term jrut j, then restricting the equation for u to t D 0 we have

.1C �/ut t . � ; 0/�k.Au. � ;0//D hTk�1.Au. � ;0//;rut . � ; 0/˝rut . � ; 0/iCf

� C1.1Cjru0j
2
Cjr

2u0j/jrut . � ; 0/j
2
CC2:

Since u0 is admissible,

�k.Au. � ;0//D �k.Au0
/� ı0 > 0;

and it follows that

sup
M

ut t . � ; 0/� C0.1C sup
M

jrut . � ; 0/j
2/;

where C0 depends on the second-order spacial derivatives of u0 . The same argument
gives a corresponding bound for ut t . � ; 1/ in terms of the mixed derivative jrut . � ; 1/j.

To prove a bound on rut we consider the auxiliary function ‰W M � Œ0; � �! R,
where 0< � < 1 will be chosen later,

‰ D jr.u�u0/jC Œe
�.u0�uC‡/

� e�‡ �Cƒt.t � 1/;

where �, ƒ and ‡ are constants yet to be determined. By making an appropriate
choice of these constants, we claim that ‰ attains a nonpositive maximum on the
boundary of M � Œ0; � �. Assuming for the moment this is true, let us see how a bound
for rut follows.
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Choose a point x0 2M, and a unit tangent vector X 2 Tx0
M. Let fxig be a local

coordinate system with X D @=@x1 at x0 . Then

@

@x1
.u.x; t/�u0.x//C Œe

�.u0�uC‡/
� e�‡ �Cƒt.t � 1/

� jr.u�u0/.x; t/jC Œe
�.u0�uC‡/

� e�‡ �Cƒt.t � 1/

� 0:

Therefore,

0� lim
t!0C

1

t

�
@

@x1
u.x; t/�

@

@x1
u0.x/C Œe

�.u0�uC‡/
� e�‡ �Cƒt.t � 1/

�
D

@

@x1
ut .x0; 0/C

1

t
Œe�.u0�uC‡/

� e�‡ �Cƒ.t � 1/:

Since ut is bounded, an upper bound on @ut=@x
1 follows. Since X D @=@x1 was

arbitrary, we obtain a bound on jrut .x; 0/j.

To see that such a choice of �, ƒ, ‡ and � are possible, we first note that

‰.x; 0/D 0:

Since jruj is bounded,

‰.x; �/D jru.x; �/�ru0.x/jC Œe
�.u0.x/�u.x;�/C‡/

� e�‡ �Cƒ�.� � 1/

� C1Cje
�.u0.x/�u.x;�/C‡/

� e�‡ jCƒ�.� � 1/:

Since jut j is also bounded,

je�.u0.x/�u.x;�/C‡/
� e�‡ j � C2�eC2��C‡ ;

hence, if 0< � < 1
2

,

‰.x; �/� C1CC2��eC2��C‡ �ƒ�.1� �/� C1C
�
C2�e

1
2

C2�C‡ �
1
2
ƒ
�
�:

Therefore, if ƒ is chosen large enough (depending on � , C1 , C2 , � and ‡ ), then

‰.x; �/� 0:

We conclude that ‰ � 0 on @.M � Œ0; � �/.

Assume the maximum of ‰ is attained at a point .x0; t0/ which is interior (ie 0< t0<� ).
Let

�D
r.u�u0/.x0; t0/

jr.u�u0/.x0; t0/j
:
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We can extend � locally via parallel transport along radial geodesics based at x0 . By
construction,

(4-18) r�.x0/D 0; jr2�.x0/j � C.g/:

By using a cut-off function, we can assume � is globally defined and satisfies

j�j � 1;

with j�j D 1 in a neighborhood of x0 .

Define
H D �˛r˛.u�u0/C Œe

�.u0�uC‡/
� e�‡ �Cƒt.t � 1/:

Since j�j � 1,
H.x; t/�‰.x; t/;

and the max of H is attained at .x0; t0/. Therefore,

LH.x0; t0/� 0:

To compute LH.x0; t0/, let � D �˛r˛.u�u0/. Using (4-18), at .x0; t0/ we have

�t D �
˛
r˛ut ; �t t D �

˛
r˛ut t ; rk�t D �

˛
rkr˛ut :

Also at .x0; t0/,

rk� D �
˛
rkr˛.u�u0/D �

˛
rkr˛uCO.1/;

rkr`� Drkr`�
˛
r˛.u�u0/C �

˛
rkr`r˛.u�u0/D �

˛
rkr`r˛uCO.1/:

Therefore, by the formula in (4-3), at .x0; t0/ we have

L� D .1C �/k�1u�1
t t f �

˛
r˛ut t

Cu1�k
tt Tk�1.E

�
u/k`

�

�
.1C �/ut t

�
�˛rkr`r˛uC �˛rkr˛ur`uC �

˛
rkur`r˛u

� .�˛rmr˛vrmu/gk`CO.1/gk`

�
� �˛rkr˛utr`ut � �

˛
rkutr`r˛ut C

�˛r˛ut t

ut t
rkutr`ut

�
� �˛Lr˛u�C u2�k

tt tr Tk�1.E
�
u/:

Using the identity (4-6), we conclude

L� � hrf; �i �C u2�k
tt tr Tk�1.E

�
u/� �Cf �C u2�k

tt tr Tk�1.E
�
u/;

where the constants depend on maxM jrf j=f .
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Next, we use Lemma 4.5 to calculate

(4-19) L.u�u0/

D .kC 1/.1C �/k�1f

C .1C �/u2�k
tt

˝
Tk�1.E

�
u/;�ACru˝ru� 1

2
jruj2g

˛
� .1C �/u2�k

tt

˝
Tk�1.E

�
u/;r

2u0Cru0˝ruCru˝ru0

� hru0;ruig
˛

D .kC 1/.1C �/k�1f � .1C �/u2�k
tt hTk�1.E

�
u/;ACr

2u0i

C .1C �/u2�k
tt

�
hTk�1.E

�
u/;ru˝rui � 1

2
tr Tk�1.E

�
u/jruj2

�
� .1C �/u2�k

tt Œ2hTk�1.E
�
u/;ru˝ru0i � tr Tk�1.E

�
u/hru;ru0i�

D .kC 1/.1C �/k�1f

C .1C �/u2�k
tt

˝
Tk�1.E

�
u/;�Au0

Cru0˝ru0�
1
2
jru0j

2g
˛

C .1C �/u2�k
tt

�
hTk�1.E

�
u/;ru˝ru� 2ru˝ru0i

C tr Tk�1.E
�
u/
�
�

1
2
jruj2Chru;ru0i

��
D .kC 1/.1C �/k�1f

C .1C �/u2�k
tt

�
�
�hTk�1.E

�
u/;Au0

iChTk�1.E
�
u/;r.u�u0/˝r.u�u0/i

�
1
2

tr Tk�1.E
�
u/jr.u�u0/j

2
�
:

Taking v D e�.u0�uC‡/� e�‡ in Lemma 4.2, we also have

L.e�.u0�uC‡/
�e�‡ /

D e�.u0�uC‡/

�
.1C�/k�1f u�1

t t Œ��ut tC�
2u2

t �

Cu1�k
tt

�
Tk�1.E

�
u/; .1C�/ut t

�
�r2.u0�u/C�2

r.u0�u/˝r.u0�u/

C�r.u0�u/˝ruC�ru˝r.u0�u/

��hr.u0�u/;ruig
�

C�rut˝rutC�
2utr.u0�u/˝rut

C�2utrut˝r.u0�u/C�2 u2
t

ut t
rut˝rut

��
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D��e�.u0�uC‡/L.u�u0/

C�2e�.u0�uC‡/

�

�
.1C�/k�1f

u2
t

ut t

Cu2�k
tt

�
Tk�1.E

�
u/; .1C�/r.u�u0/˝r.u�u0/C

ut

ut t
r.u0�u/˝rut

C
ut

ut t
rut˝r.u0�u/C

u2
t

u2
t t

rut˝rut

��
:

We can estimate the term in braces as follows:

.1C�/k�1f
u2

t

ut t
Cu2�k

tt

�
Tk�1.E

�
u/; .1C�/r.u�u0/˝r.u�u0/C

ut

ut t
r.u0�u/˝rut

C
ut

ut t
rut˝r.u0�u/C

u2
t

u2
t t

rut˝rut

�
� .1C�/k�1f

u2
t

ut t
Cu2�k

tt

�
Tk�1.E

�
u/;

1C�

2
r.u�u0/˝r.u�u0/�

u2
t

u2
t t

rut˝rut

�
:

Using Lemma 2.5 and the regularized equation, the final term above can be rewritten:

u2�k
tt

�
Tk�1.E

�
u/;�

u2
t

u2
t t

rut ˝rut

�
D�u�k

tt u2
t hTk�1..1C �/ut tAu�rut ˝rut /;rut ˝rut i

D �u�k
tt u2

t hTk�1..1C �/ut tAu/;rut ˝rut i

D �.1C �/k�1u�1
t t u2

t hTk�1.Au/;rut ˝rut i

D �.1C �/k�1u�1
t t u2

t f.1C �/ut t�k.Au/�f g

D �.1C �/ku2
t �k.Au/C .1C �/

k�1f
u2

t

ut t
:

Therefore,

(4-20) L.e�.u0�uC‡/
� e�‡ /

� ��e�.u0�uC‡/L.u�u0/

C�2e�.u0�uC‡/

�
2.1C �/k�1f

u2
t

ut t
� .1C �/ku2

t �k.Au/

Cu2�k
tt

D
Tk�1.E

�
u/;

1C�

2
r.u�u0/˝r.u�u0/

E�
:
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Also, by (4-19),

(4-21) ��L.u�u0/D��.kC 1/.1C �/k�1f C�.1C �/u2�k
tt hTk�1.E

�
u/;Au0

i

Cu2�k
tt hTk�1.E

�
u/;��.1C �/r.u�u0/˝r.u�u0/i

C
1
2
.1C �/�u2�k

tt tr Tk�1.E
�
u/jr.u�u0/j

2:

Combining (4-20) and (4-21), we get

L.e�.u0�uC‡/
� e�‡ /

� e�.u0�uC‡/

�
��.kC1/.1C�/k�1f C2�2.1C�/k�1f

u2
t

ut t
��2.1C�/ku2

t �k.Au/

Cu2�k
tt

˝
Tk�1.E

�
u/; .1C �/

�
1
2
�2
��

�
r.u�u0/˝r.u�u0/

˛
C

1
2
.1C �/�u2�k

tt tr Tk�1.E
�
u/jr.u�u0/j

2

C�.1C �/u2�k
tt hTk�1.E

�
u/;Au0

i

�
:

Next, using Lemma 4.4, we have

L.ƒt.1� t//D 2ƒ.1C �/k�k.Au/:

Combing the above, we conclude that at an interior maximum of H,

LH � �Cf �C u2�k
tt tr Tk�1.E

�
u/C 2ƒ.1C �/k�k.Au/

C e�.u0�uC‡/

�

�
��.kC 1/.1C �/k�1f C 2�2.1C �/k�1f

u2
t

ut t
��2.1C �/ku2

t �k.Au/

Cu2�k
tt

˝
Tk�1.E

�
u/; .1C �/

�
1
2
�2
��

�
r.u�u0/˝r.u�u0/

˛
C

1
2
.1C �/�u2�k

tt tr Tk�1.E
�
u/jr.u�u0/j

2

C�.1C �/u2�k
tt hTk�1.E

�
u/;Au0

i

�
:

Now note that since the cone �C
k

is open and M is compact, there exists ı > 0

depending only on u0 such that Au0
� ıg 2 �C

k
. It follows from Lemma 2.3 that

ı tr Tk�1.E
�
u/D†.E

�
u; : : : ;E

�
u; ıg/ < †.E

�
u; : : : ;E

�
u;Au0

/D hTk�1.E
�
u/;Au0

i:
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Therefore, if �� 2 we have

(4-22) LH � f�C ��.kC 1/.1C �/k�1e�.u0�uC‡/
gf

Cf2ƒ.1C �/k ��2.1C �/ku2
t e�.u0�uC‡/

g�k.Au/

Cf�C C�.1C �/ıgu2�k
tt tr Tk�1.E

�
u/:

Observe that by choosing �D �.ı/ large enough, we can assume the last term in (4-22)
is bounded below by

1
2
�ıu2�k

tt tr Tk�1.E
�
u/:(4-23)

By the Newton–Maclaurin inequality,

u2�k
tt tr Tk�1.E

�
u/D .k � 1/u2�k

tt �k�1.E
�
u/

� .k � 1/u2�k
tt �k.E

�
u/

k�1
k

D .k � 1/f
k�1

k u
1
k

t t

� Cf u
1
k

t t :

Combining this with (4-23) and substituting into (4-22), we get

LH � f�C ��.kC 1/.1C �/k�1e�.u0�uC‡/
CC�ıu

1
k

t tgf

Cf2ƒ.1C �/k ��2.1C �/ku2
t e�.u0�uC‡/

g�k.Au/:

Let us fix the constant ‡ so that

0� u0�uC‡ � C I

then

LH � f�C �C�.kC 1/CC�ıu
1
k

t tgf Cf2ƒ.1C �/
k
�C�2u2

t g�k.Au/:

Next, we assume ƒDƒ.�;max u2
t / is chosen large enough that the coefficient of the

second term above is
2ƒ.1C �/k �C�2u2

t �
1
2
�2:

By the regularized equation,

�k.Au/�
f

.1C�/ut t
:

Therefore,

LH �
n
�C �C�.kC 1/CC�ıu

1
k

t t C
1

2.1C�/
�2u�1

t t

o
f:
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If ut t >C.ı/ is large then the left-hand side is positive, which would be a contradiction
at an interior maximum. On the other hand, if ut t is small then as long as � is chosen
large enough, the last term in the braces will dominate and once again we conclude
LH > 0. It follows that H attains its maximum on the boundary, as claimed.

4.5 Existence of approximate and regularizable geodesics

In this subsection we use the a priori estimates of the previous subsections to establish
the existence of weak geodesics in the case nD 4.

Theorem 4.18 Given u0;u1 2 �
C

2
, there exists f 2C1.M � Œ0; 1�/ with f > 0 and

a smooth solution u.x; t; s; �/W M � Œ0; 1�� Œ0; 1�� .0; �0�!R of G�
sf
.u�/D 0 such

that:

(1) For each � 2 .0; �0�, u� D u. � ; � ; � ; �/ satisfies

u�.x; 0; s/D u0.x/; u�.x; 1; s/D u1.x/:

(2) There is a constant C > 0, independent of � , such that

ju�jC jru�jC j.u�/t jC �fjr
2u�jC jr.u�/t jC j.u�/t t jg � C:

Proof As the argument follows standard lines we provide only a sketch. Fix some
0 < �0 < 1, then choose an arbitrary 0 < � < �0 . First we observe that it follows
from [36, Proposition 3] that the path ut WD tu1C .1� t/u0 lies in �C

2
. Moreover,

there exists some constant ƒ for which wt WD ut Cƒt.t � 1/ satisfies E�
u 2 �

C

2
. Let

f WDˆ�.w/, and set

I D fs 2 Œ0; 1� W there is a u 2 C 4;˛
\�C

2
that solves (?�;f )g:

By construction, 1 2 I .

To verify that I is open, it suffices to study the linearized equation; ie given  2
C1.M � Œ0; 1�/, we need to solve for some s 2 I the equation

Lu�. � ; � ;s/� D  

with � satisfying Dirichlet boundary conditions. The solvability of this linear problem
follows from [16, Theorem 6.13].
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We claim that I is closed: Let fui D usi
g be a sequence of admissible solutions with

si � s0 . The preceding a priori estimates imply there is a constant C (independent
of � ) such that

jui jC jrui jC j.ui/t jC �fj.ui/t t jC j.rui/t jC jr
2ui jg � C:

To obtain higher-order regularity, we need to verify the concavity of the operator.
Observe that the equation can be rewritten as

log
�
.1C �/ut t�2.Au/� hT1.Au/;rut ˝rut i

�
D f(4-24)

for some smooth positive function f . This is a concave elliptic operator in the spacetime
Hessian of u.2 Thus by Evans [14] and Krylov [23] we conclude there is a constant
C D C.�; f / such that

kuikC 2;˛ � C:

Applying the Schauder estimates we obtain bounds on derivatives of all orders, and it
follows that the set I is closed. Since I is open, closed and nonempty, it follows that
I D Œ0; 1�. The theorem follows.

Definition 4.19 Given u0;u1 2�
C

k
, we say a one-parameter family of C 1;1 functions

u�.x; t/W M � Œ0; 1�!R is an �–geodesic from u0 to u1 if

u�.x; 0/D u0.x/; u�.x; 1; s/D u1.x/; G�0.u�/D 0:

We furthermore will say that it is a regularizable �–geodesic if there exists f0 2

C1.M � Œ0; 1�/ with f0 > 0 and a smooth function u.x; t; s/W M � Œ0; 1�� Œ0; 1�!R

with the following properties:

(i) For each s 2 Œ0; 1�, u. � ; � ; s/ satisfies

u.x; 0; s/D u0.x/; u.x; 1; s/D u1.x/; Gsf0
.u/D 0:

(ii) There is a constant C > 0, independent of � , such that

ju�jC jru�jC j.u�/t jC �fjr
2u�jC jr.u�/t jC j.u�/t t jg � C:

(iii) One has that u.x; t; s/! u.x; t/ in the weak C 1;1 topology as s! 0.
2 An earlier draft of this paper noted that the formulation of Proposition 4.1 expressed the equation as

a “�2 –equation”, and claimed that convexity of �1=2
2

thus sufficed to apply the Evans–Krylov regularity.
This is false since the left-hand side of (4-2) is �2 of a nonlinear combination of second derivatives.
Nonetheless, (4-24) is convex, as was shown by He [22, Theorem 4.1]. We thank the referee for pointing
out this problem, and Weiyong He for correcting it.
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Definition 4.20 Given u0;u1 2 �
C

k
, we say a one-parameter family of C 1 functions

u.x; t/ is a regularizable geodesic from u0 to u1 if there exists f0 2 C1.M � Œ0; 1�/

with f0 > 0 and a smooth function u.x; t; s; �/W M � Œ0; 1�� Œ0; 1�� Œ0; �0�!R with
the following properties:

(i) For each � 2 Œ0; �0/, u� D u. � ; � ; � ; �/ satisfies

u�.x; 0; s/D u0.x/; u�.x; 1; s/D u1.x/; Gsf0
.u�/D 0:

(ii) There is a constant C > 0, independent of � , such that

ju�jC jru�jC j.u�/t jC �fjr
2u�jC jr.u�/t jC j.u�/t t jg � C:

(iii) For each 0< ˛ < 1, u�! u in C 0;˛ as �; s! 0.

We can now show existence and uniqueness of a regularizable geodesic connecting any
two points in �C . The key issue for uniqueness is a comparison lemma.

Lemma 4.21 Suppose u; zu 2 C1 are admissible and satisfy

G�f1
.u/D 0; G�f2

.zu/D 0;

where f1 � f2 . Assume further that on the boundary,

u.x; 0/D zu.x; 0/; u.x; 1/D zu.x; 1/:

Then, on M � Œ0; 1�,
u.x; t/� zu.x; t/:

We remark here also that the Lemma 4.21 can be used to exhibit uniqueness for solutions
of the equation G�

0
.u/D 0.

Corollary 4.22 Given u0;u1 2 �
C

k
, there exists a unique �–geodesic from u0 to u1 .

Proof Let u.x; t; �/ and f be the data guaranteed by Theorem 4.18. Due to the a
priori estimates, by Arzela–Ascoli there exists a C 1;1 limit as s! 0. By definition
this is an �–geodesic. Now suppose zu is another regularizable geodesic connecting
u0 to u1 , with regularization zu.x; t; �/ and auxiliary function Qf . Fixing some ı > 0,
for sufficiently small � > 0 Lemma 4.21 implies that u.x; t; �/� zu.x; t; ı/. Since the
convergence is in C 0;˛ , sending �! 0 yields u.x; t/� zu.x; t; ı/. We can now send
ı! 0 to obtain u.x; t/� zu.x; t/. Since the roles of u and zu are interchangeable in
that argument, it follows that u.x; t/D zu.x; t/.

Corollary 4.23 Given u0;u1 2 �
C

k
, there exists a unique regularizable geodesic from

u0 to u1 .
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Proof Let u.x; t; �/ and f be the data guaranteed by Theorem 4.18. Due to the
a priori estimates, by Arzela–Ascoli there exists a C 0;˛ limit as both � ! 0 and
s ! 0. By definition this is a regularizable geodesic. Now suppose zu is another
regularizable geodesic connecting u0 to u1 , with regularization zu.x; t; �/ and auxiliary
function Qf . Fixing some ı > 0, for sufficiently small � > 0 Lemma 4.21 implies
that u.x; t; �/ � zu.x; t; ı/. Since the convergence is in C 0;˛ , sending �! 0 yields
u.x; t/� zu.x; t; ı/. We can now send ı!0 to obtain u.x; t/� zu.x; t/. Since the roles
of u and zu are interchangeable in that argument, it follows that u.x; t/D zu.x; t/.

5 Smoothing via Guan–Wang flow

In this section we develop a sharper picture (Theorem 5.13) of the short-time smoothing
properties of a parabolic flow introduced by Guan and Wang [19]. This is used in the
proof of Theorem 1.5 to smooth the approximate geodesics so that we can take strong
limits to obtain a curve of critical points for F connecting any two given critical points.

In the first subsection we will derive a series of formulas for the evolution of various
quantities. Since we will be quoting some of the formulas from the previous section,
we will state these formulas for general dimensions. In the second subsection, where
we derive some short-time estimates, we will specialize to the case nD 4 and k D 2.

First, we recall the definition of the flow introduced in [19]:

@

@t
uD log �k.g

�1
u Au/�V �1

u

Z
M

log �k.g
�1
u Au/ dVg:(5-1)

For technical simplicity we will instead study an unnormalized flow

(5-2) @

@t
uD log �k.g

�1
u Au/D log �k.Au/C 2ku:

As we will be able to control the size of u along this flow, the renormalizing term
will only change u by a controlled constant, and have no effect on the estimates.
A fundamental property of the flow which we will exploit is monotonicity of the
functional F.

Lemma 5.1 Given a solution u to (5-1), one has

d

dt
F Œu�� 0:

Proof This is immediate from the flow equation (5-1) and the formula (3-13).
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5.1 Evolution equations

We remark that when the dimension n is greater than 4, Guan and Wang assumed the
manifold was locally conformally flat. For the evolutionary formulas we are interested
in this assumption will not be necessary.

Definition 5.2 Given an admissible solution u to (5-2), define

Lf D �k.Au/
�1
hTk�1.Au/;r

2f Cru˝rf Crf ˝ru� hru;rf igi;

H D
@

@t
�L;

where the derivatives and inner products are with respect to g (the fixed background
metric).

Lemma 5.3 Let u be a solution to (5-2). Then

HuD log �k.Au/� kC �k.Au/
�1
˝
Tk�1.Au/;A�ru˝ruC 1

2
jruj2g

˛
C 2ku:

Proof We directly compute

LuD �k.Au/
�1
hTk�1.Au/;r

2uC 2ru˝ru� jruj2gi

D �k.Au/
�1
˝
Tk�1.Au/;Au�ACru˝ru� 1

2
jruj2g

˛
D kC �k.Au/

�1
˝
Tk�1.Au/;�ACru˝ru� 1

2
jruj2g

˛
:

Combining this with (5-2) yields the result.

Lemma 5.4 Let u be a solution to (5-2) and � 2R. Then

He�u
D �e�u

�
log �k.Au/C 2ku� k

C �k.Au/
�1
˝
Tk�1.Au/;A� .1C�/ru˝ruC 1

2
jruj2g

˛�
:

Proof Note
@

@t
.e�u/D �e�u.log �k.Au/C 2ku/:

Also,

Le�u
D �k.Au/

�1
hTk�1.Au/; �e�u

r
2uC�2e�u

ru˝ruC 2�e�u
ru˝ru

��e�u
jruj2gi
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D �k.Au/
�1
˝
Tk�1.Au/; �e�u

�
Au�A�ru˝ruC 1

2
jruj2g

�
C�.�C 2/e�u

ru˝ru��e�u
jruj2g

˛
D �e�u�k.Au/

�1
˝
Tk�1.Au/;Au�AC .�C 1/ru˝ru� 1

2
jruj2g

˛
D �e�u�k.Au/

�1
˝
Tk�1.Au/;�AC .�C 1/ru˝ru� 1

2
jruj2g

˛
C�ke�u:

Therefore,

He�u
D
@

@t
.e�u/�Le�u

D �e�u
�
log �k.Au/C 2ku� k

C �k.Au/
�1
˝
Tk�1.Au/;A� .1C�/ru˝ruC 1

2
jruj2g

˛�
:

Lemma 5.5 Given a solution u to (5-2), one has

H jruj2 D 2�k.Au/
�1Tk�1.Au/

pq
f�rirpurirquCO.jruj2C 1/gC 4kjruj2:

Proof We compute

@

@t
riuDri log �k.Au/C2kriu

D �k.Au/
�1
hTk�1.Au/;riAuiC2kriu

D�k.Au/
�1Tk�1.Au/

pq
˚
riApqCrirprquC2rirpurqu�rirj urj ugpq

	
C2kriu

D �k.Au/
�1Tk�1.Au/

pq

�
˚
rprqriuC2rirpurqu�rirj urj ugpqC.rACRm�ru/ipq

	
C2kriu;

hence
@

@t
jruj2 D 2�k.Au/

�1Tk�1.Au/
pq

�
˚
rprqriuriuC 2rirpurquriu�rirj urj uriugpq

C Œ.rACRm�ru/�ru�pq

	
C 4kjruj2:

Also,

Ljruj2 D 2�k.Au/
�1Tk�1.Au/

pq
˚
rpriurqriuCrprqriuriu

C 2rirpurquriu�rirj urj uriugpq

	
:
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It follows that
@

@t
jruj2

DLjruj2C 2�k.Au/
�1Tk�1.Au/

pq
f�rpriurqriuC Œ.rACRm�ru/�ru�pqg

C 4kjruj2;

which implies the result.

Corollary 5.6 Given a solution u to (5-2), one has

(5-3) H.e�4kt
jruj2/

D 2e�4kt�k.Au/
�1Tk�1.Au/

pq
f�rirpurirquCO.jruj2C 1/g:

For the following lemma, for an n� n symmetric matrix r D rij we write

F.r/D log �k.r/;

and denote derivatives of F with respect to the entries of r by

@

@rpq
F.r/D F.r/pq;

@2

@rpq@rrs
F.r/D F.r/pq;rs:

Lemma 5.7 Given a solution u to (5-2), one has

H�uD Fpq;rs
ri.Au/pqri.Au/rs

C �k.Au/
�1
˝
Tk�1.Au/ij ; 2rirpurjrpu� jr2uj2gij

CO.jr2ujC jruj2C 1/
˛
:

Proof We compute

� log �k.Au/Dri ŒFpq
ri.Au/pq �D Fpq;rs

ri.Au/pqri.Au/rsCFpq�.Au/pq:

Combining this with our prior calculation of �Au (4-14) yields

@

@t
�uD� log �k.Au/C 2k�u

D Fpq;rs
ri.Au/pqri.Au/rsC �k.Au/

�1Tk�1.Au/
pq.�Au/pqC 2k�u

D Fpq;rs
ri.Au/pqri.Au/rs

C �k.Au/
�1Tk�1.Au/

pq

�
˚
rprq.�u/Crp�urquCrpurq�uC2rpr`urqr`u�jr

2uj2gpq

� hru;r�uigpqCO.jr2ujC jruj2C 1/
	

C 2k�u
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DL.�u/CFpq;rs
ri.Au/pqri.Au/rs

C �k.Au/
�1Tk�1.Au/

pq

� f2rpr`urqr`u� jr
2uj2gpqCO.jr2ujC jruj2C 1/g;

and the result follows.

5.2 Estimates

In this section we specialize to the case nD 4 and k D 2, and use the evolutionary
formulas from the preceding subsection to derive some short-time smoothing estimates.
We begin with a standard result:

Lemma 5.8 Let .M 4;g/ be a compact Riemannian manifold such that g 2 �C
2

.

(i) Given u0 2 �
C

2
, there exists a solution u of (5-2) on some small time interval

Œ0; ��, where � > 0 depends on ju0jC 4;˛ .

(ii) If Œ0;T / is the maximal time interval on which the solution exists and T <1,
then

lim sup
t!T

max
M
fjlog �2.Au/jC jujC jrujC jr2ujg. � ; t/D1:

Proof Part (i) appears in Proposition 3 of [19]. Although part (ii) is not explicitly
stated, it is implicitly used in Section 3 of [19]; therefore, we provide a brief summary.

Suppose
sup

M�Œ0;T /

fjlog �2.Au/jC jujC jrujC jr2ujg � C:

It then follows that (5-2) is strictly parabolic on Œ0;T / with control over the parabolicity
and the C 1;1 norm of u as t!T . It follows from the Evans–Krylov estimates [14; 23]
that there is a C 2;˛ estimate for u on Œ0;T / which remains controlled as t ! T .
Schauder estimates now imply that for any l and ˛ there are C l;˛ bounds on u on
Œ0;T / which remain controlled as t ! T , which by a standard compactness argument
proves that the solution can be extended beyond time T if T <1.

Proposition 5.9 Suppose u is a smooth solution to (5-2) with nD 4 on Œ0;T � with
T � 1. There is a constant C D C.g/ such that

sup
M�Œ0;T �

juj � C.1Cju0jC 0/:
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Proof At a maximum for u, one has Au � A, and hence �2.Au/ � �2.A/ < C .
By (5-2),

d

dt
max u� C C 4 max u:

Integrating this inequality, we get an upper bound for u. Applying a similar argument
at a minimum of u, we obtain a lower bound.

Proposition 5.10 Suppose u is a smooth solution to (5-2) with nD 4 on Œ0;T � with
T � 1. There is a constant C D C.g; ju0jC 0 ; jru0jC 0/ such that

sup
M�Œ0;T �

jruj � C:

Proof Let

ˆD e�8t
jruj2Cƒe�2u

��t;

where ƒ;� > 0 will be specified later. Combining Corollary 5.6 and Lemma 5.4, and
using the fact that at a maximum of ˆ we have Hˆ� 0, it follows that

0�Hˆ

D 2�2.Au/
�1T1.Au/

pq

�
˚
�e�8t

rirpurirquCe�8tO.1Cjruj2/�ƒe�2u
�
rpurquC1

2
jruj2gpq

�	
�2ƒe�2uŒlog �2.Au/C4u�2C�2.Au/

�1
hT1.Au/;Ai���

D I1CI2��:

We can estimate the terms in braces in I1 by

�e�8t
rirpurirquC e�8tO.1Cjruj2/�ƒe�2u

�
rpurquC 1

2
jruj2gpq

�
�
˚
C C

�
C � 1

2
ƒe�2u

�
jruj2

	
gpq:

By Proposition 5.9, on the time interval under consideration we have a uniform bound
on juj depending only on ju0jC 0 , hence, if ƒ� 1 is chosen large enough,

C C
�
C � 1

2
ƒe�2u

�
jruj2 � C � jruj2:

Again using that juj is controlled, at a sufficiently large maximum of ˆ one has that
jruj must itself be arbitrarily large, thus at a sufficiently large maximum of ˆ one has

I1 � 0:
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To estimate I2 , we first consider the case where �2.Au/ � 1. Then log �2.Au/ � 0

and the remaining terms in brackets are either bounded or nonnegative, hence

(5-4) I2��� C.ƒ;max juj/��� 0

if � is chosen large enough with respect to ju0jC 0 . On the other hand, using Lemma 2.6
we see that

�2.Au/
�1
hT1.Au/;Ai � �2.Au/

�1�2.Au/
1
2�2.A/

1
2 D

�2.A/
1
2

�2.Au/
1
2

:

It follows that there is a small constant ıD ı.�2.A// such that if 0<�2.Au/� ı , then

log �2.Au/C �2.Au/
�1
hT1.Au/;Ai � 0:

Then, arguing as we did in the case where �2.Au/� 1, we can choose � large enough
to achieve (5-4) again. Finally, in the intermediate range ı � �2.Au/� 1, all the terms
in the brackets in I2 are bounded and nonpositive, and we again conclude that (5-4)
holds once � is chosen large enough. It follows that Hˆ� 0, and the result follows
from the maximum principle.

Proposition 5.11 Suppose u is a solution to (5-2) with nD 4 on Œ0;T � with T � 1.
There exists a constant C D C.ju0jC 0/ such that for all t 2 Œ0;T �, one has

t jlog �2.Au/j � C:

Proof We first note that by Proposition 5.9,

sup
M�Œ0;T �

juj �N;(5-5)

where N DN.ju0jC 0/.

Next, by the evolution equations above,

@

@t
log �2.Au/

D �2.Au/
�1
D
T1.Au/;

@

@t
Au

E
D �2.Au/

�1
˝
T1.Au/;r

2 log �2.Au/Cru˝r log �2.Au/Cr log �2.Au/˝ru

� hru;r log �2.Au/igC 4r2uC 8ru˝ru� 4jruj2g
˛

DL.log �2.Au//C 4�2.Au/
�1
hT1.Au/;r

2uC 2ru˝ru� jruj2gi

DL.log �2.Au//C 4�2.Au/
�1
˝
T1.Au/;Au�ACru˝ru� 1

2
jruj2g

˛
DL.log �2.Au//C 8C 4�2.Au/

�1
˝
T1.Au/;�ACru˝ru� 1

2
jruj2g

˛
;
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hence

H.log �2.Au//D 8C 4�2.Au/
�1
˝
T1.Au/;�ACru˝ru� 1

2
jruj2g

˛
:(5-6)

Set
ˆ WD t log �2.Au/Cƒe�2u

��t:

We will show that by choosing ƒ;�� 1 sufficiently large (depending on N ), Hˆ� 0.
This will give an upper bound on ˆ depending only on the initial C 0 –norm of u.

To begin, we combine (5-6) with Lemma 5.4 to get

(5-7) HˆD��C 8t C 4ƒ.1� 2u/e�2u
C .1� 2ƒe�2u/ log �2.Au/

C�2.Au/
�1
˝
T1.Au/;�.4tC2ƒe�2u/AC.4t�2ƒe�2u/ru˝ru

� .2t Cƒe�2u/jruj2g
˛
:

By choosing ƒ large enough (depending on the constant N in (5-5)) we may assume
the coefficient of the log term satisfies

1� 2ƒe�2u
� �1:(5-8)

For t small (depending on N and ƒ) the coefficients of the gradient terms in (5-7) are
also nonpositive, so we have

(5-9) Hˆ� ��C 8t C 4ƒ.1� 2u/e�2u
C .1� 2ƒe�2u/ log �2.Au/

� .4t C 2ƒe�2u/�2.Au/
�1
hT1.Au/;Ai:

If �� 1 is chosen large enough, the first three terms on the right-hand side of (5-7)
can be bounded above by ��

2
, and we conclude

(5-10) Hˆ��
�

2
C.1�2ƒe�2u/ log �2.Au/�.4tC2ƒe�2u/�2.Au/

�1
hT1.Au/;Ai:

By Lemma 2.6 we have

�2.Au/
�1
hT1.Au/;Ai � �2.Au/

�1Œ4�2.Au/
1
2�2.A/

1
2 �� ı�2.Au/

� 1
2 > 0;

hence

�.4t C 2ƒe�2u/�2.Au/
�1
hT1.Au/;Ai � �C1�2.Au/

� 1
2 :(5-11)

If �2.Au/ � 1, it follows from (5-8), (5-10) and (5-11) that Hˆ � 0. On the other
hand, if �2.Au/ < 1, then

Hˆ� �
�

2
� log �2.Au/�C1�2.Au/

� 1
2 ;
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and by choosing �� 1 large enough (depending only on C1 ) once again we have
Hˆ� 0.

To obtain a lower bound for log �2.Au/, we consider

ẑ WD �t log �2.Au/Cƒe�2u
��t;

and apply a similar argument. We will omit the details.

Proposition 5.12 Suppose u is a solution to (5-2) with nD 4 on Œ0;T � with T � 1.
There exists a constant C D C.ju0jC 0 ; ju0jC 1/ such that for all t 2 Œ0;T �, one has

t�u� C:

Proof By Proposition 5.10, there is a ƒDƒ.ju0jC 0 ; ju0jC 1/ such that

sup
M�Œ0;T �

fjruj2Cjujg �ƒ:

Let
ˆD t�uCjruj2:

A direct calculation using Lemmas 5.5 and 5.7 and some elementary estimates yields

(5-12) HˆD�uC tFpq;rs
ri.Au/pqri.Au/rs

C �2.Au/
�1T1.Au/

pq
˚
2.t � 1/rirpurirqu� t jr2uj2gpq

CO.t jr2ujC jruj2C 1/
	
:

If ˆ attains a large space-time maximum, say ˆ� B � 2A, then

t�u� B �A� 1
2
B;

hence

t jr2uj2 �
B2

16t
:

Therefore, if t � 1, the terms in braces in (5-12) can be estimated as

2.t � 1/rirpurirqu� t jr2uj2gpqCO.t jr2ujC jruj2C 1/

� f�t jr2uj2CC t jr2ujCC.A/ggpq

�

n
�

t

2
jr

2uj2CC 0
o
gpq

�

n
�

B2

32t
CC 0

o
gpg

� 0
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if B is large enough. Thus we conclude Hˆ < 0 at a sufficiently large maximum,
proving the result.

Theorem 5.13 Let .M 4;g/ be a compact Riemannian manifold such that g 2 �C
2

.
Given u0 2 �

C

2
, there exists C D C.ju0j; jru0j/ such that the solution to (5-1) with

initial condition u0 exists on Œ0; 1� and moreover satisfies

�C � t log �2.Au/� C; �C ��u�
C

t
:(5-13)

Furthermore, choosing l 2 N and 0 < ˛ < 1, there exists C D C.ju0j; jru0j; l; ˛/

such that
ju1jC l;˛ � C:

Proof By Lemma 5.8 there is a solution u of (5-2) on some small time interval
Œ0; ��, where � depends on ju0jC 4;˛ . We now argue that the solution can be extended
smoothly to Œ0; 1�. Suppose �� T � 1 is the maximal smooth existence time of the
flow. By Propositions 5.9 and 5.10, we have

sup
M�Œ0;T /

fjujC jrujg � C.ju0jC 0 ; ju0jC 1/:

In addition, by Propositions 5.11 and 5.12 the estimates (5-13) hold on Œ0;T /, where
the constant is C D C.ju0jC 0 ; ju0jC 1/.

By Lemma 5.8, if T � 1, we must have

lim sup
t!T

max
M
fjlog �2.Au/jC jr

2ujg. � ; t/j D1:(5-14)

However, since u 2 �C
2

it follows that

jr
2uj � C.1Cjruj2Cj�uj/;

which combined with the estimates in (5-13) will contradict (5-14). It follows that
T > 1.

Remark 5.14 The proof above could be used to show long-time existence of the
solution to (5-2), but the estimates of Propositions 5.9 and 5.10 degenerate as time
approaches infinity, and thus one would not obtain convergence with these estimates.
The short-time existence statement, together with a smoothing effect which is controlled
by the C 1 norm of the smooth initial data, is a crucial tool in smoothing approximate
geodesics to obtain Theorem 1.5.
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6 Uniqueness of solutions to the �2–Yamabe problem

In this section we combine the previous results to establish Theorem 1.5. As described
in the introduction, the proof consists of a few main steps. In particular, we use
Theorem 4.18 to connect any two critical points for F by an �–geodesic. Applying
the geodesic convexity of F we obtain that the curve must consist of near-minimizers
for F. We then smooth this approximate geodesic via Theorem 5.13. Taking the limit as
�! 0 of these smoothed paths yields a nontrivial one-parameter family of minimizers
of F. Using our knowledge of the geodesic convexity of F we can show that this can
only happen if the background conformal class is ŒgS4 � and the endpoints of the path
are round metrics. Note that, unlike the Kähler setting, we are unable to show that the
approximate geodesics converge directly to a nontrivial smooth geodesic due to the
lack of stronger regularity results for the geodesics.

Lemma 6.1 Given two admissible critical points u0 and u1 of F, one has F Œu0�D

F Œu1�, and F Œu��F Œu0� for all admissible u. Moreover, given f and uDu.x; t; s; �/,
the approximate geodesics given by Theorem 4.18, one has, for any t 2 Œ0; 1�,

lim
s;�!0

F Œu. � ; t; s; �/�D F Œu0�:

Proof Fix f , and let u D u.x; t; s; �/ be the approximate geodesics guaranteed
by Theorem 4.18, connecting u0 and u1 . To begin we repeat the calculation of
Proposition 3.16 for these paths. Fix some s and � and compute

d2

dt2
F Œu�D

d

dt

Z
M

ut Œ��2.g
�1
u Au/Cx�� dVu

D�

Z
M

Œut t�2.g
�1
u Au/Cut hT1.g

�1
u Au/;r

2ut i� dVu

C �

Z
M

�
ut tV

�1
u CV �2

u ut

�Z
M

4utdVu

�
� 4V �1

u u2
t

�
dVu

D

Z
M

Œ�ut t�2.g
�1
u Au/� sf � dVuC �V �1

u

Z
M

�
1

�2.g�1
u Au/

sf � �ut t

�
dVu

C �V �1
u

Z
M

�
1

�2.A/
hT1.g

�1
u Au/;rut ˝rut i

� 4

�Z
M

u2
t dVu�V �1

u

�Z
M

utdVu

�2 ��
dVu:
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Applying Corollary 3.15 to the above equation yields

d2

dt2
F � �

Z
M

sf dVu� �V �1
u �

Z
M

ut t :(6-1)

Now let us estimate using the uniform C 1 estimate:Z 1

0

Z
M

ut t dVu D

Z 1

0

�
@

@t

Z
M

utdVu�

Z
M

4u2
t

�
dt

D

Z
M

ut dVu

ˇ̌̌̌tD1

tD0

�

Z 1

0

Z
M

4u2
t dVudt

� C:

Hence, integrating the inequality (6-1) and using that u0 is a critical point yields

d

dt
F Œu�.t/D

d

dt
F Œu�.t/�

d

dt
F Œu�.0/D

Z t

0

d2

dt2
F dt � �C.sC �/:

Integrating this in time and sending s; �! 0 yields

F Œu1�� F Œu0�:

But since the roles of u0 and u1 are interchangeable, we obtain F Œu0�D F Œu1�.

Lemma 6.2 Fix .M 4;g/ with Ag 2 �
C

2
, and suppose u 2 C1.M / is an admissible

critical point of F. Then either u is an isolated critical point for F or .M 4;gu/ is
isometric to .S4;gS4/.

Proof Suppose u is not an isolated critical point, so that there exists a sequence of
admissible conformal factors fuig, with ui ¤ u, converging in C1 to u, normalized
so that

R
M .u�ui/ dVu D 0. We aim to use the convexity properties to show that the

minimum eigenvalue of the linear operator

L.�/D�hT1.g
�1
u Au/;r

2
gu
�igu

� 4x��

is zero. Since u satisfies �2.Au/� x� and has unit volume, this lowest eigenvalue is
characterized variationally as

�1 D inf
f�j

R
M � dVuD0g

x�

Z
M

Œ�2.Au/
�1
hT1.Au/;r�˝r�i � 4�2� dVu:

It follows from Corollary 3.15 that �1 � 0, with equality if and only if .M 4;gu/ is
isometric to .S4;gS4/. We suppose that �1 > 0 and derive a contradiction.
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Fix a sufficiently large i that the path

w.x; t/D .1� t/uC tui

consists of admissible functions. Note that wt t D 0, and, by construction,

dF.w. � ; t//

dt
.0/D

dF.w. � ; t//

dt
.1/D 0:

It follows that for any i there exists ti 2 Œ0; 1� such that

d2F.w. � ; t//

dt2
.ti/D 0:

We aim to derive a contradiction from this setup. First we make a second variation
calculation along this path using (1-9) and (2-5), yielding

d2

dt2
F Œw. � ; t/�

D
d

dt

Z
M

wt .��2.g
�1
w Aw/Cx�/ dVw

D

Z
M

wt t .��2.g
�1
w Aw/Cx�/ dVwC

Z
M

Œ�wt hT1.g
�1
w Aw/;r

2wt i � nx�w2
t � dVw

D

Z
M

ŒhT1.g
�1
w Aw/;rwt ˝rwt i � nx�w2

t � dVw

D x�

Z
M

Œ�k.g
�1
w Aw/

�1
hT1.g

�1
w Aw/;rwt ˝rwt i � nw2

t � dVw:

We next evaluate this at ti . Using that wi WDw. � ; ti/ converges to u as i!1 yields

0D

Z
M

ŒhT1.g
�1
wiAwi /;rwt ˝rwt i � nx�w2

t � dVwi

D

Z
M

Œh.1� o.1//T1.g
�1
u0

Au0
/;rwt ˝rwt i � nx�w2

t �.1� o.1// dVu0

D x�

Z
M

Œ�k.g
�1
u0

Au0
/�1
hT1.g

�1
u0

Au0
/;rwt ˝rwt i � nw2

t � dVu0
� o.1/

� x��1

Z
M

w2
t dVu0

� o.1/:

If �1 > 0 then, for sufficiently large i , this implies that wt D ui �uD 0, a contradic-
tion. It follows that �1 D 0, and hence, by Corollary 3.15, .M 4;gu/ is isometric to
.S4;gS4/.

Geometry & Topology, Volume 22 (2018)



3570 Matthew Gursky and Jeffrey Streets

u0

u1

(1) u.x; t; s; �/: nearly a geodesic,

F nearly minimized by Lemma 6.1,

poor regularity

(2) v.x; t; s; �/: unknown

metric properties, F nearly

minimized, strong regularity

via Theorem 5.13

(3) v.x; t/: a path of smooth

F –minimizers with unknown

metric properties

(4) Initial tangent vector to v.x; t/

yields equality in Andrews’ inequality

as in Lemma 6.2

u0 and u1 lie

in the space of

F –minimizers

Figure 1: Scheme of the proof of Theorem 1.5

Proof of Theorem 1.5 See Figure 1 for a schematic outline of the argument. Sup-
pose there exist two distinct solutions u0 and u1 to the �2 –Yamabe problem. Let
u.x; t; s; �/ be the family of approximate geodesics connecting u0 to u1 guaranteed
by Theorem 4.18. Noting the a priori estimates on jujC 0 and jrujC 0 are independent
of s and � , we have by Theorem 5.13 that the solution to the flow equation (5-1)
with initial condition u. � ; t; s; �/ exists on some time interval Œ0; 1�, and moreover the
solution at time 1, denoted by v.x; t; s; �/, has uniform C k;˛ estimates independent
of s and � and stays uniformly in the interior of �C

2
, in the sense that T1.g

�1
v Av/ has

uniform upper and lower bounds. Due to these estimates we can obtain a one-parameter
family of smooth functions v.x; t/D lims;�!0 v.x; t; s; �/ which is continuous in t .
Moreover, by Lemmas 5.1 and 6.1 we see that F Œv. � ; t/� D F Œu0�. It follows that
v. � ; t/ is a nontrivial path of critical points for F through u0 , and hence by Lemma 6.2
we conclude that .M 4;gu/ is isometric to .S4;gS4/.
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