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A Morse lemma for quasigeodesics in
symmetric spaces and euclidean buildings

MICHAEL KAPOVICH

BERNHARD LEEB

JOAN PORTI

We prove a Morse lemma for regular quasigeodesics in nonpositively curved sym-
metric spaces and euclidean buildings. We apply it to give a new coarse geometric
characterization of Anosov subgroups of the isometry groups of such spaces simply
as undistorted subgroups which are uniformly regular.

53C35; 20F65, 51E24

1 Introduction

One of the important features of ı–hyperbolic geodesic metric spaces is the Morse
lemma, also known as the stability of quasigeodesics: every (uniform) quasigeodesic is
(uniformly) close to a geodesic. This property of hyperbolic spaces is used, among other
things, to show that hyperbolicity is a quasiisometry invariant and that quasiisometries
between hyperbolic spaces extend to the ideal boundaries. Stability of quasigeodesics
is known to fail in CAT.0/ metric spaces: already the euclidean plane contains quasi-
geodesics which are not Hausdorff-close to any geodesic. Some versions of the Morse
lemma are known for CAT.0/ spaces: In the case of maximal quasiflats, see Lang and
Schroeder [14], and in the case of Morse quasigeodesics (also known as hyperbolic or
rank one quasigeodesics), see Sultan [15]. Nevertheless, the real understanding of what
should constitute a true analogue of the Morse lemma in the CAT.0/ setting remains
elusive.

The main goal of this paper is to prove an analogue of the Morse lemma for regular
quasigeodesics in nonpositively curved symmetric spaces and euclidean buildings. In
order to unify the terminology, we refer to nonpositively curved symmetric spaces and
euclidean buildings as model spaces throughout the paper.

Instead of concluding that regular quasigeodesics are uniformly close to geodesics
(which is far from true; see Section 5.4), we will prove that they are contained in
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uniform neighborhoods of certain convex subsets of the model space: diamonds in the
case of finite quasigeodesics, Weyl cones in the case of quasigeodesic rays and parallel
sets (more precisely, unions of opposite Weyl cones therein) in the case of complete
quasigeodesics.

Note that the question about regular quasigeodesics reduces to the case of model spaces
without flat factors. For, if a model space has a nontrivial flat de Rham factor, then all
diamonds and Weyl cones split off this flat factor, and the canonical projection to the
complementary (model space) factor preserves �mod –regularity of segments and paths.
We therefore restrict our discussion to model spaces without flat factors.

Our main motivation for these results comes from the theory of discrete isometric
group actions on model spaces X, more specifically, the desire to give a clean coarse-
geometric characterization of Morse actions, which have been introduced in Kapovich,
Leeb and Porti [10].

The notion of regularity we use in this paper is defined relative to a certain face �mod

of the model chamber �mod of the Tits boundary of X. The definition is the easiest in
the case when �mod D �mod and we first present our results in this setting.

A quasigeodesic q in X (which might be finite or infinite) is (coarsely) uniformly
regular if any two points x and y in q which are sufficiently far apart (d.x; y/�D ),
define a uniformly regular segment xy in X, ie a geodesic segment whose direction
belongs to a fixed compact subset ‚ of the interior of �mod . A diamond }.x; y/ in X
is a generalization of a geodesic segment. In the case when the segment xy is regular,
}.x; y/ is a (convex) subset of a flat F �X containing xy , namely the intersection
of two Weyl chambers V.x; �/\V.y; y�/ with the tips at x and y , respectively, over
opposite chambers � and y� in the Tits boundary @TitsX of X.

Theorem 1.1 (Morse lemma, regular case) (i) Every finite uniformly regular
quasigeodesic path q in X with endpoints x and y of distance d.x; y/�D is
contained in a neighborhood of the diamond }.x; y/.

(ii) Every uniformly regular quasigeodesic ray q in X with initial point x is con-
tained in a neighborhood of a unique euclidean Weyl chamber V D V.x; �/.

(iii) Every uniformly regular complete quasigeodesic q in X is contained in a
neighborhood of a unique maximal flat F and, moreover, is contained in a
neighborhood of the union V.z; �/[ V.z; y�/ � F of two opposite euclidean
Weyl chambers with common tip z 2 F .
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Furthermore, the distance from q to }.x; y/, V or V.z; �/[V.z; y�/ is bounded above
in terms of the quasiisometry constants of q , the coarseness scale D and the regularity
set ‚. In case (iii), the common tip z can be chosen uniformly close to any point on q .

In other words, each uniformly regular quasigeodesic in X is a Morse quasigeodesic
in the sense of [10].

We deduce from this result that (coarsely) uniformly regularly quasiisometrically
embedded subspaces in model spaces X must be Gromov-hyperbolic. A quasiisometric
embedding f from a geodesic metric space Y into X is (coarsely) uniformly regu-
lar if the images of geodesic segments in Y are (coarsely) uniformly regular in X.
(Uniformity here refers to the constant D and the subset ‚.)

Theorem 1.2 (hyperbolicity of domain and boundary map, regular case) If f W Y!X

is a (coarsely) uniformly regular quasiisometric embedding, then the space Y is
Gromov-hyperbolic and, if it is also locally compact, the map f extends to a topological
embedding from the Gromov boundary of Y into the Furstenberg boundary of X.

Our work is primarily motivated by the study of discrete subgroups of isometry groups
of nonpositively curved symmetric spaces; before discussing these, we explain how
the theorems above generalize to �mod –regular quasigeodesics and �mod –regular quasi-
isometric embeddings.

�mod –regularity The role of the compact ‚ � int.�mod/, which appeared above,
is now played by a “Weyl-convex” compact subset ‚ � �mod which intersects the
boundary of �mod only in the open faces containing the open simplex int.�mod/. For
instance, if �mod is a vertex, then ‚ is required to be disjoint from the top-dimensional
face of �mod not containing �mod . With this modification, the definition of uniformly
regular quasigeodesics generalizes to the one of uniformly �mod –regular quasigeodesics.

Let � be a simplex of the Tits boundary of X which has type �mod . We next describe
the replacement for the euclidean Weyl chambers V.x; �/ in X with � playing the role
of � . They are replaced by the Weyl cones V.x; st.�//: These convex subsets of X
are unions of geodesic rays x� in X connecting x to ideal boundary points � 2 @1X,
which belong to a certain subcomplex st.�/� @1X. This subcomplex is the union of
chambers � containing � . The cones V.x; st.�// are no longer contained in maximal
flats in X (unless �mod D �mod ); instead, each V.x; st.�// is a subset of the parallel
set in X of a geodesic l through x , asymptotic to a generic point in � . Such parallel
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sets are said to have the type �mod . The diamonds }�mod.x; y/ are again defined as
intersections

V.x; st.�//\V.y; st.y�//

for opposite simplices � and y� in the Tits boundary of X.

Now, we are ready to state our results. The main result is a Morse lemma for �mod –
regular quasigeodesics in model spaces (see Theorem 5.16 and Corollary 5.23):

Theorem 1.3 (Morse lemma) (i) Every finite uniformly �mod –regular quasi-
geodesic path q in X with endpoints x and y is contained in a neighborhood of
the diamond }�mod.x; y/.

(ii) Every uniformly �mod –regular quasigeodesic ray q in X with initial point x
is contained in a neighborhood of a unique Weyl cone V D V.x; st.�// of
type �mod .

(iii) Every uniformly �mod –regular complete quasigeodesic q in X is contained in a
neighborhood of a unique parallel set P of type �mod and, moreover, is contained
in a neighborhood of the union V.z; st.�//[V.z; st.y�//� P of opposite Weyl
cones of type �mod with common tip z 2 P.

Furthermore, the distance from q to }�mod.x; y/, V or V.z; st.�// [ V.z; st.y�// is
bounded above in terms of the quasiisometry constants of q , the scale D and the
subset ‚. In case (iii), the common tip P can be chosen uniformly close to any point
on q .

In order to help the reader to appreciate the relation of this theorem to Theorem 1.1,
we note that the regularity assumptions in Theorem 1.3 are weaker (directions of
segments xy are allowed to belong to larger subsets of �mod ), while the conclusions
are weaker as well, since we can only conclude that quasigeodesics lie close to certain
sets which are larger than the ones in Theorem 1.1.

Applying these results about regular quasigeodesics to quasiisometric embeddings we
obtain (see Theorems 6.13 and 6.14):

Theorem 1.4 (hyperbolicity of domain and boundary map) Suppose that qW Z!X

is a uniformly �mod –regular quasiisometric embedding from a quasigeodesic metric
space into a model space. Then:

(i) Z is Gromov hyperbolic.
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(ii) If Z is locally compact, the map q extends to a map

xqW Z!X�mod

from the (visual) Gromov compactification Z DZ[ @1Z , which is continuous
at @1Z and sends distinct ideal boundary points to antipodal elements of the
flag space @�modX D Flag�mod

.@1X/.

An application of this theorem is a new and very simple coarse-geometric characteri-
zation of Morse subgroups of the isometry groups G D Isom.X/ of model spaces X.
This class of discrete subgroups of semisimple Lie groups was defined in [10] (in
the context of symmetric spaces), where various equivalent characterizations of word
hyperbolic Morse subgroups were established (including the characterization as Anosov
subgroups). We obtain (see Corollary 5.32 and Theorem 6.15):

Theorem 1.5 The following are equivalent for a finitely generated group � and a
homomorphism �!G :

(i) The group � is hyperbolic and the homomorphism �!G is �mod –Morse.

(ii) The orbit maps �!X are uniformly �mod –regular quasiisometric embeddings.

The following reformulation is a higher-rank analogue of one of the standard character-
izations of convex–cocompact subgroups of rank 1 Lie groups as finitely generated
undistorted subgroups. The regularity condition in this corollary is necessary already
for subgroups of SL.2;R/�SL.2;R/; see Example 6.34 in [10].

Corollary 1.6 A finitely generated subgroup � < G is word hyperbolic and �mod –
Morse if and only if � is undistorted in G and uniformly �mod –regular.

Note that uniform �mod –regularity of a discrete subgroup � < G means that the
geometric limit set ƒ.�/ � @1X (the accumulation set of a �–orbit in the ideal
boundary of X ) contains no singular points.

Strategy of the proof The main idea behind the proof of Theorems 1.1 and 1.3 is
inspired by trying to follow the proof of the Morse lemma for ı–hyperbolic metric
spaces (which goes back to Morse himself): If a uniformly �mod –regular quasigeodesic
path q connecting points x; y 2X strays too far from the diamond }D}�mod.x; y/, we
use the nearest-point projection to } to show that it is a uniformly inefficient connection
of its endpoints. This leads to a conflict, because sufficiently long quasigeodesics have
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long, arbitrarily efficient (ie almost distance-minimizing) subpaths. In the setting of a
ı–hyperbolic space X, one is helped by the fact that the nearest-point projection �}
to a geodesic interval }�X contracts distances in metric balls B.z;R/�X by an
exponentially large factor, in terms of the minimal distance between B.z;R/ and }.
This fails in the setting of higher-rank symmetric spaces and euclidean buildings X.
Instead, we define a certain length metric (of Carnot–Finsler type) d} on diamonds
} � X by restricting to a certain class of piecewise-geodesic paths in }, which we
call nonlongitudinal. The definition of such paths is, again, quite technical, but (if
�mod D �mod ) the reader can think of piecewise-geodesic paths where each subsegment
is a singular geodesic.

We then prove (Theorem 4.7):

Theorem 1.7 For each euclidean building X (equipped with its standard CAT.0/
metric d ), the projection

.X; d/
�}
�! .}; d}/

is locally 1–Lipschitz outside }.

In order to appreciate the strength of this statement, we note that the pseudometric d}
is strictly larger than the metric d when restricted to longitudinal segments in }.
Therefore, the above theorem establishes constraints on the behavior of rectifiable
regular paths in X and, in particular, of regular bilipschitz paths. As an application,
we prove (see Section 5.1):

Theorem 1.8 Suppose that c is an “almost length-minimizing” uniformly �mod –
regular path in a euclidean building X, connecting points x and y . Then c has
to meet the diamond }�mod.x; y/ in one more point, besides x and y .

The condition that c is “almost length-minimizing” is, actually, not very restrictive,
since each rectifiable path in X contains such subpaths. As an application of this result
we then show (see Theorem 5.6):

Theorem 1.9 Every rectifiable uniformly �mod –regular path c in X is entirely con-
tained in the diamond }�mod.x; y/ determined by the endpoints x and y of c .

This theorem is reminiscent of the fact that each topological path in a real tree T is
contained in a geodesic segment in T . This fact is used for proving the Morse lemma in
the case of ı–hyperbolic geodesic spaces via ultralimits (see Drut,u and Kapovich [4]).
Our argument then proceeds roughly along the same lines as that proof. Namely,
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assuming that Theorem 1.3 fails, we construct a sequence of uniformly �mod –regular
.L;A/–quasigeodesic paths qn in a model space X ; after passing to suitable ultralimits,
we obtain a uniformly �mod –regular bilipschitz path q! in an asymptotic cone X! of X,
which violates Theorem 1.9. (The ultralimit X! is a euclidean building.) Along the
way, we have to overcome yet another difficulty. One of the steps in proving the Morse
lemma in the hyperbolic setting via asymptotic cones is to show that each asymptotic
cone is a uniquely geodesic space (ie every geodesic in the cone is the ultralimit of
a sequence of geodesics). Similarly, in our proof, we have to show that the ultralimit
of a sequence of parallel sets in X is a parallel set in the cone X! (a priori, it is just
a proper subset of such a parallel set), and analogous statements for Weyl cones and
diamonds.

Organization of the paper In Section 2 we review basic notions in the theory of model
spaces (nonpositively curved symmetric spaces and buildings), as well as ultralimits and
asymptotic cones. Section 3 is long and technical; it contains the bulk of the technical
results of the paper. In this section we define and analyze properties of Weyl cones and
diamonds. We then define two key notions in the paper: regularity and longitudinality
of broken segments and paths in model spaces, as well as their coarse analogues. We
establish a preliminary analogue of Theorem 1.3 for a certain class of broken paths
in euclidean buildings, called straight paths. Furthermore, we prove results about
ultralimits of parallel sets, Weyl cones and diamonds. In Section 4 we define the
modified metric d} on diamonds and prove a contraction theorem for the nearest-point
projections to diamonds in euclidean buildings (Theorem 4.7). In Section 5 we prove the
main result of our paper, Theorem 1.3, and its corollaries, including continuous behavior
of ends of Morse quasigeodesic rays. Lastly, in Section 6 we establish structural results
for regular and (coarsely) regular subsets of model spaces, and prove Theorems 1.4
and 1.5.

Remark 1 This paper was written in November 2014. We refer the reader to [8; 7;
11; 12] for surveys of our work, further developments and for the Finsler geometry
viewpoint on the results of the present paper.

Remark 2 The results of this paper in conjunction with [10] imply most of the main
results of the later paper [5].

Acknowledgements Kapovich was supported by the NSF grants DMS-12-05312 and
DMS-16-04241 as well as the KIAS scholar program and Simons Foundation grant
391602. Porti was supported by the grant Mineco MTM2012-34834.
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2 Preliminaries

This section contains some background material on metric geometry, geometry of
buildings and ultralimits. We refer the reader to [3; 1] for further reading on metric
and CAT.0/ geometry, and to [6, Chapter 3], [13, Chapter 2.4] or [4, Chapter 7] for a
discussion of the notion of ultralimits and asymptotic cones and their basic properties.

2.1 Metric spaces

Let .Z; d/ be a metric space. We let B.z; r/ and B.z; r/ denote the open and closed
r –balls, respectively, centered at a point z 2 Z . For a subset A � Z , we denote by
rad.A; z/ its radius with respect to the center z , ie the minimal r 2 Œ0;C1� such that
A� B.z; r/. For a subset Z0 �Z , we let ND.Z0/ denote the open D–neighborhood
of Z0 in Z . We will use the notation L.c/ for the length of a (rectifiable) path c in Z .

Definition 2.1 (almost distance-minimizing path) We say that a path cW Œa; b�!Z

is �–distance-minimizing if

L.c/� .1C �/ � d.c.a/; c.b//:

Lemma 2.2 Every rectifiable path contains, for arbitrarily small � > 0, subpaths
which are �–distance-minimizing.

Proof Suppose that the path cW Œa; b�! Z is rectifiable. We choose a subdivision
aD t0 < t1 < � � �< tk D b which almost yields the length of the path,

.1C �/ �

kX
iD1

d.c.ti�1/; c.ti //� L.c/D

kX
iD1

L.cjŒti�1;ti �/:

Then one of the subpaths cjŒti�1;ti � is �–distance-minimizing.

We will use the term pseudometric for a distance function where different points may
have infinite distance (however not distance zero).

2.2 Spaces with curvature bounded above

If .Z; d/ is a CAT.1/ space, then a subset C � Z is called convex if for any two
points �1; �2 2 C with d.�1; �2/ < � , the unique geodesic in Z connecting �1 and �2
is contained in C.
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Suppose now that X is a CAT.0/ space.

We will use the notation xy for the unique geodesic segment in X connecting x to y .
We will usually regard it as an oriented segment, equipped with its natural orientation
from the initial point x to the endpoint y . Similarly, given an ideal boundary point
� 2 @1X and a point x 2 X, we let x� denote the unique geodesic ray from x

asymptotic to � , and �x the same ray with the reversed orientation. We will denote
by x0x1 : : : xk the broken geodesic path which is the concatenation of the segments
xi�1xi for i D 1; : : : k . Similarly, we will denote by x0 : : : xk�C , ��x0 : : : xk and
��x0 : : : xk�C the semi- and bi-infinite paths obtained by attaching one or two rays at
the ends of x0x1 : : : xk .

We will use the notation @1X for the ideal or visual boundary of X, equipped with the
visual topology. It carries in addition another natural topology, called the Tits topology,
which is finer than the visual topology; it is induced by a metric †Tits on @1X, called
the Tits metric. For a subset Y �X we let @1Y � @1X denote the accumulation set
of Y in @1X. For an oriented geodesic line l in X, we let l.˙1/ 2 @1X denote its
ideal endpoints,

l.˙1/D lim
t!˙1

l.t/;

where l W R!X is a (unit-speed) parametrization of l consistent with the orientation.
Then @1l D fl.�1/; l.1/g. Similarly, we denote the ideal endpoint of a ray r �X
by r.C1/.

For an ideal point � 2 @1X, we denote by b� a Busemann function at � , and by
Hb�;x the horoball centered at � and containing x in its boundary horosphere, ie
Hb�;x D fb� � b�.x/g.

We will say that two segments xy and x0y0 are oriented r –close if their initial and
endpoints are r –close, ie d.x; x0/� r and d.y; y0/� r . In view of the convexity of
the distance function of CAT.0/–spaces, any two segments which are oriented r –close
are also within Hausdorff distance r from each other.

We will denote by �.x; y; z/ the geodesic triangle with vertices x; y; z 2 X, ie the
one-dimensional object xy [ yz [ zx . If �; � 2 @1X, we denote by �.x; y; �/ the
ideal triangle with vertices x , y , � , that is, the union x�[xy[y� , and by �.x; �; �/
the ideal hinge x�[ x� with vertices x , �, � . We say that a triangle (ideal triangle,
hinge) is rigid or can be filled in by a flat triangle (half-strip, sector) or spans a flat
triangle (half-strip, sector) if it is contained in a convex subset which is isometric to a
convex subset of euclidean plane.
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We will denote by †xX the space of directions at a point x 2X ; this is a replacement
of the unit tangent sphere in a Riemannian manifold (see [3; 13] for the precise
definition). The space †xX is a CAT.1/ space equipped with the angular metric,
denoted by †.�; �/. Each geodesic segment xy determines a direction �!

xy 2†xX. We
will use the notation †x.y; z/ for the angle at x between the segments xy and xz in X,
ie the distance in †xX between the directions �!xy and �!

xz . This notation extends to the
case of semi-infinite geodesics in X : For a point � 2 @1X, we denote by †x.y; �/ the
angle between xy and the geodesic ray x� . Furthermore, for a subset A containing x ,
we denote by †x.y; A/ the angular distance between �!

xy and †xA in †xX.

The initial velocity P� 2†xX of a geodesic �W RC!X in X is the direction of � at
the point x D �.0/.

For a closed convex subset C �X we have the nearest-point projection

�C W X ! C:

This projection is a 1–Lipschitz map.

Consider the special situation when X is a Riemannian CAT.0/ space (a Hadamard
manifold) and C �X is a totally geodesic subspace. Then the distance function

d.x; C /D min
y2C

d.x; y/

is 1–Lipschitz and smooth outside of C ; the gradient lines of this function are the
geodesics xxx , where xx D �C .x/. Suppose that r W Œ0;C1/ ! X � C is a unit-
speed geodesic ray with ideal endpoint r.C1/ D � 2 @1X. Then the function
f .t/D d.r.t/; C / is smooth with derivative

(2-1) f 0.t/D�cos.†r.t/.xr.t/; �//;

where xr D �C ı r denotes the projection of the ray.

2.3 Buildings and symmetric spaces

In the paper we will be using nonpositively curved symmetric spaces, spherical and
euclidean buildings. We regard Riemannian symmetric spaces of noncompact type and
euclidean buildings as the smooth “archimedean” and the singular “nonarchimedean”
members, respectively, of the family of CAT.0/ “model spaces” with rigid geometry.
Both symmetric spaces and euclidean buildings will usually be denoted by X, while
spherical buildings will be denoted by B. We will only consider symmetric spaces
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and euclidean buildings X of noncompact type, which means that X is CAT.0/ and
has no flat factor, ie is not isometric to the direct product of metric spaces X 0 �Rk

with k � 1.

Definition 2.3 By a model space, we mean a symmetric space of noncompact type or
a euclidean building of noncompact type.

We rule out flat factors for our model spaces, in part because, as far as the results
discussed in this paper are concerned, the case of spaces with a flat factor immediately
reduces to the case without. However, many arguments in the paper use parallel sets of
geodesics or flats in model spaces: these parallel sets do have flat factors and, hence, are
CAT.0/ symmetric spaces and euclidean buildings which do not have noncompact type.

The two types of model spaces are connected via asymptotic cones; this connection
will be explained in Section 2.7.

For a treatment of buildings from the metric perspective of spaces with curvature
bounded above, we refer to [13, Chapters 3–4]. Some notions needed in this paper,
or closely related to it, have been discussed in the case of symmetric spaces in
[10, Chapters 2 and 5.1], and the discussion in the building case is very similar, and
often simpler. It is important to stress here that the euclidean buildings we are consider-
ing are allowed to be nondiscrete and in particular not locally compact; such buildings
appear as asymptotic cones of symmetric spaces of noncompact type.

2.4 Spherical buildings

Instead of giving the precise definitions of spherical buildings (and euclidean buildings
in the following section), we will describe below some of their important features. Part
of this section is a review of the material in [10, 2.4.1–2.4.2], to which we refer the
reader for more details.

From the metric viewpoint, spherical buildings are CAT.1/ spaces; we will denote
their metrics by †.

A spherical building B has an associated spherical Coxeter complex .amod; W /, where
the spherical model apartment amod is a euclidean unit sphere and W is a finite
reflection group acting on amod , called the Coxeter or Weyl group of B. The quotient
�mod Š amod=W is called the model chamber. We identify it with a chamber in the
model apartment, �mod � amod . We will say that the building B has type �mod .
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As long as W has no fixed point on amod , the model simplex �mod is a spherical
simplex in amod and has diameter � �

2
. We will use the notation �mod for faces of �mod

and W�mod for the stabilizer of �mod in W . The longest element of the group W is
the unique element wo 2W which sends �mod to ��mod (the latter is also a chamber
in amod ). The composition �D�wo preserves the model chamber �mod . (For some
Weyl groups W , wo D id; then �D id.)

Each spherical building has a natural structure of a polysimplicial cell complex. Facets
(top-dimensional faces) of this complex are called chambers of B. Each building B
comes equipped with a system (“atlas”) of isometric embeddings amod! B, whose
images are called (spherical) apartments. Any two points of B belong to an apartment.
It is important to stress that the spherical buildings in this paper are not assumed to be
thick, ie a codimension-one face may be adjacent to only two chambers.

A splitting of the model chamber as a spherical join �modD �
1
mod ı�

2
mod — equivalently,

a splitting .amod; W /D .a
1
mod; W1/ ı .a

2
mod; W2/ of the spherical Coxeter complex —

induces splittings of all buildings B of type �mod as spherical joins BD B1 ıB2 of
spherical buildings Bi of types � imod .

Two faces x�C; x�� � amod are called antipodal or opposite if �x��D x�C . Similarly, two
points x�; x� 0 2 amod are antipodal if x� 0 D �x� . These definitions extend to the entire
building B since any two faces (and any two points) are contained in an apartment
in B.

In a general simplicial complex †, we define the interior int.�/ of a simplex � as the
corresponding open face. We define the star st.�/�† of � as the union of all (closed)
faces containing � . We note that the star is also known as the residue; this notion of
the star should not be confused with the smallest subcomplex of † consisting of faces
which have nonempty intersection with � . We define the open star of � ,

ost.�/� st.�/;

as the union of all open faces whose closure contains � . Furthermore, we define the
boundary of the star,

@ st.�/ WD st.�/� ost.�/I

it is the union of all (closed) faces of the star which do not contain � . If the simplex
� is maximal, ie not contained in a simplex of larger dimension, then st.�/ D � ,
ost.�/D int.�/ is the open face and @ st.�/D @� is the topological frontier of � . We
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will apply these notions to spherical buildings and their model chambers, which both
carry natural structures as simplicial complexes.

There exists a canonical projection

� W B! �mod;

called the type map. The type map restricts to an isometry on each chamber of B and,
hence, is 1–Lipschitz. A type is a point in �mod , and a face type is a face of �mod . The
type of a point � 2B is �.�/, and the type of a face � �B is �.�/. If the simplices �˙
in B are opposite to each other, then �.��/ D ��.�C/. We call a type x� 2 �mod a
root type if the ball B

�
x�; �
2

�
� amod is a subcomplex, equivalently, if the great sphere

S
�
x�; �
2

�
� amod is a wall.

Throughout the paper, we will denote by �mod � �mod a face type.

We denote by Flag�mod
.B/ the flag space of type �mod simplices in B. It is a discrete

space. If B carries an additional structure as a topological building, as do Tits boundaries
of model spaces — compare below — then the flag spaces inherit a topology.

A point � 2 B is called �mod –regular if �.�/ 2 ost.�mod/ and �mod –singular if �.�/ 2
@ st.�mod/. We call the �mod –regular points simply regular; these are the points with
type in int.�mod/. The �mod –regular points in B form an open subset, whose connected
components are the open stars ost.�/ of the type �mod faces � . For a �˙mod –regular
point � 2 B we define �˙.�/ as the type �˙mod face such that � 2 ost.�˙.�//; we set
�.�/D �C.�/.

A subset A � �mod is called �mod –convex (or Weyl-convex) if its symmetrization
W�modA � st.�mod/ is a convex subset of amod ; see [10, Definition 2.15]. By ‚, ‚0

and ‚00 we will always denote compact �mod –convex subsets of ost.�mod/ � �mod .
Note that �mod is determined by such a subset ‚, namely, as the smallest face whose
interior intersects ‚. When we use several such subsets ‚, ‚0 and ‚00, we will always
assume that ‚� int.‚0/ and ‚0 � int.‚00/.

Since diam.�mod/�
�
2

, for every type x� 2 �mod there exists a radius �D �.‚; x�/ < �
2

such that

(2-2) ‚� B.x�; �/:

The following constant will frequently occur:

(2-3) �0.‚/ WD †.‚; @ st.�mod//Dminf†.�; �/ W � 2‚; � 2 @ st.�mod/g> 0:
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Sometimes we will also use

(2-4) �0.‚;‚
0/ WD †.‚; st.�mod/�‚

0/ > 0:

A point � 2 B is called ‚–regular if �.�/ 2‚. We define the ‚–star of a type �mod

simplex � � B as the set of ‚–regular points in its star, st‚.�/D st.�/\��1.‚/. We
will often use the fact that the ‚–stars are uniformly separated from each other:

Lemma 2.4 For any two distinct type �mod simplices �1; �2 � B, the (nearest-point)
distance between st‚.�1/ and st.�2/ is � �0.‚/.

Proof Since the open stars are disjoint, any path connecting a point in st‚.�1/ to
a point in st.�2/ must exit st.�1/ at its boundary. It therefore has a subpath which
projects via the type map � to a path in �mod connecting a point in ‚ to a point in
@ ost.�mod/. The assertion follows because � is 1–Lipschitz.

We will always use the conventions

�Cmod WD �mod; ��mod WD ��mod

and
‚C WD‚; ‚� WD �‚:

A singular sphere in a spherical building B is an isometrically embedded (euclidean
unit) sphere s�B which is, at the same time, a subcomplex of B. Each singular sphere
equals the intersection of some (possibly one) apartments in B.

For an ordered pair of opposite simplices �˙ � B, we denote by s.��; �C/ � B the
singular sphere spanned by �˙ , ie containing them as top-dimensional simplices. Equiv-
alently, s.��; �C/ is the smallest (with respect to inclusion) isometrically embedded
sphere in B containing �C[�� . Each singular sphere s�B has the form sD s.��; �C/

for a pair of antipodal simplices �˙ .

Given a singular sphere s � B, we let B.s/� B denote the subbuilding which is the
union of all apartments containing s . There is a natural decomposition

(2-5) B.s/Š s ı†s B

as the spherical join of the sphere s and its link †s B in B. In the case when s D
s.��; �C/, we will use the notation B.��; �C/ for B.s/. When we want to specify the
ambient building B, we put it as a subscript and write BB.s/.

The following properties will be often used:
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(i) Each apartment a � B.��; �C/ contains s D s.��; �C/.

(ii) st.�˙/� B.��; �C/.

(iii) ost.�˙/ is open in B; in particular, ost.�˙/ is open in B.��; �C/.

In view of the spherical join decomposition, it is clear that every point in s has inside
B.s/ a unique antipode, and this antipode lies in s .

Lemma 2.5 All antipodes �� 2 B.s/ of a point �C 2 st.�C/ are contained in st.��/.
Moreover, if �C 2 ost.�C/, then �� 2 ost.��/.

Proof Let �C 2 st.�C/, and let �� 2 B.s/ be an antipode of �C . Since B.��; �C/ is
a subbuilding, the pair of antipodes �˙ is contained in an apartment a � B.s/. As
for all apartments in B.s/, we have that �˙ � a . There exists a chamber �C � a
containing �C with face �C . The opposite chamber �� in a contains �� and has ��
as a face. Thus, �� 2 st.��/. The assertion for open stars follows.

The last observation extends to almost antipodes in a quantitative manner.

Lemma 2.6 Let �C 2 st‚.�C/ and �� 2 B.s/ be points such that †.�C; ��/ >
� � �0.‚/. Then �� 2 ost.��/.

Proof We only need to treat the case when �C and �� are not opposite. The geodesic
arc ���C extends to an arc ���C�C of length � . It connects �� to an antipode �C .
Since †.�C; �C/ < �0.‚/, the arc �C�C is too short to leave ost.�C/ and therefore
�C 2 ost.�C/. The previous lemma then implies that �� 2 ost.��/.

Corollary 2.7 Let �C 2 st‚.�C/ and let �� 2 B be an antipode of �C outside B.s/.
Then †.��;B.s//� �0.‚/.

Proof Suppose that †.��;B.s// < �0.‚/ and let x�� 2 B.s/ be the nearest-point
projection of �� to B.s/. (Note that, as a subbuilding, B.s/ is a closed convex
subset of B, and the nearest-point projection to B.s/ is well-defined on the open �

2
–

neighborhood.) Since ost.��/�B.s/ is open in B, it cannot contain the projection of a
point outside B.s/, and hence x�� … ost.��/. On the other hand, we have †.�C; x��/ >
� � �0.‚/, which leads to a contradiction with the previous lemma.

It has been proven in [10, 2.5.2; 12, Lemma 2.6] that stars and ‚–stars of simplices
are convex. This follows from the fact that they can be represented as intersections of
balls with radius �

2
. More precisely, one has:
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Proposition 2.8 (convexity of stars; see [10, Lemma 2.12; 12, Lemma 2.6]) Let
� � B be a simplex.

(i) For every simplex y� � B opposite to � , the star st.�/ is the intersection of
B.y�; �/ and the simplicial �

2
–balls whose interior contains int.�/ and whose

center lies in B.y�; �/.

(ii) st‚.�/ equals the intersection of all �
2

–balls containing it.

2.5 CAT.0/ model spaces

Similarly to spherical buildings, each model space X has an associated euclidean
Coxeter complex .Fmod; Waff/, where the model flat (or apartment) Fmod is a euclidean
space and Waff is a, possibly nondiscrete, group of isometries of Fmod generated by
reflections. The linear part of this group is a finite reflection group, called the Weyl
group W of X ; we pick a basepoint 0 2 Fmod and think of W as acting on Fmod

fixing 0. The dimension of Fmod is called the rank of X. The quotient Fmod=W will
be denoted by � or �euc or Vmod ; it is called the euclidean model Weyl chamber of X.
We identify it with a euclidean Weyl chamber with tip 0 in the model flat, �� Fmod .

Each model space X comes equipped with a system (“atlas”) of isometric embeddings

��1W Fmod!X:

The images of the maps ��1 are the maximal flats in X. (In the case when X is a
euclidean building, they are also called apartments.) The inverse maps � are called
charts for the maximal flats (or apartments). The charts are compatible in the sense
that for any two charts �1 and �2 the transition function �1 ı ��12 is the restriction of
an element in Waff .

Any two points in X are contained in a maximal flat.

In addition to its usual distance function d , each model space comes equipped with
a �–valued distance function or �–distance, denoted by d� . The function d� is
defined on Fmod by

d�.x; y/D proj.y � x/ 2�;

where projW Fmod=W Š� is the quotient map. The function d� extends to the entire
model space X due to the compatibility of apartment charts and the fact that any two
points are contained in a maximal flat.
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The �–distance satisfies the symmetry property

d�.y; x/D �d�.x; y/:

If X is a symmetric space, then d�.x; y/ completely determines the Isomo.X/–
congruence class of the pair .x; y/, ie d�.x; y/D d�.x0; y0/ if and only if there exists
g 2 Isomo.X/ such that g.x/D x0 and g.y/D y0.

The projection

(2-6) X �X !�; .x; y/ 7! d�.x; y/;

is 1–Lipschitz in each of the two variables, which implies the triangle inequalities for
�–lengths

(2-7) kd�.x; y/� d�.x; y
0/k � kd�.y; y

0/k D d.y; y0/

and
kd�.x; y/� d�.x

0; y/k � kd�.x; x
0/k D d.x; x0/;

where the differences of �–lengths are taken in Fmod , viewed as a vector space with
origin 0; see [9].

Spherical buildings appear naturally when one looks at the geometry at infinity of a
model space and, in the euclidean building case, at the infinitesimal geometry:

(i) The visual boundary @1X of a model space X, equipped with the Tits metric †Tits ,
has a natural structure of a spherical building; we will refer to this spherical building as
the Tits boundary @TitsX of X. The Weyl group of X is canonically isomorphic to the
Weyl group of @TitsX ; the dimension of @TitsX equals rank.X/�1. The euclidean Weyl
chamber � of X is canonically isometric to the complete euclidean cone over �mod .
If X is a symmetric space then the building @TitsX is always thick, while if X is a
euclidean building then @TitsX is thick provided that X is thick. We will say that the
model space X is of type �mod . The chamber �mod determines the Coxeter complex
.Fmod; Waff/ of X if Waff acts transitively on Fmod (which is the case of symmetric
spaces and their asymptotic cones); in general, �mod determines Fmod and the Weyl
group W .

(ii) In the same vein, for each euclidean building X and each point x 2X, the space
of directions †xX, equipped with the angle metric †x , has a natural structure of
a spherical building of the same type �mod , equivalently, with the same associated
Coxeter complex .amod; W / as @TitsX. Note that in general the spherical building †xX
is not thick (for instance if X is a discrete euclidean building and x is not a vertex.)
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We denote by � W @TitsX ! �mod and �x W †xX ! �mod the natural type maps, and by

logx W @TitsX !†xX

the natural 1–Lipschitz logarithm map, sending an ideal point � to the direction
�!

x� .
This map sends faces isometrically onto faces and satisfies

� D �x ı logx :

(ii0) If X is a symmetric space, then the spaces of directions †xX are unit spheres
and the logarithm maps logx are bijective and homeomorphisms with respect to the
visual topology on @1X. One can pull back the Tits metric and the spherical building
structure to †xX and then also speak of simplices, chambers, apartments etc in †xX.

Along with these spherical buildings associated to X, we have the flag spaces at
infinity @�modX D Flag�mod

.@1X/ and the spaces Flag�mod
.†xX/ of infinitesimal flags;

see Section 2.4. The visual topology on @1X induces visual topologies on the flag
spaces at infinity. (This is emphasized by the notation Flag�mod

.@1X/ instead of
Flag�mod

.@TitsX/.)

For a type x� 2 int.�mod/, the natural identification

Flag�mod
.@1X/Š �

�1.x�/� @1X;

which assigns to a type �mod simplex the point of type x� in its interior, is a topological
embedding. The infinitesimal flag spaces are discrete in the euclidean building case,
while in the symmetric space case, they inherit natural (manifold) topologies from the
unit tangent spheres. In the symmetric space case, these flag spaces at infinity are flag
manifolds; Flag�mod

.@1X/ is naturally homeomorphic to the (generalized partial) flag
manifold G=P, where G D Isomo.X/ and P is a parabolic subgroup stabilizing a
simplex of type �mod in @1X. The infinitesimal flag manifolds are homeomorphic to
the flag manifolds at infinity of the corresponding types.

A spherical join splitting �mod D �
1
mod ı �

2
mod of the model chamber induces splittings

of all model spaces X of type �mod as products

X DX1 �X2

of model spaces Xi of types � imod ; compare Section 2.4.

If xy � X is a nondegenerate segment, then we call �. �!xy/ its type. Similarly, an
oriented geodesic l �X is said to have type �.l.C1//.
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A nondegenerate segment xy or a pair .x; y/ of distinct points is called �mod –regular or
‚–regular, respectively, if its direction �!

xy is. In this case, we define its �mod –direction
�.xy/ at x as the type �mod face �. �!xy/�†xX ; then �!

xy 2 ost.�.xy//. Analogously,
we denote by �˙.zw/ the �˙mod –direction of a �˙mod –regular segment zw .

We denote by
Isom� .X/ < Isom.X/

the subgroup of type-preserving isometries, ie isometries which preserve the types of
segments and ideal boundary points. Note that Isom� .X/ has finite index in Isom.X/,
because X has no flat factor.

Since there is a unique geodesic segment connecting any two points in X, we can
identify the space of oriented segments in X with the space X �X, equipped with the
product topology. We observe that �mod –regularity is an open condition for oriented
segments, because the type of a segment varies continuously with it.

The phenomenon of angle rigidity is specific to euclidean buildings; see [13, Section 4.1].
In the case of symmetric spaces, one only encounters it at infinity, in the Tits boundary.
It is useful to keep in mind the following basic consequences of angle rigidity.

Two nondegenerate segments xy1; xy2 �X with the same initial point initially span
a flat triangle, ie there exist points x ¤ y0i 2 xyi such that the geodesic triangle
�.x; y01; y

0
2/ can be filled in by a flat triangle. In particular, if the initial directions of

the segments agree, ie †x.y1; y2/D 0, then the segments initially agree, ie xy1\xy2
is a nondegenerate segment.

More is true: For any ray x�1 and any nondegenerate segment xy2 with the same
initial point there exists a point x ¤ y02 2 xy2 such that the ideal triangle �.x; �1; y02/
can be filled in by a flat half-strip. Furthermore, xy02 can be extended to a ray x�02
such that the ideal hinge �.x; �1; �02/ can be filled in by a flat sector.

We return to the discussion of model spaces in general.

The logarithm maps send stars onto stars:

Lemma 2.9 For each point x 2X and simplex � � @1X,

logx st.�/D st.logx �/; logx ost.�/D ost.logx �/:

Proof In the symmetric space case, the assertion is tautological, since the logarithm
maps are homeomorphisms.
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In the euclidean building case, the assertion is a consequence of angle rigidity. Only
the surjectivity requires an argument.

Let v D �!
xy2 2 st.logx �/, and let �1 2 int.�/. According to our discussion of angle

rigidity, there exists �2 2 @1X such that �!x�2 D v and the ideal hinge �.x; �1; �2/
can be filled in by a flat sector. This means that †x.�1; �2/D †Tits.�1; �2/ and the
restriction of logx to the arc �1�2 is an isometric embedding. Since logarithm maps
restrict to isometries on simplices, and since �!

x�1 and v D �!
x�2 are contained in one

chamber, it follows that also �1�2 must be contained in one chamber, ie �2 2 st.�/.
This shows the assertion for closed stars.

The assertion for open stars follows, because logarithm maps are type-preserving.

Each apartment a � @TitsX is the ideal boundary of a unique maximal flat F � X.
More generally, each (isometrically embedded) unit sphere s � @TitsX is the ideal
boundary of a flat f � X. If s is not an apartment, then the flat f is not maximal
and not unique. If the sphere s is singular, then also the flat f is singular, ie is the
intersection of some maximal flats in X.

Parallel sets in model spaces and spherical joins at infinity One defines the parallel
set P.s/�X of a unit singular sphere s� @TitsX as the union of the (parallel) flats with
ideal boundary s . Parallel sets are totally geodesic subspaces or euclidean subbuildings,
depending on whichever X is, and as such they carry themselves natural structures as
symmetric spaces or euclidean buildings with the same associated Coxeter complex
and of the same type �mod as X.

As a consequence, geodesic segments in parallel sets are extendible to complete
geodesics, and tangent directions to parallel sets are represented by segments in the
parallel set.

However, parallel sets are not model spaces in our sense, because they have flat factors.
The parallel set P.s/ splits isometrically as

(2-8) P.s/Š f �CS.s/;

where the slices f �pt are the flats with ideal boundary sphere s , and the cross-section
CS.s/ is a symmetric space or euclidean building with corank dim.f /D dim.s/C 1,
and

rank.X/D dim.f /C rank.CS.s//:
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The visual boundary of P.s/ is (underlying) the subbuilding B@TitsX .s/ of @TitsX

associated to the sphere s ,

@TitsP.s/D B@TitsX .s/:

Accordingly, there is the natural spherical join decomposition

@TitsP.s/Š s ı @TitsCS.s/;

where @TitsCS.s/ is canonically identified with the link †s.@TitsX/ of s in @TitsX ;
compare (2-5).

Let �˙ � s be a pair of opposite simplices spanning s , ie s D s.��; �C/. The subset
ost.�C/� P.s/ is open in @1X with respect to the Tits topology, but in general not
with respect to the visual topology. However:

Lemma 2.10 ost.�C/ is open in @1P.s/ also with respect to the visual topology.

Proof Let �C 2 ost.�C/, and let �� 2 ost.��/ be an antipode. Any ideal point
�C 2 @1P.s/ sufficiently close to �C is almost opposite to �� because of the lower
semicontinuity of the Tits metric with respect to the visual topology. Lemma 2.6 then
implies that �C 2 ost.�C/.

As for the visual boundary, we have an analogous description and splitting of the
spaces of directions of parallel sets as subbuildings of the spaces of directions of X.
(In the symmetric space case, this refers to the spherical building structures on the
spaces of directions pulled back from the visual boundary by the logarithm maps, and
is tautological.)

Lemma 2.11 For x 2 P,
†xP D B†xX .logx s/:

Proof We only need to consider the case when X is a euclidean building.

Every direction in †xP is tangent to a maximal flat F � P through x . Since the
apartment @1F � @1P contains the sphere s , the apartment †xF �†xP contains
the sphere logx s . Therefore,

v 2†xF � B†xX .logx s/

and, hence,
†xP � B†xX .logx s/:
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Conversely, let �˙ � s be a pair of opposite simplices spanning s , ie s D s.��; �C/.
Since

@Tits.P.s//D B@TitsX .s/� st.�˙/;

it follows, using Lemma 2.9, that

st.logx �˙/D logx st.�˙/�†xP:

Since †xP is a subbuilding of †xX, it must therefore contain all apartments containing
logx s . This shows the reverse inclusion.

Note that for spheres s � s0 � @TitsX, we have that P.s/� P.s0/. If s is not singular
and s0 is the unique smallest singular sphere containing s , then there is equality.

For a flat f �X, we define its parallel set as P.f / WD P.@1f /; it is the union of all
flats parallel to f . For flats f � f 0, it holds that P.f /� P.f 0/. Again, if f is not
singular and f 0 is the unique smallest singular flat containing f , then equality holds.

When s D s.��; �C/, we will use the notation P D P.��; �C/ for P.s/. In this
notation we emphasize that we regard P as a parallel set together with a choice of an
ordered pair .��; �C/ of antipodal simplices in @1P. One can think of this choice as
a higher-rank analogue of an orientation of a geodesic. We will say that the parallel set
P.��; �C/ has type �.�C/.

Each parallel set of a flat (or a sphere at infinity) can also be represented as the parallel set
of a geodesic line. Namely, P.��; �C/DP.l/ for every line l with l.˙1/ 2 int.�˙/.

Two ideal points �˙ 2 @1X are opposite, ie †Tits.��; �C/D � , if and only if there
exists a geodesic line l �X asymptotic to �˙ , ie l.˙1/D �˙ . (Note that this is not
true for general CAT.0/ spaces.) Two simplices �˙ � @1X are opposite if and only
if there exists a line l �X such that l.˙1/ 2 int.�˙/.

Definition 2.12 (x–opposite) We say that two (opposite) simplices �˙ � @1X are
x–opposite if the simplices logx �˙ �†xX are opposite.

If X is a symmetric space, this condition means that the differential dsx of the point
reflection at x (Cartan involution) sx W X ! X swaps �C and �� . In this case, for
every simplex there exists a unique x–opposite simplex.

Lemma 2.13 Two opposite simplices �˙ � @1X are x–opposite if and only if
x 2 P.��; �C/.
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Proof If the simplices logx �˙ � †xX are opposite, then they contain a pair of
opposite directions logx �˙ 2 int.logx �˙/. Hence, there exists a pair of antipodes
�˙ 2 int.�˙/ such that ��x�C is a geodesic line. It follows that x 2 P.��; �C/. The
converse is clear.

A spherical join splitting �mod D �
1
mod ı �

2
mod induces splittings of all model spaces X

of type �mod as metric products X DX1 �X2 of model spaces Xi of types � imod .

Cones For a subset A� @1X and a point x 2X we let V.x;A/�X be the complete
cone over A with tip x , ie the union of the geodesic rays x� for all � 2 A. If A is
closed with respect to the visual topology on @1X, then the subset V.x;A/ is closed
in X. The cones V.x;A/, in general, are not isometric to (euclidean) metric cones.
However, if A is contained in an apartment in @1X, then V.x;A/ is canonically
isometric to the complete euclidean cone over the set A, equipped with the Tits metric.

In the special case when � � @1X is a simplex, the cone V.x; �/ is called a euclidean
Weyl sector in X, and if � � @1X is a chamber, then V.x; �/ is called a euclidean
Weyl chamber. The open sector int.V .x; �// WD V.x; int.�// � fxg is the subset of
points where V.x; �/ is locally isometric to euclidean space (of dimension dim � C 1).
It is the interior of the sector V.x; �/ inside any minimal singular flat containing it.

For a simplex � � @1X, the cone V.x; st.�// is called a Weyl cone in X. It is the union
of the euclidean Weyl chambers V.x; �/ over all chambers � � @1X containing � as
a face. If y� is a simplex x–opposite to � , then

V.x; st.�//� P.y�; �/:

We call such a parallel set an ambient parallel set for the Weyl cone. We will refer to the
subset V.x; ost.�//�fxg�V.x; st.�// as the open Weyl cone. It is the subset of points
y 2 V.x; st.�// whose spaces of directions †yV.x; st.�// are spherical buildings.

Another class of cones which we will use are the ‚–cones V.x; st‚.�//.

2.6 Trees

We recall the geometric notion of tree:

Definition 2.14 (metric tree) A metric tree is a 0–hyperbolic geodesic metric space.

Note that euclidean buildings of rank one are metric trees.

Geometry & Topology, Volume 22 (2018)



3850 Michael Kapovich, Bernhard Leeb and Joan Porti

We will use the following fact:

Lemma 2.15 Every path metric space bilipschitz homeomorphic to a metric tree is
itself a metric tree.

Proof Suppose that .T; d/ is a metric tree, and that d 0 is another path metric on T
which is bilipschitz equivalent to d . Any two points in T are connected by an embedded
path, and this path is unique up to reparametrization. Moreover, it is d –rectifiable
and therefore d 0–rectifiable. Any nonembedded path with the same endpoints is at
least as d 0–long, because its image contains the image of the embedded connecting
path. It follows that d 0–geodesics coincide, up to reparametrization, with d –geodesics.
Thus, any two points in T can be connected by a unique d 0–geodesic and d 0–geodesic
triangles are tripods.

2.7 Ultralimits

We let ! denote a nonprincipal ultrafilter on the set N of natural numbers. For a map
hW N!K from N to a compact Hausdorff space, one defines the ultralimit,

!–lim h.n/D k 2K;

as the unique point k 2K such that for every neighborhood U of k in K , the subset
h�1.U / belongs to ! .

Consider a sequence of pointed metric spaces .Xn; ?n/ parametrized by N ; we use
the notation distXn for the metric on Xn . The ultralimit

.X! ; ?!/D !–lim
n

.Xn; ?n/

of the sequence of pointed metric spaces .Xn; ?n/ is a pointed metric space defined as
follows: Define a pseudodistance dist! on the product space

Q
n2N Xn by the formula

dist!..xn/; .yn// WD !–lim.n 7! distXn.xn; yn//;

where we take the ultralimit of the function n 7! distXn.xn; yn/ with values in the
compact space Œ0;1�. The function dist! takes values in Œ0;1�. In order to convert
this function to a metric, we first consider the subset

Xo! �
Y
n2N

Xn

consisting of sequences .xn/n2N such that

dist!..xn/; .?n// <1:
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Then dist! restricted to Xo! �X
o
! takes only finite values. Lastly, take the quotient

of Xo! , where we identify points with zero dist! –distance. The result is the ultra-
limit X! ; we retain the notation dist! for the projection of the pseudodistance from
Xo! to X! . Points x! 2X! are thus represented by sequences .xn/ of points xn 2Xn ;
abusing notation, we will sometimes write x! D .xn/. The natural basepoint of X! is
?! D .?n/.

The ultralimits that we will be using in the paper are of very special kind. They are
defined by starting with a fixed metric space .X; distX /, taking sequences of basepoints
?n 2X and of scale factors �n > 0 converging to 0, and then setting

Xn DX; distXn D �n distX :

Such ultralimits are called asymptotic cones of .X; distX /. By abusing the notation,
we will abbreviate .X; �n distX / to �nX.

We will need a basic construction, which relates quasiisometries and asymptotic cones.
Suppose that .Yn; ?0n/ and .Xn; ?n/ are sequences of pointed metric spaces and that

fnW Yn!Xn

are .L;A/–quasiisometric embeddings such that

!–lim�n distXn.fn.?
0
n/; ?n/ <C1:

Suppose that .�n/ is a sequence of positive numbers satisfying !–lim�n D 0 and
consider the ultralimits

.Y! ; ?
0
!/D !–lim.Yn; �n distYn ; ?

0
n/; .X! ; ?!/D !–lim.Xn; �n distXn ; ?n/:

Then the induced map

f! W Y!!X! ; f!..yn//D .fn.yn//;

is well defined. The map f! is called the ultralimit of the sequence of maps .fn/n2N .

Since, with respect to the rescaled metrics, the maps fn are .L; �nA/–quasiisometric
embeddings, their ultralimit is an .L; 0/–quasiisometric embedding:

Lemma 2.16 The map f! is an L–bilipschitz embedding:

L�1distY! .y! ; y
0
!/� distX! .f!.y!/; f!.y

0
!//� L distY! .y! ; y

0
!/:
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We will use this lemma primarily to conclude that the ultralimit of a sequence of
uniform quasigeodesics in a symmetric space (or a building) is a bilipschitz path in the
asymptotic cone, while ultralimits of sequences of flats are flats.

The following construction is a special case of the lemma. Suppose that .Xn; ?n/ is a
sequence of pointed metric spaces with ultralimit .X! ; ?!/D !–lim.Xn; ?n/ and that
Yn �Xn are subsets such that

!–lim distXn.?n; Yn/ <C1:

Define the ultralimit of the sequence of subsets Yn ,

Y! D !–limYn �X! ;

as the subset consisting of all points y! 2X! represented by sequences .yn/n2N with
yn 2 Yn . Alternatively, one can describe Y! as follows: for any sequence of basepoints
?0n 2 Yn with !–lim distXn.?n; ?

0
n/ <C1, there is a natural isometric embedding of

ultralimits
!–lim.Yn; ?0n/! !–lim.Xn; ?0n/D .X! ; ?

0
!/;

where distYn is the restriction of the distance function from Xn to Yn , and the image
of the embedding coincides with Y! .

Since the ultralimit of any sequence of metric spaces is a complete metric space (see
Lemma I.5.53 in [2] or Proposition 7.44 in [4]), it follows that the ultralimit of any
sequence of subspaces is closed.

3 Geometry of CAT.0/ model spaces

Throughout this chapter, X denotes a model space. When parts of the discussion apply
only to euclidean buildings or symmetric spaces, this will be indicated explicitly.

3.1 Regularity and coarse regularity

The regularity of pairs of points — equivalently, of segments — has been defined in
Section 2.5.

We call a sequence .xn/ in X ‚–regular if all pairs .xm; xn/ for m < n are ‚–
regular; a path cW I !X is ‚–regular if all pairs of points .c.t1/; c.t2// for t1 < t2
are ‚–regular. When we do not want to specify ‚, we say that a sequence .xn/ or a
path c is uniformly �mod –regular if it is ‚–regular for some ‚.
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A weaker version of uniform regularity is regularity: a sequence .xn/ (resp. path c )
is �mod –regular if all pairs .xm; xn/ for m< n are �mod –regular (resp. pairs of points
.c.t1/; c.t2// for t1 < t2 ) are �mod –regular. Note that �mod –regularity does not imply
local uniform �mod –regularity.

If �mod and ‚ are �–invariant, then the order of the points does not matter: A segment
is �mod – or ‚–regular if and only if the reversely oriented segment is. Freed of the
orientation issues, we then say that a subset R�X is ‚–regular if any pair of distinct
points in R is ‚–regular and, more generally, that a map Z!X into X is ‚–regular
if it sends any pair of distinct points in Z to a ‚–regular pair of points in X. In the
same way, we define the �mod –regularity of subsets of and maps into X. Note that
regular maps are necessarily injective, and their images are regular subsets. Conversely,
injective maps into regular subsets are regular.

A natural way to coarsify the notion of regularity is as follows.

Let B � 0. We say that a pair .x; y/ of (not necessarily distinct) points is .‚;B/–
regular if it is oriented B –close to some ‚–regular pair of points .x0; y0/, ie d.x; x0/�
B and d.y; y0/ � B . Since we are working in a CAT.0/ setting, this is equivalent
to the property that the segment xy is oriented B –Hausdorff-close to the ‚–regular
segment x0y0, and we say also that the segment xy is .‚;B/–regular.

We say that a sequence .xn/ in X is .‚;B/–regular if all pairs .xm; xn/ for m<n are
.‚;B/–regular. Similarly, we say that a (not necessarily continuous) path pW I !X

is .‚;B/–regular if, for every subinterval Œa0; b0� � I, the segment p.a0/p.b0/ is
.‚;B/–regular. We will primarily use this definition in the case of quasigeodesics
(finite or infinite).

If �mod and ‚ are �–invariant, then we say that a subset of X is .‚;B/–regular if
every pair of points in the subset has this property and, more generally, that a map
into X is .‚;B/–regular if it sends any pair of points to a .‚;B/–regular pair of
points in X. Note that the images of .‚;B/–regular maps are .‚;B/–regular subsets.
We say that the subset or map is (coarsely) ‚–regular if it is .‚;B/–regular for some
constant B . We say that an isometric group action on X is ‚–regular if some (every)
orbit map is.

A path, map, subset or action is said to be uniformly �mod –regular if it is ‚–regular
for some ‚.

Let �mod and ‚ again be unrestricted.
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Here is a useful weakening of the notion of coarse uniform regularity:

Definition 3.1 (asymptotically regular sequence; see [10, Definition 5.1]) We say
that a sequence xn!1 in X is asymptotically ‚–regular if for some (any) basepoint
x 2X the set of accumulation points of the sequence of direction types �. �!xxn/ 2 �mod

is contained in ‚, equivalently, if the set of accumulation points of the sequence of
�–lengths d�.x; xn/ 2 Vmod is contained in ‚� �mod Š @1Vmod .

A sequence in X is called asymptotically uniformly �mod –regular if it is asymptotically
‚–regular for some ‚.

Lemma 3.2 (i) The set of accumulation points in @1X of an asymptotically ‚–
regular sequence xn!1 is contained in the ‚–regular part ��1.‚/� @1X
of the ideal boundary. If X is locally compact, then the converse holds as well.

(ii) If xn!1 is an asymptotically ‚–regular sequence, then for every point x 2X
the segments xxn are ‚0–regular for all sufficiently large n.

(iii) .‚;B/–regular sequences in X are asymptotically ‚–regular.

Proof The first assertion of part (i) is clear. For the second, suppose that X is
locally compact and consider a sequence xn!1 which accumulates at a subset of
��1.‚/� @1X and is such that, for a point x 2X, after passing to a subsequence, the
direction types �. �!xxn/ converge, �. �!xxn/! x� 2 �mod . After passing to a subsequence
again, we may assume that also the sequence .xn/ converges at infinity: xn! � 2@1X.
It follows that x� D �.�/ 2‚. Thus, .xn/ is asymptotically ‚–regular.

Parts (ii) and (iii) follow from the triangle inequality for �–lengths (2-7).

Definition 3.3 (asymptotically regular subset) We call a subset R�X asymptotically
‚–regular if all diverging sequences in R have this property.

We suppose again that �mod and ‚ are �–invariant and consider the concepts introduced
so far in the context of discrete subgroups.

Definition 3.4 (asymptotically regular subgroup and action) We say that a discrete
subgroup � < Isom.X/ is asymptotically ‚–regular if its orbits in X have this property.
More generally, we call a properly discontinuous isometric action � ÕX of a discrete
group � on X asymptotically ‚–regular if its orbits in X have this property.
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Remark 3 (i) If X is locally compact, then the asymptotic uniform �mod –regularity
of � is equivalent to the property that the limit set of � is contained in the
�mod –regular part of the visual boundary, �.ƒ.�//� ost.�mod/; see Lemma 3.2
and [10, Definition 5.1]. We recall that the limit set ƒ.�/� @1X of � is the
accumulation set of a � –orbit �x �X.

(ii) Coarsely ‚–regular actions are also asymptotically ‚–regular. Asymptotically
‚–regular actions are coarsely ‚0–regular.

The next observations relate (coarse) regularity to regularity.

Lemma 3.5 (long coarsely regular implies regular) There is a constant cDc.‚;‚0/>
0 such that every .‚;B/–regular segment of length � cB is ‚0–regular.

Proof Suppose that the segment xy is oriented B –close to the ‚–regular segment
x0y0 and define

D WDmax.d.x; y/; d.x0; y0//:

The triangle inequality for �–lengths (2-7) yields that jd�.x; y/� d�.x0; y0/j � 2B .
It follows that the angular distance

˛ D†.�.xy/; �.x0y0//

between the types of the segments xy and x0y0 satisfies

sin
�
˛

2

�
�
B

D
�

B

d.x; y/�2B
:

The lemma follows.

We note that long chords of (coarsely) regular quasigeodesics are uniformly regular:

Lemma 3.6 With the constant c D c.‚;‚0/ > 0 from Lemma 3.5, the following
holds:

Suppose that qW I ! X is a .‚;B/–regular .L;A/–quasigeodesic. Then, for every
subinterval Œa0; b0� � I with length � L.AC cB/, the segment q.a0/q.b0/ is ‚0–
regular.

Proof The segment q.a0/q.b0/ has length � cB and is therefore ‚0–regular by
Lemma 3.5.
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Similarly, one obtains the same conclusion for the projections of (coarsely) regular
quasigeodesics to nearby parallel sets. Let P D P.��; �C/ be a type �mod parallel set,
and let xq D �P ı q denote the nearest-point projection of the path q to P.

Lemma 3.7 With the constant c D c.‚;‚0/ > 0 from Lemma 3.5, the following
holds:

Suppose that qW I !X is a .‚;B/–regular .L;A/–quasigeodesic such that q.I /�
ND.P /. Then, for every subinterval Œa0; b0�� I with length �L.AC c.BCD//, the
segment xq.a0/xq.b0/� P is ‚0–regular.

Proof The projected quasigeodesic xqW I ! P is .‚;BCD/–regular. (Its quasi-
isometry constants are irrelevant.) As in the proof of the previous lemma we note
that the segment xq.a0/xq.b0/ has length � c.B CD/ and is therefore ‚0–regular by
Lemma 3.5.

3.2 Longitudinality and coarse longitudinality

Longitudinality is a property of segments and directions in a parallel set, which is
“oriented” by the choice of a pair of opposite simplices spanning the singular sphere
factor of its visual boundary. It means that the segments or directions point towards
the open stars of these simplices. To prepare the precise definition, we first need an
observation which relates the property of pointing to these stars for directions, segments
and rays.

Let P D P.��; �C/�X be a type �mod parallel set.

Lemma 3.8 Let xy � P be a nondegenerate segment and let x�C � P be a ray.

(i) If �!
xy 2 st.logx �C/, then y 2 V.x; st.�C//. If �!

xy 2 ost.logx �C/, then y 2
V.x; ost.�C//. Moreover, �!xy 2 st.logx �C/ if and only if �!xy 2 st.logy ��/.

(ii) If
�!

x�C 2 st.logx �C/, then �C 2 st.�C/. If
�!

x�C 2 ost.logx �C/, then �C 2
ost.�C/.

Proof (ii) The direction
�!

x�C has an antipode v� 2 st.logx ��/. By Lemma 2.9,
v� is the initial direction v� D

�!

x�� of a ray x�� � P with �� 2 st.��/. Since �˙
are antipodes, Lemma 2.5 implies that �C 2 st.�C/. If

�!

x�C 2 ost.logx �C/, then
�C 2 ost.�C/ because �.

�!

x�C/D �.�C/.
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(i) The corresponding assertions for xy follow, because segments in P extend to rays
in P. Moreover, as in the proof of (ii), if �!xy 2 st.logx �C/, then xy is contained in a
ray ��y with �� 2 st.��/ and hence �!

yx 2 st.logy ��/.

Remark 4 Part (ii) of the last lemma yields a partial converse to Lemma 2.5: it implies

log�1x .st.logx �C//\ @1P D st.�C/:

The lemma motivates the following notion:

Definition 3.9 (longitudinal directions and segments in parallel sets) At a point x2P,
the directions in ost.logx �C/ are called longitudinal and the directions in ost.logx ��/
antilongitudinal. Moreover, ‚–regular (anti)longitudinal directions are called ‚–
(anti)longitudinal. A nondegenerate segment xy � P is called (‚–)(anti)longitudinal
if �!xy has this property.

Remark 5 (i) Longitudinal directions and segments are in particular �mod –regular.

(ii) A direction is antilongitudinal if and only if some — equivalently, all — opposite
directions tangent to P are longitudinal.

(iii) A nondegenerate segment is (‚–)(anti)longitudinal if and only if all nondegen-
erate subsegments are.

We make analogous definitions for paths:

Definition 3.10 (longitudinal paths in parallel sets) We say that a path cW I ! P is
(‚–)(anti)longitudinal if all segments c.t1/c.t2/ for t1 < t2 have this property.

Note that if cW I ! P is longitudinal, then c.I \ .t;C1// � V.c.t/; ost.�C// and
c.I \ .�1; t //� V.c.t/; ost.��// for t 2 I.

Longitudinal paths are, up to reparametrization, bilipschitz; they become bilipschitz
when parametrized by arc length:

Lemma 3.11 (bounded detours) There exists a constant LDL.‚/� 1 such that for
every ‚–longitudinal path cW Œa; b�! P it holds that L.c/� L.‚/ � d.c.a/; c.b//.

Proof We choose �� 2 �� . By the radius bound (2-2) for ‚, there exists � < �
2

such that for every ‚–longitudinal segment xy � P it holds that b��.y/� b��.x/�
d.x; y/ �cos � . It follows that d.c.b/; c.a//� b��.c.b//�b��.c.a//�L.c/ �cos � .
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In order to be able to speak of openness and closedness of the longitudinality condition,
we identify, as before for X, the space of segments in P with the space P �P of pairs
of points, which is equipped with a natural topology.

Lemma 3.12 (open and closed) The subset of longitudinal segments in P is open
in the space of all segments in P, and also closed in the subspace of �mod –regular
segments.

Proof Let xy � P be ‚–longitudinal. Then y lies in the interior of the cone
V.x; st‚0.�C// and its distance from the boundary of the cone is �sin �0.‚;‚0/�d.x;y/
with the constant �0 from (2-4). Therefore, xy0 is ‚0–longitudinal if d.y; y0/ <
sin �0.‚;‚0/ � d.x; y/. Similarly, x0y0 is ‚00–longitudinal if

d.x; x0/ < sin �0.‚0; ‚00/ � d.x; y0/:

Hence, longitudinality is an open condition for segments in P.

The uniform estimates show, moreover, that if a �mod –regular segment can be arbi-
trarily well approximated by longitudinal segments, then it is longitudinal itself. So,
longitudinality is also a closed condition for �mod –regular segments in P.

Corollary 3.13 (longitudinality preserved under regular deformation) A continu-
ous family of �mod –regular segments xsys � P for 0 � s � 1 which contains one
longitudinal segment consists only of longitudinal segments.

As we did with regularity, one can also coarsify the notion of longitudinality and call a
segment coarsely longitudinal if it is oriented Hausdorff-close to a longitudinal segment
in the parallel set. The notion of coarse longitudinality then applies to segments and
paths which are close to the parallel set but not necessarily contained in it.

The observation that longitudinality is preserved under regular deformation implies that
a (coarsely) regular quasigeodesic close to the parallel set must be coarsely longitudinal
as soon as some sufficiently long chord of the projected quasigeodesic is longitudinal.
In the following lemma, we again use the notation xq D �P ı q .

Lemma 3.14 (coarsely longitudinal quasigeodesic) With the constant cDc.‚;‚0/>
0 from Lemma 3.5, the following holds:

Suppose that qW I !X is a .‚;B/–regular .L;A/–quasigeodesic such that q.I /�
ND.P /. If for some subinterval Œa0; b0� � I of length � L.AC c.B CD// the ‚0–
regular segment xq.a0/xq.b0/� P is longitudinal, then the same holds also for all other
such subintervals.
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Proof We may assume that the quasigeodesic is continuous. The subintervals Œa0; b0��
I of length � L.AC c.BCD// form a connected (possibly empty) family. That the
corresponding segments xq.a0/xq.b0/ � P are ‚0–regular is due to Lemma 3.7. The
assertion therefore follows from Corollary 3.13.

3.3 Cones

In this section, we consider a type �mod Weyl cone along with the corresponding
‚–cones and an ambient type �mod parallel set:

V‚ D V.x; st‚.�C//� V D V.x; st.�C//� P D P.��; �C/:

If X is a symmetric space, then P is determined by V ; if X is a euclidean building,
it is not.

Lemma 3.15 (open Weyl cone) For a point x 2 P, the open Weyl cone

V.x; ost.�C//�fxg

is the interior of V.x; st.�C// in P, and V.x; @ st.�C// is its topological boundary.

Proof Let y 2 V.x; ost.�C//�fxg. Then �!
xy 2 ost.logx �C/. Since ost.logx �C/ is

open in †xX, it follows that also
�!

xy0 2 ost.logx �C/ for every point y0 2P sufficiently
close to y , and Lemma 3.8 implies that y0 2 V.x; ost.�C//.

Conversely, suppose that y lies in the interior of V.x; st.�C// with respect to P, and
let F � P be a maximal flat through x and y . (Such a flat exists because also P is a
euclidean building.) Then y lies in the interior, with respect to F , of the finite union
of euclidean Weyl chambers F \V.x; st.�C//D V.x; st.�C/\ @1F /, and it follows
that y 2 V.x; ost.�C//�fxg.

A basic property of Weyl and ‚–cones is their convexity. It is deduced from the
convexity of stars at infinity (Proposition 2.8):

Proposition 3.16 (convexity of cones) The Weyl cone V.x; st.�C//, the open Weyl
cone V.x; ost.�C//�fxg and the ‚–cones V.x; st‚.�C// are convex subsets of X.

More precisely, in the Weyl cone case, V.x; st.�C// is the intersection of the parallel
set P.��; �C/ and the root type horoballs which are centered at @1P.��; �C/ and con-
tain x in their boundary and st.�C/ in their visual boundary, and V.x; ost.�C//�fxg
is the intersection of the parallel set and the open horoballs.
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Proof The assertions for the closed cones have been proven in [10, Propositions 2.14
and 2.18] (see also [12, Proposition 2.10]) in the case of symmetric spaces; the proofs
for euclidean buildings are identical and we will omit them. The assertion for the open
Weyl cone follows from Lemma 3.15, because it is the interior of V inside P. The
open Weyl cone is therefore contained in the interior of every horoball Hb�;x for which,
at infinity, st.�C/� B

�
�; �
2

�
.

As a consequence, one obtains (compare [10, Corollary 2.19; 12, Proposition 2.10]):

Corollary 3.17 (nested cones) (i) If x0 2 V.x; st.�C//, then V.x0; st.�C// �
V.x; st.�C// and V.x0; ost.�C//�fx0g � V.x; st.�C//�fxg.

(ii) If x0 2 V.x; ost.�C//�fxg, then V.x0; st.�C//� V.x; ost.�C//.

(iii) If x0 2 V.x; st‚.�C//, then V.x0; st‚.�C//� V.x; st‚.�C//.

Longitudinality in the Weyl cone can be defined independently of the ambient parallel
set:

Definition 3.18 (longitudinal directions in Weyl cones) At a point y 2 V , the di-
rections in ost.logy �C/ are called longitudinal and the directions opposite to them
antilongitudinal.

As before in the case of parallel sets (see Definition 3.9) we call ‚–regular (anti)longi-
tudinal directions ‚–(anti)longitudinal, and we say that a nondegenerate segment is
(‚–)(anti)longitudinal if its (initial) direction has this property. Moreover, we define
longitudinal paths in Weyl cones as in the parallel set case; see Definition 3.10.

Note that tangent directions to the Weyl cone V and segments in it are longitudinal in
the Weyl cone if and only if they are longitudinal in the ambient parallel set P.

We next describe the antilongitudinal directions.

Lemma 3.19 (i) If y 2 V.x; @ st.�C//, then ost.logy ��/\†yV D∅.

(ii) If y 2 V.x; ost.�C//�fxg, then st.logy ��/D st.��.yx//�†yV .

Proof (i) Suppose that ost.logy ��/ \†yV ¤ ∅. Since ost.logy ��/ is open, it
must contain a direction which is represented by a segment in V , ie there exists
y ¤ z 2 V \V.y; ost.��//. Hence, y 2 V.z; ost.�C//, and Corollary 3.17 yields that
y 2 V.x; ost.�C//�fxg D V �V.x; @ st.�C//, which shows the first assertion.
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(ii) If y 2 V.x; ost.�C// � fxg, then xy is longitudinal and ��.yx/ D logy �� .
According to Lemma 3.15, y lies in the interior of V with respect to P, so st.logy ��/�
†yP D†yV .

Corollary 3.20 (antilongitudinal directions in Weyl cones) Antilongitudinal direc-
tions in y 2 V exist if and only if y 2 V.x; ost.�C//� fxg. In this case, the set of
antilongitudinal directions in y equals ost.��.yx//D ost.logy ��/.

Proof The space of antilongitudinal directions in †yV equals ost.logy ��/\†yV
and is, by its definition, independent of P. The assertion therefore follows from the
lemma.

3.4 Longitudinal convexity of parallel sets

This section prepares the discussion of diamonds. We consider broken geodesic paths
in X.

Definition 3.21 (straight path) We say that a broken geodesic path x0x1 : : : xk in X
is �mod –straight if it is piecewise �mod –regular and if at any vertex xi for 0< i < k the
�˙mod –directions of the adjacent segments are opposite, ie if the simplices �˙.xixi˙1/�
†xiX are opposite. We call the path ‚–straight if in addition it is piecewise ‚–regular.

Note that if the directions of the adjacent segments themselves are opposite, that is,
†xi .xi�1; xiC1/D � , then the broken geodesic path is geodesic.

The definitions carry over to semi- and bi-infinite broken geodesic paths x0 : : : xk�C ,
��x0 : : : xk and ��x0 : : : xk�C for �˙ 2 @1X. A finite �mod –straight path x0x1 : : : xk
can always be extended to a bi-infinite �mod –straight path ��x0 : : : xk�C with �˙mod –
regular ideal endpoints �˙ .

Definition 3.22 (longitudinal path) We call a broken geodesic path x0x1 : : : xk in a
parallel set (‚–)(anti)longitudinal if all subsegments xi�1xi have this property.

Longitudinal paths in parallel sets are clearly straight. The next result shows that,
conversely, straight paths are longitudinal paths in parallel sets. This is clear when
X is a symmetric space and the parallel set is uniquely determined, but requires an
argument when X is a euclidean building.
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Proposition 3.23 Each semi-infinite ‚–straight path x0x1 : : : xk�C is contained in
the ‚–cone V.x0; st‚.�.�C///. For each bi-infinite ‚–straight path ��x0x1 : : : xk�C ,
the simplices �˙.�˙/ � @1X are opposite, the path is contained in the parallel set
P.��.��/; �C.�C// and all segments xixj for i < j are ‚–longitudinal.

Proof Consider a �mod –straight path x0x1�C . By straightness, the direction ��!
x1x0 has

an antipode vC such that �.vC/D �.x1�C/. Using Lemma 2.9, we can extend x0x1
to a ray x0x1�C such that �.�C/D �.�C/. It follows that x1 2 V.x0; st‚.�.�C///D
V.x0; st‚.�.�C///. The assertion for semi-infinite paths follows by induction using
the nestedness of cones (Corollary 3.17).

Consider now a bi-infinite path ��x0x1 : : : xk�C . From the semi-infinite case we know
that x0x1 : : : xk�C�V.x0; st‚.�.�C///. In particular, �.x0�C/D �.x0x1/, and hence
the simplices �˙.�˙/ are x0–opposite. It follows that x0 2 P D P.��.��/; �C.�C//
and furthermore that x0x1 : : : xk � P. The longitudinality follows from the semi-
infinite case.

Since longitudinal paths are not only piecewise regular, but globally regular, the
proposition can be understood as a local-to-global principle for the regularity of broken
geodesic paths:

Corollary 3.24 Suppose that the path x0x1 : : : xk is ‚–straight. Then all segments
xixj for i < j are ‚–regular, and for i < j < k it holds that �C.xixj /D �C.xixk/�
†xiX and ��.xkxj /D ��.xkxi /�†xkX.

Proof We extend the path to a bi-infinite ‚–straight path and then apply the proposi-
tion.

We next observe an extension of the convexity property for parallel sets. That parallel
sets are convex means, by definition, that a geodesic segment is contained in the parallel
set if its endpoints are. This remains true for straight broken geodesic paths whose pair
of endpoints in the parallel set is longitudinal:

Corollary 3.25 (longitudinal convexity of parallel sets) Let x0x1 : : : xk be a ‚–
straight path with endpoints in the parallel set P D P.��; �C/ and suppose that the
segment x0xk � P is longitudinal. Then

x0x1 : : : xk � V.x0; st‚C.�C//\V.xk; st‚�.��//� P:
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Proof Let �˙ 2 int.�˙/. By assumption, the broken path ��x0xk�C is then longitudi-
nal in P. Since �C.x0x1/D�C.x0xk/ and ��.xkxk�1/D��.xkx0/ by Corollary 3.24,
the bi-infinite path ��x0x1 : : : xk�C is also ‚–straight. Proposition 3.23 yields that the
path x0x1 : : : xk is contained in P and, more precisely, in the cones V.x0; st‚C.�C//
and V.xk; st‚�.��//.

We push the longitudinal convexity property slightly further for once-broken paths
x�yxC , replacing the open assumption of straightness by a closed condition.

Lemma 3.26 Let x�xC�C be a �mod –straight broken path. Suppose y2X�fx�; xCg
and there exists a pair of opposite type �˙mod simplices �˙y � †yX such that ��!

yx˙ 2

st.�˙y /. Then
y 2 V.x�; st.�.�C///:

Proof Again, the assertion (and the following argument) is trivial if X is a symmetric
space.

We first look for simplices � 0
˙
�@1X such that �˙y D logy �

0
˙

and yx˙�V.y; st.� 0
˙
//.

To find them, we extend the segments yx˙ to rays y� 0
˙

and let �˙y � �
˙
y be chambers

in †yX containing the directions �!yx˙ . According to Lemma 2.9, there exist chambers
� 0
˙
� @1X such that �˙y D logy �

0
˙

and � 0
˙
2� 0
˙

. Then their type �˙mod faces � 0
˙
�� 0
˙

have the desired properties. Moreover, the simplices � 0
˙

are y–opposite, because the
simplices �˙y are opposite. It follows that x�yxC � P 0 D P.� 0�; �

0
C
/.

To see that x�xC is longitudinal in P 0, note that y 2V.x�; st.� 0
˙
//. By Corollary 3.17,

there are the triples of nested cones V.x�; st.� 0
˙
// � V.y; st.� 0

˙
// � V.x˙; st.� 0

˙
//.

So, x˙ 2 V.x�; st.� 0
˙
//. Since the segment x�xC is �mod –regular, it follows that even

x˙ 2 V.x�; ost.� 0
˙
// and x�xC is longitudinal in P 0.

Now �C comes in and we show that � 0
C

can be replaced by �.�C/. The straightness
of x�xC�C implies that the pair of simplices .� 0�; �.�C// is xC–opposite. Hence,
x�yxC � V.xC; st.� 0�// � P.�

0
�; �.�C//. Since x� 2 V.y; st.� 0�//, it follows that

y 2 V.x�; st.�.�C///.

Corollary 3.27 Let ��x�xC�C be a �mod –straight broken path. Suppose that y 2
X �fx�; xCg and there exists a pair of opposite type �˙mod simplices �˙y �†yX such
that �!

yx˙ 2 st.�˙y /. Then

y 2 V.x�; st.�C.�C///\V.xC; st.��.��///� P.��.��/; �C.�C//:
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Sometimes the following terminology extending Definition 2.12 will be convenient:

Definition 3.28 (.x�; xC/–opposite) For a �mod –regular segment x�xC � X, we
say that a pair .��; �C/ of opposite simplices �˙ � @1X is .x�; xC/–opposite if the
pairs of simplices .logx˙ �˙; ��.x˙x�// are opposite (for both choices of signs).

Lemma 3.29 Two opposite simplices �˙ � @1X are .x�; xC/–opposite if and only
if x�xC is a longitudinal segment in the parallel set P.��; �C/.

Proof This follows from the fact that straight broken paths are contained in parallel
sets as longitudinal paths; see Proposition 3.23.

3.5 Diamonds and Weyl hulls

We define diamonds independently of ambient parallel sets:

Definition 3.30 (diamond) The �mod –diamond of a �mod –regular segment x�xC�X
is the subset

}�mod.x�; xC/�X

consisting of x˙ and all points y 2X �fx�; xCg such that �!yx˙ 2 st.�˙y / for some
pair of opposite type �˙mod simplices �˙y �†yX.

Longitudinal convexity implies that diamonds are contained in parallel sets and yields
the following description:

Lemma 3.31 For any pair .��; �C/ of .x�; xC/–opposite type �˙mod simplices �˙ �
@1X, it holds that

}�mod.x�; xC/D V.x�; st.�C//\V.xC; st.��//� P.��; �C/:

Proof That the diamond is contained in the intersection of Weyl cones follows imme-
diately from Corollary 3.27. The reverse inclusion is clear.

We will refer to V.x�; st.�˙// as ambient Weyl cones and to P.��; �C/ as an ambient
parallel set for the diamond. Again, these are unique if X is a symmetric space, but
not if it is a euclidean building.

It follows in particular that diamonds are convex.

Around their tips, diamonds coincide up to a uniform radius with Weyl cones. With
the constant �0.‚/ from (2-3), we have:
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Lemma 3.32 (conical around tips) (i) †x˙}�mod.x�; xC/D st.��.x˙x�//.

(ii) If x�xC is ‚–regular, then every segment in }�mod.x�; xC/ with initial point
x˙ extends to a unique segment in }�mod.x�; xC/ of length sin �0.‚/d.x�; xC/.

Proof Let .��; �C/ be an .x�; xC/–opposite pair of simplices. Since }�mod.x�; xC/

coincides with V.x˙; st.��// near x˙ , we have that

†x˙}�mod.x�; xC/D†x˙V.x˙; st.��//D st.��.x˙x�//:

By triangle comparison, x˙ has distance � sin �0.‚/d.x�; xC/ from @V.x�; st.�˙//.
It follows that B.x˙; sin �0.‚/d.x�; xC//\P.��; �C/� V.x�; st.�˙//. Intersecting
with V.x˙; st.��// yields the assertion.

As a consequence of Lemma 3.15, the interior of the diamond } D }�mod.x�; xC/

with respect to an ambient parallel set P.��; �C/ is given by

(3-1) int.}�mod.x�; xC//D
�
V.x�; ost.�C//\V.xC; ost.��//

�
�fx�; xCg:

Note that the interior is always nonempty. For instance, the interior points of the
�mod –regular segment x�xC belong to it.

For a ‚–regular segment x�xC , we define the ‚–diamond

}‚.x�; xC/�}�mod.x�; xC/

in a similar way as the subset consisting of x˙ and all points y 2 X � fx�; xCg for
which the segments yx˙ are ‚˙–regular with opposite �˙mod –directions �˙.yx˙/
at y . It follows from Lemma 3.31 that

}‚.x�; xC/D V.x�; st‚.�C//\V.xC; st‚.��//:

We will need the following semicontinuity property of diamonds:

Lemma 3.33 (semicontinuity) Suppose that the diamond }�mod.x�; xC/ intersects
the open subset O � X. Then, for all pairs of points .x0�; x

0
C
/ sufficiently close to

.x�; xC/, the diamond }�mod.x
0
�; x
0
C
/ still intersects O.

Proof Suppose first that X is a euclidean building. By assumption, there exists a point
y 2 O \ int.}�mod.x�; xC//. The segments yx˙ are �˙mod –regular. Therefore, if the
points x0

˙
are sufficiently close to x˙ , then also the segments yx0

˙
are �˙mod –regular
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and �˙.yx0˙/D �˙.yx˙/. In particular, the simplices �˙.yx0˙/ are opposite and it
follows that y 2 }�mod.x

0
�; x
0
C
/.

Suppose now that X is a symmetric space. Let P denote the unique ambient parallel
set of the diamond }�mod.x�; xC/. The argument used in the euclidean building case
now proves the assertion for pairs of points in the parallel set, ie there exists � > 0
such that the assertion holds for the pair .x0�; x

0
C
/ if x0

˙
2 B.x˙; �/\P. Using the

action of the isometry group G D Isom.X/, it follows furthermore that there exists a
neighborhood U of the neutral element in G, such that the assertion holds for all pairs
g � .x0�; x

0
C
/ with g 2 U and x0

˙
2 B.x˙; �/\P. Since G acts transitively on type

�mod parallel sets, this finishes the proof.

We will prove later the stronger property that diamonds depend continuously on their
pair of tips; see Proposition 3.56 below.

In order to define longitudinal directions in diamonds, we observe that whether a
direction is longitudinal with respect to an ambient parallel set does not depend on the
ambient parallel set:

Lemma 3.34 Let y 2 }. If the segment yx˙ is �˙mod –regular, then st.logy �˙/ D
st.�˙.yx˙//�†y}. Otherwise, ost.logy �˙/\†y}D∅.

Proof The segment yxC is �Cmod –regular if and only if y 2 V.xC; ost.��//�fxCg.

Thus, if yxC is not �Cmod –regular, then ost.logy �C/ is disjoint from

†yV.xC; st.��//�†y}

by Lemma 3.19. On the other hand, if yxC is �Cmod –regular, then }D V.x�; st.�C//
near y , and Lemma 3.19 yields that †y} contains st.logy �C/. Moreover, logy �C D
�C.yxC/.

Corollary 3.35 The intersection †y}\ost.logy �˙/ does not depend on the ambient
parallel set P.��; �C/. It is nonempty if and only if the segment yx˙ is �˙mod –regular,
and then equal to ost.logy �˙/D ost.�˙.yx˙//.

This justifies:

Definition 3.36 (longitudinal directions in diamonds) In a point y 2 }, we call the
directions in †y}\ost.logy �C/ longitudinal and the directions in †y}\ost.logy ��/
antilongitudinal.
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As before in the case of parallel sets and Weyl cones, we call ‚–regular (anti)longitudi-
nal directions ‚–(anti)longitudinal and we call a nondegenerate segment (‚–)(anti)lon-
gitudinal if its (initial) direction has this property. Note that the segment x�xC is
longitudinal.

Our discussion shows that directions and segments in the diamond are longitudinal if
and only if they are longitudinal in an ambient parallel set.

Based on the notion of longitudinality, we can now state:

Lemma 3.37 (nested diamonds) If x0�x
0
C
�} is longitudinal, then

}�mod.x
0
�; x
0
C/�}:

If the segment x0�x
0
C
�}‚.x�; xC/ is ‚–longitudinal, then

}‚.x
0
�; x
0
C/�}‚.x�; xC/:

Proof This is a direct consequence of the nestedness of cones; see Corollary 3.17.

We can also reformulate the longitudinal convexity property of parallel sets; see
Corollary 3.25, for diamonds:

Corollary 3.38 (longitudinal convexity of diamonds) Each ‚–straight broken geo-
desic path x0x1 : : : xk is contained in the ‚–diamond }‚.x0; xk/, and all segments
xixj for i < j are ‚–longitudinal.

We turn to the discussion of Weyl hulls of segments.

Weyl hulls are analogues of diamonds inside singular flats. We also define them
intrinsically without reference to ambient flats:

Definition 3.39 (Weyl hull) The Weyl hull of a nondegenerate segment x�xC �X
with type �.x�xC/ 2 int.�mod/ is the subset

Q.x�; xC/�X

consisting of x˙ and all points y 2X �fx�; xCg such that �!yx˙ 2 �˙y for some pair
of opposite type �˙mod simplices �˙y �†yX.

Clearly, Q.x�; xC/�}�mod.x�; xC/.
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Applying the description of diamonds, it follows that Weyl hulls are cross-sections of
diamonds by singular flats. Indeed, let .��; �C/ be a pair of .x�; xC/–opposite type
�˙mod simplices �˙ � @1X. Then the segment x�xC is contained in a singular flat f
with ideal boundary sphere @1f D s.��; �C/, and we obtain:

Lemma 3.40 Q.x�; xC/D}�mod.x�; xC/\f D V.x�; �C/\V.xC; ��/� f .

Proof Let y 2Q.x�; xC/�fx�; xCg. Then �.x˙y/2 ��mod . In view of Q.x�; xC/�
}�mod.x�; xC/, Lemma 3.31 implies that y 2 V.x˙; ��/D V.x˙; st.��//\f . Con-
versely, the intersection of the sectors V.x˙; ��/ belongs to Q.x�; xC/.

We will refer to V.x�; �˙/ as ambient Weyl sectors and to f as an minimal ambient
flat for the Weyl hull. These are unique if X is a symmetric space, but not if it is a
euclidean building.

It follows that Weyl hulls are flat parallelepipeds, in particular that Weyl hulls are
convex.

Remark 6 Weyl hulls can in fact be characterized by these properties: one can show
that Q.x�; xC/ is the smallest closed convex subset of X which contains the segment
x�xC and has the property that all spaces of directions are subcomplexes.

We have the following estimate for the size of conical neighborhoods around the tips:

Lemma 3.41 (conical around tips) (i) †x˙Q.x�; xC/D ��.x˙x�/.

(ii) If the segment x�xC is ‚–regular, ie �.x�xC/2‚\�mod� int.�mod/, then the
intersection Q.x�; xC/\B.x˙; d.x�; xC/ � sin �0.‚// is a flat cone of height
d.x�; xC/ � sin �0.‚/ with tip x˙ .

Proof This is a consequence of Lemma 3.32.

Alternatively, one can prove this lemma analogously to Lemma 3.32 also directly using
Lemma 3.40: The point x˙ has distance �d.x�; xC/ �sin �0.‚/ from @V.x�; st.�˙//.
It follows that B.x˙; d.x�; xC/ � sin �0.‚// \ f � V.x�; �˙/. Intersecting with
V.x˙; ��/ yields the assertion.

We define the Weyl hull of a degenerate segment xx as the one-point subset

Q.x; x/D fxg:
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3.6 Rays longitudinally approaching parallel sets

We consider now geodesic rays which are longitudinally asymptotic to parallel sets and
show that they must approach — and, in euclidean buildings, enter — the parallel set at
a uniform rate.

Let P D P.��; �C/�X be a type �mod parallel set.

Suppose first that the model space X is a symmetric space. In this case, longitudinally
asymptotic rays do not enter parallel sets, but approach them at a uniform exponential
rate. We will only prove the weaker statement, sufficient for our purposes, that they do
so at some uniform rate.

Lemma 3.42 For d >0 there exists a constant ıD ı.d;‚/>0 such that the following
holds:

If x 2X with d.x; P /� d and � 2 st‚.�C/, then †x.�P .x/; �/� �
2
� ı .

Proof We write xx D �P .x/. If x0 2 xxx is the point at distance exactly d from P,
then †x0.xx; �/�†x.xx; �/. We may therefore assume that d.x; P /D d .

Note that †x.xx; �/� �
2

, because the angle sum of the ideal triangle �.x; xx; �/ is � � .
Suppose that †x.xx; �/D �

2
. Then the ray x� is parallel to P and extends to a geodesic

line l šP parallel to P. This line is forward asymptotic to l.C1/D � 2 ost.�C/, and
its backward ideal endpoint l.�1/ is therefore contained in ost.��/; see Lemma 2.5.
Since the singular sphere in @TitsX spanned by the pair of antipodes l.˙1/ contains
the simplices �˙ , and hence also the singular sphere s.��; �C/, it follows that P.l/�P,
which is a contradiction to l š P.

Thus, the continuous function

.x; �/ 7! †x.�P .x/; �/

on @Nd .P /� st‚.�C/ takes values in the open interval
�
0; �
2

�
. It is invariant under the

stabilizer in Isom.X/ of the pair of simplices .��; �C/, because the stabilizer preserves
P and st‚.�C/. It acts transitively on P and hence cocompactly on @Nd .P /�st‚.�C/.
It follows that the range of the function in

�
0; �
2

�
is compact. Furthermore, the range

does not depend on the parallel set, because all type �mod parallel sets are equivalent
modulo the action of the isometry group.

We obtain:
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Proposition 3.43 (rays approaching parallel sets in symmetric spaces) For d > 0
there exists a constant C D C.‚; d/ > 0 such that the following holds:

If x 2X and � 2 st‚.�C/, then the points on the ray x� with distance � C � d.x; P /
from x are contained in Nd .P /.

Proof Let r W Œ0;C1/!X be a unit-speed parametrization of the ray x� . Then the
function f .t/ WDd.r.t/; P / is smooth with derivative f 0.t/D�cos†r.t/.�P ır.t/; �/;
see (2-1). By the previous lemma, f 0.t/��sin ı as long as f .t/� d . This yields a
uniform upper bound for the entry time, linear in d.x; P /.

Suppose for the rest of this section that the model space X is a euclidean building.

We obtain the following version of Proposition 3.43, where �0.‚/ is the constant
from (2-3). The special case of maximal flats had been proven in [13, Lemma 4.6.3].

Proposition 3.44 (rays diving into parallel sets in euclidean buildings) Suppose that
x 2X and � 2 st‚.�C/. Then the ray x� enters P, and its entry point z satisfies

†z.x; P /� �0.‚/ > 0

and
d.x; z/� .sin �0.‚//�1 � d.x; P /:

Proof We assume that x … P and write xx D �P .x/.

Let y 2 xx� and suppose that d.x; y/ � sin �0.‚/ > d.x; P /. Applying comparison to
the triangle �.x; xx; y/, we can bound the angle †y.xx; x/ by

(3-2) d.x; y/ � sin†y.xx; x/� d.x; P /:

It follows that †y.xx; x/ < �0 . This implies that ��.yx/D ��.yxx/ and hence �!
yx 2

ost.logy ��/ is tangent to P.

Since all tangent directions to P are represented by segments in P, and since segments
with angle zero in a euclidean building initially coincide — see the discussion of angle
rigidity in Section 2.5 — it follows that the segment yx is initially contained in P. Let
z denote the interior point on the segment yx where it exits P, in other words, the
point where the segment xy enters P. Then �!

zx …†zP, because zx\P D fzg.

As a consequence of (3-2), given ‚0, the direction �!
yz D

�!
yx 2 †yP becomes ‚0�–

longitudinal as y!1 , and, accordingly, �!zy 2 st‚0.logz �C/�†zP. By Corollary 2.7,
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it follows that the antipodal direction �!zx …†zP cannot have too small an angle with P,
ie †z.x; P /� �0.‚0/ > 0. Applying comparison to the triangle �.x; xx; z/ as above
then yields a uniform estimate for the entry time of xy into P :

d.x; z/ � sin �0.‚0/� d.x; P /:

The segment xy converges to the ray x� as y!1, and the entry point subconverges
to a point in x� \P. This shows that the ray x� enters P, and that the entry point yz
satisfies the same estimate,

d.x; yz/ � sin �0.‚0/� d.x; P /:

Since this estimate holds for all ‚0 (containing ‚ in their interior), we also obtain it
for ‚.

Remark 7 The longitudinality assumption (that � 2 st‚.�C/) is necessary, in both
Propositions 3.43 and 3.44, if �mod ¨ �mod . Note that @1P does in general not contain
the stars around the type �mod simplices in @1P other than �˙ . Accordingly, there
may exist �mod –regular rays which are asymptotic to P, but not strongly asymptotic.
Such rays cannot be �mod –regular.

We will later use different versions and consequences of the proposition. For instance,
we can also uniformly estimate the entry time into Weyl cones in P asymptotic to �C :

Corollary 3.45 (rays diving into Weyl cones) Suppose that x 2X, � 2 st‚.�C/ and
yx 2 P. Then the ray x� enters the Weyl cone V.yx; st.�C//� P, and its entry point w
satisfies

d.x;w/� .sin �0.‚//�1 � d.x; yx/:

Proof Let z 2P be the entry point of x� into P, as given by the previous proposition.
Then

d.x; z/� .sin �0.‚//�1 � d.x; yx/:

Let w0 2 z� D x� \ P be a point at distance d.x;w0/ > .sin �0.‚//�1 � d.x; yx/.
Applying CAT.0/ comparison to the triangle �.x; yx;w0/, we get that †w 0.z; yx/ D
†w 0.x; yx/ < �0 . It follows that

��!

w0yx 2 ost.logw 0 ��/, ie the segment w0yx is antilongi-
tudinal. Hence, w0 2 V.yx; st.�C//.

The next versions of the proposition estimate the rate at which rays move away from
Weyl cones and sectors:
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Corollary 3.46 (rays leaving Weyl cones) Let �W Œ0;C1/! X be a ‚–regular
unit-speed ray, and let t0 � 0 denote the time when � exits the Weyl cone V D
V.�.0/; st.�C//. Then

†�.t0/.�.C1/; V /� �0.‚/ > 0

and
d.�.t/; V /� .t � t0/ sin �0.‚/ for t � t0:

Proof If t0 D 0, then P�.0/ …†�.0/V D st.log�.0/ �C/, and the angle estimate holds
due to ‚–regularity. If t0 > 0, we may assume that �.0/ 2 P. Then P�.0/ 2 †�.0/V
and � can be extended by a ray in P to a line l W R! X backward asymptotic to
l.�1/ 2 st‚.��/. Applying Proposition 3.44 to subrays of l yields the angle estimate
also in this case. As before, triangle comparison based on the angle estimate yields the
distance estimate d.�.t/; V /� d.�.t/; P /� .t � t0/ sin �0.‚/.

Corollary 3.47 (rays leaving Weyl sectors) Let �W Œ0;C1/! X be a unit-speed
ray of type �. P�/� x� 2 ‚\ �mod � int.�mod/, and let t0 � 0 denote the time when �
exits the Weyl sector LV D V.�.0/; �C/. Then

†�.t0/. P�.t0/;
LV /� �0.‚/ > 0

and
d.�.t/; LV /� .t � t0/ sin �0.‚/ for t � t0:

Proof The exit direction P�.t0/ is not tangent to LV , P�.t0/ … †�.t0/ LV . Since it has
type �. P�.t0// 2 int.�mod/, it spans the simplex �. P�.t0//, ie P�.t0/ 2 int.�. P�.t0///. It
follows that the simplex �. P�.t0// is not contained in the (finite) subcomplex †�.t0/ LV ,
equivalently, ost.�. P�.t0///\†�.t0/ LV D∅. This yields the angle estimate, and triangle
comparison yields the distance estimate.

We apply the above estimates to show that Weyl cones with the same type and tip must
coincide up to a certain radius if they are close up to a certain larger radius in some
uniformly regular direction:

Lemma 3.48 (initial coincidence of nearby truncated Weyl cones) Let r;D;R �
0 be constants with R sin �0.‚/ � r C D. Suppose that for simplices �C; � 0C 2
Flag�mod

.@1X/ and a point x 2X it holds that�
V.x; st‚.�C//�B.x;R/

�
\ND.V .x; st.� 0C///¤∅:

Then
V.x; st.�C//\B.x; r/D V.x; st.� 0C//\B.x; r/:
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Proof Let y 2
�
V.x; st‚.�C// � B.x;R/

�
\ ND.V .x; st.� 0

C
///, and let � 0� be a

simplex x–opposite to � 0
C

. Then V 0 D V.x; st.� 0
C
//� P 0 D P.� 0�; �

0
C
/. Furthermore,

the segment xy is ‚–regular and has length �R . Let z 2 xy denote the point where
the segment xy exits the cone V 0, ie xy \V 0 D xz . Then

}�mod.x; z/� V.x; st.�C//\V.x; st.� 0C//:

Corollary 3.46 yields the estimate d.z; y/ � sin �0 �D. Hence, the ‚–regular segment
xz has length � R � .sin �0/�1D � .sin �0/�1r . By Lemma 3.32, the diamond
}�mod.x; z/ agrees up to radius d.x; z/ � sin �0 � r around its vertex x with both cones
V.x; st.�C// and V.x; st.� 0

C
//.

We give a version of the last result for sectors, namely that Weyl sectors with the same
type and tip must coincide up to a certain radius, if they are close up to a certain larger
radius:

Lemma 3.49 (initial coincidence of nearby truncated Weyl sectors) Let r;D;R �
0 be constants with R sin �0.‚/ � r C D. Suppose that for simplices �C; � 0C 2
Flag�mod

.@1X/ and a point x 2 X the truncated Weyl sectors V.x; �C/ \ B.x;R/
and V.x; � 0

C
/\B.x;R/ are D–Hausdorff-close. Then

V.x; �C/\B.x; r/D V.x; �
0
C/\B.x; r/:

Proof Consider a ‚–regular unit-speed ray with initial point x in the Weyl sector
V.x; � 0

C
/. Since the ray remains in the D–neighborhood of the other sector V.x; �C/

up to time R , it does not exit V.x; �C/ before time R�.sin �0/�1D ; see Corollary 3.47.
Therefore, the intersection of the sectors V.x; �C/ and V.x; � 0

C
/ contains a ‚–regular

segment xz of length R� .sin �0/�1D. In view of Lemma 3.40, it follows that the
Weyl hull of xz is also contained in this intersection:

Q.x; z/� V.x; �C/\V.x; �
0
C/:

By Lemma 3.41, Q.x; z/ contains a conical neighborhood of radius d.x; z/ �sin �0 � r
around its tip x . So, the sectors V.x; �C/ and V.x; � 0

C
/ coincide at least up to radius r .

3.7 Continuity of diamonds

Let X be again a model space. The main result of this technical section is that diamonds
depend continuously on their tips; see Proposition 3.56.
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Let x�xC �X be a ‚–regular segment and consider the �mod –diamond

}D}�mod.x�; xC/

spanned by it. Our first goal is to estimate the inradius of the diamond.

We represent the diamond as an intersection of Weyl cones in an ambient parallel set,

}D V.x�; st.�C//\V.xC; st.��//� P D P.��; �C/:

We recall (see Proposition 3.16) that inside P each of the Weyl cones V.x�; st.�˙//
is the intersection of a certain family of horoballs,

V.x�; st.�˙//D P \
\
�2Z˙

fb� � 0g;

with centers � 2Z˙� @1P and normalized by b� .x�/D 0 for � 2Z˙ . Accordingly,
for the convex function

b D sup
�2Z

b� ;

where Z DZ�[ZC , we have

}D fbjP � 0g:

We estimate the decay of these Busemann functions b� along the segment x�xC .

Lemma 3.50 If � 2Z˙ , then b� .x�/� b� .x˙/� d.x�; xC/ � sin �0.‚/.

Proof We extend x�xC to a ‚–longitudinal line l � P. Then �˙ WD l.˙1/ 2

st‚.�˙/. If � 2 Z˙ , then the Weyl cone V.x�; st.�˙// is contained in a horoball
centered at � , and therefore st.�˙/ � B

�
�; �
2

�
. Hence, B.�˙; �0.‚// � st.�˙/ �

B
�
�; �
2

�
. It follows that †Tits.�˙; �/�

�
2
� �0.‚/. Thus, the Busemann function b�

has slope � �sin �0.‚/ along the ray x��˙ � x�xC .

We denote by m the midpoint of the segment x�xC .

Corollary 3.51 (thickness of diamonds) b.m/� �1
2
d.x�; xC/ � sin �0.‚/.

Proof Since b� .x�/D 0 for � 2Z˙ , the convexity of Busemann functions implies
that b� .m/ � �12d.x�; xC/ � sin �0.‚/. Taking the supremum over Z yields the
assertion.
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Next, we discuss product splittings of diamonds induced by splittings of the model
space.

Suppose that the model chamber splits as a spherical join

(3-3) �mod D �
1
mod ı �

2
mod;

and let X DX1 �X2 be the corresponding product splitting of the model space; see
Section 2.5. If �mod � �

1
mod , then also the �mod –parallel sets, �mod –Weyl cones and

�mod –diamonds split off the X2–factor. Thus, the diamond }D}�mod.x�; xC/ splits
as

}D}1 �X2;

and the cross-section in the complementary factor is again a diamond,

}1 D}
X1
�mod

.x�1 ; x
C
1 /�X1:

The segment x�1 x
C
1 �X1 is .‚\�1mod/–regular. It is shorter than the segment x�xC ,

but of comparable length. Indeed, the angle between the ‚–regular segment x�xC
and the X1–factor is bounded above by diam.‚/� �

2
� �0.‚/, and hence

(3-4) d.x�; xC/ � sin �0.‚/� d.x�1 ; x
C
1 /� d.x�; xC/:

In the following discussion, we fix the unique splitting (3-3) such that �1mod is minimal
with the property that it contains �mod . This includes the possibility of the trivial
splitting with �1mod D �mod and �2mod D ∅, accordingly, X D X1 and X2 D pt. We
note that �2mod � @ st.�mod/.

In general, there is no better diameter bound than diam.�1mod/�
�
2

, but we do have a
uniform radius bound

(3-5) rad.�1mod; � /� �0 D �0.‚/ <
�

2

on ‚1 WD‚\ �1mod , because otherwise �1mod would not be minimal.

We prove now that there is a uniform diameter bound for the cross-section of diamonds.

For a type x� 2‚\ �mod , we define a x�–height function

hx� W }!R

as follows: For every longitudinal (oriented) line lx� � P of type x� it holds that
P D P.lx�/Š lx� �CS.@1lx�/. We define hx� as the restriction of a Busemann function,

hx� WD blx�.�1/j}:
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The function hx� has the following properties, and is determined by them up to an addi-
tive constant: it is 1–Lipschitz, affine (ie affine linear along every geodesic segment),
constant on the intersections of } with the cross-sections pt�CS.@1lx�/ of P and
linear with slope � 1 on the intersections of } with the lines lx� � pt. The function hx�
is therefore independent of the ambient parallel set P and well defined up to an additive
constant.

Since diam.�mod/�
�
2

, we have that rad.�mod; � /�
�
2

in particular on �mod , and hence,
for every simplex � 2 Flag�mod

.@1X/, that rad.st.�/; � /� �
2

on � . In particular,

(3-6) †x�.lx�.˙1/; � /�
�

2

on }�fx�g, and it follows that

(3-7) hx�.x�/� hx� � hx�.xC/:

The estimates (3-6) and (3-7) improve when restricting to the cross-section of the
diamond. The angle bound (3-5) yields the estimate

†
x
�

1

.lx�.˙1/; � /� �0

on }1 � fx�1 g. (Note that the line lx� is parallel to X1 and lx�.˙1/ 2 @1X1 .) This
implies that

(3-8) hx�.x
�
1 /C d.x

�
1 ; � / cos �0 � hx� � hx�.x

C
1 /� d.x

C
1 ; � / cos �0

on }1 .

Lemma 3.52 (diameter bound) The diameter of the cross-section of the �mod –dia-
mond } is uniformly bounded by

diam.}1/� 2.cos �0.‚//�1d.x�1 ; x
C
1 /:

Proof From (3-8) we get the radius bound

rad.}1; x˙1 / cos �0 � hx�.x
C
1 /� hx�.x

�
1 /� d.x

�
1 ; x

C
1 /

and hence the diameter bound, as claimed.

We apply our discussion to prove that diamonds depend continuously on their tips with
respect to the Hausdorff topology. We first consider diamonds inside a fixed parallel
set.
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Let }� P be as above, and let

}
0
D}�mod.x

0
�; x
0
C/D V.x

0
�; st.�C//\V.x0C; st.��//� P

be a second diamond in the same parallel set P. Then the Weyl cones V.x0
�
; st.�˙//

are intersections
V.x0�; st.�˙//D P \

\
�2Z˙

fb0� � 0g

of horoballs with the same centers, but the new Busemann functions b0
�

are normalized
at the new tips x0

�
, ie b0

�
.x0
�
/D 0 for � 2Z˙ . The second diamond is then defined

as the sublevel set
}
0
D fb0jP � 0g

of the convex function
b0 D sup

�2Z

b0� :

Since the points x˙ and x0
˙

are the normalization points of the corresponding Buse-
mann functions, it follows that for all � 2Z˙ we have

kb� � b
0
�k � d.x˙; x

0
˙/;

and therefore

(3-9) kb� b0k �max.d.x�; x0�/; d.xC; x
0
C//:

Here and below, k � k denotes the supremum norm of functions X !R.

Lemma 3.53 There exist constants c.‚/; ı.‚/ > 0 such that the following holds:

If max.d.x�1 ; x
0
1
�
/; d.xC1 ; x

0
1
C
//� d � ı.‚/d.x�1 ; x

C
1 /, then }�Nc.‚/d .}0\}/.

Proof We may assume without loss of generality that the splitting (3-3) is trivial, ie
X DX1 .

Take a point y 2 }. We connect y to the midpoint m of x�xC by the geodesic
segment ym and consider the behavior of the convex function b along ym. This will
provide an estimate for the time when the segment ym enters the other diamond }0.
In view of (3-9), we have

}\}
0
� fbjP � �dg:

Since
b.m/� �1

2
sin �0.‚/d.x�; xC/
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by Corollary 3.51, and

d.y;m/� diam.}/� 2.cos �0.‚//�1d.x�; xC/

by Lemma 3.52, the point z 2 ym at distance

d.y; z/D
4 sin �0.‚/
cos �0.‚/

d

satisfies b.z/� �d .

Corollary 3.54 There exist constants c.‚/; ı.‚/ > 0 such that the following holds:
If also the segment x0�x

0
C
� P is ‚–longitudinal, and if

max.d.x�; x0�/; d.xC; x
0
C//� d � ı.‚/d.x

�
1 ; x

C
1 /;

then
distHaus.};}

0/� c.‚/d:

Proof Note that d.x˙1 ; x
0
1
˙
/� d.x˙; x

0
˙
/. By the triangle inequality,

.1� 2ı.‚// � d.x�1 ; x
C
1 /� d.x

0
1
�
; x01
C
/� .1C 2ı.‚// � d.x�1 ; x

C
1 /:

After replacing ı by ı.1�2ı/ and switching the roles of } and }0, the previous lemma
yields that also }0 �Nc.‚/d .}0\}/. The assertion follows.

Now we extend our results and estimate the Hausdorff distance between arbitrary
�mod –diamonds }D}�mod.x�; xC/ and }0 D}�mod.x

0
�; x
0
C
/ which do not have to lie

in the same parallel set.

We first consider the euclidean building case. There, nearby diamonds have large
overlap:

Lemma 3.55 (nearby diamonds in euclidean buildings) Let X be a euclidean build-
ing. There exist constants c.‚;‚0/; ı.‚;‚0/ > 0 such that the following holds: If the
segment x�xC is ‚–regular and if

max.d.x�; x0�/; d.xC; x
0
C//� d � ı.‚;‚

0/d.x�1 ; x
C
1 /;

then
distHaus.};}

0/� c.‚;‚0/d:

Proof According to Lemma 3.5, if ı.‚;‚0/ is chosen sufficiently small, then the
segments x0�x

0
C

and x�x0˙ are ‚0–regular.
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Let P D P.��; �C/ � } be an ambient parallel set as considered above. In order
to find a point in the intersection P \}0 close to xC , we apply Corollary 3.46 to
the ambient Weyl cone V.x�; st.�C//�} and the ‚0–regular segment x�x0C (or a
ray extending it). We obtain a point yC 2 x�x0C \P at distance � .sin �0.‚0//�1d
from x0

C
and, consequently, distance �

�
1C .sin �0.‚0//�1

�
d from xC .

Since }�mod.x�; yC/ � }�mod.x�; x
0
C
/ \ P, Corollary 3.54 yields estimates for the

Hausdorff distances of }�mod.x�; yC/ from the diamonds }�mod.x�; x
0
C
/ and }, and

hence for the Hausdorff distance between the latter two diamonds. The estimates are
linear in d with constants only depending on ‚0. Note that all diamonds split off the
same X2–factor, and that the quantity d.x�1 ; x

C
1 /, which appears as a bound in the

hypothesis of Corollary 3.54, varies continuously with the pair .x�; xC/.

Similarly, working with an ambient Weyl cone V.x0
C
; st.� 0�//�}

0 and the ‚0–regular
segment x�x0C , one obtains a point y� 2x�x0C\V.x

0
C
; st.� 0�// uniformly close to x0� .

Using the intermediate diamond }�mod.y�; x
0
C
/�}�mod.x�; x

0
C
/\V.x0

C
; st.� 0�//, one

estimates the Hausdorff distance from }�mod.x�; x
0
C
/ to }0.

We return to the general model space case and are now ready to show:

Proposition 3.56 (continuity of diamonds) The �mod –diamonds in X depend con-
tinuously, with respect to the Hausdorff topology, on their �mod –regular pair of tips.

Proof If X is a euclidean building, this is a direct consequence of the previous lemma.
We assume therefore that X is a symmetric space.

Consider a diamond } D }�mod.x�; xC/ and an ambient parallel set P. As a conse-
quence of the Hausdorff distance estimates for diamonds in the same parallel set (see
Corollary 3.54) there exists ı > 0 such that } has Hausdorff distance < 1

2
� from all

diamonds }�mod.x
0
�; x
0
C
/ with x0

˙
2 B.x˙; ı/\P.

Let U � Isom.X/ be a neighborhood of the identity such that d.ux; x/ < 1
2
� for all

x 2N�.}/ and all u 2U. Then the diamonds }�mod.ux
0
�; ux

0
C
/ with u 2U and x0

˙
2

B.x˙; ı/\P are �–Hausdorff-close to }. The pairs of tips of these diamonds form a
neighborhood of .x�; xC/ in X �X, because the manifold P�mod � @��mod

X � @
�
C
mod
X

of type �mod parallel sets P.��; �C/, or of pairs .��; �C/ of opposite simplices �˙ of
types �˙mod , is a homogeneous space for the Lie group G D Isomo.X/.
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3.8 Topology at infinity and partial bordification

We will describe the topologies on the visual compactification X DX [ @1X and on
the �mod –bordification X�mod D X [ @�modX in terms of shadows and related “basic
subsets”.

We need the following notions of shadows at infinity in @1X and @�modX :

Definition 3.57 (shadows at infinity) (i) For points x; y2X we define the shadow
of the point y as seen from x by

pShx;y WD f� W y 2 x�g � @1X;

and for r > 0 the shadow of the open r –ball around y by

bShx;y;r WD f� W x� \B.y; r/¤∅g � @1X:

(ii) For points x; y 2X we define the �mod –shadow of the point y as seen from x

by

pSh�mod
x;y WD f� W y 2 V.x; st.�//g � @�modX;

and for r > 0 the �mod –shadow of the open r –ball around y by

bSh�mod
x;y;r WD f� W V.x; st.�//\B.y; r/¤∅g � @�modX:

By coning off the shadows at infinity at points in X and removing large balls around
their tips, we obtain the subsets of X and X�mod which we will use to describe and
construct the natural topologies.

Definition 3.58 (basic subsets) (i) For points x; y 2X and radii r > 0, we define
the subsets

pOx;y WD fz W z ¤ y 2 xzg �X

and

bOx;y;r WD fz W xz\B.y; r/¤∅g �X;

and the basic subsets

pO x;y WD pOx;y [ pShx;y �X;

bO x;y;r WD bOx;y;r [ bShx;y;r �X:
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(ii) For points x; y 2X and radii r > 0, we define the subsets

pO�mod
x;y WD fz W xz �mod–regular and z ¤ y 2 }�mod.x; z/g �X

and

bO�mod
x;y;r WD fz W xz �mod–regular and }�mod.x; z/\B.y; r/¤∅g �X;

and the �mod –basic subsets

pO �mod
x;y WD pO�mod

x;y [ pSh�mod
x;y �X

�mod ;

bO �mod
x;y;r WD bOx;y;r [ bShx;y;r �X�mod :

We observe the following relations between point and ball shadows:

bShx;y;r D
[

z2B.y;r/

pShx;z and bSh�mod
x;y;r D

[
z2B.y;r/

pSh�mod
x;z :

There are analogous relations between point and ball type basic subsets:

bOx;y;r D
[

z2B.y;r/

pOx;z and bO�mod
x;y;r D

[
z2B.y;r/

pO�mod
x;z :

We note that the �mod –versions of the shadows and basic subsets are generalizations of
these to arbitrary rank and agree with them in rank one.

We first recall the description of the visual topology on the visual compactification X.

Fact 3.59 (i) For every point x 2X, the basic subsets bOx;�;� form together with
the open subsets of X a basis of the visual topology on X.

(ii) For every ray x� � X, every sequence yn!1 of points yn 2 x� and every
bounded sequence of radii rn > 0, the basic subsets bOx;yn;rn form a neighbor-
hood basis of � .

This restricts to the following description of the visual topology on @1X :

Fact 3.60 (i) For every point x 2X, the shadows bShx;�;� form a basis of the visual
topology on @1X. If X is a euclidean building, then also the shadows pShx;�
form a basis.

(ii) For every ray x� � X, every sequence yn!1 of points yn 2 x� and every
bounded sequence of radii rn > 0, the shadows bShx;yn;rn form a neighborhood
basis of � . If X is a euclidean building, then also the shadows pShx;yn form a
neighborhood basis. Moreover, if X is a symmetric space, then for x ¤ y 2 x�
also the shadows bShx;y;� form a neighborhood basis.
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Now we construct natural topologies on @�modX and, at least partially, on X�mod .

Lemma 3.61 The subsets bO�mod
�;�;� are open in X. If X is a euclidean building, then

also the subsets pO�mod
�;� are open.

Proof The openness of bO�mod
�;�;� follows from the semicontinuity of diamonds; see

Lemma 3.33. If X is a euclidean building, then the openness of pO�mod
�;� is a consequence

of Corollary 3.46.

Lemma 3.62 If xy is �mod –regular, then y 2 B.y; r/ � bO�mod
x;y;r for all sufficiently

small r > 0.

Proof If r is sufficiently small, then the segments xz are �mod –regular for all z 2
B.y; r/.

Lemma 3.63 (i) If z 2 bO�mod
x;y;r , then bO �mod

x;z;s � bO �mod
x;y;r for some s > 0.

(ii) If X is a euclidean building and z 2 pO�mod
x;y , then bO �mod

x;z;s � pO �mod
x;y for some

s > 0.

Proof (i) Due to the semicontinuity of diamonds (see Lemma 3.33) there exists s > 0
such that for every z0 2 B.z; s/ the segment xz0 is �mod –regular and the diamond
}�mod.x; z

0/ still intersects the ball B.y; r/.

(ii) The argument is the same, but using Corollary 3.46. It implies that there exists
s > 0 such that for every z0 2B.z; s/ the segment xz0 is �mod –regular and the diamond
}�mod.x; z

0/ still contains y .

Corollary 3.64 (i) The subsets bO �mod
x;�;� form together with the open subsets of X

the basis of a topology Tx on X�mod . If X is a euclidean building, then also the
subsets pO �mod

x;� form a basis.

(ii) For every simplex � 2 @�modX, every asymptotically uniformly �mod –regular
sequence yn!1 in V.x; st.�// and every bounded sequence of radii rn > 0,
the basic subsets bO �mod

x;yn;rn form a neighborhood basis for � in .X�mod ; Tx/. If
X is a euclidean building, then also the subsets pO �mod

x;yn form a neighborhood
basis. In particular, Tx is first-countable.
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Proof (i) Suppose that � belongs to a finite intersection
T
i bSh�mod

x;yi ;ri
. This means

that V.x; st.�// intersects all balls B.yi ; ri /. Let z 2 V.x; ost.�//� fxg be a point
such that }�mod.x; z/ also intersects them. Then z 2

T
i bO�mod

x;yi ;ri
. With the lemma

it follows that � 2 bO �mod
x;z;s �

T
i bO �mod

x;yi ;ri for all sufficiently small s . Furthermore,T
i bO�mod

x;yi ;ri
is open in X.

The subsets bO �mod
x;�;� are unions of subsets of the form pO �mod

x;� . If X is a euclidean
building, then conversely the subsets pO �mod

x;� are unions of subsets of the form bO �mod
x;�;�

by the last lemma.

(ii) Suppose that � 2bShx;y;r and that bO �mod
x;yn;rnšbO �mod

x;y;r for all n. Then there exist
points zn 2 B.yn; rn/ such that xzn is �mod –regular and }�mod.x; zn/\B.y; r/D∅.

If X is locally compact, then after passing to a subsequence, xzn subconverges to a ray
x��V.x; st.�// with � 2 ost.�/. Let w 2x� be a point such that y 2}�mod.x; w/, and
let wn 2 xzn be points converging to it, wn! w . Then }�mod.x; wn/\B.y; r/¤∅
for large n, due to the semicontinuity of diamonds (see Lemma 3.33), and hence also
}�mod.x; zn/\B.y; r/¤∅, a contradiction.

If X is a euclidean building, then it follows from Corollary 3.46 that y 2 }�mod.x; zn/

for large n, which is also a contradiction.

Thus, the subsets bO �mod
x;yn;rn form a neighborhood basis. If X is a euclidean building,

it follows that also the smaller open subsets pO �mod
x;yn � bO �mod

x;yn;rn form a neighborhood
basis.

We compare now the topologies Tx for different basepoints x .

By construction, they all restrict to the given topology on X.

Regarding the comparison of the topologies Tx at infinity on @�modX and on the entire
bordification X�mod , we use that if a topological space is first-countable, then its topology
is determined by the sequential convergence. Namely, a subset is a neighborhood of
a point if and only if it cannot be avoided by a sequence converging to this point.
We therefore compare sequential convergence for the topologies Tx . We will do this
only partially, namely for arbitrary sequences in @�modX, but only for asymptotically
uniformly �mod –regular sequences in X. This will be sufficient for the purposes of this
paper.

We first observe that Tx –convergence translates into Hausdorff convergence of dia-
monds and Weyl cones.
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Lemma 3.65 (i) The convergence �n! � in @�modX with respect to Tx is equiva-
lent to the Hausdorff convergence

V.x; st.�n//\B.x;R/! V.x; st.�//\B.x;R/

of truncated Weyl cones for all radii R > 0.

(ii) For an asymptotically uniformly �mod –regular sequence xn ! 1 in X, the
convergence xn! � in .X�mod ; Tx/ is equivalent to the Hausdorff convergence
}�mod.x; xn/\B.x;R/! V.x; st.�//\B.x;R/ of truncated diamonds for all
radii R > 0

Proof The first statement follows from the second one in view of Lemma 3.32.

For the second statement, suppose that xn! � . Then for every point y 2 V.x; st.�//
and radius r > 0, the diamonds }�mod.x; xn/ intersect B.y; r/ for all sufficiently
large n. Hence, d.y;}�mod.x; xn//! 0 as n!C1, and the continuity of diamonds
(Proposition 3.56) implies that }�mod.x; y/ � N�n.}�mod.x; xn// with a sequence
�n! 0. Again in view of Lemma 3.32, this yields the asserted Hausdorff convergence.
The converse direction is clear.

Corollary 3.66 The topology Tx on X�mod is Hausdorff.

Proof This is a direct consequence of first-countability and the last lemma, because it
implies that limits of sequences are unique.

We now compare the topologies Tx on @�modX. We do this by comparing them to the
visual topology on @1X. For every type x� 2 int.�mod/, there is the natural identification

(3-10) ��1.x�/
1W1
�! @�modX

with the subspace ��1.x�/� @1X, assigning to a point � 2 @1X with type �.�/D x�
the type �mod simplex � spanned by it, � 2 int.�/.

Lemma 3.67 For every type x� 2 int.�mod/ and every point x 2X, the bijection (3-10)
is a homeomorphism with respect to the restrictions of the visual topology on X to
��1.x�/ and the topology Tx on X�mod to @�modX.

Proof Let .�n/ and � be a sequence and a point in ��1.x�/� @1X, and let .�n/ and
� be the corresponding sequence and point in @�modX, ie �n 2 int.�n/ and � 2 int.�/.
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We must show that �n ! � if and only if �n ! � with respect to the topologies in
consideration.

Suppose that �n ! � with respect to Tx . Then V.x; st.�n//! V.x; st.�// by the
previous lemma. In particular, increasingly long subsegments xyn�x�n�V.x; st.�n//
become arbitrarily close to segments x xyn � V.x; st.�//. We want to find Hausdorff-
close segments in V.x; st.�// of the same type x� . By the triangle inequality for
�–lengths (2-7), kd�.x; yn/�d�.x; xyn/k � d.yn; xyn/! 0 and, in a euclidean Weyl
chamber through xyn with tip x , we find a point zn 2 V.x; st.�// with d�.x; zn/D
d�.x; yn/. Then d.zn; xyn/ D kd�.zn; xyn/k D kd�.x; zn/ � d�.x; xyn/k ! 0, and
hence d.zn; yn/! 0 by the triangle inequality. Moreover, �.xzn/D �.xyn/D x� and
therefore zn 2 x� , because � is the only point in st.�/ with type x� . It follows that
x�n! x� , ie �n! � .

Conversely, suppose that �n ! � , ie x�n ! x� . Then any ball centered at x� is
intersected by x�n for all sufficiently large n. Thus, �n ! � by our description of
Tx –neighborhood bases.

Corollary 3.68 The restriction of the topology Tx to @�modX does not depend on x .

Definition 3.69 (visual topology) We call this topology on @�modX the visual topol-
ogy.

Now we show that the topologies Tx agree on the entire bordification X�mod “in
�mod –regular directions”. We reformulate the condition for Tx –convergence for asymp-
totically uniformly �mod –regular sequences xn!1 given in Lemma 3.65 above, in
order to show its independence from x . We do this separately in the symmetric space
(locally compact) and euclidean building cases.

In the locally compact case, we can express Tx –convergence in terms of accumulation
at infinity (the limit set) in X :

Lemma 3.70 Suppose that X is locally compact. Then xn! � 2 @�modX with respect
to Tx if and only if the accumulation set of .xn/ in X (with respect to the visual
topology of X ) is contained in ost.�/� @1X.

Proof Since X is locally compact, the sequence .xn/ subconverges in both X

and X�mod . The latter holds because the sequence of diamonds }�mod.x; xn/ Hausdorff
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subconverges and, in view of Lemma 3.32, the Hausdorff sublimits must be type �mod

Weyl cones. Note also that .xn/ accumulates in X only at the �mod –regular part
��1.ost.�mod// of @1X, as a consequence of asymptotic uniform �mod –regularity.

Therefore, if the assertion is wrong, we may assume, after passing to a subsequence,
that xn! � in X�mod and xn! � 0 2 ost.� 0/ in X for different simplices �; � 0 2 @�modX.
But then }�mod.x; xn/! V.x; st.�// according to Lemma 3.65. Since xxn! x� 0, it
follows that � 0 2 st.�/, a contradiction.

In the euclidean building case, we can strengthen the condition of Hausdorff convergence
of Weyl cones to initial coincidence up to increasing radii.

Lemma 3.71 Suppose that X is a euclidean building. Then xn! � 2 @�modX with
respect to Tx if and only if for every R > 0 it holds that }�mod.x; xn/\B.x;R/ D

V.x; st.�//\B.x;R/ for all sufficiently large n.

Proof This is a consequence of Lemmas 3.65 and 3.48.

Corollary 3.72 Whether an asymptotically uniformly �mod –regular sequence xn!1
in X converges to a simplex � 2 @�modX in .X�mod ; Tx/ does not depend on x .

Proof If X is locally compact, this follows immediately from Lemma 3.70. Assume
therefore that X is a euclidean building.

Let x; x0 2X and suppose that xn! � 2 @�modX with respect to Tx . By Lemma 3.71,
there exists a sequence yn!1 of points yn 2 xxn\V.x; st.�//. Let y0n 2 x

0xn be
points uniformly close to the points yn , eg such that d.y0n; yn/� d.x

0; x/. Then the se-
quence .y0n/ is contained in a tubular neighborhood (of radius d.x0; x/) of V.x; st.�//,
and hence also in a tubular neighborhood (of radius 2d.x0; x/) of V.x0; st.�//, because
the two Weyl cones have finite Hausdorff distance (� d.x0; x/). The sequences .yn/
and .y0n/ inherit from .xn/ asymptotically uniform �mod –regularity.

Consider the subsegments x0z0n D x
0y0n\V.x

0; st.�//. According to Corollary 3.46,
the distances d.z0n; y

0
n/ are uniformly bounded, and therefore z0n!1. Since

}�mod.x
0; z0n/�}�mod.x

0; xn/\V.x
0; st.�//;
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it follows, using again Lemma 3.32, that }�mod.x
0; xn/! V.x0; st.�//. Hence, xn! �

also with respect to Tx0 .

The corollary justifies the following definition:

Definition 3.73 (flag convergence) We say that an asymptotically uniformly �mod –
regular sequence xn!1 in X flag converges to a simplex � 2 @�modX if xn! � in
.X�mod ; Tx/ for some basepoint x .

Now we can also make precise the coincidence of the topologies Tx “in �mod –regular
directions”. Suppose that A�X is an asymptotically uniformly �mod –regular subset,
and consider the subset

zA�mod WD A[ @�modX �X
�mod :

Corollary 3.74 The topology induced by Tx on zA�mod does not depend on x .

Definition 3.75 (topology of flag convergence) We call this topology on zA�mod the
topology of flag convergence.

As shown above, the topologies Tx and hence the topology of flag convergence on zA�mod

are Hausdorff and first-countable. Neighborhood bases at infinity have been described
in Corollary 3.64.

We further discuss the flag convergence of sequences.

A situation when an asymptotically uniformly regular sequence flag converges is when
it stays close to a Weyl cone:

Lemma 3.76 Suppose the asymptotically uniformly �mod –regular sequence xn!1
is contained in the tubular neighborhood of the type �mod Weyl cone V.x; st.�//. Then
xn! � .

Proof If X is locally compact, this follows from Lemma 3.70.

Suppose therefore that X is a euclidean building. Consider the points yn where
the segments xxn exit the Weyl cone V.x; st.�//, ie xyn D xxn\V.x; st.�//. Then
Corollary 3.46 implies that d.yn; xn/ is bounded. Hence, yn!1 is an asymptotically
uniformly �mod –regular sequence in V.x; st.�//, and xn 2 pO �mod

x;yn . The basic subsets
pO �mod

x;yn form a neighborhood basis of � . Thus, xn! � also in this case.
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We give a name to this stronger form of flag convergence:

Definition 3.77 (conical convergence; see [10, Definition 6.1]) We say that an asymp-
totically uniformly �mod –regular sequence xn!1 in X flag converges conically to
� 2 @�modX if it is contained in a tubular neighborhood of the Weyl cone V.x; st.�//.

Corollary 3.78 Let V.x; st.�// and V.x0; st.� 0// be type �mod Weyl cones. Sup-
pose that for some D > 0 the intersection of their D–neighborhoods contains an
asymptotically uniformly �mod –regular sequence. Then � D � 0.

Proof If .xn/ is such an asymptotically uniformly �mod –regular sequence, then xn!�

and xn! � 0. The assertion follows from the Hausdorff property of the topologies Tx .

The following convergence criterion will be useful when X is not locally compact.

Lemma 3.79 Let xn!1 be an asymptotically uniformly �mod –regular sequence
in X, and let .�n/ be a sequence in @�modX such that for some point x 2X and some
constant D � 0 it holds that xn 2ND.V .x; st.�m/// for all m� n. Then the sequence
.�n/ converges, �n! � 2 @�modX, and xn 2 ND.V .x; st.�/// for all n. In particular,
xn! � conically.

Proof If X is locally compact, then there exists a convergent subsequence of simplices,
�nk ! � . It follows that xn 2 ND.V .x; st.�/// for all n, and the assertion holds in
this case.

Suppose therefore that X is a euclidean building (because otherwise X is locally
compact). For suitable ‚, the segments xxn are ‚–regular for large n. Let � 0n 2
pSh�mod

x;xn
. Applying Lemma 3.48, we obtain for any radius r > 0 that

V.x; st.� 0n//\B.x; r/D V.x; st.�m//\B.x; r/

for m� n� n0.r/. Thus, both sides are independent of m and n, and isometric to

V.x; st.�m//\B.x; r/D C.x; r/

for m� n0.r/. The union of the nested family of cones C.x; r/ as r!C1 is a type
�mod Weyl cone V.x; st.�//. It follows that �m! � and xn 2ND.V .x; st.�///.
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3.9 Ultralimits of parallel sets, Weyl cones and diamonds

Let X be a model space.

For a sequence of basepoints ?n 2 X and a sequence of scale factors �n > 0 with
!–lim�n D 0, we consider the ultralimit

.X! ; ?!/D !–lim.�nX; ?n/

of rescaled copies of X. We will use the following result:

Theorem 3.80 (B Leeb and B Kleiner [13, Chapter 5]) X! is a euclidean building
of the same rank and type as the model space X.

We will need later that certain families of subsets are closed under taking ultralimits.

Sequences of maximal flats in X ultraconverge to maximal flats in X! ; see also [13,
Chapter 5]: if Fn�X for n2N are maximal flats such that !–lim�nd.Fn; ?n/<C1,
then

F! WD !–lim�nFn �X!

is a maximal flat. Furthermore, if �nW Fn! Fmod are charts such that

!–lim�nd.�
�1
n .0/; ?n/ <C1

for the basepoint 0 2 Fmod , then the ultralimit

(3-11) ��1! WD !–lim ��1n W Fmod!X!

of the isometric embeddings ��1n W �nFmod! �nXn is an isometric embedding, and
it is the inverse of a chart �! for F! . (Note that !–limn.�nFmod; 0/ Š .Fmod; 0/

canonically, because Fmod is self-similar, so .�nFmod; 0/Š .Fmod; 0/ canonically, and
locally compact.)

Euclidean Weyl sectors (chambers) ultraconverge to euclidean Weyl sectors (chambers)
if their tips ultraconverge: Let V.xn; �n/ � Xn be Weyl sectors and suppose that
x! D .xn/ 2X! exists. Since sectors are contained in maximal flats, we may assume
that V.xn; �n/� Fn and work with the charts �n and �! . Then .@1�n/�n � @1Fmod

is one of finitely many faces, and therefore !–always the same face x� . We put
�! WD .@1�

�1
! /x� � @1F! and obtain that

(3-12) !–lim�nV.xn; �n/D V.x! ; �!/
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and, regarding types, �.�!/D �.�n/ for !–all n. Applying (3-12) to the chambers
x� � x� in @1Fmod and taking the union, one obtains in particular that

(3-13) !–lim�nV.xn; st.�n/\ @1Fn/D V.x! ; st.�!/\ @1F!/;

a fact which will be useful below.

Generalizing the fact for maximal flats, we will show next that parallel sets ultraconverge
to parallel sets. Consider a sequence of parallel sets PnDP.��n ; �

C
n /�X and assume

that !–lim�nd.?n; Pn/ <C1. Let

P! WD !–lim�nPn �X! :

Lemma 3.81 (ultralimits of parallel sets) P! is again a parallel set, ie P! D

P.��! ; �
C
! / with a pair of opposite simplices �˙! � @1X! . Moreover, �.�˙! /D �.�

˙
n /

for !–all n.

Proof We may assume without loss of generality that ?n 2Pn and that �.�˙n /D �
˙
mod

for all n.

In order to represent the Pn as parallel sets of geodesic lines, we fix a type x� 2 int.�mod/

and denote by �n 2 int.�n/ the ideal points of type �.�n/D x� . Then Pn D P.ln/ with
the oriented geodesic line ln � Pn extending the ray ?n�n .

The ultralimit of lines
l! WD !–lim�nln � P!

is again an oriented line of type x� . Let �! WD l!.C1/ 2 @1X! denote its forward
ideal endpoint, and let �˙! � @1X! denote the type �˙mod simplices spanned by the
ideal endpoints l!.˙1/.

Since every point in Pn is contained in a maximal flat Fn � ln , and since sequences
of maximal flats Fn � ln ultraconverge to maximal flats F! � l! , we have that

P! � P.l!/:

We must show that P! fills out P.l!/. Note that, as an ultralimit of subsets, P! is
closed.

Let x! D .xn/ 2 X! . The ray x!�! � X! is the ultralimit of the rays xn�n � Xn .
We apply Propositions 3.43 and 3.44 to conclude that x!�! dives within uniformly
bounded time into P! . Namely, fix a constant d > 0 and choose ‚ 3 x� . Let C 00 WD
max

�
C.‚; d/; .sin �0.‚//�1

�
with the constants appearing in these results. Let yn 2
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xn�n be the point at distance d.xn; yn/ D C 00 � d.xn; Pn/. Then yn 2 Nd .Pn/. (If
X is a euclidean building, even yn 2 Pn .) The ultralimit point y! 2 x!�! is defined
and has distance d.x! ; y!/ D C 00d.x! ; P!/ < C1 from x! . Since �nd ! 0, we
have that y! 2 !–lim�nNd .Pn/D !–limN�nd .�nPn/DN0.P!/D P! . Thus, the
ultralimit ray x!�! enters P! within uniformly bounded time.

As a consequence, every geodesic line l 0!�X! parallel to l! must already be contained
in P! . This means that P! D P.l!/D P.��! ; �

C
! /.

Using the result on parallel sets, we will deduce the ultraconvergence of Weyl cones
from the ultraconvergence of Weyl sectors. Consider a sequence of Weyl sectors
V.xn; �n/�X which ultraconverge as in (3-12). Then the corresponding Weyl cones
ultraconverge, too:

Lemma 3.82 (ultralimits of Weyl cones) !–lim�nV.xn; st.�n//D V.x! ; st.�!//.

Proof The left-hand side is the union of the ultralimits !–lim�nV.xn; �n/ for all
sequences of chambers �n � �n in @1X. By (3-13), these ultralimits are euclidean
Weyl chambers V.x! ; �!/ with chambers �! � �! in @1X! , ie �! � st.�!/. This
shows that

!–lim�nV.xn; st.�n//� V.x! ; st.�!//:

To verify the reverse inclusion, we work inside parallel sets containing the Weyl cones.
Let y�n � @1X be faces xn–opposite to the faces �n . Then V.xn; st.�n// � Pn D
P.y�n; �n/.

Consider a sequence of maximal flats Fn � Pn containing the points xn , and the
ultralimit flat F! D!–lim�nFn . Then �n� @1Fn and �! � @1F! . Applying (3-13)
yields that

V.x! ; st.�!//\F! D V.x! ; st.�!/\ @1F!/D !–lim�nV.xn; st.�n/\ @1Fn/:

The union of all flats F! arising in this way as ultralimits is precisely P! WD!–lim�nPn .
Hence,

V.x! ; st.�!//\P! � !–lim�nV.xn; st.�n//:

Now we use that parallel sets ultraconverge to parallel sets. By Lemma 3.81, P! D
P.y�! ; �!/ with a face y�! which is x! –opposite to �! . It follows that V.x! ; st.�!//�
P! and

V.x! ; st.�!//� !–lim�nV.xn; st.�n//;

which finishes the proof.
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Finally, we describe ultralimits of sequences of diamonds. Consider a sequence of ‚–
regular segments x�n x

C
n �X and the �mod –diamonds }n WD }�mod.x

�
n ; x

C
n / spanned

by them. Let
}! WD !–lim�n}n:

Lemma 3.83 (ultralimits of diamonds) If the sequence of segments x�n x
C
n ultracon-

verges to a segment x�!x
C
! �X! , then }! D}�mod.x

�
! ; x

C
! /.

Proof We recall that diamonds are forever. In order to work inside sequences of
parallel sets, let .��n ; �

C
n / be pairs of .x�n ; x

C
n /–opposite type �˙mod simplices in @1X.

Putting Pn WD P.��n ; �
C
n / and V ˙n WD V.x

�
n ; st.�˙n //� Pn , we have that

}n D V
�
n \V

C
n � Pn:

Lemma 3.81 implies that

P! WD !–lim�nPn D P.�
�
! ; �

C
! /

with a pair .��! ; �
C
! / of .x�! ; x

C
! /–opposite type �˙mod simplices in @1X! . Moreover,

by Lemma 3.82,

V ˙! WD !–lim�nV
˙
n D V.x

�
! ; st.�˙! //� P! :

Clearly,
}! � V

�
! \V

C
! � P! ;

and we must prove that }! D V �! \V
C
! .

Since the segment x�!x
C
! is ‚–regular, and hence, in particular, is �mod –regular, the

intersection of interiors int.V �! /\ int.V C! / is dense in V �! \V
C
! . Since }! is closed

(being an ultralimit of subsets), it thus suffices to show that int.V �! /\ int.V C! /�}! .

Let z! 2 int.V �! /\ int.V C! /. We may assume that z! D .zn/ with zn 2 Pn . Since
z! 2 int.V ˙! /, the segments x�! z! and z!xC! are longitudinal. It follows that the
segments x�n zn and znxCn are longitudinal for !–all n. So, zn 2 V �n \V

C
n D}n and

z! 2 }! .

4 Modified Carnot–Finsler metric and its contraction
property

4.1 A modified Carnot-Finsler type metric on diamonds

Suppose that X is a model space.
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Definition 4.1 A broken path x0x2 : : : xk in a diamond } is called nonlongitudinal
if each segment xixiC1 of this path is nonlongitudinal.

On the diamond } D }�mod.x�; xC/ we introduce the pseudometric d} which is
obtained by infimizing the length of broken nonlongitudinal paths x0x1 : : : xk in }
with x0 D x�; xk D xC . The triangle inequality and symmetry are clearly satisfied
by d} , but, in general, d} is only a pseudometric, because points may have infinite
distance.

The modified metric d} is larger than the original metric:

d} � d j}:

It obviously agrees with d in the nonlongitudinal directions, ie for a nonlongitudinal
segment xy �} we have d}.x; y/D d.x; y/. However, d} is strictly larger than d
in the longitudinal directions:

Lemma 4.2 For a longitudinal segment xy in }, we have

d}.x; y/� C � d.x; y/

with a constant C DC.�. �!xy//>1 depending continuously on the direction type �. �!xy/.

Proof We choose an .x�; xC/–opposite type .��mod; �mod/ pair of simplices .��; �C/.
Then }�P.��; �C/. The longitudinal segment xy can be extended inside P.��; �C/
to a longitudinal ray x� , ie � 2 ost.�C/[ ost.��/, say � 2 ost.�C/. Along xy , the
Busemann function b� decays with minimal possible slope ��1. On the other hand,
along any non-longitudinal segment in P.��; �C/, and hence along any piecewise
nonlongitudinal geodesic path in } connecting x to y , it has slope � �1C � with
a constant � > 0 depending continuously on the (Tits) distance of � from @ st.�C/,
which in turn depends only on �. �!xy/. It follows that .1� �/ � d}.x; y/ � d.x; y/,
whence the assertion.

Whether the modified metric d} can be bounded above in terms of the original metric
depends on the geometry of the face type �mod � �mod . Note that1

st.�mod/DW�mod�mod � amod

is a proper convex subcomplex, because X has no euclidean factor, and hence is
contained in a closed hemisphere. In fact, it is contained in all closed hemispheres with

1Here st.�mod/ refers to the star within amod .
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center in �mod .
�
Recall that chambers have diameter � �

2
.
�

Thus, st.�mod/ is itself
a hemisphere if and only if �mod is a root type vertex, �mod D fx�g, and the spherical
Coxeter complex .amod; W / is reducible with the 0–sphere f˙x�g as a join factor.

Lemma 4.3 If st.�mod/ is not a closed hemisphere, then

d} � C � d j}

with a constant C D C.�mod/ > 1.

Proof We must bound above the }–length of longitudinal segments.

Let P.��; �C/�} be an ambient parallel set for an .x�; xC/–opposite pair of sim-
plices .��; �C/ of type .��mod; �

C
mod/. Then a longitudinal segment x0�x

0
C
�} is con-

tained in a maximal flat F �P.��; �C/. Assuming that the segment is oriented so that
x0
˙
2V.x0

�
; ost.�˙//, we have }0 WD}�mod.x

0
�; x
0
C
/�}, and the “flat diamond” }0\F

is the intersection of the two flat sectors V.x0
�
; st.�˙//\F D V.x0�; st.�˙/\ @1F /.

Note that �˙ � @1F , so st.�˙/\ @1F Š st.�mod/.

We will bound d}.x0�; x
0
C
/ above by connecting the points x0

˙
inside }0 \ F by

a piecewise nonlongitudinal path with controlled length. This can be done by a
path x0�yx

0
C

in the boundary of }0 \ F. To see this, choose a pair of antipodes
�˙ 2 �˙ and note that st.�˙/� B

�
�˙;

�
2

�
is a proper convex subset. Accordingly, the

convex subcomplexes st.�˙/\ @1F of the apartment @1F are proper subsets of the
“complementary” closed hemispheres B

�
�˙;

�
2

�
\ @1F . Since the open hemispheres

are disjoint, a ray x0��C in the boundary of the flat sector V.x0�; st.�C/ \ @1F /
with �C 2 st.�C/\B

�
�C;

�
2

�
\ @1F intersects the boundary of the other flat sector

V.x0
C
; st.��/\ @1F /, and we take y to be the (unique) intersection point. The path

x�yxC in the boundary of }0 \ F then consists of two nonlongitudinal segments
contained in boundaries of �mod –Weyl cones.

To control the length of the path x0�yx
0
C

, we note that, since there are only finitely
many face types �mod � �mod , and hence only finitely many possible isometry types of
subcomplexes st.�˙/\ @1F , the ray x0��C in the boundary of V.x0�; st.�C/\ @1F /
can be chosen so that †Tits.�C; �C/ �

�
2
� ı for a uniform ı D ı.�mod/ > 0. Then

†y.x�; xC/� ı . The triangle �.x0�; y; x
0
C
/ lies in the flat F , and elementary euclidean

geometry yields an estimate of the form d.x0�; x
0
C
/� c � .d.x0�; y/Cd.y; x

0
C
// with a

constant c D c.ı/ > 0, and hence d}.x0�; x
0
C
/� c�1 � d.x0�; x

0
C
/.
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Thus, under the assumption of the lemma, the modified metric d} is uniformly equiva-
lent to the original metric d on X, and in particular it is an honest metric. Furthermore,
the distortion is small in almost-nonlongitudinal directions:

Lemma 4.4 If st.�mod/ is not a closed hemisphere and if xy � } is a longitudinal
segment with direction �–close to a nonlongitudinal direction, then

d}.x; y/� .1CC�/ � d.x; y/

with the constant C from the previous lemma.

Proof For the proof, we switch notation (replacing x and y by x0
˙

) and use some of
the notation in the proof of the previous lemma.

Suppose that the direction of the longitudinal segment x0�x
0
C

is �–close to a nonlon-
gitudinal direction. Then a ray x0��C in the boundary of V.x0�; st.�C/\ @1F / can
be chosen so that †x0�.x

0
C
; �C/� � . Let y0

C
2 x0��C be the point with d.x0�; y

0
C
/D

d.x0�; x
0
C
/. Note that the triangle �.x0�; y

0
C
; x0
C
/ lies in the flat F and that its side

x0�y
0
C

is nonlongitudinal.

If y0
C
2 }, then we can estimate, using the previous lemma,

d}.x
0
�; x
0
C/� d}.x

0
�; y

0
C/C d}.y

0
C; x

0
C/� d.x

0
�; x
0
C/CC � d.y

0
C; x

0
C/

� .1CC�/ � d.x0�; x
0
C/:

Otherwise, the segment x0�y
0
C

leaves }0, equivalently, the Weyl cone V.x0
C
; st.��//

in a point y0. Then the path x0�y
0x0
C

consists of two nonlongitudinal segments and,
according to the triangle inequality, has length at most

d.x0�; y
0
C/C d.y

0
C; x

0
C/� .1C �/ � d.x

0
�; x
0
C/:

Suppose now that st.�mod/ is a hemisphere, which means as mentioned above that
�mod D fx�g is a root type vertex and st.�mod/ D B

�
x�; �
2

�
, ie the spherical Coxeter

complex .amod; W / is reducible and splits off the 0–sphere f˙x�g as a join factor.

Accordingly, �˙ D f�˙g are antipodal root type vertices, st.�˙/D B
�
�˙;

�
2

�
and the

model space splits off a rank one factor, ie it splits metrically as the product

X Š T �X 0

of a rank one symmetric space or a metric tree T and a model space X 0 of corank one.
The ideal vertices in @TitsT � @TitsX are the type x� ideal points. The type �mod parallel
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sets are of the form l �X 0 for a geodesic line l � T , the �mod –Weyl cones are of the
form r �X 0 for a geodesic ray r � T , and the �mod –diamonds are of the form s �X 0

for a geodesic segment s � T . A segment in X is �mod –regular if and only if it is not
contained in a cross-section pt�X 0. The longitudinal segments in �mod –diamonds
are precisely the �mod –regular ones. Thus, the nonlongitudinal paths are precisely the
paths contained in cross-sections.

It follows that two points in } have finite }–distance if and only if they lie in the same
cross-section, and on cross-sections d} coincides with d . In particular, d} is not an
honest metric in this case.

Remark 8 Our discussion shows that any two points x; y 2} with finite }–distance
can be connected by a polygonal path in } with d –length d}.x; y/ consisting of at
most two nonlongitudinal segments.

4.2 Contraction properties of nearest-point projections in euclidean
buildings

In this section, let X be a euclidean building without flat factor.

Recall that for a closed convex subset C �X the nearest-point projection �C W X!C

is 1–Lipschitz. In this section, we give sharper contraction estimates for projections to
diamonds. This is based on the following general observation. Here, int.†xxC/ denotes
the interior of †xxC as a subset of †xxX.

Lemma 4.5 For � >0 and A>1 there exists RDR.�; A/>0 such that the following
holds:

Let C �X be closed convex, and let x; y 2X be points with projections xx D �C .x/
and xy D �C .y/. Suppose that d.x; y/ < A � d.xx; xy/ and d.x; xx/ > R � d.xx; xy/. Then
the direction

�!
xx xy is �–close to a direction in †xxC � int.†xxC/.

Proof The assertion is scale-invariant and we may therefore assume that d.xx; xy/D 1.

Since xx D �C .x/, we have that †xx.
�!
xxx;†xxC/�

�
2

. In particular, †xx.x; xy/� �
2

and,
analogously, †xy.y; xx/� �

2
. To see that these angles can exceed �

2
only by arbitrarily

little if R is sufficiently large, we proceed as follows using triangle comparison.
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In order to bound cos†xx.x; xy/ from below, we divide the quadrilateral .x; y; xy; xx/

into the triangles �.xx; xy; y/ and �.xx; x; y/. Let D D d.xx; y/. Applying comparison
to �.xx; xy; y/ yields for the angle ˛ D†xx.xy; y/ that

cos˛ � 1

D

because †xy.xx; y/� �
2

. And applying comparison to �.xx; x; y/ yields for the angle
ˇ D†xx.x; y/ that

sinˇ � A

D

because d.x; y/� A. It follows for †xx.x; xy/� ˛Cˇ that

cos†xx.x; xy/� cos˛ cosˇ� sin˛ sinˇ � 1

D

r
1�

A2

D2
�
A

D

r
1�

1

D2
:

The right-hand side tends to 0 as R!C1. Thus, †xx.x; xy/ < �
2
C � for suitable

R �R.�; A/.

Now let v 2†xxC be the direction where the shortest arc in †xxX connecting
�!
xxx to

�!
xx xy

enters †xxC. Since †xx.
�!
xxx; v/ � �

2
, it follows that †xx.v;

�!
xx xy/ < � . By its definition,

v … int.†xxC/.

In the special case of �mod –diamonds } D }�mod.x�; xC/, the lemma yields (see
Lemma 3.34):

Corollary 4.6 If C D}, then the direction
�!
xx xy (in the above lemma) is �–close to a

nonlongitudinal direction.

We apply this observation to estimate the local contraction of projections. The main
result of this section is the following estimate, which is interesting in itself:

Theorem 4.7 (contraction estimate) For a �mod –diamond }D}�mod.x�; xC/, the
map

.X; d/
�}
�! .}; d}/

is locally 1–Lipschitz outside }.

Proof Suppose that xy is a segment disjoint from }, and let r > 0 be so small
that xy stays outside the r –neighborhood of }. We fix constants �; A�1 ' 0 and
subdivide xy into subsegments of length <R�1r with the constant RDR.�; A/ from
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Lemma 4.5. We project the subdivision points to }. According to the corollary, the
segments connecting the projections of subsequent subdivision points have directions
�–close to nonlongitudinal directions or have length at most A�1 times the length of
the corresponding subdivision segment.

If st.�mod/ � amod is not a hemisphere, then the modified metric d} is uniformly
equivalent to the original metric d j} and almost undistorted in almost nonlongitudinal
directions; see Lemmas 4.3 and 4.4. Denoting by xc the polygonal path in } connecting
the projections of the subdivision points, and by L and L} the lengths measured with
respect to the metrics d and d} , we obtain

d}.�}.x/; �}.y//�L}.xc/� .1CC�/�L.xc/C
C

A
�d.x; y/�

�
1CC

�
�C

1

A

��
�d.x; y/

with the constant C of Lemma 4.3. The assertion follows in this case by letting
�; A�1! 0.

Otherwise, if st.�mod/ is a hemisphere, the assertion becomes trivial: The euclidean
building splits as the product XŠT �X 0 of a metric tree T and a euclidean building X 0,
and the �mod –diamonds are of the form }D s�X 0 for segments s�T (see above). The
projection has the form �} D �s � idX 0 with the nearest-point projection �sW T ! s .
Outside }, the �s –component is locally constant, so �} locally maps into one cross-
section. The assertion holds, because d} and d agree on cross-sections.

5 Regular implies Morse

In this section we prove the main result of this paper, the Morse lemma for �mod –regular
quasigeodesics in model spaces, Theorem 1.3 in the introduction.

5.1 Rectifiable paths in euclidean buildings

Let X be a euclidean building.

It is natural to ask (compare the definitions in Sections 3.1 and 3.2):

Question 5.1 Are �mod –regular paths in euclidean buildings contained in type �mod

parallel sets as longitudinal paths?

The goal of this section is to answer the question affirmatively for locally rectifiable
paths; see Theorem 5.6 below.
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We begin by discussing basic properties of �mod –regular paths cW I !X.

The segment c.t/c.s/ is �˙mod –regular for ˙s >˙t and its �˙mod –direction

�˙.
������!

c.t/c.s//�†c.t/X

at c.t/ is therefore well defined.

Lemma 5.2 Let t 2 I be such that ˙t is not maximal in ˙I. Then the �˙mod –direction
�˙.

������!

c.t/c.s// for ˙s >˙t does not depend on s , ie there is a well-defined type �˙mod
simplex �˙.t/�†c.t/X such that

�˙.
������!

c.t/c.s//D �˙.t/ for ˙ s >˙t:

Proof The direction
������!

c.t/c.s/ 2†c.t/X varies continuously with s , and the type �˙mod
open stars are the connected components of the �˙mod –regular part of †c.t/X. The
direction must therefore remain in the same open star.

Lemma 5.3 For Œa; b�� I and t 2 .a; b/, the �˙mod –directions �˙.t/ are opposite to
each other if and only if c.t/ 2 }�mod.c.a/; c.b//.

Proof The segment c.t/c.a/ is ��mod –regular and c.t/c.b/ is �Cmod –regular. Hence,
c.t/ can only lie in the interior of }�mod.c.a/; c.b// and, according to the descrip-
tion (3-1) of the interior of diamonds, it does so if and only if the �˙mod –directions
��.

������!

c.t/c.a//D ��.t/ and �C.
������!

c.t/c.b//D �C.t/ of these segments at c.t/ are opposite
to each other.

As a consequence of these two lemmas, we obtain a “local–global” equivalence for the
straightness of triples on the path:

Corollary 5.4 For Œa0; b0�� Œa; b�� I and t 2 .a0; b0/, we have

c.t/ 2 }�mod.c.a/; c.b// () c.t/ 2 }�mod.c.a
0/; c.b0//:

Another useful consequence is:

Corollary 5.5 If Œa0; b0� � Œa; b� � I and if c.a0/; c.b0/ 2 } D }�mod.c.a/; c.b//,
then the segment c.a0/c.b0/ is longitudinal in }.

Proof With the last lemma, we see that the pair of �˙mod –directions �˙.a0/ is opposite,
as well as the pair �˙.b0/. The assertion then follows eg from Corollary 3.38.
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The main result of this section is a positive answer to Question 5.1 for arbitrary (ie
possibly nondiscrete) euclidean buildings in the rectifiable uniform case:

Theorem 5.6 Let X be a euclidean building. Then every rectifiable ‚–regular path
cW Œa; b�! X is contained in the ‚–diamond } D }‚.c.a/; c.b// spanned by its
endpoints and is longitudinal in }.

We break the proof up into several steps.

We observe first that, arguing by contradiction, we may assume that the path does not
touch the diamond at all except at its endpoints:

Lemma 5.7 If the path cW Œa; b� ! X is �mod –regular and not contained in } D
}�mod.c.a/; c.b//, then there exists a nondegenerate subinterval Œa0; b0�� Œa; b� such
that c.t/ … }�mod.c.a

0/; c.b0// for all t 2 .a0; b0/.

Proof Write } D }�mod.c.a/; c.b//, and let .a0; b0/ be a connected component of
the nonempty open subset ft 2 I W c.t/ … }g. Then c.a0/; c.b0/ 2 } and, invoking
Corollary 5.5, we know that the segment c.a0/c.b0/ is longitudinal, and hence that
}�mod.c.a

0/; c.b0//�}.

The intuition behind the proof of the theorem is that it “costs length” for a �mod –regular
path to move outside the diamond of its endpoints, due to the contraction properties of
projections as described in Section 4.2. The key step in the proof is:

Lemma 5.8 Let cW Œa; b�! X be a path such that the oriented segment c.a/c.b/
connecting its endpoints is �mod –regular and such that c.t/ … } D }�mod.c.a/; c.b//

for all t 2 .a; b/. Then
L.c/� d}.c.a/; c.b//:

Proof Let �}W X!} denote the nearest-point projection. We consider the projected
curve xc WD�}ıcW I!}. Since c lies outside } except for its endpoints, Theorem 4.7
yields that

L.c/� L}.xc/;

where L} is the length measured with respect to the modified metric d} . The assertion
follows, because L}.xc/� d}.c.a/; c.b//.
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As a consequence, almost distance-minimizing (see Definition 2.1) uniformly �mod –
regular paths must touch the diamond of their endpoints:

Lemma 5.9 There exists � D �.‚/ > 0 such that the following holds: if the path
cW Œa; b� ! X is ‚–regular and �–distance-minimizing, then c.t/ 2 } for some
t 2 .a; b/.

Proof Due to the compactness of ‚, there exists an � D �.‚/ > 0 such that d} >
.1C �/ �d for ‚–longitudinal pairs of points in }; see Lemma 4.2. The assertion then
follows from the previous lemma.

Based on Corollary 5.4, we can extend the last result to rectifiable paths of arbi-
trary length, because these contain arbitrarily efficient (ie almost distance-minimizing)
subpaths:

Lemma 5.10 If cW Œa; b�!X is ‚–regular and rectifiable, then c.t/ 2 } for some
t 2 .a; b/.

Proof Let � D �.‚/ be the constant from Lemma 5.9. There exists a nondegenerate
subinterval Œa0; b0� � Œa; b� such that the subpath cjŒa0;b0� is �–distance-minimizing;
see Lemma 2.2. Then Lemma 5.9 implies that c.t/ 2 }�mod.c.a

0/; c.b0// for some
t 2 .a0; b0/. With Corollary 5.4, it follows that also c.t/ 2 }.

We are ready to conclude the proof of the theorem.

Proof of Theorem 5.6 Suppose that c is not contained in }‚.c.a/; c.b//. Then,
by ‚–regularity, it is also not contained in } D }�mod.c.a/; c.b//. According to
Lemma 5.7, after replacing c by a subpath, we may assume that c.t/ … } for all
t 2 .a; b/. But this contradicts Lemma 5.10, so c is contained in }‚.c.a/; c.b//. It is
longitudinal by Corollary 5.5.

As a consequence of the theorem, we obtain with Lemma 3.11 that rectifiable uniformly
�mod –regular paths are, up to reparametrization, bilipschitz; they become bilipschitz
when parametrized by arc length:

Corollary 5.11 (bounded detours) L.c/� L.‚/ � d.c.a/; c.b//.

We have the following implications of the theorem for infinite paths:
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Corollary 5.12 (i) Every locally rectifiable and uniformly �mod –regular path

cW I !X

is contained in a type �mod parallel set as a longitudinal path.

(ii) Every locally rectifiable and uniformly �mod –regular path cW Œ0;C1/!X with
infinite length is contained as a longitudinal path in a Weyl cone

V.c.0/; st.c.C1//

for a unique simplex c.C1/ 2 Flag�mod
.@1X/.

(iii) Every locally rectifiable and uniformly �mod –regular path cW R ! X, both
of whose ends have infinite length, is contained as a longitudinal path in a
parallel set P.c.�1/; c.C1// for a unique pair of opposite simplices c.˙1/2
Flag

�˙mod
.@1X/.

Proof (i) By Theorem 5.6, for every compact subinterval Œa; b��I, the corresponding
part of the path is contained in the diamond }�mod.c.a/; c.b//. These diamonds are
nested, ie for Œa0; b0�� Œa; b�� I it holds that }�mod.c.a

0/; c.b0//�}�mod.c.a/; c.b//.
Since the path c is uniformly �mod –regular, the closure of the union of these diamonds
over all compact subintervals of I is either a type �mod diamond, a Weyl cone or a
parallel set. The longitudinality follows from the longitudinality part of the theorem.

(ii) The sequence .c.n//n2N0 is ‚–regular and diverges to infinity in view of
Corollary 5.11. By the theorem, c.Œ0; n�/�}‚.c.0/; c.n// for all n. In this situation,
Lemma 3.79 applies, after enclosing the diamonds }�mod.c.0/; c.n// in auxiliary Weyl
cones V.c.0/; st.�n//, and yields that the sequence .c.n// is contained in a Weyl
cone V.c.0/; st.c.C1// for a simplex c.C1/ 2 Flag�mod

.@1X/, which is unique
according to Lemma 3.76. Since V.c.0/; st.c.C1// then also contains the diamonds
}�mod.c.0/; c.n//, it contains the entire path c .

(iii) By part (ii), there exist unique simplices c.˙1/ 2 Flag
�˙mod

.@1X/ such that
c.˙Œt;C1// � V.c.˙t /; st.c.˙1///. It follows that for any t1 < t2 and any ideal
points �˙ 2 ost.c.˙1//, the bi-infinite broken path ��c.t1/c.t2/�C is �mod –straight.
Proposition 3.23 then implies that the simplices c.˙1/ are opposite and the path c is
contained in the parallel set P.c.�1/; c.C1// as a longitudinal path.

Definition 5.13 (endpoint at infinity) For a locally rectifiable and uniformly �mod –
regular path cW Œ0;C1/ ! X with infinite length, we call the simplex c.C1/ 2

Flag�mod
.@1X/ its �mod –endpoint at infinity or ideal �mod –endpoint.
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We apply our results to paths of infinite length which remain close to a Weyl cone or a
parallel set. In some situations one can show that they must be contained in it.

Corollary 5.14 Let cW Œ0;C1/ ! X be a ‚–regular L–bilipschitz ray which is
contained in the tubular D–neighborhood of a type �mod Weyl cone V with tip at c.0/.
Then V D V.c.0/; st.c.C1/// and c is contained in V as a longitudinal path.

Proof Suppose that

c.Œ0;C1//�ND
�
V.c.0/; st.�C//

�
for a simplex �C 2 Flag�mod

.@1X/ and some D>0. According to Corollary 5.12, c is
contained in the Weyl cone V.c.0/; st.c.C1/// as a longitudinal path. The sequence
.c.n//n2N is ‚–regular. Corollary 3.78 therefore implies that �C D c.C1/.

If a bi-infinite �mod –regular bilipschitz path is close to a type �mod parallel set, we
need a longitudinality property for its projection to be able to conclude that it must be
contained in the parallel set. We denote by xc D �P ı c the projection of the path c to
the parallel set P.

Corollary 5.15 There exists a constant l D l.L;‚;D/ > 0 such that the following
holds:

Suppose that cW R ! X is a ‚–regular L–bilipschitz line which is contained in
the tubular D–neighborhood of a type �mod parallel set P. If for some interval
Œa0; b0� � R of length � l the segment xc.a0/xc.b0/ � P is longitudinal, then P D
P.c.�1/; c.C1// and c is contained in P as a longitudinal path.

Proof Suppose that P D P.��; �C/ with opposite simplices �˙ 2 Flag
�˙mod

.@1X/,
and c.R/�ND.P / for some D>0. The projection xcD�P ıc is coarsely longitudinal
by Lemma 3.14. More precisely, we choose ‚0 depending on ‚ and put l D LcD
with the constant cD c.‚;‚0/ > 0 from Lemma 3.5. Then Lemma 3.14 yields that for
all subintervals Œa0; b0��R of length � l the segment xc.a0/xc.b0/� P is longitudinal.
It follows for the bilipschitz rays rC D cjŒ0;C1/ and r� D cj.�1;0� that �P ı r˙ is
contained in a tubular neighborhood of the Weyl cone V.xc.0/; st.�˙//� P, and hence
r˙ in a tubular neighborhood of V.xc.0/; st.�˙//. By Corollary 5.14, �˙ D c.˙1/.
According to Corollary 5.12, c is a longitudinal path in P.c.�1/; c.C1//D P.
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Remark 9 For discrete buildings, the answer to Question 5.1 is affirmative without
restriction on the paths. Using that discrete euclidean buildings are locally conical, it is
not hard to show that every �mod –regular path cW Œa; b�! X in a discrete euclidean
building X is contained in }�mod.c.a/; c.b//.

5.2 The Morse lemma for quasigeodesics in CAT.0/ model spaces

We recall that the Morse lemma for quasigeodesics in Gromov hyperbolic spaces asserts
that uniform quasigeodesics are uniformly close to geodesics. The main result of this
paper is the following generalization to model spaces of arbitrary rank, where geodesic
lines (rays, segments) are replaced by parallel sets (cones, diamonds):

Theorem 5.16 (Morse lemma) Let X be a model space. Suppose that qW Œa�; aC�!
X is a .‚;B/–regular .L;A/–quasigeodesic and that x�xC is a ‚–regular seg-
ment oriented B –Hausdorff-close to q.a�/q.aC/. Then the image of q is con-
tained in the D–neighborhood of the diamond }�mod.x�; xC/, with a constant D D
D.L;A;‚;B;X/ > 0.

Proof We will deduce the theorem from the corresponding result for bilipschitz paths
in euclidean buildings (see Theorem 5.6) by passing to ultralimits. We may work
without loss of generality with continuous quasigeodesics.

We argue by contradiction. Suppose that a uniform constant D does not exist and
consider, for a fixed model space X and fixed data .L;A;‚;B/, sequences of .‚;B/–
regular .L;A/–quasigeodesics

qnW In D Œa
�
n ; a
C
n �!X;

‚–regular segments x�nx
C
n oriented B–Hausdorff-close to the segments qn.a�n /qn.a

C
n /

and positive numbers Dn!C1 such that the image of qn is contained in the Dn–
neighborhood of

}n WD }�mod.x
�
n ; x

C
n /;

but not in its 2013
2014

Dn–neighborhood. We may assume that a�n � 0�a
C
n and that qn.0/

has almost maximal distance > 2013
2014

Dn from }n . Note that lim infnD�1n ja
˙
n j> 0.

Let Pn D P.��n ; �
C
n /�X be a type �mod parallel set through the points x˙n such that

the segment x�n x
C
n is longitudinal. Then

}n D V.x
�
n ; st.�Cn //\V.x

C
n ; st.��n //� Pn

and the image of qn is contained in the Dn–neighborhood of Pn .
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The next result provides important information on the position of the quasigeodesics qn
relative to the parallel sets Pn if the length of qn grows faster than the scale Dn .

Let xqn D �Pn ı qn denote the nearest-point projection of qn to Pn . We fix some ‚0.
(As usual, ‚0 is supposed to contain ‚ in its interior.)

Lemma 5.17 (coarsely longitudinal on scale Dn) For every subinterval Œb�n ;b
C
n ��In

of length �L.AC c.BCDn//, the segment xqn.b�n /xqn.b
C
n /� Pn is ‚0–longitudinal,

where c D c.‚;‚0/ > 0 is the constant from Lemma 3.5.

Proof This is a direct consequence of Lemmas 3.7 and 3.14, because the segment
xqn.a

�
n /xqn.a

C
n / is longitudinal by the choice of Pn .

Now we pass to the ultralimit.

We choose basepoints ?n2}n with d.qn.0/; ?n/�Dn , rescale (copies of) the space X
with the scale factors D�1n ! 0 and then take the ultralimit (with respect to some
nonprincipal ultrafilter ! ). As proven in [13, Chapter 5], the ultralimit of rescaled
model spaces

.X! ; ?!/D !–lim
n

.D�1n X; ?n/

is a euclidean building of the same type �mod ; see Section 3.9. The ultralimit of parallel
sets

P! WD !–lim
n

D�1n Pn �X!

is again a type �mod parallel set,

P! D P.�
�
! ; �

C
! /;

for a pair of opposite type �˙mod simplices �˙! � @1X! ; see Lemma 3.81. The ultralimit
of diamonds

}! WD !–limD�1n }n � P!

is a closed convex subset which contains the basepoint ?! . It is in general not a
diamond, but it inherits the following geometric property from the diamonds }n :

Lemma 5.18 If the segment y�!y
C
! �}! is longitudinal, then }�mod.y

�
! ; y

C
! /�}! .

Proof The segment y�!y
C
! is the ultralimit of segments y�n y

C
n � }n , and these

segments are longitudinal for !–all n. Hence, }�mod.y
�
n ; y

C
n /�}n due to Lemma 3.37.

With Lemma 3.83 it follows that }�mod.y
�
! ; y

C
! /D !–limD�1n }�mod.y

�
n ; y

C
n /�}! .
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The rescaled paths D�1n qnW D
�1
n In!D�1n X given by

.D�1n qn/.tn/D qn.Dntn/

are .‚;D�1n B/–regular .L;D�1n A/–quasigeodesics. Their ultralimit

q! D !–lim
n

D�1n qnW I!!X!

given by
q!.t!/D .qn.Dntn//

is a well-defined L–bilipschitz path because D�1n A! 0 (see Lemma 2.16) and ‚–
regular because D�1n B ! 0. Its domain is the interval I! D Œa�! ; a

C
! �\R, where

a˙! D !–limD�1n a˙n and ˙a˙! 2 .0;C1�. If ja˙! j<C1, then the endpoint

q!.a
˙
! /D !–lim qn.a

˙
n /D !–lim x˙n DW x

˙
!

exists and lies in }! . Otherwise, the corresponding end of q! has infinite length and
diverges to infinity.

By construction,
q!.I!/�N1.}!/;

but
q!.I!/š}! :

In particular, q!.I!/�N1.P!/, and we denote by xq! D �P! ı q! the nearest-point
projection. Then d.xq! ; q!/� 1.

Regarding the position of q! relative to the parallel set, it inherits from the qn uniform
longitudinality beyond a certain scale:

Lemma 5.19 (coarsely longitudinal ultralimit) For every subinterval Œb�; bC�� I!
of length � 2014

2013
cL, the segment xq!.b�/xq!.bC/� P! is ‚0–longitudinal.

Proof Apply Lemma 5.17, taking into account that D�1n A;D�1n B! 0.

If q! has infinite length, then the coarse longitudinality restricts the asymptotics of its
end(s); they must flag converge to the simplices �˙! . We get the following information
on }! :

Lemma 5.20 If ja˙! j D C1, then V.?! ; st.�˙! //�}! .
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Proof Suppose that aC! D C1. We have that d.�}! ı q! ; xq!/ � 2. Lemma 5.19
therefore implies that the segment connecting ?! to the point �}! .q!.t// 2 }!
is longitudinal for all sufficiently large t > 0, ie �}! .q!.t// 2 V.?! ; st.�C! //. In
particular, for any sequence tk!C1 it holds that �}! .q!.tk//! �C! (equivalently,
q!.tk/! �C! ) as k!C1, even conically; see Lemma 3.76. The longitudinality of
the segments implies furthermore that

}�mod.?! ; �}! .q!.t///�}! I

see Lemma 5.18. The assertion follows now with the description of flag convergence
in euclidean buildings given in Lemma 3.71. The case a�! D�1 is analogous.

This allows us to classify the possibilities for }! :

Corollary 5.21 }! either equals the diamond }�mod.x
�
! ; x

C
! / or one of the two Weyl

cones V.x�! ; st.�˙! // or the full parallel set P! , depending on whether both, one or
none of the points x�! are defined.

Proof If the endpoint x˙! of q! exists, then clearly }! � V.x˙! ; st.��! //, because
}n � V.x

˙
n ; st.��n //. If it does not exist, then V.?! ; st.�˙! // � }! by the previous

lemma.

Thus, if none of the endpoints exists, then }! D P! by convexity. And, if exactly one
endpoint x˙! exists, then }! D V.x˙! ; st.��! //, also by convexity. If both endpoints
exist, then }! � }�mod.x

�
! ; x

C
! /, and equality follows from Lemma 3.83; see also

Lemma 5.18.

Now we apply our results on rectifiable regular paths from Section 5.1 to q! in order
to control its position also on the small scale:

Lemma 5.22 q!.I!/�}! :

Proof If both endpoints x˙! of q! exist, then }! D}�mod.x
�
! ; x

C
! / and Theorem 5.6

implies the assertion.

In the other cases, we use that q!.I!/�N1.}!/.

If q! has exactly one endpoint, say x�! , and thus is a bilipschitz ray, then }! D
V.x�! ; st.�C! // and Corollary 5.14 implies the assertion.
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If q! has no endpoints at all and thus is a bilipschitz line, then }! D P! . We use that
the projection xq! to P! is coarsely longitudinal; see Lemma 5.19. We therefore can
apply Corollary 5.15, which yields the assertion in this case.

The last lemma contradicts that q!.I!/š}! . This concludes the proof of Theorem
5.16.

Remark 10 (i) It follows moreover that the projection xq D �} ı q of q to the
diamond } D }�mod.x�; xC/ is coarsely longitudinal, by which we mean that for
every subinterval Œb�; bC� � Œa�; aC� of length � L.AC c.B CD// the segment
xq.b�/xq.bC/ � } is ‚0–regular and longitudinal, with a constant c D c.‚;‚0/ > 0.
This is a consequence of Lemma 3.14 and was used in the proof of the theorem;
compare Lemma 5.17.

(ii) In the building case, the argument works equally well if we replace X by a
sequence of euclidean buildings Xn of fixed type �mod . Hence, the bound for the size
of the tubular neighborhood depends only on the rank of the euclidean building and
not on further geometric properties of it, D DD.L;A; �mod; ‚;B; rank.X//.

(iii) The theorem remains valid if one allows the model spaces to have flat factors,
because the case with flat factors immediately reduces to the case without.

We have the following implications of the theorem for infinite quasigeodesics:

Corollary 5.23 (i) Suppose that qW Œ0;C1/! X is a .‚;B/–regular .L;A/–
quasiray. Then the image of q is contained in the .DCB/–neighborhood of the
Weyl cone V.q.0/; st.q.C1// for a unique simplex q.C1/ 2 Flag�mod

.@1X/.

(ii) Suppose that qW R!X is a .‚;B/–regular .L;A/–quasiline. Then the image
of q is contained in the .DCB/–neighborhood of the parallel set

P.q.�1/; q.C1//

for a unique pair of opposite simplices q.˙1/ 2 Flag
�˙mod

.@1X/.

In both cases, q is coarsely longitudinal in the sense of Remark 10.

Proof (i) Let pnxn be ‚–regular segments oriented B –Hausdorff-close to the
segments q.0/q.n/. According to the theorem, q.Œ0; n�/ � ND.}�mod.pn; xn//. We
extend the diamonds to cones, ie we let �n 2 Flag�mod

.@1X/ be simplices such
that }�mod.pn; xn/ � V.pn; st.�n//. Then q.Œ0; n�/ � ND.V .pn; st.�n///, and hence
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q.Œ0; n�/ � NDCB
�
V.q.0/; st.�n//

�
. The sequence q.n/ ! 1 is asymptotically

uniformly �mod –regular, because the quasiray q is .‚;B/–regular. Applying the
convergence criterion in Lemma 3.79, it follows that the sequence .�n/ converges, �n!
�1 2Flag�mod

.@1X/, and the image of q is contained in the .DCB/–neighborhood of
V.q.0/; st.�1//. We put q.C1/D �1 . The uniqueness follows from Corollary 3.78.

(ii) According to part (i), there exist unique simplices �˙1Dq.˙1/2Flag
�˙mod

.@1X/

such that q.˙n/! �˙1 conically as n!C1. More precisely,

(5-1) q.˙Œ�n;C1//�NDCB
�
V.q.�n/; st.�˙1//

�
:

The segment q.�n/q.n/ is ‚0–regular and arbitrarily long for large n. Let y�nyn be
a subsegment of it at distance > .DCB/ � .sin �0.‚0//�1 from the endpoints q.˙n/.
By Corollary 3.46,

y�nyn � V.q.�n/; st.�C1//\V.q.n/; st.��1//:

Then for any interior point zn of this segment, it holds that logzn �˙1D �˙.znq.˙n//,
and it follows that the simplices �˙1 are zn–opposite. Furthermore, the ‚0–cones
V.q.t/; st.‚0// enter the parallel set P D P.��1; �C1/ within uniformly bounded
time (see Proposition 3.44) and in view of (5-1) it follows that NDCB.P / contains the
image of q .

The coarse longitudinality is a consequence of Lemma 3.14.

Remark 11 As a consequence of the corollary, the image of every uniformly coarsely
�mod –regular uniform quasiline is contained in a uniform neighborhood of a union of
two opposite Weyl cones in a parallel set. The cones have a common tip which can be
chosen uniformly close to any point on the quasiline.

Definition 5.24 (endpoint at infinity) For a .‚;B/–regular quasiray qW Œ0;C1/!X
we call the simplex q.C1/ 2 Flag�mod

.@1X/ its �mod –endpoint at infinity or ideal
�mod –endpoint.

We apply our results to infinite quasigeodesics which remain close to a Weyl cone or a
parallel set and show that they must be uniformly close.

Corollary 5.25 Let qW Œ0;C1/!X be a .‚;B/–regular .L;A/–quasiray which is
contained in a tubular neighborhood of a type �mod Weyl cone V with tip at q.0/. Then
V D V

�
q.0/; st.q.C1//

�
and q is contained in the tubular .DCB/–neighborhood of

V as a coarsely longitudinal path.
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Proof Suppose that

q.Œ0;C1//�Nr
�
V.q.0/; st.�C//

�
for a simplex �C 2 Flag�mod

.@1X/ and some r > 0. According to Corollary 5.23, q
is contained in the .DCB/–neighborhood of the Weyl cone V

�
q.0/; st.q.C1//

�
as

a coarsely longitudinal path. The sequence .q.n//n2N is asymptotically uniformly
�mod –regular. Corollary 3.78 therefore implies that �C D q.C1/.

If a coarsely �mod –regular quasiline is close to a type �mod parallel set, we need a
coarse longitudinality property to be able to conclude that it must be uniformly close
to the parallel set. We denote by xq D �P ı q the projection of q to the parallel set P.

Corollary 5.26 There exists a constant l D l.L;A;‚;B; r/ > 0 such that the follow-
ing holds:

Suppose that qW R!X is a .‚;B/–regular .L;A/–quasiline which is contained in a
tubular neighborhood of a type �mod parallel set P. If for some interval Œa; b��R of
length � l the segment xq.a/xq.b/� P is longitudinal, then P D P.q.�1/; q.C1//
and q is contained in NDCB.P / as a coarsely longitudinal path.

Proof Suppose that P D P.��; �C/ with opposite simplices �˙ 2 Flag
�˙mod

.@1X/,
and q.R/�Nr.P / for some r > 0. The projection xqD�P ıq is coarsely longitudinal
along P by Lemma 3.14. It follows with Corollary 5.25 that �˙D q.˙1/. According
to Corollary 5.23, q is contained as a coarsely longitudinal path in the .DCB/–
neighborhood of P.q.�1/; q.C1//D P.

5.3 Regular implies Morse for undistorted maps and actions

We relate the Morse lemma (Theorem 5.16) to terminology used in our paper [10].

There we defined (in the setting of symmetric spaces) a Morse quasigeodesic as a
quasigeodesic satisfying the conclusion of the Morse lemma with �mod –diamonds
replaced by ‚–diamonds, ie every finite subpath of the quasigeodesic is uniformly
close to a diamond whose tips are uniformly close to the endpoints of the subpath.
More precisely:

Definition 5.27 (Morse quasigeodesic; see [10, Definition 7.14]) An .L;A;‚;D/–
Morse quasigeodesic in X is an .L;A/–quasigeodesic qW I ! X such that for all
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subintervals Œt1; t2��I the subpath qjŒt1;t2� is contained in the tubular D–neighborhood
of a ‚–diamond }‚.x1; x2/ with d.xi ; q.ti //�D.

We call a quasigeodesic �mod –Morse if it is .L;A;‚;D/–Morse for some data
.L;A;‚;D/.

In particular, �mod –Morse quasigeodesics are uniformly coarsely �mod –regular.

Our Morse lemma yields the converse:

Corollary 5.28 (regular implies Morse for quasigeodesics) Uniformly coarsely �mod –
regular quasigeodesics in model spaces are uniform �mod –Morse quasigeodesics.

Proof Let qW I!X be a .‚;B/–regular .L;A/–quasigeodesic. From the conclusion
of Theorem 5.16 and the .‚;B/–regularity of q , it follows for any ‚0 (whose interior
contains ‚) that q is uniformly close also to the ‚0–diamond }‚0.x�; xC/, and
analogously for the subsegments qjŒb�;bC� for all subintervals Œb�; bC� � Œa�; aC�.
This means that q is an .L;A;‚0;D0/–Morse quasigeodesic for some uniform constant
D0 DD0.L;A;‚;‚0; B;X/.

Based on the notion of Morse quasigeodesic, we defined in [10] Morse embeddings
and Morse actions. The definitions apply verbatim to all model spaces.

We first consider maps into model spaces. Suppose that �mod and ‚ are �–invariant.

Definition 5.29 (Morse embedding; see [10, Definition 7.23]) A �mod –Morse embed-
ding from a quasigeodesic space Z into X is a map f W Z!X which sends uniform
quasigeodesics in Z to uniform Morse quasigeodesics in X. We call it a ‚–Morse
embedding if it sends uniform quasigeodesics to uniform ‚–Morse quasigeodesics.

Thus, the map is a �mod –Morse embedding if for any parameters l and a the .l; a/–
quasigeodesics in Z are mapped to .L;A;‚;D/–Morse quasigeodesics in X with
the parameters L, A, ‚ and D depending on l and a . It is a ‚–Morse embedding,
if ‚ is fixed and only L, A and D depend on l and a .

In particular, �mod –Morse embeddings are coarsely uniformly �mod –regular quasi-
isometric embeddings. (Note that they are embeddings only in a coarse sense.) We
obtain the converse:
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Corollary 5.30 (regular implies Morse for quasiisometric embeddings) Coarsely
uniformly �mod –regular quasiisometric embeddings from quasigeodesic metric spaces
into model spaces are uniform �mod –Morse embeddings.

Proof Let f W Z!X be a .‚;B/–regular .L;A/–quasiisometric embedding from a
quasigeodesic space Z . Then q maps uniform quasigeodesics in Z to .‚;B/–regular
uniform quasigeodesics in X. These are uniform �mod –Morse quasigeodesics.

Now we consider isometric group actions on model spaces. We recall that, since X
has no flat factor, every such action becomes type-preserving after restricting it to a
suitable finite-index subgroup.

We call an action Morse if its orbit maps are Morse. More precisely:

Definition 5.31 (Morse action; see [10, Definition 7.30]) We say that an isometric
action � Õ X of a finitely generated group � is ‚–Morse if one (any) orbit map
�! �x �X is a ‚–Morse embedding with respect to a (any) word metric on � . We
call the action �mod –Morse if it is ‚–Morse for some ‚.

Morse actions are undistorted in the sense that the orbit maps are quasiisometric
embeddings. In particular, they are properly discontinuous. Furthermore, ‚–Morse
actions are (coarsely) ‚–regular. Again, we obtain a converse:

Corollary 5.32 (URU implies Morse) Uniformly �mod –regular undistorted isometric
actions by finitely generated groups on model spaces are uniformly �mod –Morse.

Proof The orbit maps are coarsely uniformly �mod –regular quasiisometric embeddings.

5.4 Examples of regular bilipschitz paths

We construct examples of regular bilipschitz paths in model spaces which are not close
to geodesics. One finds such paths already in the euclidean model Weyl chamber
�D�euc D V.0; �mod/ and, accordingly, inside every euclidean Weyl chamber of a
model space.

Let �mod D �mod , and let ‚� int.�mod/ be �–invariant. Pick a sequence of numbers
sn � 1 and a nonconverging sequence of unit vectors vn 2‚. (Here, we identify �mod
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with the “unit sphere” V.0; �mod/\ @B.0; 1/.) For instance, we can take .vn/ to be an
alternating sequence taking exactly two values v1 D v2k�1 and v2 D v2k for k 2N ,
where v1; v2 2 ‚. Now, define the 1–Lipschitz path pW Œ0;C1/! V.0; �mod/ by
concatenating the segments xnxnC1 , where each vector �����!

xnxnC1 equals snvn . We
claim that the path p is a ‚–regular quasigeodesic ray in V.0; �mod/. First of all, it
follows from the definition of p that it is ‚–straight. Therefore, by Proposition 3.23 the
sequence .xn/ is ‚–longitudinal: all segments xmxn for n > m are ‚–longitudinal.
For the same reason (inserting additional subdivision points), all segments p.s/p.t/
for s < t are ‚–longitudinal as well, ie the path p is ‚–longitudinal. In particular, p
is ‚–regular. That p is quasigeodesic follows from the fact that the distance d. � ; 0/
from the origin grows along p with uniformly positive slope � �.‚/ > 0.

Our next goal is to ensure that p is not close to a geodesic ray. In order to accomplish
this, we choose the sequence .sn/ so that

lim
n!C1

.snC1� sn/DC1:

Suppose that there exists a geodesic ray r W Œ0;C1/! V.0; �mod/; r.t/D tu with a
unit vector u 2 V.0; �mod/, and a constant C 0 such that

p.Œ0;C1//�NC 0
�
r.Œ0;C1//

�
:

Since the sequence of lengths vectors �����!
xnxnC1 diverges to infinity and the vectors are

contained in the C 0–neighborhood of r.Œ0;C1//, it follows that the directions of
these vectors converge to the direction vector u of the ray r . This contradicts the
assumption that the sequence of vectors .vn/ does not converge.

6 Quasiisometric embeddings of spaces and undistorted
actions

In this section we prove our main applications of the Morse lemma: Theorems 1.4
and 1.5 from the introduction, stating the hyperbolicity of quasiisometrically embedded
uniformly regular subsets of model spaces and the existence of a continuous extension
to the Gromov boundary.

Throughout the section, we assume that the face type �mod � �mod and the subsets
‚�ost.�mod/ are �–invariant. Then �˙modD�mod and ‚˙D‚, ie directions antipodal to
�mod –regular (‚–regular) directions are also �mod –regular (‚–regular), and segments
satisfying one of these regularity properties keep it when reversing orientation.
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6.1 Regular subsets of euclidean buildings

Let X be a euclidean building. We now apply our results on regular paths in Section 5.1
to regular subsets.

Definition 6.1 (rectifiably regularly path connected) A subset R � X is called
rectifiably ‚–regularly path connected if any two distinct points in R can be connected
by a rectifiable ‚–regular path contained in R .

Note that such subsets are in particular ‚–regular. We will now study their geometric
and topological properties.

Fix a point r 2R . Then the function

r 0 7! �.rr 0/

is well defined on R�frg and continuous. (Compare the discussion of �mod –directions
in the beginning of Section 5.1.)

Lemma 6.2 The function �.r � / is locally constant on R�frg.

Proof The target of the function, the set of type �mod simplices in †r0X, is a discrete
space.

Corollary 6.3 If r1; r2 2R�frg with �.rr1/¤ �.rr2/, then r1 and r2 lie in different
path components of R�frg.

The next observation relies on our main result on regular bilipschitz paths in Section 5.1.

Lemma 6.4 Let cW Œa; b� ! R be a rectifiable embedded path. Then for every
t 2 .a; b/, the points c.a/ and c.b/ lie in different path components of R�fc.t/g.

Proof Theorem 5.6 and Lemma 5.3 imply that the �mod –directions �˙.t/ are opposite
to each other. Since �.c.t/c.a// D ��.t/ and �.c.t/c.b// D �C.t/, the previous
corollary yields the assertion.

Corollary 6.5 (i) All embedded paths cW Œa; b�!R are rectifiable.

(ii) Any two embedded paths in R with the same endpoints agree up to reparametriza-
tion.

(iii) The image of a nonembedded path cW Œa; b� ! R contains the image of the
(unique up to reparametrization) embedded path connecting its endpoints.
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Proof Let c1; c2W I D Œa; b�!R be paths with the same endpoints, and suppose that
c1 is embedded and rectifiable. (By assumption, any two points in R are connected by
a rectifiable embedded path in R .) By Lemma 6.4, c2 must go through every point
on c1 , ie c1.I /� c2.I /.

If c2 is also embedded, the lemma implies moreover that the order of the points must
be preserved, ie there exists a monotonic injective map �W I ! I such that c2 ı�D c1 .
The image �.I /� I is compact, due to the continuity of c2 . If �.I /¤ I and .t; t 0/
is a connected component of I ��.I /, then necessarily c2.t/D c2.t 0/ and we arrive
at a contradiction. Therefore, � must be bijective and hence a homeomorphism. This
shows part (ii), and (i) follows directly.

The initial part of the proof now yields (iii).

Let dR denote the intrinsic path metric on R .

Corollary 6.6 .R; dR/ is a metric tree.

Proof Corollary 6.5 implies that .R; dR/ is a geodesic metric space, the distance of
two points given by the length of the unique embedded path connecting them. This
path is also the unique geodesic segment in .R; dR/ connecting the two points.

It follows, furthermore, that the intersection of any two geodesic segments with the
same initial point is again a geodesic segment (with this initial point), and that geodesic
triangles in .R; dR/ are tripods, ie .R; dR/ is 0–hyperbolic.

Note, furthermore, that the embedding

.R; dR/! .X; d/

is L.‚/–bilipschitz; see Corollary 5.11.

We summarize our discussion so far:

Theorem 6.7 Rectifiably ‚–regularly path connected subsets of euclidean buildings
are metric trees, when equipped with their intrinsic path metrics. The inclusion is a
bilipschitz embedding with bilipschitz constant controlled by ‚.

We can say more about the extrinsic geometry of R in X, infinitesimally and asymp-
totically.
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Every embedded path cW Œ0; �/!R has a well-defined �mod –initial direction �.c/�
†c.0/X satisfying

�.c.0/c.t//D �.c/

for all 0 < t < � ; see Lemma 5.2.

Addendum 6.8 (antipodal infinitesimal branches) For any two embedded paths
c1; c2W Œ0; �/!R with the same initial point c1.0/D c2.0/, the �mod –initial directions
�.c1/ and �.c2/ are either equal or antipodal. In the former case, there exist numbers
�1; �2 2 .0; �/ such that the subpaths c1jŒ0;�1� and c2jŒ0;�2� agree up to reparametriza-
tion.

Proof If the images ci ..0; �// are not disjoint, ie if there exist �1; �2 2 .0; �/ such
that c1.�1/ D c2.�2/, then c1jŒ0;�1� and c2jŒ0;�2� agree up to reparametrization; see
Corollary 6.5(ii). In this case, of course, �.c1/D �.c2/.

Otherwise, if c1..0;�//\c2..0;�//D∅, then the concatenation cDc1?xc2W .��;�/!R

of the path c1 and the reversed path xc2.�t / WD c2.t/ of c2 is a rectifiable embedded
path in R . The statement then follows from Lemma 5.3.

Every embedded path cW Œ0;C1/!R with infinite length has a well-defined �mod –
endpoint at infinity c.C1/ 2 @�modX such that

c.Œ0;C1//� V
�
c.0/; st.c.C1//

�
I

see Corollary 5.12.

Addendum 6.9 (antipodal endpoints at infinity) For any two embedded paths

c1; c2W Œ0;C1/!R

with infinite length, the �mod –endpoints at infinity ci .C1/ 2 @�modX are either equal
or antipodal. In the former case, there exist numbers t1; t2 > 0 such that the subpaths
c1jŒt1;C1/ and c2jŒt2;C1/ agree up to reparametrization.

Proof Since R is intrinsically a metric tree (see Corollary 6.6) we may assume
after, modifying the paths, that they have the same initial point c1.0/ D c2.0/ and
are otherwise disjoint. Then the concatenation c D c1 ? xc2W R! R is an embedded
path in R , both of whose ends have infinite length. It is in particular uniformly ‚–
regular and locally rectifiable; see Corollary 6.5. The assertion then follows from
Corollary 5.12.
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6.2 Regular maps into euclidean buildings

Let X still be a euclidean building. Our discussion of regular subsets immediately
implies a restriction on the geometry of spaces which can be mapped into buildings by
regular maps:

Corollary 6.10 (from tree) If Z is a path metric space and Z!X is a ‚–regular
bilipschitz map, then Z is a metric tree.

Proof The image of the embedding is a rectifiably ‚–regularly path connected subset
of X and hence, according to Theorem 6.7, a metric tree. Thus, Z is bilipschitz
homeomorphic to a metric tree. Lemma 2.15 implies that Z itself is a metric tree.

Consider now a ‚–regular bilipschitz map

bW T !X

from a metric tree T . From our earlier discussion, we obtain information on the
infinitesimal and asymptotic behavior.

By Addendum 6.8, we have in every point t 2 T a well-defined induced infinitesimal
map

†tbW †tT !†
�mod
b.t/

X WD Flag�mod
.†b.t/X/

such that, if cW Œ0; �/ ! T is a geodesic path starting in c.0/ D t in the direction
v 2†tT , then the ‚–regular image bilipschitz path b ıc has the �mod –initial direction

�.b ı c/D .†tb/.v/:

Furthermore, the infinitesimal maps †tb are antipodal, ie they send distinct directions
in †tT to opposite type �mod simplices in †b.t/X.

Definition 6.11 (antipodal map) A map from a set into the set of simplices of a
spherical building is called antipodal if it sends distinct elements to antipodal simplices.

By Addendum 6.9, there is a well-defined boundary map at infinity

@1bW @1T ! @�modX D Flag�mod
.@1X/

such that, if �W Œ0;C1/! T is a unit-speed geodesic ray in T , then the ‚–regular
image bilipschitz ray b ı � in X has the �mod –endpoint at infinity

.b ı �/.C1/D .@1b/.�.C1//:
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Also @1b is antipodal. Let

xbW T ! eb.T /�X�mod

denote the map from the visual compactification T D T [ @1T to the subset eb.T / D
b.T /[ @�modX of the �mod –bordification X�mod D X [ @�modX, which combines the
map b with the boundary map @1b . Since the image b.T / � X is a ‚–regular
subset, we have a well-defined topology of flag convergence on eb.T / extending the
visual topology on @�modX and the subspace topology on b.T /; see our discussion in
Section 3.8. It makes therefore sense to speak of the continuity of xb , and we can state:

Theorem 6.12 (antipodal continuous extension at infinity) The extension xb of b is
continuous with respect to the topology of flag convergence (on eb.T / ). In particular,
the boundary map @1b is continuous with respect to the visual topology. Moreover, it
is antipodal.

Proof Trees are rank one euclidean buildings and we use the description of the visual
topology on their visual compactification as given in Fact 3.59. We denote the point
shadows and the corresponding basic subsets in @1T and T D T [ @1T by pShT�;�
and pO T

�;� D pOT�;� [ pShT�;� .

We must show that xb is continuous at @1T . Consider points t; t 0 2 T . Applying
(Theorem 5.6 and) Corollary 5.12(ii) to geodesic rays in T , which start in t and pass
through t 0, we obtain that

xb.pO T
t;t 0/� pO �mod

b.t/;b.t 0/
:

Let �W Œ0;C1/! T be a geodesic ray. Then b ı � is a ‚–regular bilipschitz ray
in X, which is contained in the Weyl cone V

�
b.�.0//; st

�
.@1b/.�.C1//

��
. The

subsets pO �mod
b.�.0//;b.�.u//

\ eb.T / for u! C1 therefore form a neighborhood ba-
sis of .@1b/.�.C1// in eb.T / ; see Corollary 3.64. Since their xb–preimages con-
tain the neighborhoods pO T

�.0/;�.u/
of �.C1/, it follows that xb is continuous at

�.C1/ 2 @1T .

The antipodality of @1b follows from Corollary 5.12(i).

6.3 Regular quasiisometric embeddings into model spaces

Let X be a model space. From our results on regular maps to euclidean buildings we
deduce now by an ultralimit argument corresponding results for coarsely regular maps
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to model spaces and isometric actions. We first show that the large scale geometry of
spaces, which admit coarsely regular maps into model spaces, is restricted:

Theorem 6.13 (from hyperbolic space) If qW Z!X is a (coarsely) uniformly �mod –
regular quasiisometric embedding from a quasigeodesic metric space into a model
space, then Z is Gromov hyperbolic.

Proof Since Z is quasiisometric to its Rips complex RipsR.Z/ for sufficiently
large R , we can assume without loss of generality that Z is a geodesic metric space.
In order to verify its hyperbolicity, it suffices to show that every asymptotic cone of Z
is a metric tree; see eg [4].

We work with the setup as described in Section 2.7. For a sequence of scale factors
�n>0 converging to zero, a sequence of basepoints ?n 2Z and the sequence of image
points ?0n WD q.?n/ in X, we consider the asymptotic cones

.Z! ; ?!/D !–lim.�nZ; ?n/; .X! ; ?
0
!/D !–lim.�nX; ?0n/:

Note that they are geodesic spaces, since the original spaces are. By Lemma 2.16 —
compare also the proof of Theorem 5.16 — the quasiisometric embedding q gives rise
to a uniformly �mod –regular bilipschitz embedding

q! W Z!!X! :

Therefore, according to Corollary 6.10, Z! is a metric tree.

Now we discuss the asymptotics of coarsely regular maps from hyperbolic spaces.

Let Z be a locally compact geodesic ı–hyperbolic metric space, and consider its
Gromov compactification

Z DZ [ @1Z;

where @1Z is the space of equivalence classes of geodesic rays in Z . Here, two rays
are called equivalent if they are asymptotic in the sense that their images have finite
Hausdorff distance.

The topology on Z can be described at infinity as follows; see [4]. Fix a sufficiently
large number r , say r � 3ı , and define the following basic subsets of Z : For points
z; w 2 Z , let the subset bO z;w;r � Z consist of all points xz 2 Z such that every
geodesic (segment or ray) zxz connecting z to xz has nonempty intersection with the
open ball B.w; r/. Given an ideal boundary point � 2 @1Z and a ray �W Œ0;C1/!Z
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representing it, �.C1/D� , then the countable collection of basic subsets bO �.0/;�.n/;r

for n 2N forms a neighborhood basis of � in Z . In particular, the topology on Z is
first-countable.

Consider now a .‚;B/–regular .L;A/–quasiisometric embedding

qW Z!X:

If �W Œ0;C1/!Z is a geodesic ray, then q ı � is a .‚;B/–regular .L;A/–quasiray
in X and has a well-defined �mod –endpoint at infinity .q ı �/.C1/ 2 @�modX ; see
Corollary 5.23 and Definition 5.24. More precisely, the image of q ı � is con-
tained in a tubular neighborhood with uniformly controlled radius of the Weyl cone
V
�
.q ı�/.0/; st..q ı�/.C1//

�
. In particular, the endpoint .q ı�/.C1/ depends only

on the endpoint �.C1/ 2 @1Z . Hence, q induces a well-defined boundary map at
infinity

@1qW @1Z! @�modX D Flag�mod
.@1X/

such that, if �W Œ0;C1/!Z is a ray in Z , then the .‚;B/–regular image quasiray
q ı � in X has the �mod –endpoint at infinity

.q ı �/.C1/D .@1q/.�.C1//:

Furthermore, also as a consequence of Corollary 5.23, @1q is antipodal. Let

xqW Z!Aq.Z/�X�mod

denote the map from the visual compactification Z DZ[@1Z to the subset Aq.Z/ D
q.Z/[ @�modX of the �mod –bordification X�mod D X [ @�modX, which combines the
map q with the boundary map @1q . Since the image q.Z/�X is a .‚;B/–regular
subset, we have a well-defined topology of flag convergence on Aq.Z/ , and we can
state:

Theorem 6.14 (antipodal continuous extension at infinity) The extension xq of q is
continuous at @1Z with respect to the topology of flag convergence on Aq.Z/ . The
boundary map @1q is antipodal and hence a topological embedding with respect to the
visual topology on @�modX.

Proof Suppose that xq is not continuous at the ideal point � 2@1Z . Since the topology
on Z is first-countable, there exists a sequence xzn! � in Z such that the sequence
.xq.xzn// in Aq.Z/ avoids a neighborhood of @1q.�/ 2 @�modX.
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Fix a basepoint z 2 Z and let zxzn be geodesic segments or rays in Z connecting z
to xzn . If xzn 2 @1Z , then the .‚;B/–regular .L;A/–quasiray q.zxzn/ is uniformly
close to the Weyl cone V

�
q.z/; st.@1q.xzn//

�
; compare the definition of the boundary

map @1q above. If xzn 2Z , then q.zxzn/ is a .‚;B/–regular .L;A/–quasigeodesic.
Since xzn!1 as n!C1, the .‚;B/–regular segment q.z/q.xzn/ is ‚0–regular
for all sufficiently large n (see Lemma 3.5) and q.zxzn/ is then uniformly close to the
diamond }�mod.q.z/; q.xzn// by Theorem 5.16.

After passing to a subsequence, we may assume that the zxzn converge to a ray z� .
Again, the quasiray q.z�/ is uniformly close to the Weyl cone V

�
q.z/; st.@1q.�//

�
.

Since zxzn ! z� , there exists a sequence wn !1 of points wn 2 zxzn uniformly
(arbitrarily) close to z� . Then the asymptotically ‚–regular sequence .q.wn// is
contained in a tubular neighborhood of V

�
q.z/; st.@1q.�//

�
, ie q.wn/! @1q.�/

conically. For a sufficiently large R > 0 independent of n, the balls B.q.wn/; R/
intersect V

�
q.z/; st.@1q.�//

�
and also V

�
q.z/; st.@1q.xzn//

�
and }�mod.q.z/; q.xzn//.

This means that @1q.�/ 2 bSh�mod
q.z/;q.wn/;R

and xq.xzn/ 2 bO �mod
q.z/;q.wn/;R

.

Let yn 2 B.q.wn/; R/\V.q.z/; st.@1q.�///. Then also the sequence .yn/ is asymp-
totically ‚–regular and, according to Corollary 3.64, the subsets bO �mod

q.z/;yn;2R
\Aq.Z/

form a neighborhood basis for the point @1q.�/ in Aq.Z/ . Consequently, also the
smaller neighborhoods bO �mod

q.z/;q.wn/;R
\Aq.Z/ of @1q.�/ form a neighborhood basis.

Thus xq.xzn/! @1q.�/, a contradiction. This shows that xq is continuous at @1Z .

The antipodality of @1q follows from Corollary 5.23. That @1q is a topological
embedding follows, because it is injective (by antipodality), @1Z is compact and
@�modX is Hausdorff.

We now turn to an equivariant setting and specialize the above discussion to group
actions. We show that the class of groups which admit asymptotically regular actions
on model spaces is restricted:

Theorem 6.15 (from hyperbolic group) If � ÕX is an (asymptotically) uniformly
�mod –regular undistorted isometric action of a finitely generated group on a model
space, then the group � is word hyperbolic.

Proof Asymptotically uniformly �mod –regular actions are coarsely uniformly �mod –
regular (see Remark 3 on page 3855) ie their orbit maps are coarsely uniformly �mod –
regular. By assumption, they are also quasiisometric embeddings. The assertion
therefore follows from Theorem 6.13.
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The boundary maps at infinity of the orbit maps induce a well-defined boundary map

@1�! @�modX D Flag�mod
.@1X/

which is � –equivariant. Its image is the �mod –limit set of � in Flag�mod
.@1X/. The

latter follows from the continuity of the extension with respect to the topology of
flag-convergence. With Theorem 6.14 we obtain:

Corollary 6.16 (URU implies asymptotically embedded) If � ÕX is a uniformly
�mod –regular undistorted isometric action of a finitely generated group on a model space,
then � is �mod –asymptotically embedded in the isometry group of X in the sense
of [12], ie � is hyperbolic and there exists an equivariant antipodal homeomorphism
@1�!ƒ�mod.�/� Flag�mod

.@1X/.

Since for symmetric spaces �mod –asymptotically embedded is equivalent to �mod –
Anosov (see [12]) we get:

Corollary 6.17 For a finitely generated group � and a homomorphism �!G to a
semisimple Lie group the following are equivalent:

(i) � is �mod –Anosov.

(ii) � is a uniformly �mod –regular quasiisometric embedding.

Proof The direction (1)D) (2) is proven in [12, Theorem 5.47]. The converse
implication is the content of Corollary 6.17.
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