Volume 22, issue 7 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 5, 2251–2782
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
 
Author index
To appear
 
Other MSP journals
Rigidity of Teichmüller space

Alex Eskin, Howard Masur and Kasra Rafi

Geometry & Topology 22 (2018) 4259–4306
Bibliography
1 J Behrstock, B Kleiner, Y Minsky, L Mosher, Geometry and rigidity of mapping class groups, Geom. Topol. 16 (2012) 781 MR2928983
2 B Bowditch, Large-scale rank and rigidity of the Weil–Petersson metric, preprint (2015)
3 B H Bowditch, Large-scale rank and rigidity of the Teichmüller metric, J. Topol. 9 (2016) 985 MR3620458
4 B H Bowditch, Large-scale rigidity properties of the mapping class groups, Pacific J. Math. 293 (2018) 1 MR3724237
5 Y E Choi, K Rafi, C Series, Lines of minima and Teichmüller geodesics, Geom. Funct. Anal. 18 (2008) 698 MR2438996
6 A Eskin, Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces, J. Amer. Math. Soc. 11 (1998) 321 MR1475886
7 A Eskin, B Farb, Quasi-flats and rigidity in higher rank symmetric spaces, J. Amer. Math. Soc. 10 (1997) 653 MR1434399
8 A Eskin, B Farb, Quasi-flats in 2 × 2, from: "Lie groups and ergodic theory" (editor S G Dani), Tata Inst. Fund. Res. Stud. Math. 14, Tata Inst. Fund. Res. (1998) 75 MR1699359
9 A Eskin, D Fisher, K Whyte, Coarse differentiation of quasi-isometries, I : Spaces not quasi-isometric to Cayley graphs, Ann. of Math. 176 (2012) 221 MR2925383
10 A Eskin, D Fisher, K Whyte, Coarse differentiation of quasi-isometries, II : Rigidity for Sol and lamplighter groups, Ann. of Math. 177 (2013) 869 MR3034290
11 A Eskin, H Masur, K Rafi, Large-scale rank of Teichmüller space, Duke Math. J. 166 (2017) 1517 MR3659941
12 B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012) MR2850125
13 U Hamenstädt, Geometry of the mapping class groups, III: Quasi-isometric rigidity, preprint (2007) arXiv:math.GT/0512429v2
14 J H Hubbard, Teichmüller theory and applications to geometry, topology, and dynamics, I, Matrix Editions (2006) MR2245223
15 N V Ivanov, Automorphism of complexes of curves and of Teichmüller spaces, Int. Math. Res. Not. 1997 (1997) 651 MR1460387
16 B Kleiner, B Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997) 115 MR1608566
17 H A Masur, Y N Minsky, Geometry of the complex of curves, II : Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902 MR1791145
18 Y N Minsky, Extremal length estimates and product regions in Teichmüller space, Duke Math. J. 83 (1996) 249 MR1390649
19 P Pansu, Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1 MR979599
20 I Peng, Coarse differentiation and quasi-isometries of a class of solvable Lie groups, I, Geom. Topol. 15 (2011) 1883 MR2860983
21 I Peng, Coarse differentiation and quasi-isometries of a class of solvable Lie groups, II, Geom. Topol. 15 (2011) 1927 MR2860984
22 K Rafi, A combinatorial model for the Teichmüller metric, Geom. Funct. Anal. 17 (2007) 936 MR2346280
23 K Rafi, Hyperbolicity in Teichmüller space, Geom. Topol. 18 (2014) 3025 MR3285228
24 H L Royden, Automorphisms and isometries of Teichmüller space, from: "Advances in the theory of Riemann surfaces" (editors L V Ahlfors, L Bers, H M Farkas, R C Gunning, I Kra, H E Rauch), Ann. of Math. Studies 66, Princeton Univ. Press (1971) 369 MR0288254
25 R E Schwartz, The quasi-isometry classification of rank one lattices, Inst. Hautes Études Sci. Publ. Math. 82 (1995) 133 MR1383215
26 R E Schwartz, Quasi-isometric rigidity and Diophantine approximation, Acta Math. 177 (1996) 75 MR1417087