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Ricci flow from spaces with isolated conical singularities

PANAGIOTIS GIANNIOTIS

FELIX SCHULZE

Let .M; g0/ be a compact n–dimensional Riemannian manifold with a finite number
of singular points, where the metric is asymptotic to a nonnegatively curved cone
over .Sn�1; g/ . We show that there exists a smooth Ricci flow starting from such a
metric with curvature decaying like C=t . The initial metric is attained in Gromov–
Hausdorff distance and smoothly away from the singular points. In the case that the
initial manifold has isolated singularities asymptotic to a nonnegatively curved cone
over .Sn�1=�; g/ , where � acts freely and properly discontinuously, we extend the
above result by showing that starting from such an initial condition there exists a
smooth Ricci flow with isolated orbifold singularities.
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1 Introduction

Consider a smooth solution .M; g.t//t2Œ0;T / to the Ricci flow

@

@t
g D�2Ric.g/;

starting from a closed Riemannian manifold .M; g.0//. Hamilton has shown in [16]
that the existence time T of the unique maximal solution is bounded from below
by C=K , where C D C.n/ > 0 and K D supM jRm.g.0//j.
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It is a natural question to ask which nonsmooth spaces can arise as initial data for
smooth solutions to the Ricci flow. In [29; 30; 31], Simon shows that one can construct
a smooth Ricci flow starting from a space that can be approximated by a sequence
of smooth 3–dimensional manifolds that is locally uniformly noncollapsed and has
curvature operator locally uniformly bounded from below. This result has been applied
by Lebedeva, Matveev, Petrunin and Shevchishin [21] to show that 3–dimensional
polyhedral manifolds with nonnegative curvature in the sense of Alexandrov can be
approximated by nonnegatively curved 3–dimensional Riemannian manifolds. Koch
and Lamm [18] show that from any initial metric, which is a small L1–perturbation
of the standard Euclidean metric, there exists a smooth solution to Ricci–DeTurck
flow. They extend this in [19] to small L1–perturbations of a C 2 background metric
on a uniform C 3 manifold. We note that small L1–perturbations allow for conical
singularities where the cones are sufficiently close to Euclidean space.

Much more is known in dimension two. The results of Simon are still valid, and
the work of Giesen and Topping [13; 34] implies that given any initial data, even
incomplete with unbounded curvature, there exists a smooth Ricci flow that becomes
complete for t > 0, which is unique in an appropriate class. Moreover, Yin [37; 38]
and Mazzeo, Rubinstein and Sesum [24] consider two-dimensional Ricci flows that
preserve the conical singularity. For a generalisation to higher dimensions of Ricci
flows that preserve a certain class of singularities, see the work of Vertman [35]. In the
case of Kähler–Ricci flow also more is known. Short-time existence from nonsmooth
initial data was studied by Guedj and Zeriahi [14], Di Nezza and Lu [10] and Song and
Tian [32], where the last article also treats the evolution through singularities. Preserving
conical singularities in the Kähler case was considered by Chen and Wang [4].

In this paper we consider smooth Ricci flows that start from compact smooth initial
spaces .Z; gZ/ with isolated conical singularities. Such spaces can be expected to
arise as the limiting space of a smooth Ricci flow .N; h.t//t2Œ0;T / as t ! T , as the
following heuristic argument describes. Assume that at .p; T / the flow has a type I
singularity. By work of Naber [26], Enders, Müller and Topping [11] and Mantegazza
and Müller [23] it is known that any parabolic blow-up of the flow around .p; T /
converges to a smooth, shrinking, nontrivial, gradient soliton solution. Furthermore,
if one assumes that this soliton is noncompact and the Ricci curvature goes to zero
at infinity, then it is known by work of Munteanu and Wang [25] that the gradient
shrinking soliton is smoothly asymptotic to a cone over a compact Riemannian manifold.
Assuming further that such a tangent flow is unique, ie does not depend on the sequence
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of rescalings chosen, it should be possible to show that .N; h.t// converges to a smooth
space .Z; gZ/ with an isolated conical singularity. We would then like to continue
the flow so that it immediately becomes smooth after time T . For an example of such
a behaviour on the level of soliton solutions, see the work of Feldman, Ilmanen and
Knopf [12]. We note furthermore that such a picture of a smooth limiting space with
isolated conical singularities can be made precise for mean curvature flow.

We define a compact Riemannian manifold with isolated conical singularities as follows:

Definition 1.1 We say that .Z; gZ/ is a compact space with isolated conical singular-
ities at fzig

Q
iD1 �Z modelled on the cones

.C.Xi /; gc;i D dr
2
C r2gXi

/;

where .Xi ; gXi
/ are smooth compact Riemannian manifolds, if:

(1) .Z n fz1; : : : ; zQg; gZ/ is a smooth Riemannian manifold.

(2) The metric completion of .Z n fz1; : : : ; zQg; gZ/ is a compact metric space
.Z; dZ/.

(3) There exist maps �i W .0; r0��Xi !Z n fz1; : : : ; zQg for i D 1; : : : ;Q , diffeo-
morphisms onto their image, such that limr!0 �i .r; p/ D zi for any p 2 Xi
and

(1-1)
4X

jD0

rj j.rgc;i /j .��i gZ �gc;i /jgc;i
< kZ.r/

for some function kZ W .0; r0�!RC with limr!0 kZ.r/D 0.

We prove the following short-time existence result:

Theorem 1.1 Let .Z; gZ/ be a compact Riemannian manifold with isolated conical
singularities at fzig

Q
iD1 �Z , each modelled on a cone

.C.Sn�1/; gc;i D dr
2
C r2gi /

with Rm.gi /� 1, but Rm.gi /¥ 1.

Then there exists a smooth manifold M, a smooth Ricci flow .g.t//t2.0;T � on M and
a constant CRm with the following properties:

(1) .M; dg.t//! .Z; dZ/ as t ! 0, in the Gromov–Hausdorff topology.

(2) There exists a map ‰W Z n fz1; : : : ; zQg!M, a diffeomorphism onto its image,
such that ‰�g.t/ converges to gZ , smoothly uniformly away from zi , as t! 0.
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(3) maxM jRm.g.t//jg.t/ � CRm=t for t 2 .0; T �.

(4) Let tk& 0 and pk 2 .Im‰/c � .M; dg.tk//. Suppose that pk! zi under the
Gromov–Hausdorff convergence, as k!1. Then

.M; t�1k g.tkt /; pk/t2.0;t�1
k
T �! .Ni ; ge;i .t/; q/t2.0;C1/;

where .Ni ; ge;i .t//t2.0;C1/ is the Ricci flow induced by the unique expander
.Ni ; gNi

; fi / with positive curvature operator that is asymptotic to the cone
.C.Sn�1/; gc;i /.

To construct the solution, we desingularise the initial metric by gluing in expanding
gradient solitons with positive curvature operator, each asymptotic to the cone at the
singular point, at a small scale s . These expanding solitons exist due to a recent result
of Deruelle [7]. Localising a recent stability result of Deruelle and Lamm [9] for such
expanding solutions, we show that there exists a solution from the desingularised initial
metric for a uniform time T > 0, with corresponding estimates, independent of the
gluing scale s . The solution is then obtained by letting s! 0.

The last point in the statement of the above theorem says that the limiting solution
has the corresponding expanding gradient soliton as a forward tangent flow at each
initial singular point. We further note that our construction doesn’t require that the
initial data or the constructed approximating sequence satisfy any lower bound on the
curvature. Moreover, aside from the existence of the expanding gradient solitons and
the stability result of Deruelle and Lamm, the construction does not depend in any way
on the nonnegativity assumption on the curvature of the conical models.

In the case that the isolated singularities are modelled on cones over a quotient of
.Sn�1; xg/ with Rm.xg/ � 1, we can show that there exists a smooth solution to the
orbifold Ricci flow starting from such a space, with isolated orbifold points. Each
initial cone .C.Sn�1=�i /; dr2C r2gi /, with �i nontrivial, corresponds to an isolated
orbifold point in the flow.

Theorem 1.2 Let .Z; gZ/ be as in Theorem 1.1, with singularities at fzig
Q
iD1 mod-

elled on cones .C.Sn�1=�i /; gc;i WD dr2Cr2gi / with Rm.gi /� 1, Rm.gi /¥ 1 and
�i acting freely and properly discontinuously.

Then there exists a smooth orbifold Ricci flow .M; g.t//t2.0;T � with isolated orbifold
singularities, each modelled on Rn=�i , and a constant CRm for which (1)–(3) of
Theorem 1.1 hold. Moreover:
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(40) Let tk& 0 and pk 2 .Im‰/c � .M; dg.tk//. Suppose that pk! zi under the
Gromov–Hausdorff convergence, as k!1. Then

.M; t�1k g.tkt /; pk/t2.0;t�1
k
T �! .Oi ; ge;i .t//t2.0;C1/;

where .Oi ; ge;i .t//t2.0;C1/ is the orbifold Ricci flow induced by the unique
orbifold quotient expander .Oi ; gOi

; fi / with positive curvature operator that
is asymptotic to the cone .C.Xi /; gc;i /.

The proof of Theorem 1.2 is a direct modification of the proof of Theorem 1.1. We
do this by showing that there exists a unique orbifold quotient expander .Oi ; gOi

; fi /

with positive curvature operator and one isolated orbifold point that is asymptotic to
the cone .C.Xi /; gc;i /; see Theorem 6.1.

We can also allow for cones as models for the singularities which are not nonnegatively
curved, provided they are small perturbations of nonnegatively curved cones considered
in Theorem 1.1.

Theorem 1.3 Let .Z; gZ/ be as in Theorem 1.1, with singularities at fzig
Q
iD1 mod-

elled on cones .C.Sn�1/; gc;i WDdr2Cr2gi /. Let .N; gNi
; fi / be expanders with pos-

itive curvature operator asymptotic to .C.Sn�1/; g0c;i D dr
2Cr2g0i / with Rm.g0i /� 1,

Rm.g0i /¥ 1. Then there exist "i > 0, depending on gNi
, such that if

j.rgi /j .g0i �gi /jgi
< "i ;

where 0� j � 4, then there exists a smooth Ricci flow .M; g.t//t2.0;T � and CRm for
which (1)–(3) of Theorem 1.1 hold.

Of course, the analogous statement is also true for the orbifold case of Theorem 1.2.
We would like to point out that the condition that the curvature operator of the cones
.C.Sn�1/; g0c;i Ddr

2Cr2g0i / is nonnegative is not preserved under small perturbations.
This implies that the curvature operator of .Z; gZ/ might be unbounded from below in a
neighbourhood of the singular points. In this case, the constructed flow .M; g.t//t2.0;T �

will have curvature operator unbounded from below as t & 0.

Observe also that the case Rm.gi / � 1 in Theorems 1.1 and 1.2 corresponds to a
smooth Riemannian manifold or orbifold, respectively, and there is nothing to prove.
Similarly, the case Rm.g0i /� 1 in Theorem 1.3 corresponds to initial data which are
perturbations of a smooth Riemannian metric, which is dealt with by Koch and Lamm
in [19].
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Outline In Section 2 we recall some facts about gradient Ricci expanders asymptotic
to cones and introduce notation.

In Section 3 we define the class of Riemannian manifolds M.�;ƒ; s/, which can be
understood as a local smoothing of an isolated conical singularity with an expander
at scale s . In Theorem 3.1 we state local a priori curvature estimates for Ricci flows
with initial data in M.�;ƒ; s/, which are uniform in s . To prove these estimates we
separate the initial manifold in the conical and expanding region. The idea is then to
use Perelman’s pseudolocality theorem to control the flow for a short time in the conical
region, showing that it remains conical, and use a localised version of the stability
result of Deruelle and Lamm [9] to control the flow in the expanding region. However,
to exploit the latter we need to work with the Ricci–DeTurck flow for a suitably chosen
background metric, which is an interpolation of the initial metric and the expanding
metric at scale s C t . To pass from a solution of Ricci flow to the corresponding
solution to Ricci–DeTurck flow one needs to pull back by the inverse of a solution
to harmonic map heat flow  with the background metric as a target. Assuming an
a priori bound on jr j, we use Perelman’s pseudolocality theorem to control the
solution to Ricci–DeTurck flow in the conical region (Lemma 3.1). Then, localising the
stability result of Deruelle–Lamm we control the Ricci–DeTurck flow in the expanding
region (Lemma 3.2). We finally show how these results can be combined to prove
Theorem 3.1. A central point is that a posteriori the assumed threshold for jr j is
never achieved, and thus the argument closes.

In Section 4 we give the proofs of Lemmas 3.1 and 3.2. This includes a “pseudolocality”
theorem for the harmonic map heat flow (Lemma 4.1) and the localisation of the
stability result of Deruelle and Lamm (Lemma 4.2).

In Section 5 we give the proof of Theorem 1.1, as well as that of Theorem 1.3. In
Section 5.1 we construct the approximation sequence, by gluing in the expander
metric at scale s into gZ around the singular point, and showing that this metric is
in the class M.�;ƒ; s/. The proof of the statements of Theorem 1.1 then follows in
Sections 5.2–5.10. In Section 5.11 we show how the proof of Theorem 1.1 can be
modified to prove Theorem 1.3. Finally, in Section 6 we show the existence of orbifold
quotient expanders and prove Theorem 1.2.

Acknowledgement The authors wish to thank Alix Deruelle for many interesting
discussions on expanding Ricci solitons.
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2 Preliminaries

2.1 Expanders asymptotic to cones

A triple .N; gN ; f /, where .N; gN / is a Riemannian manifold and f a smooth function
on M, is said to be a gradient Ricci expander if it satisfies the equation

(2-1) HessgN
f D 1

2
Lrf gN D Ric.gN /C 1

2
gN :

As a consequence, the well-known formula

jrf j2 D f C c �R

holds for an appropriate constant c .

Note that f is well defined up to a constant and linear function. Hence, provided
.N; gN / has bounded curvature, we will assume without loss of generality that c D
infM R WDRinf , where R denotes the scalar curvature. Such a normalisation always
ensures that f � 0.

A gradient Ricci expander generates a solution to Ricci flow, which moves only by
diffeomorphisms and scaling: Let 't for t > 0 be the diffeomorphisms satisfying the
ODE

d
dt
't D�

1

t
rf ı't ;(2-2)

'1 D idN :(2-3)

Then the family ge.t/D t'�t gN solves Ricci flow for t > 0. Define fs D f ı's , for
any s > 0.

We note for later reference that the ODE implies that

(2-4) 's ı't D 'st :

Let .X; gX / be a smooth Riemannian manifold and

.C.X/; gc D dr
2
C r2gX ; o/

be the associated cone with vertex o. We will say that the expander .N; gN ; f / is
asymptotic to the cone C.X/ if:

(1) There is a diffeomorphism onto its image F W Œƒ0;1/ � X ! N such that
N n Im .F / is compact and

f .F.r; q//D 1
4
r2

for every .x; q/ 2 Œƒ0;1/�X.
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(2) We have
4X

jD0

sup
@Bgc .o;r/

rj j.rgc /j .F �gN �gc/jgc
D kexp.r/;

where limr!1 kexp.r/D 0.

From [8, Theorem 3.2] we may assume without loss of generality that

(2-5) F.r; q/D Jr2=4�ƒ2
0=4
.F.ƒ0; q//;

where Jt W N !N is the flow of the vector field rf=jrf j2 with J0 D idN .

A natural radial coordinate at infinity on the expander is given by

r WD 2
p
f D .F�1/�r:

Similarly, for the expander at scale s , it will be convenient to consider the radial
coordinate at infinity defined as rs D 2

p
sfs .

In fact, if we define FsW Œƒ0
p
s;1/�X!N by FsD '�1s ıF ıas , where as.r; q/D�

rp
s
; q
�

for .r; q/ 2 Œ0;1/�X, it follows that rs.Fs.r; q//D r .

Moreover, since

(2-6) rj j.rgc /j .F �s ge.s/�gc/jgc
.r; q/

D rj j.rgc /j .a�s ıF
�
ı .'�1s /�ge.s/�gc/jgc

.r; q/

D rja�s .j.r
.a�1

s /�gc /j .F �.sgN /� .a
�1
s /�gc/j.a�1

s /�gc
.r; q/

D rj j.rsgc /j .F �.sgN /� sgc/jsgc
.rs�1=2; q/

D .rs�1=2/j j.rgc /j .F �gN �gc/jgc
.rs�1=2; q/

D kexp.rs
�1=2/;

F �s ge.s/ converges to gc as s ! 0, uniformly away from o in C 4loc . Moreover,
jrge.s/rsjge.s/! 1, uniformly away from o.

We will also need the following lemma, whose proof we postpone until Section 4:

Lemma 2.1 Let .N; gN ; f / be an asymptotically conical gradient Ricci expander
and let .g0.t//t�0 be the induced Ricci flow with g0.0/D gN . There exists 
0 � 1
and C;ƒ0 > 0 such that

jF �g0�gcjgc
C rjrgcF �g0jgc

< 1
100
; 1

2
� jr

g0rjg0
� 2;

jr�g0
rj � 4.n� 1/; r2jRm.g0/jg0

� C.gc/

in f.x; t/ 2N � Œ0;C1/ j r.x/�
p

0t Cƒ

2
0 g.
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From now on, given any expander asymptotic to a cone, 
0 and ƒ0 will refer to the
constants given by Lemma 2.1.

2.2 Expanders asymptotic to cones with positive curvature operator

It is known by the recent work of Deruelle [7] that, given .Sn�1; g/ with Rm.g/� 1,
there exists a unique expanding gradient soliton .N; gN ; f / with nonnegative curvature
operator, which is asymptotic to the cone

.C.Sn�1/; dr2C r2g; o/:

We note the following consequence. The proof has similarities to the argument of
Perelman in the proof of Claim 2 in [27, Section 12].

Lemma 2.2 Assume that .Sn�1; g/ satisfies Rm.g/ � 1 but Rm.g/¥ 1. Then the
expander .N; gN ; f / that is asymptotic to .C.Sn�1/; dr2C r2g; o/, given by [7], has
positive curvature operator. Moreover, if f is normalised so that jrf j2Df CRinf�R ,
then it is unique.

Proof Assume that there exists a point p 2 N such that Rm.gN /.p/ has a zero
eigenvalue. By Hamilton’s strong maximum principle there exists ı > 0 such that, for
every t 2 .0; ı�, Ker.Rm.ge.t/// is a positive-rank subbundle of ƒ2T �N, invariant
under parallel translation.

Consider .1; q/ 2 .0;C1/�Sn�1 such that Rm.g/.q/ > 1 and let gc D dr2C r2g .
Then Ker.Rm.gc// in a neighbourhood of .1; q/ consists solely of elements of the
form @r ^V , for V 2 TSn�1 . Moreover, recall that, for W 2 TqSn�1 ,

(2-7) rW .@r ^V /j.1;q/ DW ^V C @r ^rW V;

since rW @r D 1
r
W on the cone.

Now, since F �t ge.t/ converges to gc as t!0, we conclude that around .1; q/ there is a
section @r ^V of Ker.Rm.gc// satisfying r.@r ^V /j.1;q/D 0. This contradicts (2-7).

To prove uniqueness of f , note that any other potential function zf will satisfy
HessgN

.f � zf / D 0. This implies that either zf D f C c , for some constant c ,
or the expander splits a line by de Rham’s theorem (recall that N is simply connected
by construction). However, the latter is not possible, since the unique tangent cone at
infinity would split a line, contradicting that it has an isolated singularity. But then, if
zf satisfies jr zf j2 D zf CRinf�R , we see that c D 0.

Geometry & Topology, Volume 22 (2018)



3934 Panagiotis Gianniotis and Felix Schulze

2.3 Distance distortion estimate

Let g0.t/ D ge.t C 1/ denote the associated Ricci flow with g0.0/ D gN . Since
.g0.t//t�0 is a type III solution for the Ricci flow, namely

max
M
jRm.g0.t//jg0.t/ �

C

tC1
;

the following distance distortion estimate holds: there exists C.gN / > 0 such that for
every x; y 2N and t � 0,

(2-8) dg0.0/.x; y/�C.gN /
p
t � dg0.t/.x; y/:

This estimate is due to Hamilton; for a proof, see for example [6, Lemma 8.33].

3 Flowing almost conical metrics

In this section we fix an asymptotically conical gradient Ricci expander .N; gN ; f /
with positive curvature operator and let 
0 and ƒ0 be as in Lemma 2.1. We will consider
the following class of Riemannian manifolds as initial data for the Ricci flow. Recall
that a natural coordinate at infinity for an expander at scale s is given by rs D 2

p
sfs .

Definition 3.1 Given �; s > 0 and ƒ�ƒ0 define the class M.�;ƒ; s/ of complete
Riemannian manifolds .M; g/ with bounded curvature satisfying the following: there
exist ˆsW frs � 1g !M, a function rsW Imˆs! Œƒ

p
s; 1� defined by

rs Dmaxf.ˆ�1s /�rs; ƒ
p
sg

and

�
P4
jD0 r

j j.rgc /j ..ˆs ıFs/
�g�gc/jgc

C rj j.rgc /j .F �s ge.s/�gc/jgc
< � in

Œƒ
p
s; 1��X,

� jˆ�s g�ge.s/jge.s/ < � in frs � 2.ƒC 1/
p
s g.

Note that Œ.ˆs ıFs/�rs�.r; q/D r in Œƒ
p
s; 1��X.

A metric in M.�;ƒ; s/ can be viewed as the smoothing of an isolated conical singularity
with an expander at scale s . The function rs behaves like the distance from the origin
of the cone C.X/ when � is small. The parameter ƒ separates the manifold into two
regions, the conical region where it is �–close to the cone, and the expanding region
where it is �–close to the expander at scale s .
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The aim is to prove a priori curvature estimates for Ricci flows with initial data in
M.�;ƒ; s/ which are uniform in s .

Theorem 3.1 (1) Given ƒ > 0, there exist �0.gN /; s0.ƒ/; �0.gN /; C.gN / such
that for every s 2 .0; s0� the following holds:

If .M; g.t//t2Œ0;T � is a complete Ricci flow with bounded curvature and we
have .M; g.0// 2M.�0; ƒ; s/, then

max
frs�3=4g

jRm.g.t//jg.t/ �
C

t
for t 2 .0;minf�0; T g�;

max
frs�3=4g

2X
jD0

r2Cjs j.rg.t//j Rm.g.t//jg.t/ � C for t 2 Œ0;minf�0; T g�:

(2) For every " > 0 and integer k � 0, there exist �1 D �1.gN ; "; k/ and 
1 D


1.gN ; "; k/ such that if s 2 .0; s0� and 
 � 
1 then the following holds:

If .M; g.t//t2Œ0;T � is a complete Ricci flow with bounded curvature and we
have .M; g.0// 2M.�1; ƒ; s/, then for every t 2 .0;minf.32
/�1; T g� there is
a map

Qs;t W
˚
rs �

5
4

p

 t C s.ƒC 1/2

	
!N;

a diffeomorphism onto its image, such that

frs �
p

 t g � ImQs;t �

˚
rs �

3
2

p

 t C s.ƒC 1/2

	
and, for any nonnegative index j � k ,

j..t C s/1=2rge.tCs//j ..Q�1s;t /
�g.t/�ge.t C s//jge.tCs/ < "

in ImQs;t .

Assuming a bound on the initial curvature outside of the conical and expanding region,
the above result implies a global bound for the curvature in time:

Corollary 3.1 Let .M;G/ 2M.�0; ƒ; s/ for 0 < s � s0 , where �0.gN / and s0.ƒ/
are given by Theorem 3.1. Suppose that supMnImˆs

jRm.G/jG � A. Then there exist
T .A; gN / and C.A; gN / such that the Ricci flow g.t/ with g.0/ D G exists for
t 2 Œ0; T � and satisfies

max
M�Œ0;T �

jRm.g/jg �
C.A; gN /

t
:

Moreover, all the conclusions of Theorem 3.1 hold.

Geometry & Topology, Volume 22 (2018)



3936 Panagiotis Gianniotis and Felix Schulze

Proof Since G is complete with bounded curvature, Shi’s theorem [28] provides a
complete Ricci flow g.t/ with bounded curvature for t 2 Œ0; Ts�. Then the second
inequality of Theorem 3.1(1) implies that

(3-1) jRm.g.t//jg.t/ � C.gN /

along the level set
˚
rs D

3
4

	
for t 2 Œ0;minf�0; Tsg�.

The evolution equation for the norm of the curvature tensor along Ricci flow,

(3-2) @

@t
jRm.g.t//j2g.t/ ��g.t/jRm.g.t//j2g.t/C c.n/jRm.g.t//j3g.t/;

and maximum principle imply that there exists �1.A; gN /� �0 such that

(3-3) max
Mnfrs�3=4g

jRm.g.t//jg.t/ � C.A; gN /

for t 2 Œ0;minf�1; Tsg�, for some C.A; gN /.

Since, by Theorem 3.1,

(3-4) max
frs�3=4g

jRm.g.t//jg.t/ �
C.gN /

t

for t 2 Œ0;minf�0; Tsg�, it follows that g.t/ exists for all t 2 Œ0; �1�. This suffices to
prove the result.

Remark 3.1 Since the expander is merely asymptotic to the cone, in practice ƒ
depends on �. Namely, one has to go far into the asymptotic region of the expander, ie
make ƒ large, for the metric to be close to the cone, otherwise the class M.�;ƒ; s/ is
empty. Thus, when we apply Corollary 3.1 in Section 5, it will be important that the
statement holds for arbitrary ƒ with � independent of ƒ.

The idea behind the proof of Theorem 3.1 is that Perelman’s pseudolocality theorem
will control the flow in the conical region, and a localised version of the weak stability
result of Deruelle and Lamm [9] for expanders with positive curvature operator will
control the flow in the expanding region. However, to exploit the latter we need to
work with the Ricci–DeTurck flow

(3-5) @

@t
yg D�2Ric.yg/CLW.yg;zg/yg;

where W.yg; zg/k D ygkl yg
ij .y� lij �

z� lij / and zg.t/ is a carefully chosen family of back-
ground metrics defined as follows. Given .M; yg.0// 2M.�;ƒ; s/,

(3-6) zg.t/D �1.rs/.ˆ
�1
s /�.ge.t C s//C .1� �1.rs//yg.0/;
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where �1W Œ0; 1�! Œ0; 1� is a fixed smooth, nonincreasing function which is identically
equal to 1 in

�
0; 1
2

�
and � D 0 in

�
5
8
; 1
�
. This metric interpolates between the initial

metric and the expanding metric at scale sC t .

Let .M; g.t//t2Œ0;T � be a Ricci flow with .M; g.0// 2M.�;ƒ; s/ and consider the
harmonic map heat flow  W

˚
rs �

3
4

	
� Œ0; T �!

˚
rs �

3
4

	
:

@

@t
 D�g.t/;zg.t/ ;(3-7)

 jtD0 D idfrs�3=4g;(3-8)

 jfrsD3=4g�Œ0;T � D idfrsD3=4g;(3-9)

as in [15], where we assume that T is small enough that both g.t/ and  t . � / WD . � ; t /
are smooth for t 2 Œ0; T � and  t is a diffeomorphism for all t 2 Œ0; T �. Note that
 t is smooth up to the corner

˚
rs D

3
4

	
� f0g, since zg.0/ and g.0/ coincide around˚

rs D
3
4

	
. It is well known that

yg.t/D . �1t /�g.t/

is a solution to (3-6); see [6].

Lemma 3.1 below controls yg.t/ in the conical region, assuming a bound on jr jg;zg ,
and Lemma 3.2 uses the weak stability of the expander to control yg in the expanding
region, assuming control of yg in the overlap of the two regions.

Lemma 3.1 (estimates in the conical region) Given B; ˛ > 0 there exist �2.˛/ > 0,

2.B; ˛/ > 1 and C.gc/ > 0 such that the following holds:

Let .M; g.t//t2Œ0;T � be a complete Ricci flow with bounded curvature and suppose
that .M; g.0// 2M.�2; ƒ; s/ for some ƒ � ƒ0 and s � 1

32.ƒC1/2
. Let zg ,  and

yg.t/D . �1t /�g.t/ be as above, define

(3-10) Dcone

;ƒ;s D

˚
.x; t/ 2

˚
rs �

3
4

	
� Œ0; .32
/�1� j rs.x/�

p

 t C sƒ2

	
for some 
 � 
2 and suppose jr jg;zg �B in

˚
rs �

3
4

	
� Œ0;minf.32
/�1; T g�. Then

the estimates

jyg� zgjzg C rsj zrygjzg < ˛;(3-11)
2X

jD0

r2Cjs j.rg/j Rm.g/jg � C(3-12)

are valid in Dcone

;ƒC1;s \ .M � Œ0; T �/.
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Lemma 3.2 (estimates in the expanding region) For every " > 0 and integer k � 0
there exists ˛0.gN ; "; k/ > 0 such that if .M; g.t//t2Œ0;T � is a complete Ricci flow
with bounded curvature and .M; g.0// 2M.˛;ƒ; s/ for ˛ � ˛0 and some ƒ and
s < 1

32.ƒC1/2
, then the following holds: Let yg.t/D . �1t /�g.t/ be the corresponding

Ricci–DeTurck flow in
˚
rs �

3
4

	
. If for some 
 � 1 the estimate (3-11) holds in

Dcone

;ƒC1;s \ .M � Œ0; T �/, then, for every 0� j � k ,

(3-13) .t C s/j=2j zrj .yg� zg/jzg < "

in Dexp

;ƒ;s \ .M � Œ0; T �/, where

(3-14) Dexp

;ƒ;s D

˚
.x; t/ 2M � Œ0; .32
/�1� j rs.x/�

3
2

p

 t C s.ƒC 1/2

	
:

Remark 3.2 For t 2 Œ0; .32
/�1� and s � 1
32.ƒC1/2

we have

2
p

 t C s.ƒC 1/2 � 1

2
;

hence zg.t/D .ˆ�1s /�ge.t C s/ in Dexp

;ƒ;s \ .M � ftg/.

Assuming for now Lemmas 3.1 and 3.2, we proceed to prove Theorem 3.1.

Proof of Theorem 3.1 Let .M; g.t//t2Œ0;T � be a complete Ricci flow with bounded
curvature such that .M; g.0// 2M.�;ƒ; s/ for some ƒ�ƒ0 and s 2

�
0; 1
32.ƒC1/2

�
.

We will prove that the assertion of the theorem is true when � D minf˛0; �2.˛0/g,
where ˛0 D ˛0.gN ; 10�2; 4/ is the constant provided by Lemma 3.2 and �2.˛0/ the
constant provided by applying Lemma 3.1 for a large enough constant B > 0, which
will be specified in the course of the proof.

Let  satisfy (3-7)–(3-9) and define

T� WDmax
˚
� j yg.t/ WD . �1t /�g.t/ is smooth and r jg;zg � B in

˚
rs �

3
4

	
� Œ0; �/

	
:

Applying Lemma 3.1 we obtain 
2 D 
2.B; ˛0/ such that

jyg� zgjzg C rsj zrygjzg < ˛0;(3-15)
2X

jD0

r2Cjs j.rg/j Rm.g/jg � c1.gc ; A/(3-16)

in Dcone

2;ƒC1;s

\ .M � Œ0; T��/.
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Then, Lemma 3.2 implies that

(3-17) jyg� zgjzg C
p
t j zrygjzg C t j zr

2
ygjzg < 0:01;

hence

(3-18) jRm.g/jg �
c2.gN /

t

in Dexp

2;ƒ;s

\ .M � Œ0; T��/.

Since .Dcone

2;ƒC1;s

[Dexp

2;ƒ;s

/\.M � Œ0; T��/D
˚
rs �

3
4

	
� Œ0;minf.32
2/�1; T�g� and

jr j2
g;zg
D tryg zg , it follows from (3-15) and (3-17) that

(3-19) jr jg;zg � c3.gN /

in
˚
rs �

3
4

	
� Œ0;minfT�; .32
2/�1g�.

Now, choosing B D 2c3 , the estimate (3-18) implies that g.t/ remains smooth up to
time minfT�; .32
2/�1g. This, together with (3-19) and parabolic regularity implies
that  t is also smoothly controlled up to time minfT�; .32
2/�1g, and remains a
diffeomorphism due to (3-15) and (3-17). It follows that T� > .32
2/

�1 and the
estimates in the statement of the theorem are valid for t � �0 WD .32
2/�1 .

In order to prove the second part of the theorem, let .M; g.0// 2M.�1; ƒ; s/ for

�1 Dminf˛0.gN ; "; k/; �2.˛0.gN ; "; k//g;

putting B D 2c3 . Combining Lemmas 3.1 and 3.2 as above, we obtain that, for
0� j � k ,

(3-20) j..t C s/1=2 zr/j .yg� zg/jzg < "

in Dexp

;ƒ;s and

(3-21) jyg� zgjzg C rsj zrygjzg < ˛0.gN ; "/

in Dcone

;ƒ�1;s .

Set z�.
/D .32
/�1 . We claim that, making 
 even larger,

(3-22)  t
�˚
rs �

5
4

p

 t C s.ƒC 1/2

	�
�
3
2
frs �

p

 t C s.ƒC 1/2 g

for all t 2 Œ0; z��.
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To prove this, let t 2 Œ0; z�� and suppose there is x 2
˚
rs �

5
4

p

 t C s.ƒC 1/2

	
and

�1 < �2 < t such that

rs. �1
.x//D 5

4

p

 t C s.ƒC 1/2;

rs. �2
.x//D 3

2

p

 t C s.ƒC 1/2;

rs. � .x// 2
�
5
4

p

 t C s.ƒC 1/2; 3

2

p

 t C s.ƒC 1/2

�(3-23)

for all � 2 Œ�1; �2�.

Then, for every � 2 Œ�1; �2�, we have

(3-24) d

d�
rs. � .x//D zg.zrrs;W.yg; zg//. � .x/; �/

� c4j zrrsjzg j zrygjzg. � .x/; �/

� c4.rs. � .x///
�1
j zrrsjzg. � .x/; �/;

where we used (3-21). Note that the constant c4 is independent of 
 but is allowed to
change from line to line.

Note that

(3-25) j zrrsjzg.y; �/D jr
g0.�=s/rjg0.�=s/.'s.ˆ

�1
s .y///� 2;

as long as rs.y/�
p

0� C sƒ

2
0 , by Lemma 2.1.

Since t > �2 , it follows from (3-23) that, for � 2 Œ�1; �2�,

rs. � .x//�
5
4

p

 t C s.ƒC 1/2 >

p

0� C sƒ

2
0;

as long as 
 � 
0 and ƒ�ƒ0 . Hence, (3-25) holds at . � .x/; �/.

Putting this into (3-24) we obtain

(3-26) d

d�
rs.‰� .x//� c4.
 t/

�1=2

for � 2 Œ�1; �2�. Integrating this we obtain

1
4

p

 t C s.ƒC 1/2 < c4

�
t




�1=2
:

If 
 � 4c4 , we obtain a contradiction. Hence, �2 � t , which implies that (3-22) holds
for every t 2 Œ0; z��.

Similarly we obtain the inclusion

frs �
p

 t C s.ƒC 1/2 g �  t

�˚
rs �

5
4

p

 t C s.ƒC 1/2

	�
:

The conclusion of the theorem then holds for Qs;t Dˆ�1s ı t .
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4 Proofs of Lemmas 3.1 and 3.2

4.1 Estimates in the conical region

First we need the following auxiliary lemma. Let .M; g/ be a complete Riemannian
manifold with boundary. For every x 2M n @M, recall that the C 2;˛ –harmonic radius
rhar;g.x/ at x is the maximal r < 1

2
dg.x; @M/ with the following property: there exist

harmonic coordinates uW Bg.x; r/!Rn satisfying u.x/D 0 and

(4-1) 2�1ı � g � 2ı;
X
i;j;k

r j@kgij jC0 C

X
i;j;k;l

r2.j@2klgij jC0 C r˛Œ@2klgij �˛/� 2;

where ı here denotes the Euclidean metric in Rn .

If x 2 @M, the harmonic radius rhar;g.x/ is defined as the maximal r such that there
exists uW Bg.x; r/ ! Rn , mapping Bg.x; r/ to fxn � 0g and Bg.x; r/ \ @M to
fxn D 0g, such that (4-1) holds and the restriction uj@M is harmonic (see [1]).

The following lemma proves a “pseudolocality” theorem for the harmonic map heat
flow. We would like to stress that this is not a true pseudolocality-theorem since it
assumes an a priori bound (4-2) on the gradient of the solution to the harmonic map
heat flow with respect to the evolving metrics. Nevertheless, in the application later
we will be able to assume such a bound, and then show a posteriori that this bound is
never achieved. Notably, due to the assumed bound on the gradient, the proof relies
only on parabolic regularity.

Lemma 4.1 For every ˛;B > 0 there is an "h D "h.˛; B/ > 0 with the following
property: Let g.t/ and zg.t/ for t 2 Œ0; T � be one-parameter families of Riemannian
metrics on a smooth manifold M n with boundary @M and that g.0/ D zg.0/ in a
neighbourhood of @M. Also, let  W M � Œ0; T �!M be a solution to the harmonic
map flow

@

@t
 D�g;zg ;

 jtD0 D idM ;

 j@M�Œ0;T � D id@M :

Suppose that rhar;g.0/.x/ > � for some x 2M and

jr jg;zg � B;(4-2)

Geometry & Topology, Volume 22 (2018)



3942 Panagiotis Gianniotis and Felix Schulze

2X
jD0

�2Cj
�ˇ̌̌
@

@t
.rg.0//jg

ˇ̌̌
g.0/
C

ˇ̌̌
@

@t
.rg.0//j zg

ˇ̌̌
g.0/

�
� B(4-3)

in Bg.0/.x; �/� Œ0;minf"h�2; T g� and

(4-4) B�1g.0/� zg.0/� Bg.0/;

2X
jD1

�j j.rg.0//j zg.0/jg.0/ � B

at Bg.0/.x; �/. Then  t . � /jBg.0/.x;�=10/ WD . � ; t / is a diffeomorphism onto its image
for every t 2 Œ0;minf"h�2; T g� and

j. �1/�g�gjg.0/C �jr
g.0/.. �1/�g�g/jg.0/ < ˛

in Bg.0/
�
x; �
10

�
� Œ0;minf"h�2; T g�.

Proof By rescaling g0.t/D ��2g.�2t /, zg0.t/D ��2zg.�2t / and  0. � ; t /D . � ; �2t /
we may assume that �D 1.

First suppose that x … @M. In harmonic coordinates u in the ball Bg.0/.x; 1/ we may
write u ı ıu�1 D . 1; : : : ;  n/. Then

@ l

@t
D gij

@2 l

@xi@xj
�gij�kij

@ l

@xk
Cgij .z� lmk ı /

@ m

@xi
@ k

@xj
;(4-5)

 l jtD0 D x
l :(4-6)

Observe that by (4-2) there exists "B > 0 such that if u ı t ıu�1.B1=8�"B /� B1=4
then u ı t ıu�1.B1=8/� B1=2 .

By continuity, there exists a maximal � 2 .0;minf1; T g� such that uı t ıu�1.B1=8/�
B1=2 for every t 2 Œ0; ��. Hence,  l are controlled in Lp.B1=8� Œ0; ��/ for p >nC2.
The assumptions of the lemma imply that the last term in (4-5),

gij .z� lmk ı /
@ m

@xi
@ k

@xj
;

is also uniformly controlled in Lp.B1=8 � Œ0; ��/.

Parabolic regularity then implies that  l are controlled in W 2;1
p .B1=8�"B � Œ0; ��/. By

the embedding of W 2;1
p � C 1C�;.1C�/=2 for � D 1� nC2

2
, and parabolic regularity

again, it follows that

(4-7) j l j2C�;.2C�/=2 � C.B/

in B1=8�"B � Œ0; ��.
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Now, observe that there exists �B 2 .0;minf1; T g�, depending only on C.B/, such that
if (4-7) holds in B1=8�"B � Œ0; �B � then uı t ıu�1.B1=8�"B /�B1=4 for t 2 Œ0; �B �.
From the above this gives uı t ıu�1.B1=8/�B1=2 for all t 2 Œ0; �B �.Hence, � � �B .

Finally, it follows from (4-7) that for every ˛ > 0 there is "hD "h.˛; B/ small enough
that, for all i , j and l ,

j l � xl jC

ˇ̌̌̌
@ l

@xi
� ıli

ˇ̌̌̌
C

ˇ̌̌̌
@2 l

@xi@xj

ˇ̌̌̌
< ˛

in B1=8�"B � Œ0; "h�, which suffices to prove the result, if "B is chosen small enough.

If x 2 @M, in addition to (4-5)–(4-6) holding in B1=8 \ fxn � 0g, we also have the
following boundary conditions on B1=8\fxn D 0g:

(4-8)  l jfxnD0g D x
l for 1� l � n� 1;  njfxnD0g D 0:

Since g.0/D zg.0/ in a neighbourhood of @M and  jtD0 D idM , it follows that the
compatibility conditions required for the C 2C�;.2C�/=2 estimates hold. The result then
follows arguing as in the interior case.

Proof of Lemma 3.1 We first recall a direct consequence of Perelman’s pseudolocality
theorem and Shi’s local derivative estimates [33, Corollary A.5].

There exists "ps > 0, depending only on n, such that the following holds: Let
.g.t//t2Œ0;T � be a complete, bounded curvature Ricci flow on an n–dimensional
manifold M. Assume that, for some r > 0 and x0 2M,

2X
jD0

rj j.rg.0//j Rmg.0/jg.0/ � r
�2 in Bg.0/.x0; r/;(4-9)

Volg.0/.Bg.0/.x0; r//� .1� "ps/!nr
n
I(4-10)

then

(4-11)
2X

jD0

rj j.rg/j Rmjg.x; t/� ."psr/
�2

for t 2 Œ0;minfT; ."ps�.x//
2g� and x 2 Bg.0/.x0; "psr/.

Let .M; g.0// 2 M.�;ƒ; s/. For sufficiently small � we can choose ˇ; c0 > 0,
depending only on gc , such that the following holds: Let �.x/D ˇrs.x/. Then, for
all x 2

˚
rs �

3
4

	
the condition (4-9) is fulfilled with r D �.x/. Furthermore, for

x 2
˚
.ƒC 1/

p
s � rs �

3
4

	
, condition (4-10) is fulfilled with r D �.x/.
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Moreover, if x 2
˚
rs D

3
4

	
,

rhar;g.0/.x/� c0;

and

(4-12) rhar;g.0/.x/� c0�.x/

for x 2
˚
.ƒC 1/

p
s � rs �

3
4
�
1
2
c0
	

, by the lower-semicontinuity of the harmonic
radius.

Then, by (4-11), for all x 2
˚
.ƒC 1/

p
s � rs �

3
4

	
,

(4-13)
2X

jD0

.�.x//j j.rg/j Rmjg.x; t/� ."ps�.x//
�2

for t 2 Œ0;minfT; ."ps�.x//
2g�. Now, using (4-13) and integrating the Ricci flow

equation we estimate
2X

jD0

�
�2Cj

ˇ̌̌
@

@t
.rg.0//j .g�g.0//

ˇ̌̌
g.0/

�
.x; t/� C.n/

and

(4-14)
2X

jD0

�
�j j.rg.0//j .g�g.0//jg.0/

�
.x; t/� C.n/

t

.�.x//2
;

for x 2
˚
.ƒC 1/

p
s � rs �

3
4

	
and t 2 Œ0;minfT; ."ps�.x//

2g�.

Similarly, since
.1� 2�/g.0/� zg.0/� .1C 2�/g.0/;

rsjr
g.0/
zg.0/jg.0/C r

2
s j.r

g.0//2zg.0/jg.0/ � C.�1; gc/�

on
˚
.ƒC1/

p
s� rs �

3
4

	
, by the pseudolocality theorem applied to .N; ge.sC t //t�0 ,

we obtain
2X

jD0

�
�2Cj

ˇ̌̌
@

@t
.rg.0//j .zg�g.0//

ˇ̌̌
g.0/

�
.x; t/� C.�1; gc/

for x 2
˚
.ƒC 1/

p
s � rs �

3
4

	
and t 2 Œ0;minfT; ."ps�.x//

2g�. Integrating the Ricci
flow equation leads to

(4-15)
2X

jD0

�
�j j.rg.0//j .zg�g.0//jg.0/

�
.x; t/� C.�1; gc/

t

.�.x//2

for x 2
˚
.ƒC 1/

p
s � rs �

3
4

	
and t 2 Œ0;minfT; ."ps�.x//

2g�.
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Hence, by Lemma 4.1, for every " > 0 there is 
.gc ; B; ˇ; "/ > 1 large enough that�
j.‰�1/�g�gjg.0/C rsjr

g.0/..‰�1/�g�g/jg.0/
�
.x; t/ < "

for x 2
˚
.ƒC 1/

p
s � rs �

3
4

	
and t 2 Œ0;minfT; 
�1.rs.x//2g�. Then, at any such

.x; t/ we may estimate, by possibly making 
 even larger (exploiting (4-14) and (4-15))
and � smaller,

j. �1/�g� zgjzg � 2
�
j. �1/�g�gjg.0/Cjg�g.0/jg.0/Cjzg�g.0/jg.0/

�
< ˛

and

j zr. �1/�gjzg � 2
�
j zr.. �1/�g�g/jg.0/Cjzr.g� zg/jg.0/

�
� 2

�
j.zr �rg.0//.. �1/�g�g/jg.0/Cjr

g.0/.. �1/�g�g/jg.0/

Cj.zr �rg.0//.g� zg/jg.0/Cjr
g.0/.g� zg/jg.0/

�
� C jrg.0/zgjg.0/

�
j. �1/�g�gjg.0/Cjg�g.0/jg.0/Cjzg�g.0/jg.0/

�
CC

�
jr
g.0/.. �1/�g�g/jg.0/Cjr

g.0/.g�g.0//jg.0/

Cjr
g.0/.zg�g.0//jg.0/

�
<
˛

rs
;

which suffices to prove the theorem.

Proof of Lemma 2.1 Choosing ƒ0 large, jF �g0.0/ � gcjgc
C rjrgcF �g0.0/jgc

becomes small enough in fr �ƒ0g that

2
3
� jr

g0.0/rjg0.0/ �
3
2

and jr�g0.0/rj � 2.n� 1/;

since F �r D r , jrgcr jgc
D 1 and the mean curvature of the level sets of r is

�gc
r D n�1

r
. Moreover, by the quadratic curvature decay we obtain

r2jRm.g0.0//jg0.0/ �
1
2
C.gc/:

Then, using Perelman’s pseudolocality theorem as in the proof of Lemma 3.1, we
obtain the result.

4.2 Estimates in the expanding region

In this section we show that we can adapt the estimates in [9] to show that control in
the conical region yields control in the expanding region.
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Lemma 4.2 Let .N; gN ; f / be an asymptotically conical gradient Ricci expander
with positive curvature operator and let .g0.t//t�0 be the induced Ricci flow with
g0.0/ D gN . There exists ˛0.gN / > 0 with the following property: Let ƒ � ƒ0 ,

 � 1 and r.x/ WD 2

p
f .x/. Define the interior region

D D f.x; t/ 2N � Œ0; T � j r.x/� 2
p

 t C .ƒC 1/2 g

and the annular region

AD f.x; t/ 2N � Œ0; T � j
p

 t C .ƒC 1/2 � r.x/� 2

p

 t C .ƒC 1/2 g:

Let .g.t//t2Œ0;T � be a solution to the Ricci–DeTurck flow

@

@t
g.t/D�2Ric.g.t//CLW.g.t/;g0.t//g.t/

on D, and assume

H WDmax
˚

sup
D\ftD0g

jg�g0jg0
; sup
A

.jg�g0jg0
C rjrg0gjg0

/
	
� ˛0:

If D0 DD\
˚
r.x/� 3

2

p

 t C .ƒC 1/2

	
, then

sup
D0
j.t

1
2r

g0/a.t@t /
b.g�g0/jg0

� Ca;b.gN /

for any nonnegative indices a and b . Furthermore, for every k D 0; 1; : : : , there exists
C 0
k
D C 0

k
.gN / and 0 < ˛k.gN /� ˛0 such that if H � ˛k , then

sup
D0
j.t1=2rg0/a.t@t /

b.g�g0/jg0
� C 0kH

provided aC 2b � k .

Proof Fix a smooth function 0 � �2 � 1, identically equal to 1 in Œ0; 1� and 0 in
Œ2;C1/, and let C�2

> 0 be a constant such that

j� 02jC j�
00
2 j � C�2

:

Define the following cut-off function in D :

�.x; t/D �2
�
r.x/.
 t C .ƒC 1/2/�1=2

�
:

Since r>ƒ0 in A it follows from Lemma 2.1 that jrg0rj2g0
�2 and jr�g0

rj�4.n�1/

in A. Hence, we compute

jr
g0.t/�j2g0.t/

�

C 2
�2


 t C .ƒC 1/2
jr
g0.t/rj2g0.t/

�
C1.�2/

t C 
�1.ƒC 1/2
:
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Moreover, we compute

@t�D�
1
2
� 02
�
r.x/.
 t C .ƒC 1/2/�1=2

� r.x/p

 t C .ƒC 1/2

1

t C 
�1.ƒC 1/2
;

hence j@t�j � C�2
.t C 
�1.ƒC 1/2/�1 , because � 02 D 0 in fr � 2

p

 t C .ƒC 1/2 g.

Similarly, we compute

�g0.t/�D �
0
2

�
r.x/.
 t C .ƒC 1/2/�1=2

� 1p

 t C .ƒC 1/2

�g0.t/r

C
1


 t C .ƒC 1/2
� 002
�
r.x/.
 t C .ƒC 1/2/�1=2

�
jr
g0.t/rj2g0.t/

;

hence
j�g0.t/�j � C2.n; �2/.t C 


�1.ƒC 1/2/�1;

because � 02 D 0 in fr �
p

 t C .ƒC 1/2 g. Putting everything together gives

(4-16) jr
g0.t/�j2g0.t/

Cj@t�jC j�g0
�j �

C3.n; �2/

t C 
�1.ƒC 1/2

in D. Moreover, since r.x/� .t C 
�1.ƒC 1/2/1=2 in A, we obtain

(4-17) jr
g0.t/g.t/jg0.t/ �

Hp
t C 
�1.ƒC 1/2

in A. Now, letting h.t/D g.t/�g0.t/, the Ricci–DeTurck flow in D takes the form

.@t �Lt /hDR0Œh�CrR1Œh�;

where

Lthij D�g0.t/hij C2Rm.g0.t//ikljhkl �Ric.g0.t//ikhkj �Ric.g0.t//jkhki ;

R0Œh�D Rm.g0.t//�h�hCO.h3/�Rm.g0.t//Cg�1�g�1�rg0.t/h�rg0.t/h;

rR1Œh�Dr
g0.t/
p

��
.g0.t/Ch.t//

pq
�.g0.t//

pq
�
r
g0.t/
q h

�
;

and O.h3/ satisfies jO.h3/jg0.t/ � C jh.t/j
3
g0.t/

. Also we let

R1Œh�D
�
.g0.t/C h.t//

pq
� .g0.t//

pq
�
r
g0.t/
q h:

A direct computation yields the following evolution equation for �2h:

(4-18) .@t �Lt /.�
2h/D �2R0Œh�Cr

g0.t/.�2R1Œh�/

C .2�@t�� 2��g0.t/�� 2jr
g0.t/�j2/h

� 2�rg0.t/��rg0.t/h� 2�rg0.t/��R1Œh�:
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Define

P.x;R/D f.y; t/ 2N � Œ0;C1/ j y 2 Bg0.t/.x;R/; t 2 Œ0; R
2�g;

Q.x;R/D
˚
.y; t/ 2N � Œ0;C1/ j y 2 Bg0.t/.x;R/; t 2

�
1
2
R2; R2

�	
:

Given 0 < T 0 < T , we consider the Banach spaces XT 0 and YT 0 D Y 0T 0 CrY
1
T 0 , with

norms defined as follows, as in [9; 18]:

khkXT 0
D sup
N�Œ0;T 0�

jhjg0

C sup
.x;R/2N�.0;

p
T 0 /

�
R�n=2krg0hkL2.P.x;R//

CR2=.nC4/krg0hkLnC4.Q.x;R//

�
;

khkY 0
T 0
D sup
.x;R/2N�.0;

p
T 0 /

.R�nkhkL1.P.x;R//CR
4=.nC4/

khkL.nC4/=2.Q.x;R///;

khkY 1
T 0
D sup
.x;R/2N�.0;

p
T 0 /

.R�n=2khkL2.P.x;R//CR
2=.nC4/

khkLnC4.Q.x;R///:

Let

S1Œh�D �
2R0Œh�Cr

g0.t/.�2R1Œh�/;

S2Œh�D .2�@t�� 2��g0.t/�� 2jr
g0.t/�j2/h� 2�rg0.t/��rg0.t/h

� 2�rg0.t/��R1Œh�;

as they appear in (4-18).

By (4-16) and (4-17), it follows that S2Œh� is supported in A and satisfies

jS2Œh�jg0.t/ �
C4H

t C 
�1.ƒC 1/2
;

hence, applying Lemma 4.3, we obtain

(4-19) kS2Œh�kYT 0
D kS2Œh�kY 0

T 0
� C.gN /C4H:

To estimate S1Œh� we may estimate, for the first two terms in �2R0Œh�,

(4-20) j�2.h� hCO.h3//�Rmjg0.t/

� C�2jhj2g0.t/
jRm.g0.t//jg0.t/

� C j�2hj2g0.t/
jRm.g0.t//jg0.t/CC�

2.1��2/jhj2g0.t/
jRm.g0.t//jg0.t/

� C j�2hj2g0.t/
jRm.g0.t//jg0.t/C

C.gN /H�
2.1��2/

t C 
�1.ƒC 1/2
;
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since, from Lemma 2.1,

jRm.g0/jg0
�
C.gN /

r2
�

C.gN /


 t C .ƒC 1/2

in A.

For the term involving rg0.t/h we compute

�2g�1 �g�1 �rg0.t/h�rg0.t/h

D�2.1��2/g�1�g�1�rg0.t/h�rg0.t/hCg�1�g�1�rg0.t/.�2h/�rg0.t/.�2h/

Cg�1�g�1��2�rg0.t/��rg0.t/��h�hCg�1�g�1��3�rg0.t/��rg0.t/h�h:

From this we may estimate

(4-21) j�2g�1 �g�1 �rg0.t/h�rg0.t/hjg0.t/

� C jrg0.t/.�2h/j2g0.t/
C�2.1��2/jrg0.t/hj2g0.t/

CC�2jrg0.t/�j2g0.t/
jhj2g0.t/

CC�3jrg0.t/�jg0.t/jr
g0.t/hjg0.t/jhjg0.t/:

Note that the terms in the second and third line are supported in A and, due to (4-16)
and (4-17), are bounded by CH=.t C 
�1.ƒC 1/2/. Here we assumed without loss
of generality that H � 1. Finally, for �2R1Œh� we have

(4-22) j�2R1Œh�jg0.t/ � C j�
2hjg0.t/jr

g0.t/.�2h/jg0.t/CC jr
g0.t/�jg0.t/jhj

2
g0.t/

CC.1��2/�2jhjg0.t/jr
g0.t/hjg0.t/;

where again the last two terms are supported in A and, due to (4-16) and (4-17), are
bounded by CH 2=.t C 
�1.ƒC 1/2/1=2 . Thus, combining (4-20), (4-21) and (4-22)
and using Lemma 4.3, together with the estimate from Lemma 3.1 in [9], we can
estimate

kS1Œh�kYT 0
� C.k�2hk2XT 0

CH/:

We can use this estimate, together with (4-19), to apply the main estimate, Theorem 6.1
in the stability result of Deruelle and Lamm, [9], to obtain

k�2hkXT 0
� C.k�2hk2XT 0

CH/:

Therefore, for every T 0 � T such that k�2hkXT 0
�

1
2C

we have

k�2hkXT 0
� CH:

Thus, if maxfH;CH g< 1
2C

, it follows that

k�2hkXT
� CH;
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since

lim
T 0!0

�
k�2hkXT 0

� sup
N�Œ0;T 0�

j�2hjg0

�
D 0 and lim

T 0!0
sup

N�Œ0;T 0�

jhjg0
�H:

The decay estimates follow by a local argument and scaling. We split them into several
steps.

Claim 1 There exists 0 < r0 < 1, "0 > 0 and constants Ca;b > 0 such that the
following holds: Let x0 2N, t0 2 .0; 1�, 0 < r <min.

p
t0; r0/ and g.t/ a solution to

Ricci–DeTurck flow with background g0.t/ on

C.x0; t0; r/ WD
[

t2.t0�r2;t0/

Bg0.t/.x0; r/� ftg

with jg.t/�g0.t/jg0
� "0 . Then

j.rrg0/a.r2@t /
b.g�g0/jg0

.x0; t0/� Ca;b:

Furthermore, for every k 2 N there exists 0 < "k � "0 such that, if additionally
jg.t/�g0.t/jg0

� "k on C.x0; t0; r/, then there exists a constant C 0
a;b

> 0 such that

j.rrg0/a.r2@t /
b.g�g0/jg0

.x0; t0/� C
0
a;b sup

C.x0;t0;r/

jg.t/�g0.t/jg0

provided aC 2b � k .

We can assume that r0 is sufficiently small that g0.t/ is well controlled in a suitable
coordinate system in Bg0.0/.p0; r0/ for 0 � t � 1. The estimate then follows from
local estimates for the Ricci–DeTurck flow; see [2, Proposition 2.5].

Claim 2 There exists 0<ı<1, independent of 
 and ƒ, such that for any .x; t/2D0

we have

C.x; t; .ıt/1=2/�D:

Note first the basic estimate

3
2

p

 t C .ƒC 1/2C

q
1
16
t � 3

2

p

 t C .ƒC 1/2C

q
1
16

 t

�
3
2

p

 t C .ƒC 1/2C 1

4

p

 t C .ƒC 1/2

D 2

q
49
64

 t C 49

64
.ƒC 1/2 � 2

q
49
64

 t C .ƒC 1/2:
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Let .x; t/ 2D0. By Lemma 2.1, the function r satisfies

1
2
� jr

g0.t/rjg0.t/ � 2

in fr.x/�
p

0t Cƒ

2
0 g. This, together with the previous estimate, implies there exists

a ı > 0 such that

Bg0.t 0/.x; .ıt/
1=2/�

˚
r � 3

2

p

 t C .ƒC 1/2C

q
1
16
t
	
� fr � 2

p

 t 0C .ƒC 1/2 g;

where t 0 2 ..1� ı/t; t/�
�
49
64
t; t
�
.

Decay estimates in D0 In the case that 0 < t < 1, the estimates follow directly from
Claims 1 and 2. Fix a point .x0; t0/ 2 D0. We can assume that 1 < t0 � T . Let
� WD 2=.t0C 1/. Recall that we denote by 't the diffeomorphisms which generate the
Ricci flow ge.t/D t'

�
t gN of the expanding gradient soliton. We define

g�.t/D �'��g.�
�1.t C 1/� 1/:

Note that this scaling is chosen so that g�0 .t/ D g0.t/. This implies that g� solves
Ricci–DeTurck flow with background g0.t/ on

D� D f.x; t/ 2 '��1fr.x/� 2
p

..t C 1/=�� 1/C .ƒC 1/2 g �N � Œ0; 1�g

and the point .x00; 1/, where x00 WD '��1.x/, corresponds to .x0; t0/ under this scaling.
By Claim 2 we see that

D� � C.x00; 1; .ı�t0/
1=2/� C.x00; 1; ı

1=2/:

We can thus apply Claim 1 to obtain

j.rg0/a.@t /
b.g��g0/jg0

.x00; 1/�
zCa;b;

where zCa;b D ı�.a=2Cb/Ca;b . Similarly,

j.rg0/a.@t /
b.g��g0/jg0

.x00; 1/� C
00
a;b sup

C.x00;1;ı
1=2/

jg�.t/�g0.t/jg0
;

where C 00
a;b
D ı�.a=2Cb/C 0

a;b
.

Since the norms are invariant under the diffeomorphism '� , we obtain the desired
estimates at .x0; t0/ by scaling back to g.t/.

Lemma 4.3 Let .N; gN ; f / be an asymptotically conical gradient Ricci expander
with positive curvature operator and let .g0.t//t�0 be the induced Ricci flow with
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g0.0/D gN . There is a C.gN / > 0 such that, for every ƒ�ƒ0 , the following holds:
Define

AD f.x; t/ 2N � Œ0; T � j
p

 t C .ƒC 1/2 � r.x/� 2

p

 t C .ƒC 1/2 g

for some 
 � 1, where r.x/ WD 2
p
f .x/. Then, if the tensors h1 and h2 are supported

in A and satisfy jh1jg0.t/Cjh2j
2
g0.t/
�D=.t C 
�1.ƒC 1/2/, then

kh1Cr
g0.t/h2kYT

� C.gN /D:

Remark 4.1 The importance of Lemma 4.3 is that the constant C.gN / does not
depend on ƒ or 
 .

Proof We begin by estimating the terms in the norms of Y 0T 0 and Y 1T 0 in two different
cases. We will only present the computations for the norm of h WD h1 in Y 0T 0 since
the norm of h2 in Y 1T 0 can be treated in a similar way. In the following, C.gN / will
denote a constant that depends only on the expander and is allowed to change from
line to line.

To estimate the first term in khkY 0
T 0

, consider first the following cases regarding
P.x;R/:

� P.x;R/\A � ft � c1

�1R2g [ ft � c1


�1.ƒC 1/2g Then

R�n
Z
P.x;R/

jh.t/jg0.t/ d�g0.t/ dt

�DR�n
Z c1 maxfR;ƒC1g2=


0

Z
Bg0.t/.x;R/\.A\N�ftg/

1

t C .ƒC 1/2=

d�g0.t/ dt:

Now, for R �ƒC 1 we estimate

(4-23) R�n
Z
P.x;R/

jh.t/jg0.t/ d�g0.t/ dt

� C.gN /DR
�n

Z c1R
2=


0

.
 t C .ƒC 1/2/n=2

t C 
�1.ƒC 1/2
dt

� C.gN /DR
�n
n=2

�Z c1R
2=


0

.t C 
�1.ƒC 1/2/n=2�1 dt
�

� C.gN /.c1C 1/
n=2D;

since Volg0.t/.A\ .N � ftg//� C.gN /.
 t C .ƒC 1/
2/n=2 from Lemma 2.1.
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For R <ƒC 1 we estimate as follows:

(4-24) R�n
Z
P.x;R/

jh.t/jg0.t/ d�g0.t/ dt � C.gN /D
Z c1.ƒC1/

2=


0

dt
tC
�1.ƒC1/2

� C.gN / log.c1C1/D;

where we also use that Volg0.t/.Bg0.t/.x;R//� C.gN /R
n , which follows again from

Lemma 2.1.

� P.x;R/\A � f˛R2=m� t � ˛R2g for some ˛ 2 .0; 1� Then

(4-25) R�n
Z
P.x;R/

jh.t/jg0.t/ d�g0.t/ dt

�R�n
Z ˛R2

˛R2=m

Z
Bg0.t/.x;R/

jh.t/jg0.t/ d�g0.t/ dt

�DC.gN /

Z ˛R2

˛R2=m

dt
t

DDC.gN / logm:

For the second term in the definition of the norm of Y 0T 0 we can estimate directly:

(4-26) R4=.nC4/
�Z

Q.x;R/

jhj.nC4/=2 d�g0.t/ dt
� 2
nC4

�DR4=.nC4/
�Z R2

R2=2

C.gN /R
n

.t C 
�1.ƒC 1/2/.nC4/=2
dt
� 2
nC4

�DC.gN /:

Now recall the distance distortion estimate (2-8) from Section 2,

dg0.0/.x; y/�C.gN /
p
t � dg0.t/.x; y/:

It implies that for K D 1CC.gN / and every x 2N and t 2 Œ0; R2�,

Bg0.t/.x;R/� Bg0.0/.x;KR/;

hence P.x;R/� yP .x;R/ WD Bg0.0/.x;KR/� Œ0; R
2�.

Define
S.x;R/D fr.x/� 2KR � r � r.x/C 2KRg � Œ0; R2�;

S.ƒ;R/D fr � 4.ƒC 1/C 4KRg � Œ0; R2�;
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and recall that

(4-27) 1
2
� jr

g0.0/rjg0.0/ < 2

in fr �ƒg, by Lemma 2.1, since ƒ�ƒ0 .

We distinguish the following cases:

(1) yP.x;R/� S.ƒ;R/ In this case let

t0 Dmax
˚
t 2 Œ0; R2� j A\S.ƒ;R/\ .N � ftg/¤∅

	
:

Then

t0 �
.4.ƒC 1/C 4KR/2



�

�
.4C 4K/2R2=
 if R �ƒC 1;
.4C 4K/2.ƒC 1/2=
 if R <ƒC 1;

and the result follows from estimates (4-23)–(4-24) and (4-26).

(2) yP.x;R/šS.ƒ;R/ In this case we can use (4-27) to conclude that r.x/�2KR�
4.ƒC 1/ > ƒ and yP .x;R/� S.x;R/.

We may define

tin Dmin
˚
t 2 Œ0; R2� j S.x;R/\A\ .N � ftg/¤∅

	
;

tout Dmax
˚
t 2 Œ0; R2� j S.x;R/\A\ .N � ftg/¤∅

	
;

and note that tin > 0.

Let ˛ 2 .0; 1� be such that tout D ˛R
2 . Fromq


 toutC .ƒC 1/2 � r.x/C 2KR

it follows that
r.x/� .

p

˛� 2K/R:

Then, using r.x/� 2KRD 2
p

 tinC .ƒC 1/2 , we conclude that

(4-28) tin �
1

4

.
p

˛� 4K/2R2�

.ƒC 1/2




D
˛R2

4

�
.
p

˛� 4K/2� 4.ƒC 1/2=R2


˛

�
:

Notice that if ˛ >
�1 max
˚�
8.1CC.gN //

�2
; 32R�2.ƒC1/2

	
, then tin� 1

32
tout , and

the result follows from estimates (4-25)–(4-26). In any other case, either tout�C

�1R2

or tout � C

�1.ƒC 1/2 , therefore the result follows from estimates (4-23)–(4-24)

and (4-26).
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Proof of Lemma 3.2 Suppose that .M; g.0// 2M.˛;ƒ; s/. Observe that the follow-
ing identities hold regarding QDˆs ı'�1s :

Q�rs D
p
sr;

s�1Q�zg.st/D g0.t/ in
n
r �

1

2
p
s

o
:

Denoting G.t/D s�1Q�yg.st/, we obtain by the assumption on Dcone

;ƒC1;s that

jG.t/�g0.t/jg0.t/C rjr
g0.t/G.t/jg0.t/ �Q

�.jyg� zgjzg C rsj zrygjzg/.st/ < ˛

in fr �
p

 t C .ƒC 1/2 g D Q�1

�˚p

st C s.ƒC 1/2 � rs �

3
4

	�
for any t 2

Œ0; s�1 maxf.32
/�1; T g�.

Moreover,
jG.0/�g0.0/jg0.0/ DQ

�.jg.0/� zg.0/jzg.0// < ˛

in fr � 2.ƒC 2/g, since .M; g.0// 2M.˛;ƒ; s/.

Therefore, by Lemma 4.2, for every " > 0 there is ˛0.gN ; "; k/ > 0 such that if ˛� ˛0
then

sup
D0
j.t@t /

a.t1=2rg0.t//b.G.t/�g0.t//jg0.t/ < "

for any nonnegative indices a and b with aC 2b � k , where D0 is as in Lemma 4.2.
Hence,

j.t@t /
a.t1=2 zr/b.yg.t/� zg.t//jzg.t/.x/ < "

for .x; t/ 2M � Œ0;maxf.32
/�1; T g� satisfying rs.x/� 3
2

p

 t C s.ƒC 1/2 , which

suffices to prove the theorem.

5 Flowing metrics with conical singularities

The aim of this section is to prove Theorem 1.1 in the case of one conical singularity
at z1 2Z modelled on the cone .C.Sn�1/; gc D dr2C r2g1/, with Rm.g1/� 1 and
Rm.g1/ ¥ 1, denoting the coordinate around z1 of Definition 1.1 by � . Since the
arguments are local, the case of more than one singular point can be treated similarly.
Then we proceed to prove Theorem 1.3.

Let .N; gN ; f / be the unique expander asymptotic to .C.Sn�1/; gc/ given by [7].
Recall that it has strictly positive curvature operator, by Lemma 2.1. Moreover, let � >0
and ƒ1 �ƒ0 be small and large constants, respectively, which will be determined later
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in the course of the proof. By rescaling we may assume that r0 D 1 and kZ.r/ < �
for r 2 .0; 1�.

5.1 The approximating sequence

Given any s 2
�
0; 1
2

�
let Zs DZ n�..0; s1=4/�X/ and rs be as in Section 2. Define

the diffeomorphic manifolds

Ms D
Zs t frs � 1g

f�.r; q/D Fs.r; q/ j r 2 Œs1=4; 1�g
;

equipped with the natural embeddings ˆsW frs � 1g !Ms and ‰sW Zs!Ms . Also,
define rsW Ms! Œ0; 1� as

rs.x/D

8<:
ƒ1
p
s; x 2ˆs.frs �ƒ1

p
s g/;

.ˆ�1s /�rs; x 2ˆs.fƒ1
p
s � rs � 1g/;

1; x 2Ms n Imˆs:
and note that

(5-1) rs D ..‰s ı�/
�1/�r

in Imˆs \ Im‰s .

Let �3 be a smooth, positive and nonincreasing function equal to 1 in .�1; 1� and 0
in Œ2;C1/. Now, we may define a Riemannian metric Gs on Ms as follows:

Gs D �3

�
rs

s1=4

�
.ˆ�1s /�ge.s/C

�
1� �3

�
rs

s1=4

��
.‰�1s /�gZ :

In particular,

(5-2) Gs D

�
.‰�1s /�gZ in frs � 2s1=4g;
.ˆ�1s /�ge.s/ in frs � s1=4g:

5.2 Uniform almost conical behaviour

By the definition of Gs it follows that there is A such that

max
frsD1g

jRm.Gs/jGs
� A:

Let �0D �0.gN / be given by Theorem 3.1. Then, choosing � small and ƒ1 large, we
obtain .Ms; Gs/ 2M.�0; ƒ1; s/. For this, recall the computation (2-6) and observe
that, since ˆs ıFs D � in fs1=4 � rs < 1g,

(5-3) .ˆsıFs/
�Gs�gcD �3

�
rs

s1=4

�
.F �s ge.s/�gc/C

�
1��3

�
rs

s1=4

��
.��gZ�gc/;

and that the support of .rgc /j �3.rs=s
1=4/ for j � 1 is contained in frs � s1=4g.
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5.3 Taking the limit

By Corollary 3.1, there exist T; CRm > 0 such that for small s the following hold for
the Ricci flows .hs.t//t2.0;T � with hs.0/DGs :

max
Ms

jRm.hs.t//jhs.t/ �
CRm

t
for t 2 .0; T �;(5-4)

max
Ms

2X
jD0

rjC2s j.rhs.t//j Rm.hs.t//jhs.t/ � CRm for t 2 Œ0; T �:(5-5)

Moreover,
Volhs.t/.Bhs.t/.x; 1//� v0 for t 2 Œ0; T �

for some x 2 frs D 1g, due to (5-5).

Now, take any sequence sl & 0 and write Ml DMsl , Gl DGsl and hl.t/D hsl .t/.
By Hamilton’s compactness theorem applied to the sequence .Ml ; hl.t//t2Œ0;T � we
can obtain a compact and smooth Ricci flow .M; g.t//t2.0;T � as a subsequential limit.
Namely, there exist diffeomorphisms Hl W M !Ml such that

(5-6) H�l hl.t/! g.t/

uniformly locally in M � .0; T � in the C1 topology.

5.4 The map ‰

Let z‰l D H�1
l
ı ‰l W Zl WD Zsl ! M. We will prove that there exists a map

‰W Z n fz1g ! M, a diffeomorphism onto its image, such that z‰l converges to ‰
in C1 uniformly away from z1 . Since M is compact and Zl �ZlC1 exhaust Znfz1g,
it suffices to obtain derivative estimates for z‰l and z‰�1

l
with respect to fixed metrics

on Z n fz1g and M.

First, observe that around any p 2Zl and ‰l.p/ 2 Im.‰l/ there are local coordinates
fxkgkD1;:::;n and fykgkD1;:::;n , respectively, such that

(5-7) xk D‰�l y
k;

and

(5-8)

2�1ı � gZ � 2ı; 2�1ı � hl.0/� 2ı;ˇ̌̌̌
@j .gZ/pq

@xk1 � � � @xkj

ˇ̌̌̌
� Cj;l ;

ˇ̌̌̌
@jhl.0/pq

@yk1 � � � @ykj

ˇ̌̌̌
� Cj;l
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for all j , since ‰�
l
hl.0/D gZ in Zl , by (5-2). Here ı denotes the Euclidean metric

in the corresponding coordinates.

Applying (5-2), Perelman’s pseudolocality theorem and Shi’s local derivative estimates
to .hl.t//t2Œ0;T / , as in the proof of Lemma 3.1, together with the bound (5-4), we
obtain the following: for every l0 and any nonnegative index j there exist Cj;l0 such
that, for l � l0 ,

(5-9) j.rhl .t//j Rm.hl.t//jhl .t/ � Cj;l0

in Im.‰l jZl0
/� frl � 2s

1=4

l0
g and t 2 Œ0; T �. Thus, in Im.‰l jZl0

/,

(5-10) Q�1l0 hl.0/� hl.T /�Ql0hl.0/;

ˇ̌̌̌
@jhl.T /pq

@yk1 � � � @ykj

ˇ̌̌̌
�Qj;l0

for any l � l0 and nonnegative j .

Then (5-7), (5-8) and (5-10) imply thatˇ̌
.rgZ ;hl .T //j‰l jZl0

ˇ̌
gZ ;hl .T /

� C 0j;l0 ;ˇ̌
.rhl .T /;gZ /j‰�1l j‰l .Zl0

/

ˇ̌
hl .T /;gZ

� C 0j;l0

for any nonnegative j .

Finally, since H�
l
hl.T /! g.T /, we obtainˇ̌

.rgZ ;g.T //j z‰l jZl0

ˇ̌
gZ ;g.T /

� C 00j;l0 ;ˇ̌
.rg.T /;gZ /j z‰�1l jz‰l .Zl0

/

ˇ̌
g.T /;gZ

� C 00j;l0

for any nonnegative j . The existence of ‰ follows from Arzelà–Ascoli.

5.5 Curvature bounds for the limit

Since .Ml ; hl.t//t2.0;T � satisfy (5-4), it is clear that g.t/ satisfies

(5-11) jRm.g.t//jg.t/ �
CRm

t

on M � .0; T �.

Now, notice that H�
l
rl D .‰�1

l
ıHl/

�.��1/�r in .H�1
l
ı ‰l/.Zl/, by (5-1). By

z‰�1
l
!‰�1 it follows that

(5-12) H�l rl ! .‰�1/�Œ.��1/�r�

in C1loc;g.T /.Im‰/. Recall that � parametrises the conical region in Z .
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Let rM be the continuous function on M defined as

rM D

8<:
Œ.‰ ı�/�1��r in Im .‰ ı�/;

0 in .Im‰/c ;

1 otherwise:

By (5-5) and (5-12) it follows that g.t/ satisfies

(5-13) max
M

2X
jD0

r
jC2
M j.rg.t//j Rm.g.t//jg.t/ � CRm

in M � .0; T �.

5.6 Uniform convergence to the initial data, away from the singular point

Observe that

‰�l hl.t/D .
z‰l/
�.H�l hl.t//;(5-14)

‰�l hl.0/D gZ :(5-15)

Since z‰l !‰ and H�
l
hl.t/! g.t/, (5-14) implies that ‰�

l
hl.t/!‰�g.t/.

Finally, the curvature bound (5-9) and relation (5-15) imply that ‰�g.t/ converges to
gZ as t ! 0, in C1loc .

5.7 Closeness to expander improves in small scales

We will need the following lemma regarding the flows .Ms; hs.t//t2.0;T � :

Lemma 5.1 For every " > 0 and integer k � 0, there exist positive �1."; k/ and
s2."; k/ small and 
3."; k/ and ƒ2."; k/ large such that the following holds: for each
s 2 .0; s2�, 
 � 
3 and t 2 .0; �1.32
/�1�, there is a map

Qs;t W
˚
rs �

5
4

p

 t C s.ƒ2C 1/

2
	
!N;

a diffeomorphism onto its image, such that, for all nonnegative integers j � k ,

.t C s/j=2j.rge.tCs//j Œ.Q�1s;t /
�hs.t/�ge.t C s/�jge.tCs/ < "

in ImQs;t and frs �
p

 t g � ImQs;t �

˚
rs �

3
2

p

 t C s.ƒ2C 1/2

	
.

Remark 5.1 In the above statement we can assume without loss of generality that

3."; k/� .ƒ2."; k/C 1/

2 .
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Proof Given any ">0, let �1D�1.gN ; "; k/ be the constant provided by Theorem 3.1.

Since limr!0 kZ.r/D limr!C1 kexp.r/D0, there are �1."/>0 small and ƒ2."/>0
large such that

kZ.r/ < �1 for r 2 .0; �1=21 �;

kexp.r/ < �1 for r �ƒ2:

Moreover, set s2."; k/Dminf2�4�21; .2.ƒ2C 1//
�4g; we have

2.ƒ2C 1/
p
s � s1=4 < 2s1=4 � �

1=2
1

for every s 2 .0; s2�.

By construction of .Ms; Gs/ it follows that .Ms; �
�1
1 Gs/ 2 M.�1; ƒ2; s=�1/ for

any s 2 .0; s2�, with associated map ˆs=�1
D ˆs ı '��1

1
and function rs=�1

D

maxfƒ2
p
s=�1;minf��1=21 rs; 1gg.

Theorem 3.1 implies that there is 
1>1 such that, for every 
�
1 and � 2 .0; .32
/�1�,
the metric ��11 hs.�1�/ is "–close to ge.� C s=�1/ in

frs=�1
�

p

� C sƒ22=�1 g D frs �

p

�1� C sƒ

2
2 g:

Then, for every t 2 .0; �1.32
/�1�, apply the above for � D t=�1 to prove the lemma
for 
3 D 
1 .

5.8 Diameter control of high-curvature regions of g.t/

We will prove the following lemma:

Lemma 5.2 (high curvature–small diameter) There exists c0 > 0 with the following
property: for small � > 0 there exists C� > 0 such that if t 2 .0; c0�� then

diamg.t/.frM �
p

 t g/� C�

p
t ;

jRm.g.t//jg.t/ <
�

t
in frM >

p

 t g;

where C� D C.gN /C
1=2
Rm ��1=2 and 
 D CRm�

�1 .

Proof Fix " D 10�2 . By (5-13) and putting k D 0 in Lemma 5.1 we can find ƒ2
and �1 such that, if 
 D CRm�

�1 and � is small, then:
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� For large l and each t 2 .0; �1.32
/�1� there exists

Ql;t W
˚
rl �

5
4

p

 t C sl.ƒ2C 1/

2
	
!N

satisfying

j.Q�1l;t /
�hl.t/�ge.t C sl/jge.tCsl / < 10

�2

in ImQl;t �
˚
rl �

3
2

p

 t C sl.ƒ2C 1/

2
	

.

� jRm.g.t//jg.t/ � CRm=r
2
M < CRm=
 t D �=t in frM >

p

 t g provided that

t 2 .0; �1.32
/
�1�.

By the closeness to the expander, we obtain

diamhl .t/.frl �
p

 t C sl.ƒ2C 1/

2
g/

� diam.Q�1
l;t
/�hl .t/

.ImQl;t /

� .1:01/1=2 diamge.tCsl /.ImQl;t /

� .1:01/1=2 diamge.tCsl /

�˚
rl �

3
2

p

 t C sl.ƒ2C 1/

2
	�
:

Working on the expander we compute, using Lemma 5.3 below for the last inequality,

(5-16) diamge.tCsl /

�˚
rl �

3
2

p

 t C sl.ƒ2C 1/

2
	�

D
p
t C sl diam'�

tCsl
gN

�˚
rl �

3
2

p

 t C sl.ƒ2C 1/

2
	�

D
p
t C sl diam'�

tCsl
gN

�
'�1sl

�˚
r � 3

2

p

 t=sl C .ƒ2C 1/

2
	��

D
p
t C sl diamgN

�
'1Ct=sl

�˚
r � 3

2

p

 t=sl C .ƒ2C 1/

2
	��

� C�
p
t C sl ;

where C� D C.gN /C
1=2
Rm ��1=2 .

Now note that

(5-17) diamhl .t/.frl �
p

 t C sl.ƒ2C 1/

2
g/

D diamH�
l
hl .t/

.fH�l rl �
p

 t C sl.ƒ2C 1/

2
g/

D diamH�
l
hl .t/

.fH�l .‰
�1
l /�.��1/�r �

p

 t C sl.ƒ2C 1/

2
g/

D diamH�
l
hl .t/

.f.‰�1l ıHl/
�.��1/�r �

p

 t C sl.ƒ2C 1/

2
g/;

where we also used (5-1).
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Since H�
l
hl.t/! g.t/ and ‰�1

l
ıHl !‰�1 , it follows that

diamg.t/.frM �
p

 t g/� C�

p
t :

Lemma 5.3 Let .N; gN ; f / be a gradient Ricci expander with bounded curvature. De-
note by Rinf and Rsup the infimum and supremum of the scalar curvature, respectively,
and suppose f is normalised so that jrf j2D f CRinf�R . Let r D 2

p
f and '1Cu

be the associated family of diffeomorphisms. Then, if 
 � .ƒC1/2 � 32.Rsup�Rinf/,
then

(5-18) '1Cu
�˚
r � 3

2

p

uC .ƒC 1/2

	�
� fr �

p
8
g

for all u� 0 and

(5-19) '1Cu
�˚
r � 1

2

p

uC .ƒC 1/2

	�
�
˚
r �

q
1
8


	

for u� 1.

Proof First note that the normalisation of f implies that

f D jrf j2CR�Rinf � 0;

and f > 0 away from the critical points of f .

By (2-2) it follows that

(5-20) d

du
f ı'1Cu D�

1

1Cu
jrf j2 ı'1Cu:

In order to prove (5-19) note that, since jrf j2 D f CRinf�R � f , (5-20) becomes

d

du
f ı'1Cu � �

1

1Cu
f ı'1Cu:

Integrating this inequality we immediately obtain that

(5-21) f ı'1Cu.x/�
f .x/

1Cu

for all x 2N with rf .x/¤ 0 and u� 0.

Thus, if x is such that r.x/� 1
2

p

uC .ƒC 1/2 , it follows that

(5-22) r.'1Cu.x//�
1

2
p
2
.ƒC 1/

for 0� u� 1 and

(5-23) r.'1Cu.x//�

q
1
8



for u� 1, which proves (5-19).
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On the other hand, jrf j2� f �C.gN /, where C.gN /DRsup�Rinf>0, hence (5-20)
becomes

d

du
f ı'1Cu � �

1

1Cu
.f �C.gN // ı'1Cu:

Hence, as long as f ı'1Cu.x/� C.gN /, f ı'1Cu.x/ is nonincreasing in u and

(5-24) f ı'1Cu.x/�
1

1Cu
.f .x/�C.gN //CC.gN /:

Thus, if x is such that r.x/D 3
2

p

uC .ƒC 1/2 and 
 � .ƒC 1/2 � 32C.gN /, by

(5-22) and (5-23),

f ı'1Cu.x/�

� 1
32

 if u� 1;

1
32
.ƒC 1/2 if 0� u� 1;

� C.gN /

for u� 0. Hence, by (5-24) and 
 � .ƒC 1/2 � 32C.gN /,

f ı'1Cu.x/�
1

1Cu
f .x/CC.gN /�

9
16
.
 C .ƒC 1/2/CC.gN /� 2
:

It follows that r ı'1Cu.x/�
p
8
 , which proves (5-18).

5.9 Gromov–Hausdorff convergence to the initial data

In this section we prove that for every " > 0 the map ‰W Z n fz1g ! M is an
"–isometry between .Z n fz1g; dZ/ and .M; g.t// for small t , which implies that
.M; dg.t// converges to .Z; dZ/ in the Gromov–Hausdorff sense as t ! 0.

The result follows immediately from the following two lemmas:

Lemma 5.4 (distortion estimate) For every " > 0 there exist ı1; t1 > 0 such that the
map

(5-25) ‰W fr � ı1g ! frM � ı1g

satisfies

(5-26) sup
˚
jdg.t/.‰.z1/; ‰.z2//� dZ.z1; z2/j W z1; z2 2 fr � ı1g

	
< 3"

for every t 2 .0; t1�, and diam.fr � ı1g/ < ".

Proof Take ı1 > 0 such that the intrinsic (hence also the extrinsic) diameter satisfies

(5-27) diamgZ
.fr D ı1g/ < ":
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By the uniform convergence away from z1 , as t ! 0, it follows that

(5-28) diamg.t/.frM D ı1g/ < "

for small t .

We will use dgZ ;ı1
to denote the intrinsic metric in fr � ı1g induced by gZ , and

similarly dg.t/;ı1
for the intrinsic metric in frM � ı1g induced by g.t/.

By (5-27) and (5-28), it follows that, for every z1; z2 2 fr � ı1g,

jdgZ ;ı1
.z1; z2/� dZ.z1; z2/j< ";(5-29)

jdg.t/;ı1
.‰.z1/; ‰.z2//� dg.t/.‰.z1/; ‰.z2//j< ":(5-30)

To see this, note for instance that

dgZ
.z1; z2/� dgZ ;ı1

.z1; z2/� dgZ
.z1; fr D ı1g/C dgZ

.z2; fr D ı1g/C ":

Moreover, if

dgZ
.z1; fr D ı1g/C dgZ

.z2; fr D ı1g/ > dgZ
.z1; z2/

then dgZ
.z1; z2/D dgZ ;ı1

.z1; z2/. For, if dgZ
.z1; z2/ < dgZ ;ı1

.z1; z2/, then there is
a path connecting z1 and z2 escaping fr � ı1g, hence

dgZ
.z1; z2/ > dgZ

.z1; fr D ı1g/C dgZ
.z2; fr D ı1g/;

which is a contradiction. This proves (5-29), and (5-30) is similar.

By the uniform convergence away from z1 , as t ! 0, it also follows that, for small t ,

(5-31) jdgZ ;ı1
.z1; z2/� dg.t/;ı1

.‰.z1/; ‰.z2//j< ";

uniformly for all z1; z2 2 fr � ı1g. The result follows from the triangle inequality,
combining (5-29)–(5-31), having possibly made ı1 > 0 smaller in order to achieve
diam.fr � ı1g/ < ".

Lemma 5.5 (Im‰ is an "–net) For every " > 0 and small enough ı2; t2 > 0,

(5-32) diamg.t/.frM � ı2g/ < "

for every t 2 .0; t2�.
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Proof Let c0 be the constant given by Lemma 5.2. Then, since c0CRm=r
2
0 > 1 for

small r0 , it follows that t 2 .0; c0CRm=r
2
0 t �, hence we can apply Lemma 5.2 for

� D CRmt=r
2
0 to obtain

diamg.t/.frM � r0g/� C.gN /r0

for small t , which proves the lemma.

5.10 Tangent flow at the conical point

Take any sequence of times tk& 0. It follows from the convergence (5-6) that there is
a sequence lk such that, for any nonnegative index j � k ,

t
j=2

k
j.rg/j .g�H�lkhlk /jg.tk/ <

1

k
and

slk
tk
! 0:

Let 
k D 
3.1=k; k/, ƒk D ƒ2.1=k; k/ and �k D �1.1=k; k/ be as given by
Lemma 5.1 and set �k D �k.32
k/

�1 . Passing to a subsequence if necessary, we
may assume that tk < �k and slk < s2.1=k; k/.

By Lemma 5.1, there exist

Qk W frlk �
p

ktkC slk .ƒkC 1/

2
g !N;

diffeomorphisms onto their image, such that for j � k

.tkC slk /
j=2
j.rge.tkCslk

//j ..Q�1k /�hlk .tk/�ge.tkC slk //jge.tkCslk
/ <

1

k

in ImQk . Thus, setting Rk D .Qk ıHlk /
�1 , we obtain

t
j=2

k
j.rge.tkCslk

//j .R�kg.tk/�ge.tkC slk //jge.tkCslk
/ <

C

k

in ImQk , for large k . Moreover, since

t�1k ge.tkC slk /D

�
1C

slk
tk

�
'�tkCslk

gN ;

we conclude thatˇ̌̌̌
.rgN /j

�
.Rk ı'

�1
tkCslk

/�t�1k g.tk/�

�
1C

slk
tk

�
gN

�ˇ̌̌̌
gN

<
C

k

in 'tkCslk
.ImQk/.
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Putting Gk D .Rk ı'�1tkCslk

/�t�1
k
g.tk/, the estimate above becomes

(5-33)
ˇ̌̌̌
.rgN /jGk �

�
1C

slk
tk

�
gN

ˇ̌̌̌
gN

<
C

k

in Im.'tkCslk
ıR�1

k
/D 'tkCslk

.ImQk/.

Then, since by Lemma 5.1 and Remark 5.1˚
rlk �

1
2

p

ktkC slk .ƒkC 1/

2
	
� frlk �

p

ktkg � ImQk;

it follows that

(5-34) 'tkCslk
.ImQk/� 'tkCslk

�˚
rlk �

1
2

p

ktkC slk .ƒkC 1/

2
	�

D '1Ctk=slk

�˚
r � 1

2

p

ktk=slk C .ƒkC 1/

2
	�

�
˚
r �

q
1
8

k
	
;

where the last inclusion follows from Lemma 5.3.

Now, let qk 2M be such that qmax D 'tkCslk
ıR�1

k
.qk/ 2N satisfies

jRm.gN /.qmax/jgN
Dmax

N
jRm.gN /jgN

:

Applying Lemma 5.2 for � D 1
2

maxN jRm.gN /jgN
we obtain yC ; y
 > 1 such that

qk 2 frM �
p
y
tk g;

and diamg.tk/.frM �
p
y
tk g/� yC

p
tk .

Given any pk … Im‰ , it follows that rM .pk/D 0, hence distg.tk/.pk; qk/� yC
p
tk .

Therefore, distgN
.qmax; 'tkCslk

ıR�1
k
.pk//� 2 yC for large k .

This, together with (5-33)–(5-34) and the fact that 
k!C1, suffices to prove that
.M; t�1

k
g.tk/; pk/ converges in the smooth pointed Cheeger–Gromov topology to

.N; gN ; xq/.

This implies that .M; t�1
k
g.tkt /; pk/t2.0;t�1

k
T �! .N; h.t/; xq/t2.0;C1/ in the smooth

pointed Cheeger–Gromov topology, where .N; h.t// is complete with bounded curva-
ture and h.1/D gN . By the forward and backward uniqueness property of the Ricci
flow [3; 20], it follows that h.t/D ge.t/.
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5.11 Proof of Theorem 1.3

Proof of Theorem 1.3 Let gc;Z D dr2Cr2g1 be the cone that models the singularity
at z1 and gc;exp D dr

2C r2g01 be a cone with Rm.g01/� 1.

Let "link and � be small constants (to be determined in the course of the proof) such
that, for 0� j � 4,

(5-35) j.rg1/j .g01�g1/jg1
< "link

on Sn�1 , and kZ.r/ < � for r 2 .0; 1�.

Moreover, let .N; gN ; f / be the expander given by Lemma 2.2, asymptotic to gc;exp .

The proof is again similar to the proof of Theorem 1.1, so we only describe the necessary
changes. The approximating sequence .Ms; Gs/ is defined as in Section 5.1, gluing
the expander .N; gN ; f /. Then, in Section 5.2, equation (5-3) becomes

(5-36) .ˆs ıFs/
�Gs �gc;exp

D �3

�
rs

s1=4

�
.F �s ge.s/�gc;exp/C

�
1� �3

�
rs

s1=4

��
.��gZ �gc;Z/

C

�
1� �3

�
rs

s1=4

��
.gc;Z �gc;exp/:

Recall �0.gN /, given by Theorem 3.1. It follows by (5-36) that we may choose � and
"link small and ƒ1 large (depending on �0 ) such that .Ms; Gs/ 2M.�0; ƒ1; s/ for
small s .

Then, Sections 5.3–5.6 carry over unchanged, providing a Ricci flow .M; g.t//t2.0;T �

and a map ‰W Z n fz1g !M such that ‰�g.t/ converges to gZ smoothly uniformly
away from z1 as t ! 0.

Now, although Lemma 5.1 is no longer valid, its conclusion does hold for "D 0:01, by
the proof of Theorem 3.1(1). It follows that Lemma 5.2 also holds for .M; g.t//, hence
Section 5.9 carries over, proving that g.t/ converges to gZ in the Gromov–Hausdorff
sense as t ! 0.

6 Orbifold quotient expanders and Theorem 1.2

We consider Sn�1 �Rn and � �O.n/ a finite subgroup, acting freely and properly
discontinuously on Sn�1 . Let xg be a metric on Sn�1 with Rm.xg/� 1, but Rm.xg/¥ 1,
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which is invariant under the action of � and thus descends to a metric g on the
quotient Sn�1=� . Note that the action of � thus naturally extends to an isometric
action on the cone .C.Sn�1/; dr2C r2xg/.

Let .N; gN ; f / be the unique nonnegatively curved gradient Ricci expander .N; gN ; f /
given by [7], which is asymptotic to .C.Sn�1/; dr2C r2xg/, where we assume that f
is normalised as in Section 2. By the soliton equation (2-1) it follows that f is strictly
convex. Let p0 2N be the unique point where f attains its minimum, or equivalently
rf .p0/D 0. Then all the level sets ff D ag for a>minf are diffeomorphic to Sn�1 ,
and the flow J� of rf=jrf j2 yields natural diffeomorphisms between them. Thus,
we may extend the coordinate system at infinity F of Section 2 to a diffeomorphism

F W .0;C1/�Sn�1!N n fp0g;

given by F.r; q/D J.r2�ƒ2
0/=4

.F.ƒ0; q//.

Let us now assume that � also acts isometrically on .N; gN ; f / and fixes f . This
implies that the action of � has to preserve the flow lines of the vector field rf=jrf j2

and thus the action of � is completely determined by the action on a level set ff D ag
for a >minf . We will call such an action compatible with the action on .Sn�1; g/ if
it agrees with the action on the cone .C.Sn�1/; dr2C r2xg/. In other words, we call
the action of � compatible if 
 �F.r; q/D F.r; 
 �q/ for all 
 2 � . Note that thus the
action of � on the cone uniquely determines the action on .N; gN ; f /.

Now, let O be an noncompact orbifold with exactly one singular point p 2O. Then,
there is a neighbourhood U of p , a neighbourhood 0 2 zU � Rn and a projection
� W zU ! U that is invariant under the fixed-point-free action of a finite subgroup � 0

of O.n/.

A smooth function f on O is a continuous function, smooth on O n fpg, with the
property that ��f is smooth. Similarly, a smooth orbifold Riemannian metric gO
on O is a Riemannian metric on O n fpg with the property that ��g extends smoothly
along 0 2Rn .

Since the action of any element of � 0 preserves both ��g and ��f , it follows that
r�
�gO��f is a fixed point of the induced action on T0Rn . But, since the action is

free of fixed points we conclude that rf jp D 0, in the sense that r�
�gO��f j0 D 0.

We call a triple .O; gO; f / an orbifold expander, where O, gO and f are as above, if
HessgO f D Ric.gO/C 1

2
gO on O n fpg.
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Lemma 6.1 Let .O; gO; f / be an orbifold expander with positive curvature operator
that is asymptotic to the cone .C.Sn�1=�/; dr2C r2g/. Suppose .Sn�1=�; g/ is the
quotient of .Sn�1; xg/ with Rm.xg/� 1. Then there is a manifold expander .N; gN ; xf /
with positive curvature operator that is asymptotic to the cone .C.Sn�1/; dr2C r2xg/
such that .O; gO/ D .N; gN /=� . It follows that the singularity of the expander is
modelled on Rn=� .

Proof It suffices to show that O is diffeomorphic to Rn=� . By Rm.gO/ > 0 we
obtain that HessgO f �

1
2
gO , hence rf ¤ 0 on O n fpg. Thus the coordinate system

at infinity can be extended to a surjective map

F W .0;C1/�Sn�1=�!N n fpg:

As in the manifold case, we may assume that this map is related to the flow J� of
rf=jrf j2 by

F.r; q/D J.r2�r2
0 /=4

.F.r0; q//

for some r0 > 0.

Observe that F can be deformed to a map zF W .0;C1/ � Sn�1=� ! O n fpg,
which extends to a diffeomorphism between Rn=� and O. To see this, let zf be
a smooth function equal to 1

4
dgO.p; � /

2 near p and to f outside a compact set. Since
HessgO f �

1
2
gO , we can arrange that r zf ¤ 0 in O n fpg.

Now, let zJ� be the flow of the field r zf =jr zf j2 and define zF by

zF .r; q/D zJ.r2�r2
0 /=4

.F.r0; q//:

Working on ��g–exponential coordinates around ��1.p/ we see that zF is indeed a
diffeomorphism.

Theorem 6.1 Given .Sn; xg/ as above, the action of � extends to a compatible iso-
metric action on the unique positively curved gradient Ricci expander .N; gN ; f / that
is asymptotic to the cone .C.Sn�1/; dr2Cr2xg/. The action fixes f and the only fixed
point on N is the critical point p0 of f . Thus, the quotient space is an expander
with exactly one orbifold singularity modelled on Rn=� and is asymptotic to the cone
.C.Sn�1=�/; dr2C r2g/.

Proof We aim to extend Deruelle’s proof [7] of existence and uniqueness of positively
curved gradient expanders to show that the action of � on the link extends to a
compatible, properly discontinuous action on the expander with the claimed properties.
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As in Deruelle, let .xgt /0�t�1 be the (reparametrised) evolution of xg by volume-
preserving Ricci flow such that xg0Dxg and xg1D˛ground , where ˛D .vol.Sn�1; xg//2=n .
Since Ricci flow preserves symmetries, xgt is invariant under � for all t 2 Œ0; 1�.

Let .Nt ; zgt ; ft / be the unique positively curved gradient expander asymptotic to the
cone .C.Sn�1/; dr2C r2xgt / obtained by Deruelle. Then, let p0;t 2Nt be the unique
point where rft .p0;t /D 0.

Note that .N1; zg1; f1/ is one of the rotationally symmetric expanders constructed by
Bryant (see [5]). In this case the action of � naturally extends to a compatible and
properly discontinuous isometric action on N1 which preserves f1 and has only one
fixed point p0;1 .

We want to use an open–closed argument to show that this is true for all t 2 Œ0; 1�.

Recall that .Nt ; zgt ; ft / satisfies the conclusion of the theorem if the following holds:
there is an isometric action of � on Nt with one fixed point, preserving ft , and the
action is compatible with the standard action of � on the link .Sn�1; xgt /. Note that
since the action of � preserves the level sets of ft , the fixed point has to be p0;t .

Openness Suppose that .Nt ; zgt ; ft / satisfies the conclusion of the theorem. Let
gc;t D dr

2Cr2xgt and Ft W .0;C1/�Sn�1!Nt be the associated coordinate system
at infinity, satisfying

rj j.rgc;t /j .F �t zgt �gc;t /jgc;t
DO.r�2/:

Then the local uniqueness given in [7, Theorem 3.7] yields an isometric action of �
onto Nt 0 for t 0 close to t . Moreover, there is a diffeomorphism between Nt and Nt 0
identifying this action with the action on Nt , so from now on we will work on N WDNt
and assume that zgt , zgt 0 , ft and ft 0 are defined on N.

This action has a unique fixed point, it preserves ft by assumption and, by the unique-
ness statement of Lemma 2.2, it follows that it also preserves ft 0 . We conclude that
the fixed point of the action is the critical point p0 of both ft and ft 0 .

By [7, Theorem 3.7], it follows that

(6-1) rj j.rgc;t0 /j .F �t zgt 0 �gc;t 0/jgc;t0
DO.r�2/:

Observe, however, that the coordinate system Ft is not adapted to the gradient soliton
structure of .N; zgt 0 ; ft 0/, namely it does not parametrise the level sets of ft 0 . Thus,
although the action on .Nt ; zgt ; ft / is compatible with the standard action of � on Sn�1 ,
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it is not immediate that the action on .Nt 0 ; zgt 0 ; ft 0/ is also compatible with the standard
action.

For this, we need to construct a diffeomorphism

Ft 0 W Œr0;C1/�Sn�1!
˚
ft 0 �

1
4
r20
	

such that

(1) ft 0.Ft 0.r; q//D
1
4
r2 ,

(2) rj j.rgc;t0 /j .F �t 0 zgt 0 �gc;t 0/jgc;t0
DO.r�2/ for all integers j � 0,

(3) 
 �Ft 0.r; q/D Ft 0.r; 
 � q/, where the action on q is the standard action of �
on Sn�1 .

Denote by J� the flow of the vector field r zgtft=jr
zgtft j

2 and by J 0� the flow of
r zgt0ft 0=jr

zgt0ft 0 j
2 . Since the action leaves both vector fields invariant, it follows that

both J� and J 0� are equivariant with respect to this action.

Now fix a large number r0 > 0. Then, given any a � 1
4
r20 , define on fft D ag and

fft 0 D ag the Riemannian metrics

.zgt 0/1;� D �
�2.J�2=4�a/

�
zgt 0 and .zgt 0/2;� D �

�2.J 0
�2=4�a

/�zgt 0 ;

respectively, for any � � r0 . Here, abusing notation we use zgt 0 to also denote the
restriction of zgt 0 to the tangent bundle of

˚
ft D

1
4
�2
	

and
˚
ft 0 D

1
4
�2
	

, respectively.

Note that, from (6-1), it follows that

(6-2) .r xgt0 /j .Ft .�; � /
�.zgt 0/1;� � xgt 0/DO.�

�2/;

and, from the estimates in [8, Theorem 3.2],

(6-3) .rha/j ..zgt 0/2;� � ha/DO.�
�2/

for some metric ha on fft 0 D ag, uniformly in a .

Moreover, note that

(6-4) jr
zgt02

p
ft 0 j

2
zgt0
D
jr zgt0ft 0 j

2

ft 0
D
ft 0 CRmin�R

ft 0
D 1CO.f �1t 0 /:

Now, we claim that the level set fft 0 D ag is a graph over fft D ag via the normal
exponential map of .4a/�1zgt 0 for each a� 1

4
r20 if r0 is large. Moreover, the graphing

function smoothly converges to zero as a!C1.
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To see this, first observe that, as a!C1, any pointed sequence

..4a/�1F �t zgt 0 ; xa/;

with ft .xa/ D a , has a subsequence converging to .gc;t 0 ; x1/, with r.x1/ D 1,
in C1loc , by (6-1). Moreover, under this convergence, F �t .2

p
ft=2
p
a/ converges to

the radial function r of the cone C.Sn�1/.

Since
Hess.4a/�1 zgt0

ft 0

a
D a�1 Ric..4a/�1zgt 0/C 2.4a/�1zgt 0 ;

the curvature decay supN r
2Cj j.r zgt0 /j Rmjzgt0

< C1 implies uniform derivative
estimates for ft 0=a with respect to .4a/�1zgt 0 and within bounded distance from
fft 0 D ag. Thus, passing to a subsequence, 2

p
ft 0=2

p
a converges smoothly to a

limit r1 as a!C1, which satisfies jrgc;t0 r1jgc;t0
� 1 due to (6-4). Moreover,

r1! 0 as r! 0, hence r1 D r D distgc;t0
.o; � /, with o denoting the tip of the cone.

This suffices to prove the claim, since it implies that the level sets of .4a/�1ft and
.4a/�1ft 0 smoothly converge to each other under this convergence. Note that here
we used that the normal exponential map of .4a/�1zgt 0 over

˚
ft=a D

1
4

	
smoothly

converges to the normal exponential map of gc;t 0 over fr D 1g.

Thus, there is a diffeomorphism, defined via the normal exponential map,

KaW fft D ag ! fft 0 D ag;

satisfying 
 �Ka.x/DKa.
 � x/ for every x 2 fft D ag and 
 2 � .

Now, as the level sets converge to each other smoothly after scaling, we obtain that

(6-5) .r.zgt0 /1;2
p

a/j .K�a .zgt 0/2;� � .zgt 0/1;2
p
a/! 0

as 1
4
�2 � a!C1, where we also used (6-3). Using (6-2), we obtain

(6-6) .r xgt0 /j .Ft .2
p
a; � /�K�a .zgt 0/2;� � xgt 0/! 0

as 1
4
�2 � a!C1.

Consider the family of maps given by

Ft 0;a.r; q/D J
0

r2=4�a
ıKa ıFt .2

p
a; q/:

Observe that the Ft 0;a are equivariant, in the sense that


 �Ft 0;a.r; q/D Ft 0.r; 
 � q/

for all 
 2 � and q 2 Sn�1 .
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Then we can write

F �t 0;azgt 0 D F
�
t 0;a.jr

zgt02
p
ft 0 j

2
zgt0
/ dr2C r2Ft .2

p
a; � /�K�a .zgt 0/2;r :

By (6-6), F �t K
�
a .zgt 0/2;r converges smoothly to xgt 0 as 1

4
r2 � a!C1.

Thus, F �t 0;azgt 0 is C1–controlled in terms of the metric dr2C r2xgt 0 , uniformly in a .
Moreover, by (6-4) ˚

ft 0 �
1
8
r21
	
� Ft 0;a.fr � r1g/� fft 0 � 2r

2
1 g

for r1 � r0 .

Taking a!C1, by Arzelà–Ascoli, a subsequence of Ft 0;a converges to a limit Ft 0 .

Since Ft 0;a.2
p
bC s; � /D J 0s ıFt 0;a.2

p
b; � /, it follows that

Ft 0.2
p
bC s; � /D J 0s ıFt 0.2

p
b; � /;

which implies that requirement (1) above is satisfied. Clearly, (3) is also satisfied since
the Ft 0;a are equivariant.

Moreover, (6-6) implies that

lim
a!C1

lim
r!C1

F �t ıK
�
a .zgt 0/2;r D xgt 0 :

This, combined with the estimates of [8, Theorem 3.2], proves (2).

Closedness Let ti ! Nt 2 Œ0; 1� and assume that .Nti ; zgti ; fti / satisfy the con-
clusion of the theorem. Consider the sequence of the quotient orbifold expanders
.Oi D Nti=�; zgti ; fti ; p0;ti /. Note that for simplicity we use the same notation to
denote the metrics and soliton functions in the quotient space. These orbifold expanders
have a unique singular point, since the actions of � on Nti have a unique fixed point.

The compactness theorem in [8] carries over to the orbifold setting, using [22], to obtain
a pointed Cheeger–Gromov limit .ONt ; zgNt ; fNt ; p0;Nt /, which is an orbifold expander with
positive curvature operator. Moreover, p0;Nt is the unique singular point and the orbifold
expander is asymptotic to the cone .C.Sn�1=�/; dr2C r2xgNt=�/.

By Lemma 6.1, it follows that there is .NNt ; zgNt ; fNt ; p0;Nt / such that

.ONt ; zgNt ; fNt ; p0;Nt /D .NNt ; zgNt ; fNt ; p0;Nt /=�;

and the action on NNt is compatible with the standard action of � on Sn�1 .
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Remark 6.1 The positively curved gradient expander with one isolated orbifold
singularity, asymptotic to .C.Sn�1=�/; dr2C r2g/, is unique. To see this, note that
by Lemma 6.1 the orbifold expander has to be the quotient of a smooth, positively
curved expander asymptotic to .C.Sn�1/; dr2C r2xg/ under the action of � , with a
unique fixed point.

Remark 6.2 Using the fact that � has finite-characteristic variety, it is possible to
employ the continuity argument above to prove the following stronger statement: if
p0 2N is the critical point of the soliton function then there exists an orthonormal basis
of Tp0

N such that the orthogonal action on Tp0
N that is induced by the isometric

action on N is represented by the standard action of � on Rn .

Proof of Theorem 1.2 The proof is similar to the proof of Theorem 1.1, so we only
describe the necessary changes. For ease of notation, we assume again that there is
only one isolated conical singularity at z1 . Let .C.Sn�1=�/; dr2 C r2g1/ be the
cone that models the singularity at z1 . We denote by xg1 the lift of g1 to Sn�1 .
Since .Z; gZ/ is asymptotic to .C.Sn�1=�/; dr2 C r2g1/, there exists a smooth
metric xgZ on .B1.0/ n f0g/ � Rn , which is invariant under the natural action of � ,
such that there is a quotient map � W B1.0/! U, where U is a neighbourhood of z1
in Z and xgZ D ��gZ . Note that this implies that xgZ is asymptotic to the cone
.C.Sn�1/; dr2C r2xg1/ at 0.

Let .N; xgN ; f / be the expander given by Lemma 2.2, asymptotic to the cone

.C.Sn�1/; dr2C r2xg1/:

By Theorem 6.1 the action of � extends to .N; gN ; f /. As in Section 5.1 we can glue
in the orbifold quotient of this expander around z0 into gZ to obtain an approximating
sequence .Ms; Gs/ with one orbifold singularity. We can furthermore assume that
under � this lifts to a corresponding local gluing .B1.0/; Gs/ of .N; xgN ; f / into xgZ .

By short-time existence for the orbifold Ricci flow — see for example [17, Section 5.2] —
we obtain a solution .gs.t//t2Œ0;Ts� to Ricci flow with an isolated orbifold singularity,
starting at gs.0/DGs . We can arrange this in such a way that the flow lifts under �
to a smooth Ricci flow .hs.t//t2Œ0;T � on B1.0/, starting at Gs .

Now, all the estimates in Sections 5.2–5.10 are local, and we can thus apply them
to the family .hs.t//t2Œ0;T � . Note also that the conclusion of Theorem 3.1 holds for
.B1.0/; hs.t//. Although .B1.0/; hs.t// is not complete, all the arguments in the proof
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of that theorem go through, provided we apply the pseudolocality theorem for orbifolds
from [36] to .Ms; gs.t// to obtain the necessary curvature estimates in the conical
region.

Projecting under � we obtain the corresponding estimates for .gs.t//t2Œ0;T � . In
particular, as in Corollary 3.1, we obtain a uniform existence time T for gs.t/ and the
curvature bound

max
Ms

jRm.gs.t//jgs.t/ �
C

t
:

Thus, by the compactness theorem for orbifold Ricci flow in [22], there exists a limit
Ricci flow .g.t//t2Œ0;T � with an isolated orbifold singularity and the claimed properties.
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