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Contractible stability spaces and faithful braid group actions
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JON WOOLF

We prove that any “finite-type” component of a stability space of a triangulated
category is contractible. The motivating example of such a component is the stability
space of the Calabi—Yau- N category D(I'y Q) associated to an ADE Dynkin quiver.
In addition to showing that this is contractible we prove that the braid group Br(Q)
acts freely upon it by spherical twists, in particular that the spherical twist group
Br(I'y Q) is isomorphic to Br(Q). This generalises the result of Brav—Thomas for
the N = 2 case. Other classes of triangulated categories with finite-type components
in their stability spaces include locally finite triangulated categories with finite-rank
Grothendieck group and discrete derived categories of finite global dimension.
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1 Introduction

1.1 Stability conditions

Spaces of stability conditions on a triangulated category were introduced in Bridge-
land [12], inspired by the work of Michael Douglas on stability of D-branes in string
theory. The construction associates a space Stab(C) of stability conditions to each
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triangulated category C. A stability condition ¢ € Stab(C) consists of a slicing — for
each ¢ € R an abelian subcategory Py (¢) of semistable objects of phase ¢ such that
each object of C can be expressed as an iterated extension of semistable objects — and
a central charge Z: KC — C mapping the Grothendieck group KC linearly to C. The
slicing and charge obey a short list of axioms. The miracle is that the space Stab(C) of
stability conditions is a complex manifold, locally modelled on a linear subspace of
Hom(KC, C); see [12, Theorem 1.2]. It carries commuting actions of C, acting by
rotating phases and rescaling masses, and of the automorphism group Aut(C).

Whilst a number of examples of spaces of stability conditions are known, it is in general
difficult to compute Stab(C). It is widely believed that spaces of stability conditions are
contractible, and this has been verified in certain examples. We give the first proof of
contractibility for certain general classes of triangulated categories satisfying (strong)
finiteness conditions.

Our strategy is to identify general conditions under which there are no “complicated”
stability conditions. One measure of the complexity of a stability condition o is the
phase distribution, ie the set {p € R | Ps(¢) # 0} of phases for which there is a nonzero
semistable object. A good heuristic is that a stability condition with a dense phase
distribution is complicated, whereas one with a discrete phase distribution is much
less so; see Dimitrov and Katzarkov [21] for a precise illustration of this principle.

Another measure of complexity is provided by the properties of the heart of the stability
condition o . This is the full extension-closed subcategory P (0, 1] generated by the
semistable objects with phases in the interval (0, 1]. Tt is the heart of a bounded t-
structure on C and so in particular is an abelian category. From this perspective the
“simplest” stability conditions are those whose heart is Artinian and Noetherian with
finitely many isomorphism class of simple objects; we call these algebraic stability
conditions.

These two measures of complexity are related: if there is at least one algebraic stability
condition then the union C - Staby,(C) of orbits of algebraic stability conditions under
the C—action is the set of stability conditions whose phase distribution is not dense.

We show that the subset Staby,(C) is stratified by real submanifolds, each consisting of
stability conditions for which the heart is fixed and a given subset of its simple objects
have integral phases. Each of these strata is contractible, so the topology of Stabg, (C)
is governed by the combinatorics of adjacencies of strata. It is well known that as one
moves in Stab(C) the associated heart changes by Happel-Reiten—Smalg tilts. The
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combinatorics of tilting is encoded in the poset Tilt(C) of t-structures on C with relation
D < &£ < there is a finite sequence of (left) tilts from D to £. Components of this
poset are in bijection with components of Staby,(C). Corollary 3.13 describes the
precise relationship between Tilt(C) and the stratification of Stab,,(C). Using this
connection we obtain our main theorem:

Theorem A (Lemma 4.3 and Theorem 4.9) Suppose each algebraic t-structure in
some component of Tilt(C) has only finitely many tilts, all of which are algebraic. Then
the corresponding component of Staby,(C) is actually a component of Stab(C), and
moreover is contractible.

We say that a component satisfying the conditions of the theorem has finite type. The
phase distribution of any stability condition in a finite-type component is discrete. It
seems plausible that the converse is true, ie that any component of Stab(C) consisting
entirely of stability conditions with discrete phase distribution is a finite-type component,
but we have not been able to prove this. There are several interesting classes of examples
of finite-type components. We show that:

e If C is a locally finite triangulated category with finite-rank Grothendieck group
(Krause [35], see Section 4.2), then any component of Stab(C) is of finite type.

e If C is a discrete derived category of finite global dimension (see Section 4.3),
then Stab(C) consists of a single finite-type component.

e If C is the bounded derived category D(I'y Q) of finite-dimensional represen-
tations of the Calabi—Yau—/N Ginzburg algebra of a Dynkin quiver Q, for any
N > 2, then the space of stability conditions has finite type.

The bounded derived category D(Q) of a Dynkin quiver Q is both locally finite and
discrete, and the first two classes can be seen as different ways to generalise from these
basic examples. Perhaps surprisingly, until now the space of stability conditions on
D(Q) was only known to be contractible for Q of type A or A,, although it was
known by Qiu [41] that it was simply connected.

Similarly, for discrete derived categories contractibility was known before only for the
simplest case, which was treated in Woolf [51]. The description of the stratification
of Stab(D) for D a discrete derived category, from which contractibility follows, was
obtained independently, and simultaneously with our results, in Broomhead, Pauksztello
and Ploog [18]. They use an alternative algebraic interpretation of the combinatorics
of the stratification in terms of silting subcategories and silting mutation.
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The third class of examples has been the most intensively studied. The space of stability
conditions Stab(I'yy Q) has been identified as a complex space in various cases, in
each of which it is known to be contractible. The connectedness of Stab(I'y Q) is
proven by Adachi, Mizuno and Yang [1] recently for the Dynkin case. For N = 2
and Q a quiver of type A it was first studied in Thomas [48], where the stability
space was shown to be the universal cover of a configuration space of points in the
complex plane. Using different methods Bridgeland [14] identified Stab(I; Q) for
any Dynkin quiver Q as a covering space using a geometric description in terms of
Kleinian singularities. Later Brav and Thomas [11] (see also Qiu [41]) showed that
it was the universal cover in all these cases. When the underlying Dynkin diagram
of Q is Ay, Ikeda [26] shows that Stab(I'y Q) is the universal cover of the space of
degree n + 1 polynomials p,(z) with simple zeros. The central charges are constructed
as periods of the quadratic differential p,(z)N~2dz®2 on P! using the technique of
Bridgeland and Smith [16]. The N = 3 case of this result was obtained previously in
Sutherland [47]. The A, case for arbitrary N, including N = oo, which corresponds
to stability conditions on D(A4,), was treated in Bridgeland, Qiu and Sutherland [15]
using different methods. Besides, Ishii, Ueda and Uehara [27] showed that Stab(I; Q)
is connected, and also that the stability space of the affine counterpart is connected and
simply connected. Our methods do not apply to this latter case. Finally, Qiu [42] proved
the contractibility of the principal component of Stab(I'; Q) for any affine A—type
quivers.

Although there are several interesting classes of examples, the finiteness condition
required for our theorem is strong. For instance it is not satisfied by tame representation-
type quivers such as the Kronecker quiver. Different methods will probably be required
in these cases, because the stratification of the space of algebraic stability conditions
fails to be locally finite and closure-finite, and so is much harder to understand and
utilise. Examples of alternative methods for proving the contractibility of the space of
stability conditions on D(Q) can be found in Okada [38] for the case of the Kronecker
quiver, and Dimitrov and Katzarkov [22] for the case of the acyclic triangular quiver.

1.2 Representations of braid groups
One can associate a braid group Br(Q) to an acyclic quiver Q: it is defined by having

a generator for each vertex, with a braid relation aba = bab between generators
whenever the corresponding vertices are connected by an arrow, and a commuting
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relation ab = ba whenever they are not. For example, the braid group of the 4, quiver
is the standard braid group on n + 1 strands.

This braid group acts on D(I'y @) by spherical twists. The image of Br(Q) in the
group of automorphisms is the Seidel-Thomas braid group Br(I'y Q). Its properties are
closely connected to the topology of Stab(I'y Q), in particular Stab(I'y Q) is simply
connected whenever the Seidel-Thomas braid action on it is faithful.

The Seidel-Thomas braid group originated in the study of Kontsevich’s homological
mirror symmetry. On the symplectic side, Khovanov and Seidel [32] showed that when
0 has type A the category D(I'y Q) can be realised as a subcategory of the derived
Fukaya category of the Milnor fibre of a simple singularity of type 4. Here Br(Q)
acts as (higher) Dehn twists along Lagrangian spheres, and they proved this action is
faithful. On the algebraic geometry side, Seidel and Thomas [45] studied the mirror
counterpart of [32]; here D(I'y Q) can be realised as a subcategory of the bounded
derived category of coherent sheaves of the mirror variety.

The proofs by Khovanov, Seidel and Thomas [32; 45] of faithfulness of the braid
group action depend on the existence of a faithful geometric representation of the braid
group in the mapping class group of a surface. Such faithful actions are known to
exist by Birman and Hilden [8] when Q has type A4, and by Perron and Vannier [39]
when Q has type D. Surprisingly, Wajnryb [50] showed that there is no such faithful
geometric representation of the braid group of type E, so this method of proof cannot
be generalised to all Dynkin quivers. A different approach, relying on the Garside
structure on the braid group Br(Q), was used by Brav and Thomas [11] to prove that
the braid group action on D(I; Q) is faithful for all Dynkin quivers Q. The N =2
case is the simplest because Br(Q) acts transitively on the tilting poset Tilt(I'y Q);
this is not so for N > 3. Nevertheless, we are able to “bootstrap” from the N =2 case
to prove:

Theorem B (Corollaries 5.1,6.12 and 6.14) For any Dynkin quiver Q andany N > 2
the action of Br(Q) on D(I'y Q) is faithtul, and the induced action on Stab(I'y Q)
is free. Moreover, Stab(I'y Q) is contractible and the finite-dimensional complex
manifold Stab(I'y Q)/ Br(Q) is a model for the classifying space of Br(Q).
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2 Preliminaries

Throughout the paper, k is a fixed (not necessarily algebraically closed) field. The
Grothendieck group of an abelian, or triangulated, category C is denoted by KC.

The bounded derived category of the path algebra £ Q of a quiver Q is denoted by D(Q),
and for N > 2 the bounded derived category of finite-dimensional representations of
the Calabi—Yau— N Ginzburg algebra of a Dynkin quiver Q is denoted D(I'ny Q). The
bounded derived category of coherent sheaves on a variety X over k is denoted D(X).
The spaces of locally finite stability conditions on these triangulated categories are
denoted by Stab(Q), by Stab(I'yy Q) and by Stab(X), respectively.

2.1 Posets

Let P be a poset. We denote the closed interval
{rePlp=r=gqj

by [p, ¢], and similarly use the notation (—oo, p] and [p, co) for bounded above and
below intervals. A poset is bounded if it has both a minimal and a maximal element.
A chain of length k in a poset P is a sequence py < --- < pr of elements. One
says g covers p if p < q and there does not exist »r € P with p <r < g¢g. A chain
Po < -+ < pr is said to be unrefinable if p; covers p;_; foreachi =1,..., k. A
maximal chain is an unrefinable chain in which pg is a minimal element and pj a
maximal one. A poset is pure if all maximal chains have the same length; the common
length is then called the length of the poset.

A poset P determines a simplicial set whose k—simplices are the nonstrict chains
po =+ =< pr in P. The classifying space BP of P is the geometric realisation of
this simplicial set. If we view P as a category with objects the elements and a (unique)
morphism p — g whenever p < g, the above simplicial set is the nerve, and BP is the
classifying space of the category in the usual sense; see [43, Section 2].
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Elements p and ¢ are said to be in the same component of P if there is a sequence of
elements p = po, p1,..., px = q such that either p; < p;4+1 or p; > p;4+1 for each
i =0,...,k—1, or equivalently if the 0—simplices corresponding to p and ¢ are in
the same component of the classifying space BP.

The classifying space is a rather crude invariant of P. For example, there is a homeo-
morphism BP = BP°P, and if each finite set of elements has an upper bound (or a lower
bound) then the classifying space BP is contractible by [43, Corollary 2] since P,
considered as a category, is filtered.

2.2 t-structures

We fix some notation. Let C be an additive category. We write ¢ € C to mean c is an
object of C. We will use the term subcategory to mean strict, full subcategory. When
S is a subcategory we write S+ for the subcategory on the objects

{c € C|Hom¢(s,c) =0 for all s € S}

and similarly +S for {c¢ € C | Hom¢(c,s) = 0 forall s € S}. When A and B are
subcategories of C, write .A N B for the subcategory on objects lying in both A and 5.

Suppose C is triangulated, with shift functor [1]. Exact triangles in C will be denoted
either by a — b — ¢ — a[1] or by a diagram

—
a 7 b

~
~
~

c

where the dotted arrow denotes a map ¢ — «[1]. We will always assume that C is
essentially small, so that isomorphism classes of objects form a set. Given sets E;
of objects for i € I let (E; | i € I) denote the ext-closed subcategory generated by
objects isomorphic to an element in some E;. We will use the same notation when
the E; are subcategories of C.

Definition 2.1 A #-structure on a triangulated category C is an ordered pair D =
(D=9, D=1) of subcategories satisfying:

(1) D=[1] < D=0 and D=![-1] < D=!.

(2) Home(d,d’) =0 whenever d € D=° and d’ € D=!.

(3) For any ¢ € C there is an exact triangle d — ¢ — d’ — d[1] with d € D=° and
d' e D=1,
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We write D=" to denote the shift D=°[—n], and so on. The subcategory D=0 is called
the aisle and D=° the couaisle of the t-structure. The intersection D° = D=0 N D=0 of
the aisle and coaisle is an abelian category known as the heart of the t-structure; see [7,
Théoreme 1.3.6] or [28, Section 10.1].

The exact triangle d — ¢ — d’ — d[1] is unique up to isomorphism. The first term
determines a right adjoint to the inclusion D= < C and the last term a left adjoint to
the inclusion D=! < C.

A t-structure D is bounded if any object of C lies in D=~" N D=" for some n € N.
Henceforth, we will assume that all t-structures are bounded.

This has three important consequences. Firstly, a bounded t-structure is completely
determined by its heart; the aisle is recovered as

D=0 = (p°, D! D2, ...).
Secondly, the inclusion D° < C induces an isomorphism KD® 2 KC of Grothendieck
groups. Thirdly, if D° € £° are hearts of bounded t-structures then D = £.

Under our assumption that C is essentially small, there is a set of t-structures on C
(because t-structures correspond to aisles, and the latter are uniquely specified by
certain subsets of the set of isomorphism classes of objects). In contrast, [46] shows
that t-structures on the derived category of all abelian groups (not necessarily finitely
generated) form a proper class.

Definition 2.2 Let T(C) be the poset of bounded t-structures on C, ordered by inclusion
of the aisles. Abusing notation we write D C £ to mean D=0 C £=0,

There is a natural action of Z on T(C) given by shifting: we write D[n] for the
t-structure (D="", D=""*1) Note that D[1] € D, and not vice versa.

2.3 Torsion structures and tilting

The notion of torsion structure, also known as a torsion/torsion-free pair, is an abelian
analogue of that of t-structure; the notions are related by the process of tilting.

Definition 2.3 A rorsion structure on an abelian category A is an ordered pair 7 =
(7=°,7=1) of subcategories satisfying:

(1) Homy(¢,t") = 0 whenever t € 7=° and ' € T=1.
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(2) Forany a € A there is a short exact sequence 0 — ¢ — a — ¢/ — 0 with t € 7=0
and ' € T=1.

The subcategory 7= is given by the torsion theory of T, and T=! by the torsion-free
theory; the motivating example is the subcategories of torsion and torsion-free abelian
groups.

The short exact sequence 0 — ¢ — a — t’ — 0 is unique up to isomorphism. The
first term determines a right adjoint to the inclusion 7= < A and the last term a
left adjoint to the inclusion 7=! < A. It follows that 7=° is closed under factors,
extensions and coproducts and that 7=! is closed under subobjects, extensions and
products. Torsion structures in .4, ordered by inclusion of their torsion theories, form
a poset. It is bounded, with minimal element (0, .4) and maximal element (A, 0).

Proposition 2.4 [25, Proposition 2.1; 6, Theorem 3.1] Let D be a t-structure on a
triangulated category C. Then there is a canonical isomorphism between the poset of
torsion structures in the heart D° and the interval [D, D[—1]]c in T(C) consisting of
t-structures £ with D C £ C D[—1].

Let D be a t-structure on a triangulated category C. It follows from Proposition 2.4
that a torsion structure 7 in the heart D° determines a new t-structure

LyD = (D=0, T="). (T2, D=?))

called the left tilt of D at T, where by definition 7=K = 7=%[—k] and similarly
72k = T=1[1 —k]. The heart of the left tilt is (7=!,7=') and D € L+D < D[-1].
The shifted t-structure RD = L4D[1] is called the right tilt of D at T . It has heart
(7=°,7=% and D[1] € R7D C D. Left and right tilting are inverse to one another:
(7=, 7=1) is a torsion structure on the heart of LD, and right tilting with respect
to this we recover the original t-structure. Similarly, (7=°, 7=°) is a torsion structure
on the heart of R7D, and left tilting with respect to this we return to D. Since there
is a correspondence between bounded t-structures and their hearts we will, where
convenient, speak of the left or right tilt of a heart.

Definition 2.5 Let the tilting poset Tilt(C) be the poset of t-structures with D < & if
and only if there is a finite sequence of left tilts from D to £.

Remark 2.6 An easy induction shows that if D < & then D C £ C D[—k] for some
k eN.
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It follows that the identity on elements is a map of posets Tilt(C) — T(C). By
Proposition 2.4, if D C £ C D[—1] then D < £ <= D C &, so that the map induces an
isomorphism [D, D[—1]]< = [D, D[-1]]c.-

Lemma 2.7 If D and &£ are in the same component of Tilt(C), then F <D, <G
for some F,G. (We do not claim that F and G are the infimum and supremum, simply
that lower and upper bounds exist.)

Proof If D and & are left tilts of some t-structure 7 then they are right tilts of H[—1],
and vice versa. It follows that we can replace an arbitrary sequence of left and right
tilts connecting D with £ by a sequence of left tilts followed by a sequence of right
tilts, or vice versa. O

2.4 Algebraic t-structures

We say an abelian category is algebraic if it is a length category with finitely many
isomorphism classes of simple objects. To spell this out, this means it is both Artinian
and Noetherian, so that every object has a finite composition series. By the Jordan—
Holder theorem, the graded object associated to such a composition series is unique
up to isomorphism. For instance, the module category mod A of a finite-dimensional
algebra A is algebraic.

The classes of the simple objects in an algebraic abelian category form a basis for the
Grothendieck group, which is isomorphic to Z”, where n is the number of such classes.
A t-structure D is algebraic if its heart D° is. If C admits an algebraic t-structure then
the heart of any other t-structure on C which is a length category must also have exactly
n isomorphism classes of simple objects, and therefore must be algebraic, since the
two hearts have isomorphic Grothendieck groups.

Let the algebraic tilting poset Tiltye(C) be the poset consisting of the algebraic t-
structures, with D < £ when £ is obtained from D by a finite sequence of left tilts,
via algebraic t-structures. Clearly

D& = D<& = DCE,

and there is an injective map of posets Tilty, (C) — Tilt(C).

Remark 2.8 There is an alternative algebraic description of Tilt,¢(C) when C =D(A4)
is the bounded derived category of a finite-dimensional algebra A, of finite global
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dimension, over an algebraically closed field. By [18, Lemma 4.1] the poset P (C)
of silting subcategories in C is the subposet of T(C)°P consisting of the algebraic
t-structures, and under this identification silting mutation in P;(C) corresponds to
(admissible) tilting in T(C)°P. Moreover, it follows from [2, Section 2.6] that the partial
order in P (C) is generated by silting mutation, so that D C £ <= D < & for algebraic
D and &. Hence Tilt,(C) = P (C)°P.

If A does not have finite global dimension, then a similar result holds but we must
replace the poset of silting subcategories in C with the analogous poset in the bounded
homotopy category of finitely generated projective modules.

Lemma 2.9 Suppose D and £ are t-structures and that £ is algebraic. Then £ C D[—d]
for some d € N,

Proof Since D is bounded, each simple object s of the heart £° is in D=Ks for some
ks € Z.. Then £° C D=4 for d = maxg{ks} — the maximum exists since there are
finitely many simple objects in £ — and this implies D € D[—d]. o

Remark 2.10 It follows that BT(C) is contractible whenever C admits an algebraic
t-structure. To see this let T (C) for N € N be the subposet on {D | [N] S D}. Note
that BTn (C) is the cone on the vertex corresponding to £[N], hence is contractible.
The above lemma implies that BT(C) is the colimit of the diagram

BTy(C) = BT;(C) < BT,(C) <> ---

of contractible spaces. Hence it is also contractible.

Lemma 2.11 Suppose that D and £ are in the same component of Tilty,(C). Then
F<D,E <G forsome F,G in that component.

Proof This is proved in exactly the same way as Lemma 2.7; note that all t-structures
encountered in the construction will be algebraic. a

It is not clear that the poset T(C) of t-structures is always a lattice — see [10] for an
example in which the naive meet (ie intersection) of t-structures is not itself a t-structure,
and also [17] —and we do not claim that the lower and upper bounds of the previous
lemma are infima or suprema. We do however have the following weaker result.
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Lemma 2.12 Suppose D is algebraic (in fact it suffices for its heart to be a length
category). Then for each D C £, F C D[—1] there is a supremum £V F and an infimum
EANF inT(C).

Proof We construct only the supremum £ V F; the infimum is constructed similarly.
We claim that (£=°, 7=0) is the aisle of a bounded t-structure; it is clear that this

t-structure must then be the supremum in T(C).

Since D C &, F € D[—1] we may work with the corresponding torsion structures 7
and 7= on D%, and show that 7=0 = (7'550, 7}50) is a torsion theory, with associated
torsion-free theory 7=! = 7'521 N T;Zl. Certainly Home (¢, 1") = 0 whenever ¢ € 7=0
and ' € T=1, so it suffices to show that any d € DO sits in a short exact sequence
0—>t—d—1t —0withte7=%and ¢ € T=!. We do this in stages, beginning
with the short exact sequence

0—>ey—>d—ey—0

with eg € 7’550 and 66 € ngl . When we combine this with the short exact sequence
0— fo—ey— fo— 0with foe 7}50 and f; € 7}21 , we obtain a second short
exact sequence
/
0—t—>d— fy—0,

where ¢ is an extension of ey and fy, and hence is in 7=°. Repeat this process, at
each stage using the expression of the third term as an extension via, alternately, the
torsion structures 7g and 7r. This yields successive short exact sequences, each with
middle term d and first term in 7=°, and such that the third term is a quotient of
the third term of the previous sequence. Since D° is a length category this process
must stabilise. It does so when the third term has no subobject in either 7= or 727,
ie when the third term is in 7’521 N7, le = 7=1. This exhibits the required short exact
sequence and completes the proof. a

In general, this cannot be used inductively to show that the components of Tilt,¢(C) are
lattices, since £AF and £V F might not be algebraic. For the remainder of this section
we impose an assumption that guarantees that they are: let Tilt’(C) = Tilt;’lg (C) be a
component of the tilting poset consisting entirely of algebraic t-structures, equivalently

a component of Tilt,e(C) closed under all tilts.

Lemma 2.13 The component Tilt°(C) is a lattice. Infima and suprema in Tilt°(C) are
also infima and suprema in T(C).

Geometry & Topology, Volume 22 (2018)



Contractible stability spaces and faithful braid group actions 3713

Proof Suppose &, F € Tilt°(C). As in Lemma 2.7 we can replace an arbitrary sequence
of left and right tilts connecting £ with F by one consisting of a sequence of left
tilts followed by a sequence of right tilts, or vice versa, but now using the infima and
suprema of Lemma 2.12 at each stage of the process. We can do this since Tilt’(C)
consists entirely of algebraic t-structures, and therefore these infima and suprema are
algebraic. Thus £ and F have upper and lower bounds in Tilt°(C).

We now construct the infimum and supremum. First, convert the sequence of tilts
from £ to F into one of right followed by left tilts by the above process. Then if
&, F € G the same is true for each t-structure along the new sequence. Now convert
this new sequence to one of left tilts followed by right tilts, again by the above process.
Inductively applying Lemma 2.12 shows that each t-structure in the resulting sequence
is still bounded above in T(C) by G. In particular the t-structure #H reached after the
final left tilt, and before the first right tilt, satisfies £, F < ‘H C G. It follows that
H € Tilt°(C) is the supremum & v F of £ and F in T(C).

To complete the proof we need to show that £ v F < G whenever G is in Tilt°(C) and
E,F < G. This follows since EVF K (EVF)IVG=G.

The argument for the infimum is similar. |

Lemma 2.14 The following are equivalent:

(1) Intervals of the form [D, D[—1]]< in Tilt’(C) are finite.

(2) All closed bounded intervals in Tilt°(C) are finite.
Proof Assume that intervals of the form [D, D[—1]]< in Tiltyg(C) are finite. Given
D < & in Tilt°(C) recall that £ C D[—d] for some d € N by Lemma 2.9, so that
D <xE<EVD[-d]=D[-d].

Hence it suffices to show that intervals of the form [D, D[—d]]x are finite. We prove
this by induction on d. The case d =1 is true by assumption. Suppose it is true for
d < k. In diagrams it will be convenient to use the notation £ »> F to mean F is a
left tilt of £.

By definition of Tilt,g(C) any element of the interval [D, D[—k]]x sits in a chain of
tilts D = Dy ~> Dy ~ --- »» D, = D[—k] via algebraic t-structures. This can be
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extended to a diagram

Ty e

D’lwp/zw...wp/

r—1

of algebraic t-structures and tilts, where D} = D[—1], so that Dy ~> D/ as shown, and
D, =D;VvDj_,
existence of the tilt D/, ~> D,. Firstnote that D}, D, < D, so that D), =D, VD] XD,
too. By induction D), _, < D,. Since

is constructed inductively. The only point that requires elaboration is the

Dr[l] < Dr—l < D/

r—1 SD”

Dy is a left tilt of D/,_, by Proposition 2.4.

The existence of the above diagram shows that each element of the interval [D, D[—k]]<
is a right tilt of some element of the interval [D[—1], D[—k]]<. By induction the latter
has only finitely many elements, and by assumption each of these has only finitely
many right tilts. This establishes the first implication. The converse is obvious. O

2.5 Simple tilts

Suppose D is an algebraic t-structure. Then each simple object s € D° determines
two torsion structures on the heart, namely ((s), (s)) and (+(s), (s)). These are,
respectively, minimal and maximal nontrivial torsion structures in D°. We say the left
tilt at the former, and the right tilt at the latter, are simple. We use the abbreviated
notation LD and RD, respectively, for these tilts.

More generally we have the following notions. A torsion structure 7T is hereditary if
t € T=% implies all subobjects of ¢ are in T=C. It is cohereditary if t € T=! implies
all quotients of ¢ are in 7=1. It follows that the aisle of a hereditary torsion, dually
the coaisle of a cohereditary torsion structure, are Serre subcategories. When 7T is a
torsion structure on an algebraic abelian category, the hereditary torsion structures are
those of the form (S, S=+) where the torsion theory S = (51, ..., s) is generated by a
subset of the simple objects. Dually, the cohereditary torsion structures are those of the
form (+S,S). We use the abbreviated notation L gD for the left tilt at (S, S+) and
RgD for the right tilt at (1S, .S). Note that in the notation of the previous section,
LsDANLgD=Lgns'D and LsDV Lg'D = Lgys'D.
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In general a tilt, even a simple tilt, of an algebraic t-structure need not be algebraic.
However, if the heart is rigid, ie the simple objects have no self-extensions, then [33,
Proposition 5.4] shows that the tilted t-structure is also algebraic. We will see later in
Lemma 4.2 that the same holds if the heart has only finitely many isomorphism classes
of indecomposable objects.

2.6 Stability conditions

Let C be a triangulated category and KC be its Grothendieck group. A stability condi-
tion (Z,P) on C [12, Definition 1.1] consists of a group homomorphism Z: KC — C
and full additive subcategories P(¢) of C for each ¢ € R, satisfying:

(1) If ¢ € P(¢) then Z(c) = m(c)exp(imp), where m(c) € R~g.

(2) P(p+1)="P(p)[1] for each ¢ € R.

(3) If c € P(p) and ¢’ € P(¢’) with ¢ > ¢’ then Hom(c,¢") = 0.

(4) For each nonzero object ¢ € C there is a finite collection of triangles

0=cg > C1 > oo > Cp] —> Cp=2C
X l NG l

with b; € P(gp;), where ¢1 > -+ > ¢p.

The homomorphism Z is known as the central charge and the objects of P(¢) are
said to be semistable of phase ¢ . The objects b; are known as the semistable factors
of ¢. We define ¢ (c) = ¢; and ¢~ (¢) = ¢,. The mass of ¢ is defined to be

m(c) =Y 1, m(b;).

For an interval (a,b) € R we set P(a,b) = (c €C | ¢(c) € (a, b)), and similarly for
half-open or closed intervals. Each stability condition o has an associated bounded
t-structure Dy = (P(0, 00), P(—00,0]) with heart DS = P(0, 1]. Conversely, if we
are given a bounded t-structure on C together with a stability function on the heart with
the Harder—Narasimhan property — the abelian analogue of property (4) above — then
this determines a stability condition on C; see [12, Proposition 5.3].

A stability condition is locally finite if we can find € > 0 such that for all t € R the
quasiabelian category P(f —e€,t + €), generated by semistable objects with phases in
(t —e,t 4 €), has finite length; see [12, Definition 5.7]. The set of locally finite stability
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conditions can be topologised so that it is a (possibly infinite-dimensional) complex
manifold, which we denote Stab(C); see [12, Theorem 1.2]. The topology arises from
the (generalised) metric

d(0.7) = sup max(|<p;(c>—¢;<c>|,|¢:<c>—¢:(c>|, log

0#ceC

me(c) )

me(c)

which takes values in [0, oo]. It follows that for fixed 0 # ¢ € C the mass m4(c), and
lower and upper phases ¢ (¢) and @; (¢) are continuous functions Stab(C) — R. The
projection

m: Stab(C) - Hom(KC,C), (Z,P)— Z,
is a local homeomorphism.

The group Aut(C) of auto-equivalences acts continuously on the space Stab(C) of
stability conditions with an automorphism « acting by

(1) (Z,P)—> (Zoa™ !, a(P)).

There is also a smooth right action of the universal cover G of GL;r R. An element
g € G corresponds to a pair (T, 0g), where T is the projection of g to GL;r R under
the covering map and 6g: R — R is an increasing map with 0g(t + 1) = 0(¢) + 1
which induces the same map as T, on the circle R/2Z = R? — {0} /R~ . The action
is given by

) (Z.P) > (T; ' 0 Z, Poby).

(Here we think of the central charge as valued in R2.) This action preserves the
semistable objects, and also preserves the Harder—Narasimhan filtrations of all objects.
The subgroup consisting of pairs with 7" conformal is isomorphic to C with A € C
acting via

(Z,P) — (exp(—imA)Z,P(p + Re X)),

ie by rotating the phases and rescaling the masses of semistable objects. This action is
free and preserves the metric. The action of 1 € C corresponds to the action of the
shift automorphism [1].

Lemma 2.15 For any g € G the t-structures Dg., and D, are related by a finite
sequence of tilts.
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Proof This is simple to verify directly by considering the way in which G acts on
phases. Alternatively, note that G is connected, so that 0 and g o are in the same
component of Stab(C). Hence by [52, Corollary 5.2] the t-structures D, and D; are
related by a finite sequence of tilts. a

2.7 Cellular stratified spaces

A CW-—cellular stratified space, in the sense of [23], is a generalisation of a CW-
complex in which noncompact cells are permitted. In Section 3 we will show that
(parts of) stability spaces have this structure, and use it to show their contractibility.
Here, we recall the definitions and results we will require.

A k—cell structure on a subspace e of a topological space X is a continuous map
o: D — X, where int(Dk) C D C D¥ is a subset of the k—dimensional disk DX c R¥
containing the interior, such that «(D) = e, the restriction of o to int(D¥) is a
homeomorphism onto e, and o does not extend to a map with these properties defined
on any larger subset of D . We refer to e as a cell and to « as a characteristic map
for e.

Definition 2.16 A cellular stratification of a topological space X consists of a filtration
F=X_1CXoCX;C---CX,C---

by subspaces, with X' = ey Xk, such that Xg — X1 = | lycp, ex is a disjoint
union of k—cells for each k € N. A CW-cellular stratification is a cellular stratification
satisfying two further conditions:

(1) The stratification is closure-finite; ie the boundary de = e — e of any k—cell is
contained in a union of finitely many lower-dimensional cells.

(2) X has the weak topology determined by the closures e of the cells in the
stratification; ie a subset 4 of X is closed if, and only if, its intersection with
each e is closed.

When the domain of each characteristic map is the entire disk, then a CW—cellular
stratification is nothing but a CW—complex structure on X . Although the collection of
cells and characteristic maps is part of the data of a cellular stratified space we will
suppress it from our notation for ease of reading. Since we never consider more than
one stratification of any given topological space there is no possibility for confusion.
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A cellular stratification is said to be regular if each characteristic map is a homeomor-
phism, and normal if the boundary of each cell is a union of lower-dimensional cells.
A regular, normal cellular stratification induces cellular stratifications on the domain
of the characteristic map of each of its cells. Finally, we say a CW-cellular strat-
ification is regular and totally normal if it is regular, normal, and in addition, for
each cell e) with characteristic map o) : D; — X, the induced cellular stratification
of Dy, = D) — int(Dk ) extends to a regular CW—complex structure on dD*. (The
definition of totally normal CW—cellular stratification in [23] is more subtle, as it
handles the nonregular case too, but it reduces to the above for regular stratifications.
A regular CW—complex is totally normal, but regularity alone does not even entail
normality for a CW—cellular stratified space.) Any union of strata in a regular, totally
normal CW—cellular stratified space is itself a regular, totally normal CW-cellular
stratified space.

A normal cellular stratified space X has a poset of strata (or face poset) P(X) whose
elements are the cells, and where ¢) <e, < ¢) Ce,. When X is a regular CW-
complex there is a homeomorphism from the classifying space BP(X) to X . More
generally, we have:

Theorem 2.17 [23, Theorem 2.50] Suppose X is a regular, totally normal CW-
cellular stratified space. Then BP(X') embeds in X as a strong deformation retract; in
particular, there is a homotopy equivalence X ~ BP(X).

3 Algebraic stability conditions
We say a stability condition o is algebraic if the corresponding t-structure Dy is
algebraic. Let Staby(C) C Stab(C) be the subspace of algebraic stability conditions.

Write Sp = {0 € Stab(C) | Dy = D} for the set of stability conditions with associated
t-structure D. When D is algebraic, a stability condition in Sp is uniquely determined
by a choice of central charge in

3) H_ ={rexp(inf)eC|r >0 and 6 € (0, 1]}

for each simple object in the heart [14, Lemma 5.2]. Hence, in this case, an ordering
of the simple objects determines an isomorphism Sp = (H_)". In particular, if C has
an algebraic t-structure then Stab,,(C) # <.
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The action of Aut(C) on Stab(C) restricts to an action on the subspace Stabg,(C). In
contrast Stab,,(C) need not be preserved by the action of C on Stab(C). The action of
iR C C uniformly rescales the masses of semistable objects; this does not change the
associated t-structure and so preserves Staby,(C). However, R C C acts by rotating
the phases of semistables. Thus the action of A € R alters the t-structure by a finite
sequence of tilts, and can result in a nonalgebraic t-structure. In fact, the union of orbits
C-Stabye(C) consists of those stability conditions o for which (P4 (6, 00), Py (—00, 0])
is an algebraic t-structure for some 6 € R. The choice of 8 = 0 for the associated
t-structure is purely conventional. If we define

Stabf), (C) = {o € Stab(C) | (P5 (6. 00)., Py (=00, 0]) is algebraic}

then there is a commutative diagram

Stabyjg(C) — Stab(C)

| [

Stabf, (C) —— Stab(C)

0
alg

to homeomorphism of the choice of 6 € R, but the way in which it is embedded in
Stab(C) is not.

in which the vertical maps are homeomorphisms. So Stab. (C) is independent up

Lemma 3.1 Suppose Stab,,(C) # &. Then the space of algebraic stability conditions
is contained in the union of full components of Stab(C), ie those components locally
homeomorphic to Hom(KC, C). A stability condition ¢ in a full component of Stab(C)
is algebraic if and only if Py (0,€) = & for some € > 0.

Proof The assumption Staby(C) # @ implies that KC = Z" for some n € N.
It follows from the description of Sp for algebraic D above that any component
containing an algebraic stability condition is full.

Suppose D is algebraic. Then for any o € Sp the simple objects are semistable.
Since there are finitely many simple objects there is one, s say, with minimal phase
<p3E (s) =€ > 0. It follows that P;(0,¢€) = &.

Conversely, suppose Py (0, €) = & for some stability condition o in a full component.
Then the heart Py (0, 1] = Py (€, 1]. Since 1 —€ < 1 we can apply [13, Lemma 4.5] to
deduce that the heart of ¢ is an abelian length category. It follows that the heart has
n simple objects (forming a basis of KC), and hence is algebraic. a
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Lemma 3.2 The interior of Sp is nonempty precisely when D is algebraic.

Proof The explicit description of Sp for algebraic D above shows that the interior is
nonempty in this case. Conversely, suppose D is not algebraic and o € Sp. Then by
Lemma 3.1 there are o —semistable objects of arbitrarily small strictly positive phase.
It follows that the C—orbit through o contains a sequence of stability conditions not
in Sp with limit 0. Hence ¢ is not in the interior of Sp. Since o was arbitrary the
latter must be empty. a

Corollary 3.3 The subset C - Stabyg(C) < Stab(C) is open and, when nonempty,
consists of those stability conditions in full components of Stab(C) for which the
phases of semistable objects are not dense in R.

Proof Suppose Stab,,(C) # @. Then KC = Z" for some n. A stability condition
o € C-Stabyy(C) clearly lies in a component of Stab(C) meeting Stab,s(C), and hence
in a full component. By Lemma 3.1, if o is in a full component then o € C - Staby, (C)
if and only if P, (¢,t 4+ ¢) = & for some ¢ € R and € > 0, equivalently if and only if
the phases of semistable objects are not dense in R.

To see that C - Stabye(C) is open, note that if o € C - Stabyg(C) and d(o, 7) < %6 then
Po (Z + %e, t+ %36) = @ and so 7 € C - Stabyy(C) too. a

Example 3.4 Let X be a smooth complex projective algebraic curve with genus
g(X) > 0. Then the space Stab(X) of stability conditions on the bounded derived
category of coherent sheaves on X is a single orbit of the G —action (2) through
the stability condition with associated heart the coherent sheaves, and central charge
Z(&) =—deg&+irank &; see [12, Theorem 9.1] for g(X) =1 and [37, Theorem 2.7]
for g(X) > 1. It follows from the fact that there are semistable sheaves of any rational
slope when g(X') > 0 that the phases of semistable objects are dense for every stability
condition in Stab(X). Hence Stab,o(D(X)) = @. In fact this is true quite generally,
since for “most” varieties the Grothendieck group K(X) = K(D(X)) is not isomorphic
to Z".

Example 3.5 Let Q be a finite connected quiver, and Stab(Q) the space of stability
conditions on the bounded derived category of its finite-dimensional representations
over an algebraically closed field. When Q has underlying graph of ADE Dynkin type,
the phases of semistable objects form a discrete set [21, Lemma 3.13]; when it has
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extended ADE Dynkin type, the phases either form a discrete set or have accumulation
points ¢ 4+ Z for some ¢t € R (all cases occur) [21, Corollary 3.15]; for any other
acyclic Q there exists a family of stability conditions for which the phases are dense
in some nonempty open interval [21, Proposition 3.32]; and for O with oriented loops
there exist stability conditions for which the phases of semistable objects are dense
in R by [21, Remark 3.33]. It follows that Stabye(Q) = Stab(Q) only in the Dynkin
case; that C - Stabye(Q) = Stab(Q) in the Dynkin or extended Dynkin cases; and that
C - Stabye(Q) # Stab(Q) when Q has oriented loops. For a general acyclic quiver,
we do not know whether C - Stab,;(Q) = Stab(Q) or not.

Remark 3.6 The density of the phases of semistable objects for a stability condition
is an important consideration in other contexts too. Proposition 4.1 of [52] states that
if phases for o are dense in R then the orbit of the universal cover G of GL;‘ (R)
through o is free, and the induced metric on the quotient G -6/C =~ G/C =~ H of the
orbit is half the standard hyperbolic metric.

Lemma 3.7 Suppose there exists a uniform lower bound on the maximal phase gap of
algebraic stability conditions, ie that there exists § > 0 such that for each o € Staby4(C)
there exists ¢ € R with Py (¢ —38,¢+68) = @. Then C-Staby,(C) is closed, and hence
is a union of components of Stab(C).

Proof Suppose that o € C - Stabyg(C) — C - Stab,¢(C). Let 0, — o be a sequence in
C - Staby¢(C) with limit 0. Write (p,jt for (pg; and so on.

Fix € > 0. There exists N € N such that d(o,,0) <€ for n > N. By Corollary 3.3
the phases of semistable objects for o are dense in R. Thus, given ¢ € R, we can
find 6 with |6 — ¢| < € such that Ps(6) # @. So by [52, Section 3] there exists
0 # ¢ € C such that ¢;F(c) — 0. Hence c € Py (0 —€,0 +€) C Py (¢ —2¢, ¢ + 2€).
In particular the latter is nonempty. Since @ is arbitrary we obtain a contradiction by
choosing € < %5. Hence C - Stabyg(C) is closed. a

Example 3.8 Let Stab(P!) be the space of stability conditions on the bounded de-
rived category D(P!) of coherent sheaves on P!. Theorem 1.1 of [38] identifies
Stab(P!) 2 C?2. In particular there is a unique component, and it is full. The category
D(P') is equivalent to the bounded derived category D(/T 1) of finite-dimensional
representations of the Kronecker quiver A;. In particular, Stabg, (P 1) is nonempty.
The Kronecker quiver has extended ADE Dynkin type, so by Example 3.5 the phases of
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semistable objects for any o € Stab(IP!) are either discrete or accumulate at the points
t +Z for some ¢ € R. The subspace Stab(P!)— Stabyje (P1) consists of those stability
conditions with phases accumulating at Z C R. Therefore C - Stabye(P!) = Stab(P!)
and Stabalg(IP’l) is not closed. Neither is it open [51, page 20]: there are convergent
sequences of stability conditions whose phases accumulate at Z such that the phase of
each semistable object in the limiting stability condition is actually in Z.

An explicit analysis of the semistable objects for each stability condition, as in [38],
reveals that there is no lower bound on the maximum phase gap of algebraic stability
conditions, so that whilst this condition is sufficient to ensure C - Staby,(C) = Stab(C),
it is not necessary.

3.1 The stratification of algebraic stability conditions

In this section we define and study a natural stratification of Stab,)s(C) with contractible
strata. Suppose D is an algebraic t-structure on C. Then Sp = (H_)", where n =
rank(KC). For a subset I of the simple objects in the heart D° of D we define a
subset of Stab(C) by

Sp, 1 =10 | D =Dy, ¢5(s) =1 for simple s € D° <= s € I}
={0 | D="Ds, Ps(l) = (1)}
= {0 | D = (Ps(0,00), Ps(—00,0]), L;D = (Ps[0,00), Ps(—00,0))}.

Clearly Sp = (J; Sp,r and there is a decomposition

) Stabue(©) = | J S = (U SD,I)
1

D alg D alg

into strata of the form S ;. A choice of ordering of the simple objects of DO determines
a homeomorphism Sp 2 (H_)" under which the decomposition into strata corresponds
to the apparent decomposition of (H_)" with Sp j = H# R#<Io’ where H is the
strict upper half-plane in C. In particular, each stratum Sp j is contractible.

Consider the closure Sp ; of a stratum. For I € K C {sy,..., s} let
0k Sp,; =1{0 € Sp,1 |ImZ5(s) =0 <= s € K},

so that Sp 1 = | |gx 0k Sp,r (as a set). For example, 9;Sp 1 = Sp,1.
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Lemma 3.9 For any t-structure £, not necessarily algebraic, the intersection Sg N
dk Sp,1 is a union of components of dx Sp. 1, ie the heart of the stability condition
remains constant in each component of 0g Sp, 1. Each such component which lies in
Stab,i(C) is a stratum Sg j for some £ and subset J of the simple objects in £, with
#J =#K.

Proof Suppose 6, — ¢ in Stab(C). Then Py (0) = (0 # ¢ € C | ¢ (c) — 0) by [52,
Section 3]. If 0, € Sp for all n then

Po(0) = ({0 #d €D | ¢ (d) >0}, {0#£d €D | g, (d) — 1}[-1]).
Furthermore, D, is the right tilt of D at the torsion theory
(5) (0#d €D’ ¢, (d) £ 0)=1(0#d €D’ | g (d) - 0).

Now suppose o € g Sp,1 and (o) is a sequence in Sp ; with limit 0. If ¢, (d) — 0
for some 0 # d € D° then Z,(d) — Z,(d) € R~q. Hence d € (K). For d € (K)
there are three possibilities:

(1) ¢F(d)—0and d € Py(0);
(2) ¢Ff(d)—1and d € Py(1);
(3) @, (d)—0, ¢ (d)— 1, and d is not o —semistable.

Since the upper and lower phases of d are continuous in Stab(C), and the possibilities
are distinguished by discrete conditions on the limiting phases, we deduce that the
torsion theory (5) is constant for o in a component of dx Sp r. Hence the component
is contained in S¢ for some t-structure £, and Sg N dg Sp, 1 is a union of components
of dx Sp,r as claimed.

Now suppose o € Sg, s Ndg Sp,1 for some algebraic £. On the one hand, (J) =Py (1)
since 0 € S¢_y, and therefore the triangulated closure of J is Py (Z) = (Ps(¢) |9 € Z).
On the other hand, o € dg Sp,; implies that Py (Z) is also the triangulated closure of
the set K of simple objects. The image of the map on Grothendieck groups induced by
the inclusion Py (Z) < C is therefore ([t] |t € J) = ([s] | s € K). Since the elements
of J are simple objects in the heart of £, and those of K are simple objects in the
heart of D, and both D and £ are algebraic by assumption, this is a free subgroup of
rank #J = #K.

By a similar argument to that used for the first part of this proof,

(0£d eD’| g, (d)— 1)
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is constant for o in a component of dx Sp 7. It follows that P, (0) is constant in a
component. By the first part £ is fixed by the choice of component. The subset J of
simple objects in & is also fixed, as (J) = Py(1) = Py(0)[1]. So each component A
of Stab,g(C) N g Sp,r is contained in some stratum Sg y. The fact that we can
perturb a stability condition by perturbing the charge allows us to deduce that dx Sp_ s
is a codimension-#K submanifold of Stab(C) and that Sg ; is a codimension-#J
submanifold. Since #J = #K the component A must be an open subset of Sg ;. But
directly from the definition of dx Sp ; one sees that the component A is also a closed
subset and, since Sg s is connected, we deduce that A = S¢ ; as required. a

Corollary 3.10 The decomposition (4) of Staby(C) satisfies the frontier condition,
ieif S¢ s N Sp,1 # @ then Sg y € Sp,1. In particular, the closure of each stratum is a
union of lower-dimensional strata. Moreover,

S&JESD,] = 5§DSL1DSLJ8

Proof The frontier condition follows immediately from Lemma 3.9. Suppose that
Se¢.7 € Sp,1, and choose o in S¢ j. Let 0, — o, where 0, € Sp y. Then

D30 =P,(0,00), D% =7Pul0,00), EZ0=Py(0,00), EF°=7P4[0,00).

Since Py (0, 0o0) and P[0, 00) do not vary with n, and the minimal phase ¢ (c) of
any 0 # ¢ € C is continuous in 7,

PU (0’ OO) g Pn (07 OO) g Pn[()a OO) g PO’[O’ OO),

ie ECDC LD C LjE. Since all these t-structures are in the interval between &
and &£[—1], Remark 2.6 implies that E <D < L;D < L ;€. O

Lemma 3.11 Suppose D and £ are algebraic t-structures, and that I and J are subsets
of simple objects in the respective hearts. If € <D < LyD < L ;€ then Sg j € Sp, .

Proof Fix o € S¢ . Since £ <D < L;& we know that D = L7& for some
torsion structure 7 on £°, and moreover that 7=° C (J) = P,(1). Any simple
object of DO lies either in 7=°[—1] or in 7=!. Hence any simple object s of D°
lies in P,[0, 1], and 5 € P, (0) <= s € T=°[—1]. Moreover, if s € I then s[—1] is in
LiD=0C L ;=0 =P,[0,00). Thus s € I = 5 € Py(1).

Since the simple objects of D° form a basis of KC we can perturb ¢ by perturbing
their charges. Given § > 0 we can always make such a perturbation to obtain a stability
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condition 7 with d(o, t) < § for which Z,(s) € HURs for all simple s in D°, and
Z.(s) e R.g < s € P5(0). We can then rotate, ie act by some A € R, to obtain a
stability condition @ with d(t, ) < § such that Z;(s) € H for all simple s in D. We
will prove that w € Sp. Since the perturbation and rotation can be chosen arbitrarily
small it will follow that 0 € Sp. And since s € P, (1) whenever s € I we can refine
this statement to o € @ as claimed.

It remains to prove w € Sp. For this it suffices to show that each simple s in Do
is T—semistable. For then s is w-semistable too, and the choice of Z,, implies that
5 € Py (0, 1]. The hearts of distinct (bounded) t-structures cannot be nested, so this
implies D = D,,, or equivalently @ € Sp as required.

Since & is algebraic Lemma 3.1 guarantees that there is some § > 0 such that
Ps(0,28] = @. Provided d(o, 1) < § we have

P (0, 1] = Py (28, 1] € Pr (8,14 8] € Py (0, 1 + 28] = Py (0, 1].

It follows that the Harder—Narasimhan t—filtration of any e € £% = P, (0,1] is a
filtration by subobjects of e in the abelian category Py (0, 1].

Consider a simple s’ in D° with s/[1] € 7=°. Since 7=° is a torsion theory any
quotient of s'[1] is also in 7=°, in particular the final factor in the Harder—Narasimhan

tfiltration, ¢ say, is in 7=°. Hence t[—1] € D° and [t] = — )_ my[s] € KC, where
the sum is over the simple s in D° and the m; are in N. Since Im Z,(s) > 0 for each
simple s it follows that Im Z;(¢) = — > _mgsIm Z,(s) < 0. Combined with the fact
that 7 is T—semistable with phase in (8, 1 + 8] we have ¢ (s'[1]) = ¢.(¢) > 1. Hence
s' € Pe[1,1468]. But s'[1]€ T=° so Z.(s'[1]) € R~ and therefore s'[1] € P(1), and
in particular is T—semistable.

Now suppose s’ € T=!. Since 7=! is a torsion-free theory in P, (0, 1] any subobject
of s’ is also in 7=!. In contrast, s’ cannot have any proper quotients in 7=": if it did
we would obtain a short exact sequence

0= f—=s5s—>f =0

in P, (0, 1] with £, f’ € T=!. This would also be short exact in D°, contradicting the
fact that s’ is simple. It follows that any proper quotient of s’ is in 7=°. The argument
of the previous paragraph then shows that either s’ is T—semistable (with no proper
semistable quotient), or 5" € P;[1, 1 +§]. But Im Z;(s”) > 0 so the latter is impossible,
and 5" must be t-semistable. This completes the proof. a
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Definition 3.12 Let Int(C) be the poset whose elements are intervals in the poset
Tilt(C) of t-structures of the form [D, L ;D]<, where D is algebraic and [ is a subset
of the simple objects in the heart of D. We order these intervals by inclusion. We do
not assume that L ;D is algebraic.

Corollary 3.13 There is an isomorphism Int(C)°? — P(Stab,,(C)) of posets given
by the correspondence [D, L D)< <> Sp,; . Components of Stabys(C) correspond to
components of Tiltyy(C).

Proof The existence of the isomorphism is direct from Corollary 3.10 and Lemma 3.11.
In particular, components of these posets are in 1-to-1 correspondence. The second
statement follows because components of Stabyg(C) correspond to components of
P (Stab,¢(C)), and components of Int(C) correspond to components of Tilt,(C). O

Remark 3.14 Following Remark 2.8 we note an alternative description of Int(C)
when C = D(A) is the bounded derived category of a finite-dimensional algebra A
over an algebraically closed field, and has finite global dimension. By [18, Lemma 4.1],
Int(C)* U {0} = P, (C) is the poset of silting pairs defined in [18, Section 3], where 0
is a formally adjoined minimal element. Hence P(Stab,(C)) U {6} ~ P,(C) by the
above corollary.

Remark 3.15 If D and £ are not both algebraic then D < £ < D[—1] need not imply
Sp N Se # @; see [51, page 20] for an example. Thus components of Stab,jg(C) may
not correspond to components of Tilt(C). In general we have maps

o Stabalg(C) — 1 Stab(C)

H |

7o Tiltyg (C) — moTilt(C) —— 7T(C)

The bottom row is induced from the maps Tilt,z(C) — Tilt(C) — T(C), the vertical
equality holds by the above corollary, and the vertical map exists because Sp and Sg
being in the same component of Stab(C) implies that D and £ are related by a finite
sequence of tilts [52, Corollary 5.2].

Lemma 3.16 Suppose that the posets Tiltyy(C) = Tilt(C) = T(C) are equal and
nonempty. Then Stab,,(C) = Stab(C) has a single component.
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Proof It is clear that Stab(C) = Staby,(C) # @. Let 0, T € Stab(C).. Since Tilty,(C) =
Tilt(C) the associated t-structures D, and D, are algebraic, so that Dy € D,[— /] for
some j € N by Lemma 2.9. Since Tilty,(C) = T(C) this implies Dy < D[], and
thus D, and Dy are in the same component of Tilty,(C). Hence, by Corollary 3.13,
o and T are in the same component of Stab,,(C) = Stab(C). a

Lemma 3.17 Suppose that C = D(A) for a finite-dimensional algebra A over an
algebraically closed field, with finite global dimension. Then Stab,(C) is connected.
Moreover, any component of Stab(C) other than that containing Stabg,(C) consists
entirely of stability conditions for which the phases of semistable objects are dense in R.

Proof By Remark 2.8 Tilty,(C) is the subposet of T(C) consisting of the algebraic
t-structures. The proof that Stab,e(C) is connected is then the same as that of the
previous result. For the last part note that if ¢ is a stability condition for which the
phases of semistable objects are not dense, then acting on ¢ by some element of C
we obtain an algebraic stability condition. Hence ¢ must be in the unique component
of Stab(C) containing Stab,s(C). a

Remark 3.18 To show that Stab(C) is connected when C = D(A) as in the previous
result it suffices to show that there are no stability conditions for which the phases of
semistable objects are dense. For example, from Example 3.5, and the fact that the
path algebra of an acyclic quiver is a finite-dimensional algebra of global dimension 1,
we conclude that Stab(Q) is connected whenever Q is of ADE Dynkin, or extended
Dynkin, type. (Later we show that Stab(Q) is contractible in the Dynkin case; it was
already known to be simply connected by [41].)

By Remark 3.6, the universal cover G = m/) acts freely on a component consisting
of stability conditions for which the phases are dense. In contrast, it does not act freely
on a component containing algebraic stability conditions since any such contains
stability conditions for which the central charge is real, and these have nontrivial
stabiliser. Hence, the G —action also distinguishes the component containing Stab,;s(C)
from the others, and if there is no component on which G acts freely Stab(C) must be
connected.

Suppose Stab,o(C) # @. Let Bases(KC) be the groupoid whose objects are pairs

consisting of an ordered basis of the free abelian group KC and a subset of this basis,
and whose morphisms are automorphisms relating these bases (so there is precisely one
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morphism in each direction between any two objects; we do not ask that it preserve the
subsets). Fix an ordering of the simple objects in the heart of each algebraic t-structure.
This fixes isomorphisms
~ Tn—#I #1
S’D’I = Hn X R<0.

Regard the poset Int(C) as a category, and let F¢: Int(C) — Bases(KC) be the functor
taking [D, L D]< to the pair consisting of the ordered basis of classes of simple objects
in D and the subset of classes of /. This uniquely specifies F on morphisms.

Proposition 3.19 The functor F¢ determines Staby,(C) up to homeomorphism as a
space over Hom(KC, C).

Proof As sets there is a commutative diagram

B

Stabye(C) > Yo HH xR

Hom(KC, C)

where the map mp j is determined from the pair F¢([D, L D]<) of basis and subset,
and B is defined using the bijections Sp ; = H"™*/ x R*/ . The subsets

—1
ESD=L|D=<L,¢

where U is open in Hom(KC, C), form a base for a topology. With this topology,
is a homeomorphism. To see this note that

IB_IU&J = ( U SD,I) Nz U

E<D<L[D=<L;E
is the intersection of an open subset with an upward-closed union of strata, hence it
is open. So B is continuous. Moreover, all sufficiently small open neighbourhoods
of a point of Staby,(C) have this form, so the bijection 8 is an open map, hence a
homeomorphism. O

A more practical approach is to study the homotopy type of Stab,g(C). In good cases
this is encoded in the poset P (Staby,g(C)) = Int(C)P.

Recall that a stratification is locally finite if any stratum is contained in the closure of
only finitely many other strata, and closure-finite if the closure of each stratum is a
union of finitely many strata.
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Lemma 3.20 The following are equivalent:
(1) The stratification of Stab,¢(C) is locally finite.
(2) The stratification of Staby(C) is closure-finite.
(3) Each interval [D, D[—1]]x in Tiltye(C) is finite.

Proof This follows easily from Corollary 3.13, which states that
SesCSpy < E<D<L/D<LjE.
Thus the size of the interval [D, D[—1]]x is precisely
#{E € Tiltay(C) | Se N Sp # @} = #{E € Tiltwy(C) | Sp N Sepy) # 2}
The result follows because each Sp is a finite union of strata, and each stratum is in

some Sp. O

Proposition 3.21 The space Stab,e(C) of algebraic stability conditions, with the
decomposition into the strata Sp_y, can be given the structure of a regular, normal
cellular stratified space. It is a regular, totally normal CW-cellular stratified space
precisely when Staby¢(C) is locally finite.

Proof First we define a cell structure on Sp ;. Denote the projection onto the
central charge by 7: Stab(C) — Hom(KC, C). Choose a basis for KC and identify
Hom(KC,C) = C" 2 R?" with 2n—dimensional Euclidean space. Note that

SD,I N Stabalg(c) = N(SD,I N Stabalg(c)) < ”(SD,I)
and that 7 (Sp,r) is the real convex closed polyhedral cone
C={Z|ImZ(s)>0fors &I and Im Z(s) =0, Re Z(s) <0 fors e I}

in Hom(KC,C). The projection 7 identifies the stratum Sp ; with the (relative)
interior of C. By Corollary 3.10, Sp ; N Stabyg(C) is a union of strata. Moreover, the
projection of each boundary stratum

Se,; € Sp,1 N Stabye(C)

is cut out by a finite set of (real) linear equalities and inequalities. Therefore we can
subdivide C into a union of real convex polyhedral subcones in such a way that each
stratum is identified with the (relative) interior of one of these subcones.
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Let A(1,2) be the open annulus in Hom (K C, C) consisting of points of distance in the
range (1, 2) from the origin, and A[1, 2] its closure. Then we have a continuous map

Sp.1 N Stabye(C) > C —{0} = C N A(1,2) <= C N A[1,2],

where C — {0} is identified with C N A(1,2) via a radial contraction. The subdivision
of C into cones induces the structure of a compact curvilinear polyhedron on the inter-
section CNA[1, 2]. A choice of homeomorphism from C N A[1, 2] to a closed cell yields
a map from Lg,[ NStabye(C) to a closed cell which is a homeomorphism onto its image.
The inverse from this image is a characteristic map for the stratum Sp r, and the collec-
tion of these gives Staby,(C) the structure of a regular, normal cellular stratified space.

When the stratification of Staby,(C) is locally finite the cellular stratification is closure-
finite by Lemma 3.20, and any point is contained in the interior of a closed union of
finitely many cells. This guarantees that Stab,e(C) has the weak topology arising from
the cellular stratification, which is therefore a CW—cellular stratification. We can also
choose the above subdivision of C to have finitely many subcones. In this case the
curvilinear polyhedron C N A[1, 2] has finitely many faces, and therefore has a CW-
structure for which the strata of 5?,1 M Stabye (C) are identified with certain open cells.
It follows that the cellular stratification is totally normal. Conversely, if the stratification
is CW—cellular then it is closure-finite, and hence by Lemma 3.20 it is locally finite. O

Corollary 3.22 Suppose that the stratification of Staby,s(C) is locally finite and let
n = rank(KC). Then we have the following:

(1) There is a homotopy equivalence Stabys(C) 2~ BP(Stabye(C)).

(2) BP(Staby,g(C)) is a CW—complex of dimension < n.

(3) The integral homology groups H;(Stabye(C)) are 0 fori > n.

Proof The first claim follows directly from Proposition 3.21 and Theorem 2.17.
By Corollary 3.22, Stabys(C) ~ BP(Stab,¢(C)). A chain in the poset P(Stab,(C))
consists of a sequence of strata of Stab,,(C) of decreasing codimension, each in the
closure of the next. Since the maximum codimension of any stratum is #n, the length
of any chain is less than or equal to n. Hence BP(Staby,(C)) is a CW—complex of
dimension < n, and the last claim also follows. O

Remark 3.23 If Staby,(C) is locally finite then any union U of strata of Stabye(C)
is a regular, totally normal CW—cellular stratified space. Hence there is a homotopy
equivalence U ~ BP(U) and we have H;(U) =0 for i > n = rank(KC).
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Example 3.24 We continue Example 3.8. The “Kronecker heart”
(0, 0(=D1])

of D(P!) is algebraic. There are infinitely many torsion structures on this heart such
that the tilt is a t-structure with heart isomorphic to the Kronecker heart [51, Section 3.2].
It quickly follows from Corollary 3.13 that the stratification of Stabgg (P 1) is neither
closure-finite nor locally finite; see [51, Figure 5] for a diagram of the codimension-2
strata in the closure of the stratum corresponding to the Kronecker heart.

3.2 More on the poset of strata

Corollary 3.22 shows that if Stab,s(C) is closure-finite and locally finite, then its
homotopy-theoretic properties are encoded in the poset P (Stabye(C)). In the remainder
of this section we elucidate some of the latter’s good properties.

The assumptions that Stab,s(C) is locally finite and closure-finite are respectively
equivalent to the statements that the unbounded closed intervals [S, c0) and (—o0, S]
are finite for each S € P (Stabyg(C)). It follows of course that closed bounded intervals
are also finite, but in fact the latter holds without these assumptions.

Lemma 3.25 Suppose that Sg j C %. Then the closed interval [Sg y, Sp,1] in
P (Stabye(C)) is isomorphic to a subposet of [I, K|°P. Here the subset K is uniquely
determined by the requirement that S¢ j € dx Sp,1, and subsets of the simple objects
in D° are ordered by inclusion.

Proof Suppose Sg ; € dxSp,; and fix 0 € S¢ y. Using the fact that Stab(C) is
locally isomorphic to Hom(KC, C) we can choose an open neighbourhood U of ¢ in
Stab(C) so that U N d7,Sp, 1 is nonempty and connected for any subset / € L C K,
and empty when L € K. It follows that U meets a unique component of dz.Sp 1
foreach I € L C K. The strata in [S¢ s, Sp, ] correspond to those components for
which the heart is algebraic. Since

drSp,r S Spr < L' CL,

the result follows. O

We have seen that Stab,;;(C) need be neither open nor closed as a subset of Stab(C).
The next two results show that whether or not it is locally closed is closely related to
the structure of the bounded closed intervals in P (Stabyg(C)).
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Lemma 3.26 The first of the statements below implies the second and third, which
are equivalent; when Staby,(C) is locally finite all three are equivalent:

(1) The subset Stab,s(C) is locally closed as a subspace of Stab(C).
(2) The inclusion Staby,(C) N Sp < Sp is open for each algebraic D.
(3) For each pair of strata Sg_j € Sp, there is an isomorphism

[Se,s. Sp,r] =1, K],

where K is uniquely determined by the requirement that S¢ y € dx Sp,7 -

Proof Suppose Stab,(C) is locally closed. Let o € Stabys(C) N Sp, where D is
algebraic. Then there is a neighbourhood U of o in Stab(C) such that U N Stabye(C)
is closed in U. Then U N Sp € U N Staby,(C) so

U N Sp C U N Stabye(C)
and Stab,g(C) N Sp is open in Sp.

Now suppose Stab,j(C) N Sp is open in Sp. Then we can choose a neighbourhood U
of o so that U N dzSp,; is nonempty and connected for each / € L C K and,
moreover, U N Sp € Stabge(C). It follows, as in the proof of Lemma 3.25, that
[Se,s, Sp, ] =[I, K.

Conversely, if [S¢, 7, Sp,r]=[1, K]°P then given a neighbourhood U with UNadzSp 1
nonempty and connected for each I € L € K we see that it meets only components
of the 7 Sp,; which are in Staby,(C). Hence Stab,,(C) N Sp is open in Sp.

Finally, assume the stratification of Stabye (C) is locally finite and Staby;s(C) NSp<— Sp
is open for each algebraic D. Fix o € Stab,g(C). There are finitely many algebraic D
with o € Sp. There is an open neighbourhood U of o in Stab(C) such that

U N Sp € Sp N Stabye(C)
for any algebraic D (the left-hand side is empty for all but finitely many such). Hence

UNStabye @) =UN | J SpcUN | Sp= [ UNSp < UnNStabag(C).
D alg D alg D alg

and so U N Stabag(C) = Up 4, U N Sp. The latter is a finite union of closed subsets
of U, hence closed in U . Therefore each o € Stab,;(C) has an open neighbourhood U
such that U M Stabye(C) is closed in U . It follows that Staby,(C) is locally closed. O
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Corollary 3.27 Suppose Stab,(C) is locally closed as a subspace of Stab(C). Then
P (Stabyg(C)) is pure of length n = rank(KC).

Proof The stratum Sp ; contains Sp (4, ..., 10 its closure, and is in the closure

.....

of Sp,z. It follows that any maximal chain in P (Stab,z(C)) is in a closed interval

of the form [Sp (s,,....s,3» Se,o]. As Stab(C) is locally closed this is isomorphic to the

.....

poset of subsets of an n—element set by Lemma 3.26. This implies P (Stabyg(C)) is
pure of length 7. a

Example 3.28 Recall Examples 3.8 and 3.24. The subspace Stabyjg (P1) is not locally
closed: if it were then Stab(PP1) —Staby (P Y= AUU for some closed 4 and open U .
This subset consists of those stability conditions for which the phases of semistable
objects accumulate at Z C R, and this has empty interior. Hence the only possibility
is that U = &, in which case Stabalg(IP’l) would be open. This is not the case, so
Stabyye (P1) cannot be locally closed. Nevertheless, from the explicit description of
stability conditions in [38] one can see that the poset of strata is pure (of rank 2), and
that the second two conditions of Lemma 3.26 are satisfied.

4 Finite-type components

4.1 The main theorem

We say a t-structure is of finite tilting type if it is algebraic and has only finitely many
torsion-structures in its heart. A t-structure has finite tilting type if and only if it is
algebraic and the interval [D, D[—1]]< in Tilt(C) is finite. We say a component Tilt° (C)
is of finite tilting type if each t-structure in it has finite tilting type. It follows from
Lemmas 2.13 and 2.14 that a finite tilting type component Tilt°(C) is a lattice, and that
closed bounded intervals in it are finite.

Lemma 4.1 Suppose that the set S of t-structures obtained from some D by finite
sequences of simple tilts consists entirely of t-structures of finite tilting type. Then S is
(the underlying set of) a finite tilting type component of Tilt(C). Moreover, every finite
tilting type component arises in this way.

Proof If D has finite tilting type then any tilt of D can be decomposed into a finite
sequence of simple tilts. It follows that .S is a component of Tilt(C) as claimed. It is
clearly of finite tilting type. Conversely if Tilt’(C) is a finite tilting type component,
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and D € Tilt°(C), then every t-structure obtained from D by a finite sequence of simple
tilts is algebraic, and has finite tilting type. Hence D contains the set .S, and by the
first part S = Tilt°(C). O

If the heart of a t-structure contains only finitely many isomorphism classes of indecom-
posable objects, then it is of finite tilting type (because a torsion theory is determined
by the indecomposable objects it contains). Therefore, whilst we do not use it in this
paper, the following result may be useful in detecting finite tilting type components,
particularly if up to automorphism there are only finitely many t-structures which can be
reached from D by finite sequences of simple tilts. In very good cases — for instance
when tilting at a 2—spherical simple object s with the property that Homé (s,8)=0
for i # 1 for any other simple object s’ — the tilted t-structure itself is obtained by
applying an automorphism of C and hence inherits the property of being algebraic of
finite tilting type. A similar situation arises if D is an algebraic t-structure in which all
simple objects are rigid, ie have no self-extensions. In this case [33, Proposition 5.4]
states that all simple tilts of D are also algebraic.

Lemma 4.2 Suppose that D is a t-structure on a triangulated category C whose heart
is a length category with only finitely many isomorphism classes of indecomposable
objects. Then any simple tilt of D is algebraic.

Proof It suffices to prove that the claim holds for any simple right tilt, since the simple
left tilts are shifts of these. Since there are only finitely many indecomposable objects
in DO there are in particular only finitely many simple objects. Let these be s, ..., s,
and consider the right tilt at s;. Let 0 € Sp be the unique stability condition with
Zs(s1) =1 and Zs(sj) = —1 for j =2,...,n. Let t be obtained by acting on o
by —% € C. Then D is the right tilt of Dy at s57. As there are only finitely many
indecomposable objects in D°, the set of ¢ € R such that Py (¢) # @ is discrete.
The same is therefore true for 7. It follows that P;(0,€¢) = @ for some € > 0. The
component of Stab(C) containing ¢ and t is full since o is algebraic. Hence by
Lemma 3.1 the stability condition 7 is algebraic too. a

Lemma 4.3 Let Tilt°(C) be a finite tilting type component of Tilt(C). Then
(6) sab’©) = | J Sp

DETIlt° (C)
is a component of Stab(C).
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Proof Clearly Tilt°(C) is also a component of Tilty,(C). By Corollary 3.13 there
is a corresponding component Stabglg(C) of Staby(C) given by the right-hand side
of (6). Let Stab®(C) be the unique component of Stab(C) containing Stab;’lg(C). Recall
from [52, Corollary 5.2] that the t-structures associated to stability conditions in a
component of Stab(C) are related by finite sequences of tilts. Thus, each stability
condition in Stab®(C) has associated t-structure in Tilt’(C). In particular, the t-structure

is algebraic and Stalbzlg (C) = Stab®(C) is actually a component of Stab(C). a

A finite-type component Stab®(C) of Stab(C) is one which arises in this way from a
finite tilting type component Tilt?(C) of Tilt(C).

Lemma 4.4 Suppose Stab°(C) is a finite-type component. The stratification of
Stab®(C) is locally finite and closure-finite.

Proof This is immediate from Lemma 3.20 and the obvious fact that the interval
[Ds, Dy[—1]]x of algebraic tilts is finite when the interval [Dy, Dy[—1]]< of all tilts is
finite. a

Corollary 4.5 Suppose Stab®(C) is a finite-type component. There is a homotopy
equivalence Stab®(C) >~ BP(Stab°(C)); in particular, Stab®(C) has the homotopy type
of a CW-complex of dimension dimc Stab®(C).

Proof This is immediate from Lemma 4.4 and Corollary 3.22. a

We now prove that finite-type components are contractible. Our approach is modelled
on the proof that stability spaces of representations of Dynkin quivers are simply
connected [41, Theorem 4.7]. The key is to show that certain “conical unions of strata”
are contractible.

The open star Sy, ; of a stratum Sp 7 is the union of all strata containing Sp ;7 in
their closure. An open star is contractible: S , ~ BP(S7 ;) by Remark 3.23, and,
since P(S] ;) is a poset with lower bound Sp y, its classifying space is contractible.

Definition 4.6 For a finite set F of t-structures in Tilt°(C), consider the cone
C(F)={(E&,J)| F<XE<XLjE<supF for some F € F}.

Let V(F) = U(& J)ec(F) Se,s be the union of the corresponding strata; we call
such a subspace conical. For example, V({D}) = Sp,z. More generally, if we have
F={D,LsD|sel}, thensup F = L;D and V(F) =S},

Geometry & Topology, Volume 22 (2018)



3736 Yu Qiu and Jon Woolf

Remark 4.7 If (£, J) € C(F) then inf F < & <sup F. Now [inf F, sup Flx is finite,
and there are only finitely many possible J for each £, so C(F) is a finite set. Let
c¢(F) =#C(F) be the number of elements, which is also the number of strata in V(F).

Note that V(F) is an open subset of Stab®(C) since Sp; € V(F) and Sp 1 S S¢ s
implies

FIXDKKEXKL;EXLD<supF
for some F € F, so that Sg .y € V(F) too. In particular Sp ; € V(F) implies
S;’ 7 S V(F). It is also nonempty since it contains Sy F,o -

Proposition 4.8 For any finite set F C Tilt°(C), the conical subspace V(F) is con-
tractible.

Proof Let C = C(F), c =c¢(F),and V = V(F). We prove this result by induction
on the number of strata ¢. When ¢ =1 we have C = {(sup F, @)} so that V = Sy, r,»
is contractible as claimed. Suppose the result holds for all conical subspaces with
strictly fewer than ¢ strata.

Recall from Remark 3.23 that V >~ BP(V') so that V' has the homotopy type of a
CW-complex. Hence it suffices, by the Hurewicz and Whitehead theorems, to show that
V is simply connected and that the integral homology groups H; (V') are 0 for i > 0.
Choose (D, I) € C such that

(1) thereisno (£,J) € C with £ <D;
(2) (D,I')eC ifandonlyif I’ C 1.

Since C is finite, such a D can be chosen; note that D is necessarily in F. It is then
possible to choose such an I because if Sp 7, Sp,;» €V then LD, L;»D <sup F,
which implies LD =LpDV Li»D <sup F.

The conical subset V' has an open cover V' = S7 ,U(V —Sp). We remarked above that

S7 ; is contractible. In addition, by the choice of D, the subspace V —Sp = V(F’)

is also conical, with
F'= FU{LsD|s e D°simple, LyD < sup F} —{D}.

Since V(F') has fewer strata than V it is contractible by the inductive hypothesis.
Finally, the intersection S; N (V—-8p) = S; I Sp is the conical subspace

g Se; = VALsD|sel}),
D=<EXLjEXL[D
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which has fewer strata than V. Hence this too is contractible by the inductive hypothesis.
It follows that V' is simply connected by the van Kampen theorem, and that H; (V) =0
for i > 0 by the Mayer—Vietoris sequence for the open cover by S;’ ;and V —Sp.
Hence V is contractible by the Hurewicz and Whitehead theorems. This completes the
inductive step. a

Theorem 4.9 Suppose that Stab®(C) is a finite-type component. Then Stab®(C) is
contractible.

Proof By Lemma 4.4 Stab°(C) is a locally finite stratified space. Thus a singular
integral i —cycle in Stab®(C) has support meeting only finitely many strata; say the
support is contained in { Sz | 7 € F'}. Therefore the cycle has support in V(F), and so is
nullhomologous whenever i > 0 by Proposition 4.8. This shows that H;(Stab®(C)) =0
for i > 0. An analogous argument shows that Stab®(C) is simply connected. Since
Stab®(C) has the homotopy type of a CW—complex it follows from the Hurewicz and
Whitehead theorems that Stab°(C) is contractible. O

We discuss two classes of examples of triangulated categories in which each component
of the stability space is of finite type, and hence is contractible. Each class contains
the bounded derived category of finite-dimensional representations of ADE Dynkin
quivers, so these can be seen as two ways to generalise from these.

4.2 Locally finite triangulated categories

We recall the definition of locally finite triangulated category from [35]. Let C be a
triangulated category. The abelianisation Ab(C) of C is the full subcategory of functors
F: C°° — Ab fitting into an exact sequence

Hom¢(—, ¢) — Home(—,¢') = F = 0

for some ¢, ¢’ € C. The Yoneda embedding C — Ab(C) is the universal cohomological
functor on C, in the sense that any cohomological functor to an abelian category
factors, essentially uniquely, as the Yoneda embedding followed by an exact functor. A
triangulated category! C is locally finite if idempotents split and its abelianisation Ab(C)
is a length category. The following “internal” characterisation is due to Auslander [5,
Theorem 2.12].

10ur default assumption that all categories are essentially small is necessary here.
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Proposition 4.10 A triangulated category C in which idempotents are split is locally
finite if and only if for each c € C,

(1) there are only finitely many isomorphism classes of indecomposable objects
¢’ € C with Home(c’,¢) #0;

(2) for each indecomposable ¢’ € C, the End¢(c’)—module Home(c’, ¢) has finite
length.

The category C is locally finite if and only if C°P is locally finite so that the above
properties are equivalent to the dual ones.

Locally finite triangulated categories have many good properties: they have a Serre
functor, equivalently by [44] they have Auslander—Reiten triangles, the inclusion of any
thick subcategory has both left and right adjoints, any thick subcategory, or quotient
thereby, is also locally finite. See [35; 3; 53] for further details.

Lemma 4.11 (cf [19, Proposition 7.1]) Suppose that C is a locally finite triangulated
category C with rank KC < oco. Then any t-structure on C is algebraic, with only
finitely many isomorphism classes of indecomposable objects in its heart.

Proof Let d be an object in the heart of a t-structure, and suppose it has infinitely
many pairwise nonisomorphic subobjects. Write each of these as a direct sum of the
indecomposable objects with nonzero morphisms to . Since there are only finitely
many isomorphism classes of such indecomposable objects, there must be one of them,
¢ say, such that &k appears in these decompositions for each k = 1,2, .... Hence
¢®k < d for each k, which contradicts the fact that Home(c, d) has finite length as
an Endc(c)—module (as it has a filtration by {&: ¢ — d | « factors through ¢®% — d}
for k € N). We conclude that any object in the heart has only finitely many pair-
wise nonisomorphic subobjects. It follows that the heart is a length category. Since
rank KC < oo it has finitely many simple objects, and so is algebraic.

To see that there are only finitely many indecomposable objects (up to isomorphism),
note that any indecomposable object in the heart has a simple quotient. There are only
finitely many such simple objects, and each of these admits nonzero morphisms from
only finitely many isomorphism classes of indecomposable objects. a

Remark 4.12 Since a torsion theory is determined by its indecomposable objects, it
follows that a t-structure on C as above has only finitely many torsion structures on its
heart, ie it has finite tilting type.
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Corollary 4.13 Suppose C is a locally finite triangulated category and rank KC < oo.
Then the stability space is a (possibly empty) disjoint union of finite-type components,
each of which is contractible.

Proof Combining Lemma 4.11 with Lemma 4.1 shows that each component of the
tilting poset is of finite tilting type. The result follows from Theorem 4.9. a

Example 4.14 Let Q be a quiver whose underlying graph is an ADE Dynkin diagram,
and suppose the field k is algebraically closed. Then D(Q) is a locally finite triangu-
lated category [30, Section 2]. The space Stab(Q) of stability conditions is nonempty
and connected (by Remark 3.18 or the results of [31]), and hence by Corollary 4.13
is contractible. This affirms the first part of [41, Conjecture 5.8]. Previously Stab(Q)
was known to be simply connected [41, Theorem 4.7].

Example 4.15 For m > 1 the cluster category C,,,(Q) = D(Q)/ X, is the quotient
of D(Q) by the automorphism X,, = t~![m — 1], where 7 is the Auslander—Reiten
translation. Each Cp, (Q) is locally finite [35, Section 2], but Stab(C,,(Q)) = & because
there are no t-structures on Cp, (Q).

Remark 5.6 of [41] proposes that Stab(I'y Q)/ Br(I'yy Q) should be considered as an
appropriate substitute for the stability space of Cy—;(Q). Our results show that the
former is homotopy equivalent to the classifying space of the braid group Br(I'y Q),
which might be considered as further support for this point of view.

4.3 Discrete derived categories

This class of triangulated categories was introduced and classified by Vossieck [49];
we use the more explicit classification in [9]. The contractibility of the stability
space, Corollary 4.17 below, follows from the results of this paper combined with
the detailed analysis of t-structures on these categories in [19]. Theorem 7.1 of [18]
provides an independent proof of the contractibility of BInt(C) for a discrete derived
category C, using the interpretation of Int(C) in terms of the poset PP, (C) of silting
pairs (Remark 3.14). Combining this with Corollary 3.22 one obtains an alternative
proof [18, Theorem 8.10] of the contractibility of the stability space.

Let A be a finite-dimensional associative algebra over an algebraically closed field.
Let D(A) be the bounded derived category of finite-dimensional right A-modules.
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Definition 4.16 The derived category D(A) is discrete if for each map (of sets)
u: Z.— K(D(A)) there are only finitely many isomorphism classes of objects d € D(A)
with [Hd] = u(i) forall i € Z.

The derived category D(Q) of a quiver whose underlying graph is an ADE Dynkin
diagram is discrete. Theorem A of [9] states that if D(A) is discrete but not of this type
then it is equivalent as a triangulated category to D(A(r, n, m)) for some n >r > 1 and
m > 0, where A(r,n,m) is the path algebra of the bound quiver in Figure 1. Indeed,
D(A) is discrete if and only if A is tilting—cotilting equivalent either to the path algebra
of an ADE Dynkin quiver or to one of the A(r,n,m).

V2
¢!
.ﬂ). ....... ﬂm \’,
Vn ~—o¢ .4.«"‘.
Vn—1

Figure 1: The algebra A(r,n, m) is the path algebra of the quiver Q(r, n, m)
above with relations Yy—y+1¥Yn—r42 =+ = Yuy1 = 0.

Discrete derived categories form an interesting class of examples as they are interme-
diate between the locally finite case considered in the previous section and derived
categories of tame representation type algebras. More precisely, the distinctions are
captured by the Krull-Gabriel dimension of the abelianisation, which measures how
far the latter is from being a length category. In particular, KGdim(Ab(C)) < 0 if
and only if C is locally finite [36]. Krause conjectures [36, Conjecture 4.8] that
KGdim(Ab(D(A))) =0 or 1 if and only if D(A) is discrete. As evidence he shows
that for the full subcategory proj k[e] of finitely generated projective modules over
the algebra k[e] of dual numbers, KGdim(Ab(Dy (proj k[€]))) = 1. The bounded
derived category D(proj k[e]) is discrete — there are infinitely many indecomposable
objects, even up to shift, but no continuous families — but not locally finite. Finally,
by [24, Theorem 4.3], KGdim(D(A4)) = 2 when A is a tame hereditary Artin algebra,
for example the path algebra of the Kronecker quiver A,

Since the Dynkin case was covered in the previous section we restrict to the categories
D(A(r,n, m)). These have finite global dimension if and only if r < n, and we further
restrict to this situation.
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Corollary 4.17 (cf[18, Theorem 8.10]) Suppose C =D(A(r,n,m)), wheren>r > 1
and m > 0. Then the stability space Stab(C) is contractible.

Proof By [19, Proposition 6.1] any t-structure on C is algebraic with only finitely
many isomorphism classes of indecomposable objects in its heart. Lemma 4.1 then
shows that each component of the tilting poset has finite type. By Theorem 4.9
Stab(C) = Stab,¢(C), and is a union of contractible components. By Lemma 3.17
Stab,jg(C) is connected. Hence Stab(C) is contractible. O

Example 4.18 The space of stability conditions in the simplest case, (n,r,m) =
(2,1,0), was computed in [51] and shown to be C2. (The category was described
geometrically in [51], as the constructible derived category of P! stratified by a point
and its complement, but it is known that in this case the constructible derived category
is equivalent to the derived category of the perverse sheaves, and these have a nearby
and vanishing cycle description as representations of the quiver Q(2, 1, 0) with relation

Y211 =0.)

5 The Calabi-Yau-/N category of a Dynkin quiver

5.1 The category

In this section we consider in detail another important example of a finite-type compo-
nent, associated to the Ginzburg algebra of an ADE Dynkin quiver. We also address the
related question of the faithfulness of the braid group action on the associated derived
category.

Let Q be a quiver whose underlying unoriented graph is an ADE Dynkin diagram. Fix
N =2 and let 'y O be the associated Ginzburg algebra of degree N, let D(I'n Q) be
the bounded derived category of finite-dimensional representations of I'y QO over an
algebraically closed field k, and let Stab(I'yy Q) be the space of stability conditions
on D(I'y Q). See [30, Section 7] for the details of the construction of the differential-
graded algebra 'y Q and its derived category, and for a proof that D(I'y Q) is a
Calabi-Yau— N category. Recall that a k—linear triangulated category C is said to be
Calabi—Yau— N if, for any objects ¢, ¢’ in C we have a natural isomorphism

(7 &: Homg (¢, ¢') = Hom¢ (¢', ¢)V[N],
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where the graded dual of a graded vector space V = @i <z Vili] is defined by
VY =P V-l
i€Z
By [1], Tilt(T'y Q) and Stab(I'y Q) are connected.

Corollary 5.1 The stability space Stab(I'y Q) is of finite type, hence is contractible.

Proof By [33, Corollary 8.4] each t-structure obtained from the standard one (whose
heart is the representations of I'yy Q) by a finite sequence of simple tilts is algebraic. By
[41, Lemma 5.1 and Proposition 5.2] each of these t-structures is of finite tilting type.
Hence by Lemma 4.1 Tilt(I'y Q) has finite tilting type, and therefore by Theorem 4.9
Stab(I'y Q) is contractible. a

This affirms the second part of [41, Conjecture 5.8].

5.2 The braid group

An object s of a k-linear triangulated category is N —spherical if
Homg (s, s) = k @ k[N

and (7) holds functorially for ¢ = s and any ¢’ in C. The twist functor ¢s of a spherical
object s was defined in [45] to be

®) @s(c) = Cone(s ® Hom*(s, ¢) — ¢),

with inverse ¢; ! (c) = Cone(c — s ®@ Hom*(s, ¢)V)[—1]. Denote by Dr the canonical
heart in D(I'y Q), which is equivalent to the module category of Q. Each simple
object in Drg is N —spherical; see [33, Section 7.1]. The braid group or spherical
twist group Br(IC'y Q) of D(I'y Q) is the subgroup of AutD(I'y Q) generated by
{@s | s is simple in Drg}. The lemma below follows directly from the definition of
spherical twists.

Lemma 5.2 Let C be a k —linear triangulated category, ¢s a spherical twist and F
any auto-equivalence. Then F o s = ¢p(s) o F.

An important consequence is that two twists ¢y, ¢; by simple objects s, ¢ satisfy:

e Braid relation ¢;¢;¢; = ¢;905¢; <= Hom*(s,t) = k[—j] for some j € Z.
e Commutation relation ¢;¢; = ;s < Hom*(s,7) = 0.
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It follows that there is a surjection

® ®n: Br(Q) - Br(I'y Q)

from the braid group Br(Q) of the underlying Dynkin diagram, which has a generator b;
for each vertex i and relations b;b;jb; = b;b;b; when there is an edge between vertices
i and j, and b;bj = bjb; otherwise. We will show that @ is an isomorphism for
any N > 2. We deal with the cases when N = 2, and when Q has type A (for any
N > 2) below; these are already known but we obtain new proofs.

Let g be the finite-dimensional complex simple Lie algebra associated to the underlying
Dynkin diagram of Q. Let h C g denote the Cartan subalgebra and let h™® C § be the
complement

h*e ={febh|O(a) #0forall o € A}

of the root hyperplanes in h, where A is a set of simple roots, ie a basis of § such
that each root can be written as an integral linear combination of basis vectors with
either all nonnegative or all nonpositive coefficients. The Weyl group W is generated
by reflections in the root hyperplanes and acts freely on §™.

Theorem 5.3 [14, Theorem 1.1] Let Q be an ADE Dynkin quiver. Then Stab(I'; Q)
is a covering space of h™8/ W and Br(I', Q) preserves this component and acts as the
group of deck transformations.

It is well known that the fundamental group of §™/W is the braid group Br(Q)
associated to the quiver Q. We therefore obtain new proofs for the following two
theorems, by combining Theorem 5.3 and Corollary 5.1.

Theorem 5.4 [11, Theorem 1.1] Suppose that Q is an ADE Dynkin quiver. Then
®,: Br(Q) — Br(I'; Q) is an isomorphism.

Theorem 5.5 [20] The universal cover of h™€/ W is contractible.

Ikeda has extended the work of Bridgeland and Smith relating stability conditions with
quadratic differentials to obtain the following result.

Theorem 5.6 [26, Theorem 1.1] Let Q be a Dynkin quiver of type A. Then there is
an isomorphism Stab(I'y Q)/ Br(I'y Q) = h™8/ W of complex manifolds.

Combining this with Corollary 5.1, we obtain a new proof of:
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Theorem 5.7 [45] Let Q be a quiver of type A. Then ®n: Br(Q) — Br(I'y Q) is
an isomorphism.

Unfortunately we do not yet know enough about the geometry of the stability spaces
for the Calabi—Yau—N categories constructed from Dynkin quivers of other types to
deduce the analogous faithfulness of the braid group in those cases. In Section 6 we give
an alternative proof of faithfulness which works for all Dynkin quivers (Corollary 6.14),
which also provides a new proof of Theorem 5.5.

Although not phrased in these terms, the above proof is equivalent to showing that
the action of Br(Q) on the combinatorial model Int’(D(I'y Q)) of Stab(I'y Q) is free.
The alternative proof in Section 6 proceeds by showing instead that the action of Br(Q)
on Tilt(I'y Q) is free.

6 The braid action is free

In this section we show that the action of the braid group on Tilt(T'y Q) via the surjection
®n: Br(Q) — Br(I'y Q) is free. A key step in our strategy uses the isomorphism
®,: Br(Q) — Br(I'; Q) from Theorem 5.6, ie we bootstrap from the N = 2 case.
Therefore we assume N > 3 unless otherwise specified.

For ease of reading we will usually omit & from our notation when discussing the
action, writing simply b - D for ®n (b)D, where b € Br(Q) and D € Tilt(T'y Q).

6.1 Local structure of Tilt(T'x Q)

We describe the intervals from D to Ly, 5,)D, where s; and s; are distinct simple ob-
jects of the heart of some D. It will be convenient to consider Tilt(I'y Q) as a category,
with objects the elements of the poset and with a unique morphism D — £ whenever
D < &. The following lemma is the analogue for D(I'y Q) of [41, Lemma 4.3].

Lemma 6.1 Suppose s; and s; are distinct simple objects of the heart of a t-structure
D e Tilt(I'y Q) . Then there is either a square or pentagonal commutative diagram of
one of the following forms in Tilt(I'y Q) :

Ly, D LsiD—>D/
/r \L( )D D/ l
Si.Sj
I ™~

Sj LS'

J

(10) D

D—)L(si,sj)'D
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Here we may need to exchange i and j to get the precise diagram in the pentagonal case,
and the t-structure D’ is uniquely specified by the diagram. The square occurs when
HOml(Sj,Sj) =0= Homl(sj,si) and the pentagon occurs when Homl(si,sj) =0
and Hom!(s;, s;) = k.

Proof First, we claim that either we have Hom! (s;, sj)=0= Hom! (sj,5i), or we
have Hom! (s, sj) =0 and Hom! (sj.si) = k. Let the set of simple objects in the
heart of D be {sq,...,s,}. By [33, Corollary 8.4 and Proposition 7.4], there is a
t-structure £ in D(Q) such that the Ext-quiver of the heart of D is the Calabi—Yau— /N
double of the Ext-quiver of the heart of £. In other words, one can label the simple
objects in the latter as {¢,...,#,} in such a way that forany 1 <k,/ <n,

(11) dim Hom? (g, s7) = dim Hom? (t, ;) + dim Hom™ 4 (t,tr).
Moreover, by [41, Lemma 4.2], we have
dim Hom* (¢, #;) + dim Hom® (7, ;) < 1

forany 1 <k,/ <n. So we may assume, without loss of generality, that Hom*®(#;, 7;) =0
and Hom*(#;, #;) is either zero or is one-dimensional and concentrated in degree d for
some d € Z. Therefore, as N > 3,

dim Hom' (s;, sj) + dim Hom! (85,8i) = dimHomN_l(tj,li) + dim Hom' (tj.t;) =1

and the claim follows. Since the simple objects {sq,...,s,} are N —spherical, and
N > 3, we also note that Hom! (s;, s;) = 0 = Hom! (sj,58j), so that neither s; nor s;
has any self-extensions.

The required diagrams arise from the poset of torsion theories in the heart of D which
are contained in the extension-closure (s;,s;). This is the same as the poset of torsion
theories in the full subcategory (s;,s;). When Hom!(s;,s;) = 0 = Hom!(s;,s;),
this subcategory is equivalent to representations of the quiver with two vertices and
no arrows, and when Homl(sj-,s,-) =0 and HOI‘nl(S,‘,Sj) =~ k it is equivalent to
representations of the 4, quiver. Identifying torsion theories with the set of nonzero
indecomposable objects contained within them we have four in the first case, namely &,
{sj}, {si} and {s;, s; }, and five in the second, namely &, {s;}, {s;}, {e, s;} and {s;,s;},
where e is the indecomposable extension 0 — s; — e — 5; — 0. These clearly give
rise to the square and pentagonal diagrams above. Moreover, note that D' = L, D
is uniquely specified as claimed. a

Geometry & Topology, Volume 22 (2018)



3746 Yu Qiu and Jon Woolf

Remark 6.2 Recall from Lemma 2.13 that Tilt(I'y Q) is a lattice. It follows that the
above lemma allows us to give a presentation for the category Tilt(I'y Q) in terms
of generating morphisms and relations. The generators are the simple left tilts. The
relations are provided by the squares and pentagons of the above lemma.

6.2 Associating generating sets

By [33, Corollary 8.4] the simple objects of the heart of any t-structure in Tilt(I'y Q) are
N —spherical, and the associated spherical twists form a generating set for Br(I'y Q).
Moreover, we can explicitly describe how the generating set changes as we perform a
simple tilt. Let sq, ..., s, be the simple objects of the heart of D. It follows from [33,
Proposition 5.4 and Remark 7.1] that the simple objects of the heart of L, D are

(12)  {sil=11y U {sg | Hom' (si, 5%) = 0,k # i} U {s; (s;) | Hom' (s, 57) # 0}.

As Poys; (sj) = Psi Ps; (ps_l.l by Lemma 5.2,

(13)  {g5;} Ulps, | Hom' (si,51) = 0} U {gs; 05,05 | Hom' (s, 57) # 0}

is the new generating set for Br(I'y Q). In this section we lift the above generating
sets, in certain cases, along the surjection @, to generating sets for Br(Q).

Let Drg be the standard t-structure in D(I'y Q). By [33, Theorem 8.6] there is a
canonical bijection

(14) Try 0 —> Til((Ty 0)/ Br(Ty 0).

where Zr,, o is the full subcategory of Tilt(I'y Q) consisting of t-structures between
Drg and Drg[2— N]. Let Dg be the standard t-structure in D(Q) and let Zgy be the
full subcategory of Tilt°(Q) consisting of t-structures between Do and Dg[2 — N].
Recall from [33, Definition 7.3, Section 8] that there is a strong Lagrangian immersion
LN: D(Q) — D(Tw Q), ie a triangulated functor with the additional property that for

any x,y € D(Q),

(15) Hom? (N (x), £N (y)) = Hom“ (x, y) ® Hom™ 4 (y, x)*.

In this case, by [33, Theorem 8.6], the Lagrangian immersion induces an isomorphism
(16) Llfkvz To — Iryo

sending Dy to Drg. Moreover, for £ € T the simple objects of the heart of
E*N (€) € Iry @ are the images under LN of the simple objects of the heart of £.
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Denote by IndC the set of indecomposable objects in an additive category C. For
any acyclic quiver Q, it is known that Ind D(Q) = | J;cz Ind Dg[/], where Dy is the
standard heart. By Theorem 5.4 there is an isomorphism @;1: Br(I'; Q) — Br(Q).
We define a map

b: IndD(Q) — Br(Q), x> @ (pr2(x))-

To spell it out, we first send x to £2(x), which is a 2—spherical object in D(I';, Q)
(see the lemma below), and then take the image of its spherical twist in Br(Q) under
the isomorphism <I>;1. Note that b is invariant under shifts.

Lemma 6.3 Let x, y € Ind D(Q). Then:

(1) L£2(x) is a 2—spherical object for any x € Ind D(Q).
(2) If Hom*(x, y) = Hom*(y, x) =0, then b(x)b(y) = b(y)b(x).

(3) If there is a triangle y — z — x — y[1] in Ind D(Q) for some z € Ind D(Q),
then b(z) = b(x)b(y)b(x)~! and

b(x)b(y)b(x) = b(»)b(x)b(y),

ie b(x) and b(y) satisty the braid relation.

Proof Let x be an indecomposable in D(Q). Then, by [41, Lemma 2.4], x induces
a section P(x) of the Auslander—Reiten quiver of D(Q), and hence a t-structure
Dy =[P (x),00). For a Dynkin quiver, all such t-structures are known to be related
to the standard t-structure by tilting, so Dy € Tilt°(Q). Moreover, again by [41,
Lemma 2.4], the heart of Dy is isomorphic to the category of kQ’ modules for some
quiver Q' with the same underlying diagram as Q. It follows that the section P(x)
is isomorphic to (Q’)°P and consists of the projective representations of kQ’. By
definition x is a source of the section, so is the projective corresponding to a sink
in Q’, and is therefore a simple object of the heart. By [33, Corollary 8.4] the image
of any such simple object is 2—spherical. Hence (1) follows.

For ease of reading, denote by X, ¥ and Z the images of x, y and z respectively
under £2. When x and y are orthogonal, (15) implies

Hom*(X, y) = Hom*(y,X) =0,

and so the associated twists commute.
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To prove (3) note that the triangle y — z — x — y[1] induces a nontrivial triangle in
D(I, Q) via £?. By [41, Lemma 4.2],

Hom®(x, y) = k[-1] and Hom*(y,x) =0.
Thus (15) yields Hom*(X, y) = k[—1] and Hom®(y, X) = k[—1], and we deduce that
Z=9z(y) = <p)§1 (X). Therefore, as required,

gropyopz =9z =95 opzogs. O

Construction 6.4 We associate to any t-structure in Tilt’(Q) the generating set
{b(t1),...,b(ty)} of Br(Q), where {t1,...,t,} are the simple objects of the heart.
The generating set associated to Dy is the standard one.

The following proposition gives an alternative inductive construction of these generating
sets, which we use in the sequel.

Proposition 6.5 Suppose D is a t-structure in Zg < Tilt°(Q). Then:

(i) If x and y are two simple objects in the heart of D, one has

{ b(x)b(y) = b(y)b(x) if Hom*(x, y) = Hom*(y, x) =0,
b(x)b(»)b(x) = b(»)b(x)b(y) otherwise.

(i) If {t;} is the set of simple objects in the heart of D, the simple objects of the
heart of Ly, D are

(7) {11} U {tg | Hom' (1, 1) = 0.k # i} U{gr, () | Hom' (7, ) # 03,
and the corresponding associated generating set of Br(Q) is

(18)  {bi} U{b | Hom' (t7,5) = 0,k # i} U bbby | Hom' (17, 17) # 03,
where {b; := b(t;)} is the generating set associated to D.

In particular, any such associated set is indeed a generating set of Br(Q). In (17), we
use the notation ¢, (b) := Cone(a ® Hom*(a, b) — a) even when a is not a spherical
object.

Proof First we note that (17) in (ii) is a special case of [33, Proposition 5.4]. The
necessary conditions to apply this proposition follow from [33, Theorem 5.9 and
Proposition 6.4].
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For (i), if x and y are mutually orthogonal then the commutative relations follow
from (2) of Lemma 6.3. Otherwise, by [41, Lemma 4.2],

Hom®(x, y) @ k[—d] and Hom®(y,x)=0

for some strictly positive integer d . By (17), after tilting D with respect to the simple
object x (and its shifts) d times we reach a heart with a simple object z = ¢x(»). In
particular, there is a triangle z — x[—d] — y — z[1] in D(Q) where z € Ind D(Q).
The braid relation then follows from (3) of Lemma 6.3.

Finally, (18) in (ii) follows from a direct calculation. O

We can use this construction to associate generating sets to t-structures in Zry g S
Tilt(ly Q). Let £ be such a t-structure, and let {s;} be the set of simple objects
of its heart. Then (£N)™ls; is well defined, and we associate the generating set

{bs; 1= b((LN)~1s;)} of Br(Q) to £.

Remark 6.6 This construction only works for £ € 7, o because the simple objects
of the hearts of other t-structures need not be in the image of the Lagrangian immersion.
This is the same reason that the isomorphism (16) cannot be extended to the whole
of Tilt°(Q).

The next result follows immediately from Proposition 6.5.

Corollary 6.7 Let £ € Ir, g, and let {s;} be the set of simple objects in its heart,
with corresponding generating set {by, }. Then

bSiij :ijbS,' 1fHOI‘n°(S,,Sj) :O,
bs;bs;bs; = bs; bs;bs;  otherwise.

Moreover, the simple objects of the heart of Ly, & are

(19)  {si[-1]} U {sx | Hom' (s;, 5) = 0, k 5 i} U {g; (s) | Hom' (s;. 57) # 0},

and the corresponding associated generating set is

(20)  {by,} U {bs, | Hom!(s;,s) = 0,k # i} U{bsbs,by,' | Hom! (s;, ;) # 0}.

Sj7si

Lemma 6.8 Suppose that s is a simple object in the heart of £ € Ir,, ¢ . Then either
Ls€ € Iryg or (ps_lLsé' € Iry - The first case occurs if and only if, in addition,
s € Drg[3—N].
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Proof By [33, Corollary 8.4] the spherical twist ¢ takes £ to the t-structure ob-
tained from it by tilting N — 1 times “in the direction of s”, ie by tilting at s, s[—1],
s[=2],...,s[3 — N] and finally s[2 — N]. The first statement then follows from the
isomorphism Zg = Zr,, ¢ of [33, Theorem 8.1 and Proposition 5.13]. For the second
statement note that if L€ € Iy, ¢ then s[—1] € Drg[2— N], so s € Drg[3— N], and
conversely if s ¢ Drg[3 — N] then s[—1] € Dro[2— N], hence Ls& ¢ Iry - a

The above lemma justifies the following definition.

Definition 6.9 Let P be the poset whose underlying set is

Br(Q) x IFNQ’

and whose relation is generated by (b,&) < (b',&’) if either b = b’ and £ < &' in
Iryo,or b’ =b-bs and &' = ¢; 1 L€, where s is a simple object of the heart of £
with the property that L€ & ZIr,, o, or equivalently, by Lemma 6.8, s & Drg[3 — N].

Lemma 6.10 There is a map of posets
a: P->Tilt(TyQ), b, E)—=b-&:=dN(b)E,

which is surjective on objects and on morphisms. Moreover, P is connected and « is
equivariant with respect to the canonical free left Br(Q)-action on P.

Proof To check that o is a map of posets we need only check that the generating
relations for P map to relations in Tilt(I'y Q). This is clear since (in either case)
b'-& =b-L&= Lpg(b-E). It is surjective on objects by [33, Proposition 8.3]. To
see that it is surjective on morphisms it suffices to check that each morphism F < L, F,
where ¢ is a simple object of the heart of F, lifts to P. For this, suppose F =b-¢&,
where £ € Ir, g, and that = b - s for simple s in the heart of £. Then either
L€ €Iy and (b, &) < (b, Ls€) is the required lift, or Ly€ ¢ I, o and

(0,&) < (b‘bs’(/)s_lLsg)
is the required lift.

The connectivity of P follows from the facts that (b, &) < (b - by, £) for any simple
object s of the heart of £ € Ir,, ¢ and that Zr, ¢ is connected. Finally, the equivariance
with respect to the left Br(Q)—action b’ - (b, E) = (b'b, £) is clear. O

Proposition 6.11 The morphism «: P — Tilt(I'y Q) is a covering.
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Proof By Lemma 6.10 we know « is surjective on objects and on morphisms, so all
we need to show is that each morphism lifts uniquely to P once the source is given. By
Remark 6.2 it suffices to show that the squares and pentagons (10) of Lemma 6.1 lift
to P. Using the Br(Q)-action on P it suffices to show that the diagrams with source D
lift to diagrams with source (1, D). We treat only the case of the pentagon, since the
square is similar but simpler. We use the notation of Lemma 6.1: s; and s; are simple
objects in the heart of D € Ir, o with Hom! (s;, sj) =k and Hom'! (sj,5:) =0, and
e is the extension sitting in the nontrivial triangle s; — e — s; — s;[1].

There are four cases, depending on whether or not L, D and Lg; D are in Iy o:

Case A If L, D, Ls; D €Iry then L(s,.,sj)D = LDV Ls;D € Iy g too. Hence
there is obviously a lifted diagram in 1 X Zpy, g.

Case B If Ly, D ¢ Iy but Ly;D € Iry g then we claim the required lift is
e
s (bsi,cps_ilLsiD) _ (bsi,cps_l_lD’)

/
(1 s 'D) ‘ﬂs_,-l s
o .
(1, Ls] D) T) (bsi N (psi L(Sj,Sj)D)
(Here, and in the sequel, we label the morphisms by the associated simple object.) To
confirm this, note that s; ¢ Dro[3— N] by Lemma 6.8, so that the bottom morphism is
in P. Similarly, since ¢g; Ye = s5; € Drg[3 — N], the top morphism is in P. It follows
that the right-hand morphism is in P too, because ¢ 1 L, s)\D€Iryo-

Case C If Ly, D €1ryp but Ls;D ¢ Iy then one can verify that

(1, L, D) ¢ (1,D)

si
/
(1.D) Sj
\zr\Zb TV Ls. D) ——— (bs,, 0. 'L D)
sj> Py Los; o5 sj2 Ps; Lo(sinsg)
S]' 1

is the required lift when (pgls,' =e €Dro[3—N]. If e ¢ Drg[3 — N] then

e

(I’LSZ'D) (bevgoe_lpl)
/

(I’D) l‘pe_lsj
T~

»
© sy Loy D) — o (b b, 02035 Lisi 5 D)

' j
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is the required lift. We need only check that the right-hand morphism is in P. For this
note that ¢, 's; = s;[—1] so that b¢;lsj = by, , and that applying (3) of Lemma 6.3
to the triangle s;[—1] — s; — e — s; we have b, = bebs, b, !, or equivalently
bs; be = beb(oe_] 5 Moreover, since

oz ls; Cwe s

v 0o D' =0, e Ly D' =g 0y Lisy 5D

and we already know the latter is in Zr, ¢, we see that the right-hand morphism is
indeed in P.

CaseD If Ly, D, Ly;D ¢ Iryq then
—1

(psl- e _ _
s (bsl,¢glleD)—> (bs,-bsj7(psj1§05il,D/)
— —1,—1
(1,D) bsj Osi 5i
\

S _ 1 —
! (bs,- s gosleSj D) (p_—ls> (ij be’ Pe l(psle(si,Sj)D)
S 1
is the lifted pentagon. The top morphism is in P because ¢ le =5; ¢ Dro[3— N].
The bottom morphism is in P because (psfs,- = e is not in Drg[3 — N], for if it were
then 5; would be in Drg[3 — N], which is false by assumption. It remains to check
that the right-hand morphism is in P. Note that

-1 -1 -1,-1 -1_—1
L(p;jl(ps_ilsj'wsj' 9051. D, = gDSj (ps,- szD/ = (ij gos,' L(Siasj)p'
Therefore, since we already know that ¢! Ps; 1 Lis; 5;yD €Zry @, itsuffices to show that
bs;bs; = bg; be, since it then follows that (ps71¢;1 =q, lcpsjl . The required equation

is obtained by applying (3) of Lemma 6.3 to the triangle e — s; — s;[1] — e[1], and
recalling that b is invariant under shifts. o

Corollary 6.12 For N > 2 the map o: P — Tilt(I'y Q) is a Br(Q)—equivariant
isomorphism, and in particular Br(Q) acts freely on Tilt(I'y Q). Moreover, the map
®n: Br(Q) — Br(I'y Q) is an isomorphism.

Proof This follows immediately from the fact that Tilt(I'y Q) is contractible (ie has
contractible classifying space) and that «: P — Tilt(I'y Q) is a connected Br(Q)—
equivariant cover on which Br(Q) acts freely.

Recall that Br(Q) acts on Tilt(I'y Q) via the surjective homomorphism ®p . Since
the action is free, ® must also be injective, and therefore is an isomorphism. a
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Remark 6.13 When Q is of type A, Corollary 6.12 gives a third proof of Theorem 5.7.
When Q is of type E, it shows that there is a faithful symplectic representation of the
braid group, because D(I'y Q) is a subcategory of a derived Fukaya category, while
the spherical twists are the higher version of Dehn twists. This is contrary to the result
in [50] in the surface case, which says that there is no faithful geometric representation
of the braid group of type E.

Corollary 6.14 For N > 2, the induced action of Br(Q) on Stab(I'y Q) is free.

Proof If an element of Br(Q) fixes o € Stab(I'y Q) then it must fix the associated
t-structure in Tilt(I'y Q). a

Note that we recover the well-known fact that Br(Q) is torsion-free from this last corol-
lary because Stab(I'y Q) is contractible and Br(Q) acts freely so Stab(I'y Q)/ Br(Q)
is a finite-dimensional classifying space for Br(Q). The classifying space of any group
with torsion must be infinite-dimensional.

6.3 Higher cluster theory

The quotient Tilt(T'y Q)/ Br(Q) has a natural description in terms of higher cluster
theory. We recall the relevant notions from [33, Secion 4]. As previously, D(Q) is the
bounded derived category of the quiver Q.

Definition 6.15 For any integer m > 2, the m—cluster shift is the auto-equivalence
of D(Q) givenby X, =t~ 'o[m—1], where 7 is the Auslander—Reiten translation. The
m—cluster category Cpm (Q) = D(Q)/ Zy is the orbit category, which is Calabi—Yau—n1.
When it is clear from the context we will omit the index 7 from the notation.

An m—cluster tilting set {p; };‘1=1 in Cp, (Q) is an Ext-configuration, ie a maximal
collection of nonisomorphic indecomposable objects such that

Extlém(Q) (pi. pj) =0
for 1 <k <m—1. Any m—cluster tilting set consists of n = rank KD(Q) objects.
New cluster tilting sets can be obtained by mutations. The forward mutation ;Lf,,. P of
an m—cluster tilting set P = {p; };’:1 at the object p; is obtained by replacing p; by
pf = Cone(p,- — @Irr(pi, Pi)*® pj).
J#i
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Here Irr(p;, pj) is the space of irreducible maps from p; to p; in the full additive
subcategory Add(€D}—; pi) of Crn(Q) generated by the objects of the original cluster
tilting set. Similarly, the backward mutation ,u;i P is obtained by replacing p; by

P = Cone(EBIrr(pj, pi)® pj — pi) [—1].
J#i
As the names suggest, forward and backward mutation are inverse processes.

Cluster tilting sets in Cy—;(Q) and their mutations are closely related to t-structures
in D(I'y Q) and tilting between them. To be more precise, [33, Theorem 8.6], based
on the construction of [4, Section 2], states that (N —1)—cluster tilting sets are in
bijection with the Br(Q)-orbits in Tilt(I'y Q), and that a cluster tilting set P’ is
obtained from P by a backward mutation if and only if each t-structure in the orbit
corresponding to P’ is obtained by a simple left tilt from one in the orbit corresponding
to P. This motivates the following definition.

Definition 6.16 The cluster mutation category CMpy—1(Q) is the category whose
objects are the (N —1)—cluster tilting sets, and whose morphisms are generated by
backward mutations subject to the relations that for distinct p;, p; € P, the diagrams

i, P tp, P ——— wp, iy, P

S S J

21) P Hop; Hop, P P
'U“Iljv‘ P MII)U pP— M;j /”LEJI' P

commute whenever there is a corresponding lifted diagram of simple left tilts in
Tilt(I'y Q). Note that, possibly after switching the indices i and j in the pentagonal
case, there is always a diagram of one of the above two types.

Proposition 6.17 There is an isomorphism of categories

Tilt(Ty )/ Br(Q) = CMy—1(Q).
The classifying space of CMpy—_1(Q) isa K(Br(Q), 1).
Proof The first statement is a rephrasing of [33, Theorem 8.6], using Remark 6.2 and

the definition of CMn—_;(Q). The second statement follows from the first and the fact
that Tilt(I'y Q) is contractible, and the Br(Q)-action on it free. a
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6.4 Garside groupoid structures

In [34, Section 1] a Garside groupoid is defined as a group G acting freely on the left
of a lattice L in such a way that

e the orbit set G\ L is finite;
e there is an automorphism i of L which commutes with the G —action;
e forany / € L the interval [/, /] is finite;

e the relation on L is generated by / <[’ whenever I’ € [I,[{].

The action of Br(Q) on Tilt(I'y Q) provides an example for any N > 3, in fact a
whole family of examples. By Corollary 6.12 the action is free, and by (14) the orbit set
is finite. From Section 4 we know that Tilt(I'y Q) is a lattice, and that closed bounded
intervals within it are finite. It remains to specify an automorphism ; we choose
Y = [—d] for any integer d > 1. Tt is then clear that the last condition is satisfied since
each simple left tilt from D is in the interval between D and D[—d].

In fact the preferred definition of Garside groupoid in [34] is that given in Section 3,
not Section 1, of that paper. There a Garside groupoid G is defined to be the groupoid
associated to a category G with a special type of presentation, called a complemented
presentation, together with an automorphism ¢: G — G (arising from an automorphism
of the presentation) and a natural transformation A: 1 — ¢, satisfying:

e The category GV is atomic; ie for each morphism y there is some k € N such
that  cannot be written as a product of more than k£ nonidentity morphisms.

e The presentation of G satisfies the cube condition; see [34, Section 3] for the
definition.

o Foreach g € G the natural morphism A ¢ & — ¢(g) factorises through each
generator with source g.

The naturality of A is equivalent to the statement that for any generator y: g — g’ we
have Agroy = ¢(y) o Ag. The collection of data of a complemented presentation, an
automorphism, and a natural transformation satisfying the above properties is called a
Garside tuple. Theorem 3.2 of [34] lists the good properties of a Garside tuple.

Briefly, the translation from the second to the first form of the definition is as follows.
Fix an object g € GT. Let L = Homg(g, —) with the order y <y’ <=y~ 1y’ e g*.
Let G = Homg(g, g) acting on L via precomposition. Let the automorphism
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be given by taking y: g — g’ to ¢(y) o Ag: g — ¢(g) — ¢(g’). Note that with
these definitions the interval [y, y ] in the lattice consists of the initial factors of the
morphism A in the category GV.

Below, we verify that the cluster mutation category CM y—_1(Q) forms part of a Garside
tuple.

Proposition 6.18 Let the category G be CMy_1(Q), where N > 2, presented as
in Definition 6.16, and take the automorphism ¢ = [—d] for an integer d > 1. Let the
natural transformation Ap: P — P[—d] be given by the image under the isomorphism
Tilt(Txy Q)/ Br(Q) =~ CMpn—_1(Q) of the unique morphism in Tilt(Tx Q) from an
object to its shift by [—d]. Then (G, ¢, A) is a Garside tuple.

Proof It is easy to check that the presentation in Definition 6.16 is complemented;
see [34, Section 3] for the definition. The atomicity of CMpn—_1(Q) follows from the
fact that closed bounded intervals in the cover Tilt(I'y Q) are finite, since this implies
that any morphism has only finitely many factorisations into nonidentity morphisms.
The factorisation property follows from the inequalities

D < LyD < D[—d]

for any simple object s of the heart of any t-structure D. Finally the cube condition
follows from the fact that the cover Tilt(I'y Q) is a lattice. a

Remark 6.19 In the case N =3 and d = 1 the natural morphism A p is a maximal
green mutation sequence, in the sense of Keller; see [29] and [40]. For N > 3 and
d = N —2, the natural transformation A should be thought as the generalised, or
higher, green mutation (for the Buan—Thomas coloured quivers, see [33, Section 6]).

Finally we explain the relationship of the above Garside structure to that on the braid
group Br(Q) as described in, for example, [11]. Suppose the automorphism ¢ fixes
some object g €G. Let G =Homg(g, g), and define the monoid G analogously. Then
we claim G is a Garside monoid, and G the associated Garside group (the properties
of a complemented presentation ensure that G is finitely generated by those generators
of GT with source and target g, and also that it is a cancellative monoid); moreover,
G is atomic since GT is; the cube condition ensures that the partial order relation
defined by divisibility in G is a lattice; and finally the natural transformation A
yields a central element Ay € Z(G), which plays the role of Garside element.
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As a particular example note that the automorphism ¢ = [k(2 — N)], where k € N,

fixes the standard cluster tilting set in CMn—_1(Q). By Proposition 6.17 the group of

automorphisms is Br(Q), and thus we obtain a Garside group structure on Br(Q). For

a suitable choice of k this agrees with that described in [11].
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