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Quasi-projectivity of even Artin groups

RUBÉN BLASCO-GARCÍA

JOSÉ IGNACIO COGOLLUDO-AGUSTÍN

Even Artin groups generalize right-angled Artin groups by allowing the labels in the
defining graph to be even. We give a complete characterization of quasi-projective
even Artin groups in terms of their defining graphs. Also, we show that quasi-
projective even Artin groups are realizable by K.�; 1/ quasi-projective spaces.

14F45, 20F36; 14H30, 32S50, 57M05

Introduction

As suggested in Catanese [6], a group is said to be quasi-projective (resp. quasi-Kähler) if
it is the fundamental group of a smooth, connected, quasi-projective (resp. quasi-Kähler)
space, that is, the complement of a hypersurface in a projective (resp. Kähler) variety.
The question of classification of quasi-projective groups, which today is referred to as
Serre’s question, has been frequently alluded to since Zariski [25] and van Kampen [18]
proposed it for complements of curves in the projective plane. The search for properties
of such groups goes back to Enriques [13] and Zariski [26, Chapter VIII]. This has
developed in the search for obstructions for a group to be quasi-projective (resp.
quasi-Kähler) starting with Morgan [22], Kapovich and Millson [19], Arapura [1; 2],
Libgober [20], Dimca [10], Dimca, Papadima and Suciu [12], and Artal, Matei and the
second author [3; 4].

In this paper we concentrate on the possible characterization of quasi-projective Artin
groups, as stated in [12, page 451]. Any proof of such results requires the use of
obstructions to disregard the negative cases as well as the constructive part of finding
realizations for the positive cases.

A first approach to this problem is given in [12, Theorem 11.7], where quasi-projective
right-angled Artin groups are characterized by complete multipartite graphs correspond-
ing to direct products of free groups. In the more general case of even Artin groups —
that is, Artin groups associated to even-labeled graphs — the label plays an important
role and not all multipartite graphs produce quasi-projective Artin groups.
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Figure 1: QP–irreducible graphs of type xKr , S2` , and T .4; 4; 2/

In order to describe such graphs we define the concept of QP–irreducible graph. In this
context, graph means for us simple graph. Let us denote by GQP the family of labeled
graphs whose associated Artin groups are quasi-projective. Given two labeled graphs
�1 D .V1;E1;m1/, �2 D .V2;E2;m2/ we define their 2–join �1 �2 �2 D .V;E;m/

as the labeled graph given by the join of �1 and �2 whose connecting edges have all
label 2; that is,

m.e/D

�
mi.e/ if e 2Ei ;

2 if e 2E n .E1[E2/:

We say � 2 GQP is a QP–irreducible graph if � is not a 2–join of two graphs in GQP .

Denote by xKr a disjoint graph with r vertices and no edges. Also denote by Sm

the graph given by two vertices joined by an edge with label m. Finally, denote
by T .4; 4; 2/ the triangle as shown in Figure 1. It will be shown that these are the
only QP–irreducible even graphs. In other words, the main result of this paper is the
following.

Theorem 1 Let � D .V;E; 2`/ be an even-labeled graph and A� its associated even
Artin group. Then the following are equivalent:

(1) A� is quasi-projective, that is, � 2 GQP .

(2) � is the 2–join of finitely many copies of xKr , S2` and T .

Moreover, if � 2 GQP , then A� D �1.X /, where X D P2 n C is a curve complement.

The K.�; 1/ conjecture for an Artin group A� claims that a certain space which
appears as a quotient of the Coxeter arrangement by the action of the Coxeter group
associated to � is an Eilenberg–Mac Lane space whose fundamental group is A� , or
a K.A� ; 1/ space; see for instance [24] for a detailed explanation of this conjecture.
In the context of quasi-projective groups, we can also ask ourselves whether or not a
quasi-projective Artin group is realizable by an Eilenberg–Mac Lane space.

Conjecture (quasi-projective K.�; 1/ conjecture) Any quasi-projective Artin group
A� can be realized as A�D�1.X / for a smooth, connected, quasi-projective Eilenberg–
Mac Lane space X .
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The other main result of this paper is a positive answer to the quasi-projective K.�; 1/

conjecture for even Artin groups.

Theorem 2 Quasi-projective even Artin groups satisfy the quasi-projective K.�; 1/

conjecture.

This paper is organized as follows: In Section 1 the general definitions of (even) Artin
groups and quasi-projective groups will be given as well as the notion of characteristic
varieties as an invariant of a group. Section 2 will be devoted to studying kernels of
cyclic subgroups of Artin groups, called cocyclic subgroups. Section 3 focuses on
the problem of finding QP–irreducible graphs. The main theorems will be proved in
Section 4.

Acknowledgements Blasco-García is partially supported by the Departamento de
Industria e Innovación del Gobierno de Aragón and Fondo Social Europeo PhD grant
and the Spanish Government MTM2015-67781-P(MINECO/FEDER). Both authors are
partially supported by the Spanish Government MTM2016-76868-C2-2-P and Grupo
de Referencia Álgebra y Geometría from the Gobierno de Aragón.

1 Settings and definitions

1.1 Artin groups

Artin groups are an interesting family of groups from both an algebraic and a topological
point of view.

We recall the definition of the Artin group associated to a labeled graph � D .V;E; `/,
where .V;E/ is a graph and mW E ! Z�2 is the label map assigning an integer
me Dm.e/ 2 Z�2 to each edge e 2E of � .

Definition 1.1 (Artin groups) Let � D .V;E;m/ be a labeled graph. The Artin
group A� associated to � has the presentation

(1) A� D
˝
v 2 V j hu; vime D hv;uime ; e D fu; vg 2E

˛
;

where huvime is the alternating product of length me beginning with u, that is,

hu; vime D .uv � � � /„ƒ‚…
me

:

Note that hu; vi2` D .uv/` .
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Right-angled Artin groups are defined as Artin groups in which all the edges of the
graph have label 2.

Remark 1.2 As a word of caution, nonadjacent vertices have no associated relation.
This notation differs in other contexts where nonadjacencies are replaced by1–labeled
edges, edges with label 2 are removed, and labels 3 are erased.

One special subfamily of Artin groups which we will use in this paper is the family of
even Artin groups.

Definition 1.3 (even Artin groups) We say that an Artin group associated to the
graph � D .V;E;m/ is even if its labels me , for e 2E , are all even numbers. This
will be oftentimes be denoted as � D .V;E; 2`/.

1.2 Quasi-projective groups

The main focus of this paper is the study of those groups that can appear as fundamen-
tal groups in an algebraic geometry context, in particular as fundamental groups of
smooth connected quasi-projective varieties. Recall that a quasi-projective variety is
the complement of a hypersurface in a projective variety defined simply as the zero
locus of a finite number of homogeneous polynomials in CŒx0; : : : ;xn�.

Definition 1.4 A group G is quasi-projective if G D �1.X / for a smooth connected
quasi-projective variety X .

Example 1.5 Since the fundamental group of the complement of a smooth plane curve
of degree d in P2 is the cyclic group Zd and the complement of two lines in P2 has
the homotopy type of C� , all cyclic groups are quasi-projective. Moreover, since the
complement of r C 1 irreducible smooth curves C0; : : : ;Cr of degrees di D deg Ci

intersecting transversally has fundamental group

�1.P
2
nC0[ � � � [Cr /D Zr

˚Zd ;

where d D gcd.d0; : : : ; dr /, one immediately obtains that all abelian groups are quasi-
projective.

This example points out that the quasi-projective variety whose fundamental group
realizes a quasi-projective group is clearly not unique in any geometrical sense, since
the torsion part d can be obtained in many different ways.
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Example 1.6 At the other end of abelianization properties, the free group of rank r is
also quasi-projective since it can be realized as the fundamental group of the complement
of r C 1 points in the complex projective line P1 .

The following important properties of quasi-projective groups are well known.

Proposition 1.7 (1) If G is a quasi-projective group and K �G is a finite-index
subgroup of G , then K is also a quasi-projective group.

(2) If G1 and G2 are quasi-projective groups, then G1�G2 is also a quasi-projective
group.

1.3 Serre’s question for Artin groups

The question about deciding whether a certain group is quasi-projective is known as
Serre’s question. This question is solved for right-angled Artin groups, but almost
nothing is known for more general Artin groups.

Theorem 1.8 [12, Theorem 11.7] The right-angled Artin group A� is quasi-pro-
jective if and only if A� is a product of finitely generated free groups, ie A� D

Fn1
� � � � �Fnr

.

The direct implication is proved by exploiting the obstructions of resonance varieties
of quasi-projective groups. The converse is achieved by realizing such groups as
fundamental groups of quasi-projective varieties, built as products of complements of
points in C .

In fact, this result can be interpreted in terms of the graphs via the 2–join construction
as follows.

Definition 1.9 Consider two labeled graphs �1 and �2 . The 2–join of �1 and �2 ,
denoted by � D �1 �2 �2 , is the labeled graph � defined as the join of the graphs and
whose label map is defined as

m.e/D

�
mi.e/ if e 2E.�i/;

2 otherwise:

The Artin group of a 2–join is the product of the Artin groups, that is,

(2) A�1�2�2
DA�1

�A�2
:
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From Example 1.5 note that a free abelian group of rank r is an Artin group corre-
sponding to a complete right-angled Artin group of r vertices, or 2–joins of r points.
From Example 1.6 note that a free group of rank r is also an Artin group corresponding
to a totally disconnected graph of r vertices. Using (2), Theorem 1.8 can be rewritten
as follows.

Theorem 1.10 Let � be a right-angled graph. Then A� is quasi-projective if and
only if � is the 2–join of finitely many totally disconnected graphs.

For triangle Artin groups and general-type Artin groups, partial results on their quasi-
projectivity are given in [3]. Among those we describe the following results for Artin
groups of type AS2`

and AT as in Figure 1.

Theorem 1.11 [3, Chapter 5] The Artin groups AS2`
D ha; b j .ab/` D .ba/`i and

AT D ha; b; c j abab D baba; acac D caca; bc D cbi are quasi-projective.

Our objective in this paper is to give a similar characterization to Theorem 1.10 for
even Artin groups.

1.4 Characteristic varieties

Characteristic varieties are a sequence of invariants of a group. They were introduced
by Hillman [16] for links and systematically studied by Cohen and Suciu [9] for
hyperplane arrangement complements, Libgober [21] for plane curve complements
and, from a different point of view, by Arapura [1] for Kähler manifolds using jumping
loci of cohomology of local systems. It should also mentioned that the connection
between Alexander modules and cohomology of local systems was first proved by
E Hironaka [17].

For expository reasons we will mainly follow [21] and we will only provide specific
references for the more specialized results. Let X be a finite CW–complex and
G D �1.X / its fundamental group. For the sake of simplicity, we assume that the
abelianization H1.G/DG=G0 of G is torsion-free, say H1.G/D Zr . Consider the
universal abelian cover zX �

!X , where Deck.�/ D Zr is generated by t1; : : : ; tr 2

Deck.�/. Since Deck.�/ acts on H1. zX /, the group H1. zX / inherits a module structure
over the ring ƒ D ZŒDeck.�/� D ZŒZr �. This module MX D H1. zX / is called the
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Alexander module of X . As any ƒ–module, MX has a sequence of invariants given by
the Fitting ideals or analogously by the sequence of annihilators of its exterior powers

Ik D Annƒ
�Vk

MX

�
�ƒ;

where AnnR.A/D fr 2R j raD 0 for all a 2Ag �R is by definition the annihilator
ideal of an R–module A. After tensoring ƒ by C , a new ring ƒC is obtained over
which one can take an algebrogeometric point of view and consider the zero locus of
Ir ˝ƒ

C inside the torus SpecƒC D .C�/r .

Definition 1.12 We define the sequence of characteristic varieties of X as

V1.X / WDZ.I1/� � � � � Vk.X / WDZ.Ik/� � � � ;

where Z.Ik/� .C
�/r is the zero locus of Ik .

There is an alternative way to define characteristic varieties using Fitting ideals.

Definition 1.13 Let 'W A2!A1 be a map of free modules over a ring R. We define
the ideal zFk.'/�R as the image of the canonical mapVk

A2˝
Vk

A�1!R

induced by ' .

Definition 1.14 Let M be a finitely presented module over R and consider a free
resolution

'W A2!A1!M ! 0

of M such that A1 (resp. A2 ) is a finitely generated R–module of rank r (resp. s ).
For every integer k � 0 we define the k th Fitting ideal of M to be

Fk.M / WD zFr�k.'/:

Proposition 1.15 Under the above conditions, the sequence Vk.X / of characteristic
varieties coincides with the zero locus of the Fitting ideals of its Alexander mod-
ule Fk.MX /.

Proof This is an immediate consequence of [5, Corollary 1.3].

Characteristic varieties of quasi-projective spaces have the following property.
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Proposition 1.16 [1; 11] The irreducible components of the characteristic varieties
associated to a quasi-projective group G are algebraic translated tori by torsion points.
That is, they are intersections of polynomials of the form

P .t1; : : : ; tr /D
Y

i

.t
n1

1
� � � tnr

r � �i/;

where �i is a root of unity.

Moreover, the intersection of two such irreducible components is a finite union of
torsion points.

From the computational point of view, a third way to calculate the sequence of charac-
teristic varieties from a finite presentation of a group

(3) G D �1.X /D ha1; : : : ; an WR1 D � � � DRm D 1i

is provided via Fox calculus; see [14].

Formally, one associates a matrix

AD

�
@Ri

@aj

�
1�i�m;1�j�n

;

to the presentation (3), where the derivative of a word in the letters a1; : : : ; an is
obtained by extending the following defining properties by linearity:

@uv

@aj
D
@u

@aj
C�.u/

@v

@aj
;

@1

@aj
D 0 and

@ai

@aj
D

�
1 if i D j ;

0 otherwise.

The matrix A is called the Alexander matrix associated with (3) and it turns out to be
the matrix of the free resolution of a module which is not the Alexander module, but
the Alexander invariant zMX D H1. zX ; �

�1.p//, which is the relative homology of
the universal abelian cover of X relative to the preimage of a point as a ƒ–module
exactly as was done for the Alexander module MX . As in knot theory, both invariants
are related; see for instance [7, Chapter 1].

Proposition 1.17 The sequence of characteristic varieties of X can be calculated via
Fox calculus as

Vk.X / n x1DZ.FkC1.MX // n x1DZ.FkC1. �MX // n x1:
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The computational advantage of FkC1. �MX / is that it can be computed from the
Alexander matrix A of a free resolution of zMX as follows:

FkC1. zMX /D

8<:
ƒ if k > n;

0 if k �maxf0; n�mg;

.minors of order n� k of A/ otherwise.

2 Preliminaries

Characteristic varieties of even Artin groups are too similar to those of quasi-projective
groups and hence they cannot be used to tell them apart. However, some of their
finite-index subgroups can be detected as not quasi-projective. This is why we present
a study of a certain type of subgroup of even Artin groups that will be key in the
discussion on quasi-projectivity.

2.1 Cocyclic subgroups of even Artin groups

Let us consider the even Artin group associated to � D .V;E; 2`/.

The Artin group associated to � has a presentation A� D hv 2 V jA`e
.e/ for e 2Ei,

where A`e
.e/ denotes the relation .uv/`e D .vu/`e with eDfu; vg. Let us fix a vertex,

say u 2 V , and an integer k > 1; our purpose is to give a presentation of the index k

subgroup A�;u;k of A� defined as the kernel of the morphism

˛u;k W A� ! Zk ; v 7!

�
1 if v D u;

0 otherwise.

As suggested by an anonymous referee, one can think of these as finite-index normal
subgroups of a group that appear as the kernel of a surjection onto a finite cyclic group,
and refer to them as cocyclic subgroups.

Note that for any v 2 V , the conjugation of v by ui is in A�;u;k , vi WD uivu�i .
Also, xu WD uk will be in the kernel of ˛u;k . In order to write a presentation for
A�;u;k we need some notation. Let us denote by hx;yili;" a formal word in the letters
fx0; : : : ;xk�1;yg as follows:

hx;yili;" D .xi � � �xk�1yx0 � � �xi�1/
cxi � � �xiCr�1x"iCr ;

where l D ck C r , i 2 Zk and " D 0; 1. Note that hx;yili;" can be thought of as
a cyclic product of the elements x0; : : : ;xk�1 and y starting at xi and with length
c.kC 1/C r C ".
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Also, let us consider the set

V2;u D
˚
v 2 V j e D fu; vg 2 V; me D 2`e D 2

	
of vertices in V adjacent to u with label 2. The remaining vertices will be denoted by
W D V n .fug[V2;u/.

One obtains the following presentation for A�;u;k .

Theorem 2.1 The cocyclic subgroup A�;u;k is generated by

fxug[V2;u[

[
w2W

fw0; : : : ; wk�1g;

and the following is a complete set of relations:

(R1) A1.v; xu/ for v 2 V2;u .

(R2) A`e
.v; v0/ for v; v0 2 V2;u , e D fv; v0g 2E .

(R3) A`e
.v; wi/ for v 2 V2;u , w 2W , i 2 Zk , e D fv;wg 2E .

(R4) A`e
.wi ; w

0
i/ for w;w0 2W , i 2 Zk , e D fw;w0g 2E .

(RB) Bi
`e;k

.w; xu/ for w 2W \ lk.u/, i 2 Zk , e D fu; wg 2E .

Here `e D cekC re and Bi
`e
.w; xu/ is the relation

hw; xui
`e

i;" D hw; xui
`e

iC1;"
with "D

�
0 if 0� i < k � re;

1 otherwise:

Proof The proof is a direct application of the Reidemeister–Schreier theorem (see
[15, Theorem 2.1]) to obtain a presentation of A�;u;k as the kernel of ˛u;k

A�;u;k
j
,�!A�

˛u;k
��! Zk :

Consider the Reidemeister’s section sW Zk!A� of the map ˛u;k given as s.i/ WD ui .
Then A�;u;k admits a presentation generated by the letters

fxug[
[
v2V

fv0; : : : ; vk�1g;

where j .xu/D uk and j .vi/D uivu�i , whose relations are

(1) A`e
.vi ; wi/ for v;w 2 V and i 2 Zk if e D fv;wg 2E ;

(2) Bi
`e;k

.w; xu/ for i 2 Zk if v 2 lk.u/.
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However, note that if v 2V2;u , then uivu�iD viD vj Dujvu�j , implying a reduction
in the set of generators, which now becomes

fxug[V2;u[

[
w2W

fw0; : : : ; wk�1g:

Finally, note that the only relations affected by this elimination of generators are those
of type A`e

.vi ; wi/ for v 2 V2;u , which now become A`e
.v; wi/, and those of type

Bi
1;k
.v; xu/ for v 2 V2;u , which are now reduced to A1.v; xu/, as stated.

Remark 2.2 Our purpose will be to study the characteristic varieties of the cocyclic
subgroups. As presented in Section 1.4 these are subvarieties of Spec CŒG=G0�, for
G DA�;u;k . First we will describe the abelianization of A�;u;k . Since G is finitely
presented consider F!G the map from the free group F in the generators of G . The
kernel K of this homomorphism is a free subgroup generated by the set of relations
in G . Consider G

ˆG
�!G=G0 , g! tg , the abelianization map (with a multiplicative

structure). According to Theorem 2.1 the abelianization G=G0 DˆF .F/=ˆF .K/ is
generated by

ftxug[ ftvgv2V2;u
[

[
w2W

ftw;0; : : : ; tw;k�1g;

where for convenience tw;i is used to denote twi
. Note that (R1)–(R4) considered as

words in the free group F belong in fact to F 0 and hence their image by the abelianitation
map ˆF is trivial. On the other hand, the words Bi

`e;k
.w; xu/, w 2W \ lk.u/, produce

the following relations in homology:
(4) tw;i D tw;iCde

D � � � D tw;iCnde
if e D fu; wg; de D gcd.`e; k/;

Definition 2.3 The presentation described in Theorem 2.1 will be referred to as the
standard presentation of A�;u;k .

2.2 Fox calculus on the cocyclic subgroups A�;u;k

2.2.1 Fox derivatives of a standard presentation We want to describe the Fox
derivatives of the relations of a standard presentation of the subgroup A�;u;k .

The first set of relations (R1)–(R4) in Theorem 2.1 are classical Artin relations. In
order to describe their Fox derivatives we introduce the polynomial

pl.t/D
t l�1

t�1
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and as above, we denote by tg the homology class of an element g . In the following
results we present the Fox derivatives of certain relations of type W1 DW2 ; by this
we mean the derivative of the abstract word W1W �1

2
.

Lemma 2.4 Under the above conditions,

@A`e
.a; b/

@g
D

8<:
�.tb � 1/p`e

.tatb/ if g D a;

.ta� 1/p`e
.tatb/ if g D b;

0 otherwise:

In order to describe the derivatives of relations of type (RB), let us use the conventions

xtw;i;j D

8<:
tw;i � � � tw;j�1 if 0� i < j � k;

1 if i D j ;

xtw=xtw;j ;i if 0� j < i � k;

where tw;i D twi
, with wi D uiwu�i , t0 D txu and xtw Dxtw;0;k .

Lemma 2.5 Under the above conditions,

@Bi
`e;k

.w; xu/

@g
D8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

xtw;i;k.1�t�1
w;iCreC"

/pceC".t0xtw/ if gDxu;

xtw;i;j .1�t�1
w;iCreC"

/pce
.t0xtw/ if gDwj ; j < i;�

1�
t0xtw

tw;iCreC"

�
pce

.t0xtw/C.t0xtw/
ce if gDwi ;

xtw;i;j .1�t�1
w;iCreC"

/pceC1.t0xtw/ if gDwj ; i<j < iCreC";

xtw;i;j .1�t�1
w;iCreC"

/pce
.t0xtw/�

xtw;i;iCreC"

tw;iCreC"
.t0xtw/

ce if gDwj ; i<j D iCreC";

xtw;i;j .1�t�1
w;iCreC"

/pce
.t0xtw/ if gDwj ; j < iCreC":

Proof The proof is straightforward. We will work out a sample case. Assume gDwi .
Then

@Bi
`e;k

.w; xu/

@wi
D
hw; xui

`e

i;".hw; xui
`e

iC1;"
/�1

@wi
:
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First let us calculate hw; xui`e

i;"=@wi . It is straightforward that

hw; xui
`e

i;"

@wi
D pce

.t0xtw/C .t0xtw/
ce ;

hw; xui
`e

iC1;"

@wi
Dxtw;iC1;ipce

.t0xtw/:

Now, using the multiplication rule and

0D
@uu�1

@v
D
@u

@v
C tu

@u�1

@v
;

one obtains
.hw; xui

`e

iC1;"
/�1

@wi
D�

xtw;iC1;ipce
.t0xtw/

.t0xtw/cextw;i;iCreC"
:

Therefore,

@Bi
`e;k

.w; xu/

@wi
D pce

.t0xtw/C .t0xtw/
ce C .t0xtw/

ce tw;i;iCreC"

.hw; xui
`e

iC1;"
/�1

@wi

D pce
.t0xtw/C .t0xtw/

ce � .t0xtw/
ce tw;i;iCreC"

.xtw;iC1;i/pce
.t0xtw/

.t0xtw/ce tw;i;iCreC"

D pce
.t0xtw/C .t0xtw/

ce �
.t0xtw/

ce

tw;i;iCreC"
pce

D

�
1�

t0xtw

tw;iCreC"

�
pce

.t0xtw/C .t0xtw/
ce :

2.2.2 Alexander matrices for cocyclic subgroups of even Artin groups Given an
even labeled graph � D .V;E; 2`/, let us fix u 2 V and an integer k > 1. We will
denote by M� (resp. M�;u;k ) the Alexander matrix associated to the Artin presentation
of A� (resp. the standard presentation of A�;u;k given in Section 2.1). The purpose of
this section is to describe some relevant properties of both M� and M�;u;k .

Among these properties, the most relevant for our purposes refers to their rank. Note
that since these matrices have coefficients in a ring of Laurent polynomials RDCŒZm�,
a matrix A2Mat.R/ has rank at least r if and only if there is a value pD .t1; : : : ; tm/

in Cm such that A˝R=mp 2Mat.C/ has an r � r nonzero minor, where mp denotes
the maximal ideal at p . This operation will be called evaluating and will be used
oftentimes to simplify notation.

Lemma 2.6 The rank of the Alexander matrix M� defined above is exactly jV j � 1.

Geometry & Topology, Volume 22 (2018)



3992 Rubén Blasco-García and José Ignacio Cogolludo-Agustín

Proof Consider MT , the row submatrix of M� given by the jV j � 1 relations
determined by the edges of a maximal tree T in � . Since MT clearly has rank jV j�1,
the matrix M� has rank at least jV j � 1.

To see the equality, consider x� D .V; xE; 2x̀/, the completion of the graph � obtained
from � by adding an edge of label 2 for every pair of disconnected vertices. The
matrix Mx� associated to this graph contains M� as a submatrix. Choosing any vertex
v 2 V , we will show that the jV j � 1 rows associated to the relations involving v
generate the remaining rows.

Consider e D fw;w0g 2 xE . Using Lemma 2.4, the row fe associated to the classical
Artin relation Ax̀

e
.w;w0/ has the form

(5) px̀
e
.twtw0/.0 � � � 0 1�tw0 0 � � � 0 tw�1 0 � � � 0/;

where the nonzero elements are at the columns corresponding to the vertices w and w0

respectively.

Note that since x� is a complete labeled even graph, the three vertices v;w;w0 2 xV DV

form a triangle, that is, e D fw;w0g, e1 D fv;wg, e2 D fv;w
0g. Moreover, the rows

fe , fe1
and fe2

satisfy the linear combination

tv � 1

px̀
e
.twtw0/

feC
tw0 � 1

px̀
e1

.tvtw/
fe1
C

tw � 1

px̀
e2

.tvtw0/
fe2
D 0:

Thus, Mx� has rank less than or equal to jV j � 1. Since M� is a submatrix of Mx� ,
the result follows.

Notation 2.7 Recall from Theorem 2.1 that the generators of a standard presentation
of A�;u;k can be distinguished in three type-groups fxug[V2;u[Wk;u , where

V2;u D fv 2 V j e D fu; vg 2 V; `e D 1g;

Wk;u D fwi;j j wi 2W DV n.fxug[V2;u/; j 2 Zkg:

In the sequel, the elements in V2;u will be denoted by v1; : : : ; vm , where m is the
number of vertices adjacent to u with label 2. Analogously, the elements of Wk;u will
be denoted by wi;j , where wi 2W for 1� i � nD jV j �m� 1, and j 2 Zk .

From the results of the two previous sections, we immediately obtain the following
description of the Alexander matrix M�;u;k .
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Lemma 2.8 The Alexander matrix M�;u;k of A�;u;k associated to its standard pre-
sentation has the form

0BBBBBBBBBBBBBBBBBBB@

w�;0 w�;1 � � � w�;k�1 v1 � � � vm xu

0 0 � � � 0 Ak 0

A0
0

0 � � � 0 A0 0

0 A0
1
� � � 0 A1 0

:::
:::

: : :
:::

:::
:::

0 0 � � � A0
k�1

Ak�1 0

0 0 � � � A0
k

txu� 1
: : :

txu� 1

1� tvm

:::

1� tvm

MB

1CCCCCCCCCCCCCCCCCCCA

;

where:

(1) w�;j denotes the set of columns associated with all the generators of type
wi;j 2Wk;u for a fixed j 2 Zk , with wi 2W , as in Notation 2.7.

(2) Ak is the Artin matrix corresponding to relations of type (R2) in Theorem 2.1
with respect to the generators fv1; : : : ; vmg.

(3) The submatrices A0j and Aj are such that the matrix .A0j jA
0
j / is the Alexander

matrix of the relations of type (R3) in Theorem 2.1, ie their rows are of the form

fa;b � pcab
tatb

�
0 � � � 0 1�tb 0 � � � 0 ta�1 0 � � � 0

�
for aD vl 2 V2;u and b D wi;j 2Wk;u .

(4) The submatrix MB is the Alexander matrix associated to the relations of type
(RB) in Theorem 2.1. Note that this is a block matrix whose blocks are the
submatrices MB.w;u/ associated to the relations of type Bi

`e;k
.w; xu/ for i 2 Zk

and edges fu; wg 2E .

Lemma 2.9 The submatrix MB.w;u/ has maximal rank.

Proof As was mentioned above, we are assuming fu; wg 2E . Let us distinguish two
cases, depending on whether or not `e is a multiple of k .
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(1) Assume `e � 0 mod k . Using Lemma 2.5 and evaluating

tw;0 D tw;1 D � � � D tw;k�2 D 1

in MB.w;u/ , we obtain the following upper-triangular matrix, which has maximal rank:

M D

0BBBBBB@

w0 w1 � � � wk�2 wk�1 xu

txu� 1 txu� 1 � � � txu� 1 txu� 1 1� tw;k�1

1� tw;k�1txu 0 � � � 0 0 0

0 1� tw;k�1txu � � � 0 0 0

0 0
: : :

:::
:::

:::

0 0 � � � 1� tw;k�1txu 0 0

1CCCCCCA :

(2) Assume `e 6� 0 mod k . Write `e D cekC re , with 0< re < k . Analogously to
the previous case, using Lemma 2.5 and evaluating now at

tw;0 D tw;1 D � � � D tw;k�2 D tw;k�1 D 1;

we obtain the matrix

M D

0BBBBBBBBBBBBBBBBBBB@

w0 � � � wr�1 wr � � � wk�r�1 wk�r � � � wk�1 xu

1 �tc
xu 0

: : :
: : :

:::
: : :

: : :
:::

: : :
: : :

:::
: : :

: : :
:::

1 �tc
xu

�tcC1
xu 1

:::
: : :

: : :

�tcC1
xu 1 0

1CCCCCCCCCCCCCCCCCCCA

:

Formally, txuD 0 produces a matrix of maximal rank and hence the result follows using
small enough values of txu .

Remark 2.10 In the previous lemma, the submatrix of MB.w;xu/ resulting from delet-
ing the column xu has maximal rank. Therefore, in order to study the rank of M�;u;k ,
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and after row operations, one can assume that MB.w;xu/ is equivalent to

0BBBBBB@

w0 w1 � � � wk�2 wk�1 xu

� � � � � � � �

0 � � � � � � �

0
:::
: : : �

:::
:::

0 0 � � �
:::

:::
:::

0 0 � � � 0 � �

1CCCCCCA :

Recall that the corank of a matrix M is defined as

corank.M /D # columns.M /� rank.M /:

Then one has the following result on the corank of M�;u;k .

Lemma 2.11 Under the conditions above, corank.M�;u;k/� 1.

Proof Let us consider �u D � n fug. We will first assume that �u is connected.
Following the notation above, V2;u D fv1; : : : ; vmg denotes the set of vertices adjacent
to u with label 2 and W D fw1; : : : ; wng denotes the set of remaining vertices of �u .
We will consider the matrix M obtained by eliminating the column corresponding to u

from the Alexander matrix M�;u;k (which has .nkCmC 1/� 1D nkCm columns).
We will prove the result by showing that M has maximal rank.

(1) If nD 0, the matrix M becomes

M D

0BBBBBBB@

v1 � � � vm

1� txu
: : :

1� txu
� � �

:::
:::

:::

� � �

1CCCCCCCA
;

which has maximal rank.

(2) If n¤ 0, consider a spanning tree T on �u .

(a) Assume m¤ 0. In this case we will describe certain submatrices of M� which
will appear as blocks in M�;u;k of the appropriate rank.
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In order to do this, note that T will contain at least n edges e1; : : : ; en with the
property that each ei involves at least one vertex in W and W � V .fe1; : : : ; eng/. Let
us denote by S � T the forest containing the edges e1; : : : ; en . Note that S defines a
submatrix M0 of M�u

. We will show that columns and rows can be ordered in such a
way that M0 is upper-triangular, every diagonal element is nonzero, and the columns
associated to the vertices W come first.

This can be easily seen by induction. In the case that �u has only two vertices, say v
and w (this is by hypothesis the minimum number of vertices), and only one edge,
the matrix M0 is a row matrix of type (5) whose columns can be reordered as wanted.
Now suppose the result is true for �� 1 vertices and consider the case when �u has
exactly � vertices. Choose a vertex w0 in V .S/ of degree 1. Note that, by definition,
S must contain at least one such vertex in W , so one can assume w0 2 W . Then
S n fw0g verifies the result. The matrix M0 results from the latter after adding one
column (associated to w0 ) and one row f (associated to the edge containing w0 ). Note
that placing w0 as the first column and f as the first row concludes the proof.

Also note that the submatrix Mn of M0 resulting from keeping only the columns
associated to the vertices in W appears as is in k blocks in M�;u;k corresponding to
the copies of the vertices in W and the relations associated to the edges of S . This
produces a square submatrix Mk of M�;u;k of size kn and nonzero determinant.
Finally, let us add to Mk the columns associated to all vertices in V2;u placed at the
end. Since every vi 2 V2;u is adjacent to u with label 2 the relations associated to
these edges result in rows producing an upper-triangular square submatrix M of size
knCm whose determinant is nonzero as below:

M D

0BBBBBBBBBB@

W V

Mn

0
: : :

::: 0 Mn

:::
:::

: : : 1� txu
:::

:::
: : :

: : :
: : :

0 0 0 0 0 1� txu

1CCCCCCCCCCA
:

This ends this case.

(b) If mD 0, then the spanning tree T consists of n vertices and n� 1 edges. Let
us consider a vertex wn in � adjacent to u (there must be at least one since � is
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connected). Consider the Alexander submatrix MB.wn;xu/ associated with relations of
type (RB), which by Remark 2.10 is equivalent to

0BBBBBB@

wn;0 wn;1 � � � wn;k�2 wn;k�1

� � � � � � �

0 � � � � � �

0
: : :

: : : �
:::

0 0
: : :

: : :
:::

0 0 � � � 0 �

1CCCCCCA :

Let f1; : : : ; fk denote the k rows of this matrix.

On the other hand, let MT be the .n� 1/� n submatrix M� associated to T . Let us
order the relations in such a way that MT is upper-triangular with nonzero diagonal
elements and its last column corresponds to wn — in other words, the vertex associated
to the first column must have degree 1.

For each group of copies of the vertices wj ;p , there is a copy of the tree T with an
analogous matrix MT;p . Now, one can write the Alexander matrix M� in the following
way: the first rows correspond to the matrix MT , then the row f1 completed with
zeroes where necessary, then the rows corresponding to the matrix MT;1 , then the
row f2 . The final rows correspond to the matrix MT;k�1 and the row fk . This matrix
is clearly upper-triangular and it has maximal rank knD knCm.

Summarizing, if �u is connected, then rank.M�;u;k/ � nk Cm, and it follows that
corank.M�;u;k/� 1.

Assume now that �u is not connected. Denote by �1; : : : ; �s its connected components.

Then, the Alexander matrix M�;u;k after removing the column xu is of the form

0BBBB@

C1 C2 � � � Cs

MC1
0 � � � 0

0 MC2

: : :
:::

:::
: : :

: : : 0

0 � � � 0 MCs

1CCCCA ;
where MCi

corresponds to a connected graph. The result follows from the connected
case since the matrix is block-diagonal.
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Lemma 2.12 Assume e D fw;ug 2 E is such that `e � 0 mod k . Then the matrix
MB.w;xu/ has rank 1 over ƒ=p, where p is the ideal generated by 1� txutw;0 � � � tw;k�1 .

Proof By Lemma 2.5 we know that MB.w;xu/ is a multiple by pce
.txuxtw/ of the matrix

M D

0BBBB@
1�xtw;0;k txu� 1 � � � xtw;0;k�1.txu� 1/

xtw;1;k.tw;0� 1/ 1�xtw;1;0 � � � xtw;1;k�1.tw;0� 1/

:::
:::

: : :
:::

xtw;k�1;k.tw;k�2� 1/ xtw;k�1;0.tw;k�2� 1/ � � � tw;k�2� 1

1CCCCA :
Note that M can be written, mod p, as0BBBB@

t�1
xu .t0�1/ txu�1 � � � xtw;0;k�1.txu�1/

t�1
xu t�1

w;0
.tw;0�1/ t�1

w;0
.tw;0�1/ � � � xtw;1;k�1.tw;0�1/

:::
:::

: : :
:::

t�1
xu t�1

w;0
� � � t�1

w;k�2
.tw;k�2�1/ t�1

w;0
� � � t�1

w;k�2
.tw;k�2�1/ � � � tw;k�2�1

1CCCCA :
If fj denotes the j th row of M , note that

.txu� 1/tw;0 � � � tw;j�2fj D .tw;j�2� 1/f1

for any j D 2; : : : ; k � 1, and thus the result follows.

3 QP–irreducible graphs

As mentioned in the introduction, a graph is called quasi-projective — or a QP–graph —
if its associated Artin group is in GQP . The purpose of this section is to describe the
simplest QP–graphs, referred to as QP–irreducible graphs, for even Artin groups.

Definition 3.1 We call � a QP–irreducible graph if A� is quasi-projective and it
cannot be obtained as a 2–join of two quasi-projective graphs.

By Proposition 1.7(2), the 2–join of QP–graphs must be a QP–graph. However, in
general, properties of Artin groups are not easily read from subgraphs. This result
allows one to read an obstruction to quasi-projectivity from certain subgraphs of graphs.

Definition 3.2 We say that �1 is a v–subgraph of � if �1 is obtained from � by
deleting some vertices. We will denote it by �1 �v � . In this situation � is called a
v–supergraph of �1 .
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Lemma 3.3 Let A�1
be the Artin group of �1 D .V1;E1;m1/. Assume that for

certain k 2Z�2 and u 2 �1 , the subgroup yGk WDA�1;u;k �A�1
has the property that

there exist two ideals yI1; yI2 �
yƒk WDCŒH1. yGk/� such that

(C1) Z.yIi/� Vri
. yGk/, ri � 1 for i D 1; 2,

(C2) dim.Z.yI1C
yI2//� 1, and

(C3) (a) either Z.yI1C
yI2/� Vr . yGk/ for r >maxfr1; r2g,

(b) or yI1; yI2 are prime ideals of yƒk .

Then A�1
is not quasi-projective.

Moreover, if � D .V;E;m/ is any v–supergraph of �1 such that me is even for any
e D fv;wg 2E with v 2 V1 and w 2 V nV1 , then A� is not quasi-projective.

Proof Let us prove the first part by contradiction. Assuming that A�1
is quasi-

projective would imply that the cocyclic group A�1;u;k is also quasi-projective by
Proposition 1.7(1). The strategy of this proof is to reach a contradiction on the
quasi-projectivity of A�1;u;k by finding two irreducible components of its charac-
teristic variety intersecting in a positive dimensional component and thus contradicting
Proposition 1.16. Let us assume that r1 � r2 . Note that the set of zeroes Z.yIi/ may
be nonirreducible, but, using condition (a) in the statement, there exists an irreducible
component, say H1 (resp. H2 ), in Z.yI1/ (resp. Z.yI2/) which is not contained in Z.yI2/

(resp. Z.yI1/). By condition (C2) their intersection H1 \H2 has dimension greater
than or equal to 1.

To prove the moreover part, we will show that A� also satisfies the hypotheses of
the first part, that is, that there exist two ideals I1; I2 �ƒk WDCŒH1.Gk/� satisfying
conditions (C1)–(C3) for the subgroup Gk WDA�;u;k �A� . Note that the condition
on the parity of the labels joining vertices from V1 and V nV1 ensures the existence
of a commutative diagram

1 // Gk
// G� //

��

Z // 1

1 // yGk
// G�1

// Z // 1

which allows for the existence of a morphism H1.Gk/ ! H1. yGk/ extending to a
morphism ƒk !

yƒk . Moreover, yƒk Dƒk=I for a certain ideal. In order to describe
it let us decompose V as a disjoint union V D V1[

zV2;u[W , where

zV2;u D
˚
v 2 V nV1 j e D fu; vg 2E; me D 2

	
:
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Then
I D Ideal

�
ftv � 1 j v 2 V n zV2;ug[ ftw;j � 1 j w 2W; j 2 Zkg

�
:

Since the tensor product is right exact, the matrix yM�;u;k DM�;u;k˝ƒ=I determines
the Alexander yƒk –module of yGk . We claim that

(6) yM�;u;k D

 
M�1;u;k 0

0 A0

!
:

In order to check this, first note that the submatrix of yM�;u;k whose rows are associated
to the edges of �1 has the form �

M�1;u;k 0
�
:

The claim will follow if we prove that the remaining rows, associated to the edges
in E nE1 , have the property that any entry in a column in V1 is in yI . The latter is a
consequence of (5) and Lemma 2.5.

Finally, note that if condition (a) (resp. (b)) is satisfied for yIi , then also condition (a)
(resp. (b)) is satisfied for Ii D I C yIi using (6) (resp. using that Z.Ii/DZ.yIi/� f1g

is irreducible). Therefore the ideals I1; I2 � ƒk also satisfy the conditions of the
statement for A� , and the result follows.

Remark 3.4 By Theorem 1.10, the only QP–irreducible right-angled graphs are sets of
r disconnected vertices, xKr . On the other hand, we have established by Theorem 1.11
that both the segment S2` with label 2` (for ` > 1) and the triangle T .4; 4; 2/ are
also QP–irreducible graphs.

: : :

r

xKr

2`

S2`

4 4

2

T .4; 4; 2/

Figure 2: QP–irreducible graphs of type xKr , S2` and T .4; 4; 2/

The purpose of this section is to show that the only QP–irreducible graphs are xKr , S2`

(with ` > 1), and T .4; 4; 2/.

First we can assume that our graph has at least three vertices, otherwise it is QP–
irreducible if and only if it is disconnected xKr (with r D 1; 2) or a segment S2` (with
`> 1). The second reduction is given in [3] for strictly even graphs, that is, even graphs
that are not right-angled. We recall it here.
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Theorem 3.5 [3, Theorem 5.26] If � is a strictly even, noncomplete graph with at
least three vertices, then A� is not quasi-projective.

This result is shown by proving that the characteristic varieties of the Artin groups
of noncomplete strictly even graphs contain two irreducible components having a
positive-dimensional intersection, which contradicts Proposition 1.16.

Note that QP–irreducible even graphs — other than a point — are necessarily strictly
even. Hence, the purpose of the rest of the section is to study complete QP–irreducible
graphs of three or more vertices.

3.1 Complete QP–irreducible graphs with 3 vertices

Theorem 3.6 Assume that � is an even v–supergraph of T .2r; 2k; 2`/ with r � 3

and k � 2; see Figure 3. Then A� is not quasi-projective.

Proof Without loss of generality, one can assume r � k � `. Four separate cases
will be considered. The first case will be shown in detail. The remaining cases follow
analogously.

2r 2k

2`
v w

u

Figure 3

(1) In the case r � 4, k � 2, consider the index r subgroup AT;u;r � AT , where
T D T .2r; 2k; 2`/. According to Lemma 2.8 MT;u;r has two B–Artin submatrices
MB.v;xu/ and MB.w;xu/ of r rows each and an Artin submatrix of r rows (corresponding
to the r relations A`.vi ; wi/ for i 2 Zr ). Hence MT;u;r is a 3r � .2r C 1/ matrix
whose corank is � 1 by Lemma 2.11. Define p D 1� txuxtv and consider the ideals

I1 D .p; tv;0� 1; tv;1� 1; tw;0� 1; tw;1� 1/;

I2 D .p; tv;0� 1; tv;2� 1; tw;0� 1; tw;2� 1/:

Note that rank.MB.v;xu/jIi
/ D 1 by Lemma 2.12. In addition, note that the first

two rows of MT;u;r jI1
are zero and so are the first and third rows of MT;u;r jI2

.
Summarizing, MT;u;r jIi

contains three submatrices Mi;A , Mi;B.v;xu/ and Mi;B.w;xu/ ,
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where rank.Mi;A/� r � 2, rank.Mi;B.v;xu//D 1 and rank.Mi;B.w;xu//� r . Therefore
rank.MT;u;r jIi

/� 2r � 1. Since MT;u;r has 2r C 1 columns, one has

corank MT;u;r jIi
� 2> corank MT;u;r :

Also,

corank MT;u;r jI1CI2
<maxfcorank MT;u;r jI1

; corank MT;u;r jI2
g;

since I1C I2 makes one extra row vanish, which is originally independent from the
others. Finally, Z.I1C I2/ has dimension � 1 since the variable txu is free (r � 4, so
P gives a relation between tv;3 and txu but does not fix any of them). Therefore, by
Lemma 3.3, A� is not quasi-projective.

According to Remark 2.2, if gcd.k; r/D1 (resp. gcd.k; r/D2), then tw;0D tw;1D tw;2

(resp. tw;0 D tw;2 ). However, the variables tv;i are all different due to the choice of r ,
the label of the edge fu; vg, as the index of the finite subgroup. Hence, the ideals I1

and I2 satisfy the properties of Lemma 3.3 anyway.

(2) The case r D 3, k D 3 can be treated by considering AT;u;3 �AT and the ideals

I1 D .txu� 1; tv;1� 1; tv;2� 1; tw;0� 1; tw;1� 1/;

I2 D .txu� 1; tv;1� 1; tv;2� 1; tw;0� 1; tw;2� 1/:

(3) The case r D 3, k D `D 2 follows after considering the subgroup AT;u;2 �AT

of index 2 and the ideals

I1 D .1� txuxtw; 1� txuxtv;p0/;

I2 D .1� txuxtw; 1� txuxtv;p1/;

with pi D 1C tw;i tv;i C t2
w;i t

2
v;i for i D 0; 1.

(4) Finally, if r D3, kD2 and `D1, the result follows after considering the subgroup
AT;v;3 �AT of index 3 and the ideals

I1 D .p0;p1; 1� txvxtu/;

I2 D .p0;p2; 1� txvxtu/;

where pi D 1C twtu;i for i D 0; 1; 2.

Theorem 3.7 Assume � is an even v–supergraph of T .4; 4; 4/. Then A� is not
quasi-projective.
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Proof Consider T D T .4; 4; 4/ with vertices V D fu; v; wg and the index 2 cocyclic
subgroup AT;u;2 �AT . By Lemma 2.8, the Alexander matrix of the associated group
is

MT;u;2 D

0BBBBBBB@

v0 w0 v1 w1 xu

p0.1� tw;0/ p0.tv;0� 1/ 0 0 0

0 0 p1.1� tw;1/ p1.tv;1� 1/ 0

txu� 1 0 tv;0.txu� 1/ 0 1� tv;0tv;1
1� tv;1txu 0 tv;0� 1 0 tv;1.tv;0� 1/

0 txu� 1 0 tw;0.txu� 1/ 1� tw;0tw;1
0 1� tw;1txu 0 tw;0� 1 tw;1.tw;0� 1/

1CCCCCCCA
;

with pi D 1C tv;i tw;i for i D 0; 1. By Lemma 2.11, MT;u;2 has corank � 1. Consider
the ideals

I1 D .1� txuxtv; 1� txuxtw;p0/;

I2 D .1� txuxtv; 1� txuxtw;p1/:

By Lemma 2.12, it is clearly seen that MT;u;2jIi
has corank 2. Therefore

2Dmaxfcorank MT;u;2jI1
; corank MT;u;2jI2

g> 1� corank MT;u;2:

It is also easy to see that MT;u;2jI1CI2
has corank 3, which implies

corank MT;u;2jI1CI2
D 3>maxfcorank MT;u;2jI1

; corank MT;u;2jI2
g D 2:

Moreover, Z.I1CI2/ has dimension �1 since I1CI2 is generated by four polynomials
in five variables. Therefore, by Lemma 3.3, A� is not quasi-projective.

The previous results combined prove the following.

Corollary 3.8 The only strictly even complete QP–graphs with three vertices are
T .2`; 2; 2/ with `� 2 and T .4; 4; 2/. Moreover, the latter is the only QP–irreducible
even graph with three vertices.

3.2 QP–irreducible even graphs with 4 vertices

As an immediate consequence of Theorems 3.6, 3.7 and 3.5, the only candidates for
QP–irreducible even graphs with 4 vertices must be complete v–supergraphs of either
T .2`; 2; 2/ or T .4; 4; 2/. Figure 4 shows all such possible graphs.

This list can easily be obtained using the following observation.
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4 4

4 4

2
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Figure 4

Lemma 3.9 Any QP–irreducible even graph with at least 3 vertices has labels no
larger than 4.

Proof By Theorem 3.5 one can assume the graph � is complete. Assume me � 6

for some edge e 2E of � . By Theorem 3.6 all edges adjacent to e must have a label
2. Since � is complete, � D feg �2 �

0 , where � 0 is the resulting v–subgraph after
deleting the vertices of e .

Note that the 4–graph in Figure 4, top-left, is the only candidate containing T .2; 2; 2/,
Figure 4, top-right, is the only candidate containing T .4; 4; 2/ but no T .2; 2; 2/, and
Figure 4, bottom, is the only candidate containing T .4; 4; 2/ but no T .2`; 2; 2/.

We are going to see that these three candidates cannot be QP–irreducible graphs.

Theorem 3.10 There are no QP–irreducible even graphs of four vertices.

Moreover, an even graph containing any of the graphs in Figure 4 as a v–subgraph is
not quasi-projective.

Proof As discussed above, one only needs to rule out the list of graphs shown
in Figure 4. We will do this separately and using similar arguments. For this reason we
will show only the case of Figure 4, top-left, in detail.
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Figure 4, top-left Consider the index 2 subgroup A�;u;2 �A� . Its Alexander matrix
is

M�;u;2 D

0BBBBBBBBBBBBBBBBBBBB@

w1;0 w2;0 w3;0 w1;1 w2;1 w3;1 xu

1� t2;0 t1;0�1 0 0 0 0 0

1� t3;0 0 t1;0�1 0 0 0 0

0 1� t3;0 t2;0�1 0 0 0 0

0 0 0 1� t2;1 t1;1�1 0 0

0 0 0 1� t3;1 0 t1;1�1 0

0 0 0 0 1� t3;1 t2;1�1 0

txu�1 0 0 t1;0.txu�1/ 0 0 1� t1;0t1;1
1� t1;1txu 0 0 1� t1;0 0 0 t1;1.t1;0�1/

0 txu�1 0 0 t2;0.txu�1/ 0 1� t2;0t2;1
0 1� t2;1txu 0 0 t2;0�1 0 t2;1.t2;0�1/

0 0 txu�1 0 0 t3;0.txu�1/ 1� t3;0t3;1
0 0 1� t3;1txu 0 0 t3;0�1 t3;1.t3;0�1/

1CCCCCCCCCCCCCCCCCCCCA

;

where ti;j denotes twi;j
. We now consider the prime ideals

I1 D .txu� 1; t1;1� 1; t2;0� 1; t2;1� 1; t3;0� 1/;

I2 D .txu� 1; t1;0� 1; t1;1� 1; t2;1� 1; t3;0� 1/:

Note that corank.M�;u;2jI1
/ D corank.M�;u;2jI2

/ D 2, corank.M�;u;2jI1CI2
/ D 4

and

Z.I1CI2/Df.txu; t1;0; t1;1; t2;0; t2;1; t3;0; t3;1/D .1; 1; 1; 1; 1; 1; �/ j�2C�g� .C�/7:

The result follows from Lemma 3.3 and the fact that dim Z.I1C I2/D 1.

Figure 4, top-right Consider A�;u;2 �A� and the prime ideals

I1 D .tv � 1; txu� 1; t1;1� 1; t2;0� 1/;

I2 D .txu� 1; t1;1� 1; t2;0� 1; 1C t1;0tv/:

Figure 4, bottom Consider the subgroup A�;u;2 �A� and the prime ideals

I1 D .txu� 1; t1;0� 1; t2;1� 1; 1C t1;1tv/;

I2 D .txu� 1; t1;0� 1; t2;1� 1; 1C t2;0tv/:
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3.3 QP–irreducible even graphs with more than 4 vertices

As a consequence of the results obtained in the previous sections, no quasi-projective
even Artin group can contain any of the following:

(1) A vertex with two edges with labels 2r , r � 3 and 2k , k � 2; see Theorems 3.6
and 3.5.

(2) A triangle T .4; 4; 4/; see Theorem 3.7.

(3) A three-edge tree of labels 4; 4; 4; see Theorems 3.5, 3.7 and 3.10.

Theorem 3.11 There are no QP–irreducible even graphs with more than 3 vertices.

Proof The result follows for graphs with four vertices by the previous section.

For any QP–irreducible even graph � with more than four vertices, note the following:

� � must be complete by Theorem 3.5.

� If � contains an edge e with label me D 2r , r � 3, then by (1) above, � D
feg �2

y� and hence � is not QP–irreducible.

� If � contains an edge e with label me D 4, then either � D feg �2
y� (see (2)

above) or � D T .4; 4; 2/�2
y� (see (3)).

4 Proofs of the main theorems

4.1 Proof of Theorem 1

As a consequence of Theorems 1.10 and 1.11, graphs of type Kr , S2` and T .4; 4; 2/

as in Figure 2 are QP–irreducible. Moreover, by Corollary 3.8 and Theorem 3.11 these
are the only ones. Using (2) and Proposition 1.7(2) any 2–join QP–irreducible graphs
is quasi-projective. This completes the first part of the proof.

For the moreover part it is enough to check that the product of two fundamental groups
of curve complements is also the fundamental group of a curve complement. This is a
consequence of the following result.

Theorem 4.1 [23] Let C1 and C2 be plane algebraic curves in C2 . Assume that the
intersection C1\C2 consists of d1d2 distinct points, where the di (i D 1; 2) are the
respective degrees of C1 and C2 . Then the fundamental group �1.C

2 n .C1[C2// is
isomorphic to the product of �1.C

2 nC1/ and �1.C
2 nC2/.
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4.2 Proof of Theorem 2

Since the product of two K.�; 1/ spaces is also a K.�; 1/ space, it is enough to prove
the result for the QP–irreducible even graphs xKr , S2` and T .4; 4; 2/. The graph xKr

is associated to the free group Fr of rank r , which can be realized as the fundamental
group of the complement to r points in C , which is an Eilenberg–Mac Lane space.

The group AS2`
associated to the segment graph S2` is the fundamental group of the

complement X to the affine curve fy�x`g[fyD 0g. In projective coordinates X can
be seen as the complement to the projective curve C D fyz.yz`�1�x`/D 0g � P2 ,
that is, X D P2 n C . Consider the projection � W P2 n fŒ1 W 0 W 0�g ! P1 defined by
Œx W y W z� 7! Œy W z�. Note that �jX W X ! P1 n fŒ0 W 1�; Œ1 W 0�g is a well-defined,
locally trivial fibration and moreover, the fiber at each point Œy W z� is homeomorphic to
C n f` pointsg. Thus X is also an Eilenberg–Mac Lane space.

Finally, the triangle Artin group AT associated to the triangle T D T .4; 4; 2/ is the
fundamental group of the complement X to the affine curve

fy �x2
g[ f2x�y � 1D 0g[ f2xCyC 1D 0g

as in [3, Example 5.11]. Using the identification C2D P2 nfzD 0g we can think of X

as the complement of a smooth conic and three tangent lines in the complex projective
plane. After an appropriate change of coordinates, X can be given as P2 n C , where
C D fF.x;y;x/D xyz.x2Cy2C z2� 2.xyCxzCyz//D 0g � P2 .

Figure 5: Projective curve C D fF D 0g

We will consider a 4-fold cover X4 of X . Since the higher homotopy groups of X

and X4 are isomorphic, it is enough to show that X4 is an Eilenberg–Mac Lane space.
Consider the Kummer morphism �W P2! P2 defined by �.Œx W y W z�/D Œx2 W y2 W z2�.
Note that � is a 4:1 ramified cover and its ramification locus is RD fxyz D 0g. Now
R� C so � defines an unramified cover on X4 D �

�1.X /. Moreover, the preimage
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of C by � is a product of 7 lines, three of which are the axis xyzD 0 and four of which
are the preimage of the conic .x2Cy2C z2� 2.xyCxzCyz//D 0. In particular,

C2 D �
�1.C/D fF.x2;y2; z2/D 0g

D fxyz.xCyC z/.xCy � z/.x�yC z/.x�y � z/D 0g:

Geometrically this corresponds to a Ceva arrangement — formed by the six lines
of a generic pencil of conics — with an extra line passing through two out of the
three double points. In our equations, the pencil of conics can be defined as FŒ˛Wˇ� D

˛..xCz/2�y2/�ˇ..x�z/2�y2/. Note that for ˛DˇD 1 one obtains FŒ1W1�D 4xz .
The rational map � W P2ÜP1 defined by the pencil, where ��1Œ˛ Wˇ�DfFŒ˛Wˇ�D 0g,
that is, �.Œx W y W z�/D Œ.x� z/2�y2 W .xC z/2�y2�, is not defined at the basepoints
of the pencil. Since the curve C2 contains these basepoints, one obtains that �jX4

is
well defined, where X4 D �

�1.X /D P2 n C2 .

After our discussion above, recall that the special fibers of � are the six lines

fxz.xCyC z/.xCy � z/.x�yC z/.x�y � z/D 0g:

Finally note that the line y D 0 is a multisection since �jyD0 is defined by

�.Œx W 0 W z�/D Œ.x� z/2 W .xC z/2�;

which is 2:1 and ramifies only at Œ0 W 1� and Œ1 W 0�, therefore the map

�jX4
W X4! P1

n fŒ0 W 1�; Œ1 W 0�; Œ1 W 1�g;

Œx W y W z� 7! Œ.x� z/2�y2
W .xC z/2�y2�;

is a well-defined locally trivial fibration whose generic fiber is the smooth conic of the
pencil with six points removed (the four basepoints and the two points of intersection
with the multisection fy D 0g). Therefore X4 is an Eilenberg–Mac Lane space.

5 An example

To end this paper we take a closer look into the triangle Artin group AT , T DT .4; 4; 2/

using geometrical methods coming from its quasi-projectivity property.

First we will show that AT is not an extension of free groups. To do so we first
study the surjections of AT onto a free group Fr of rank r . Any surjection of groups
G1� G2 induces an injection of characteristic varieties Vi.G2/ ,! Vi.G1/ via the
change of base �˝CŒG2=G0

2
�CŒG1=G0

1
� that turns an ideal in CŒG2=G0

2
� into an ideal
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in CŒG1=G0
1
�; see [21]. An Alexander matrix of AT can be obtained immediately

from Lemma 2.4 and (5) as

MAT
D

0@�.t0t1C 1/.t1� 1/ .t0t1C 1/.t0� 1/ 0

�.t0t2C 1/.t2� 1/ 0 .t0t2C 1/.t0� 1/

0 �t2C 1 t1� 1

1A ;
and thus its characteristic variety V1.AT /DT1[T2[T3 is the zero set of the Fitting
ideal generated by the 2� 2–minors of MAT

, where

T1 D f.�t�1; t; 1/ j t 2C�g � .C�/3;

T2 D f.�t�1; 1; t/ j t 2C�g � .C�/3;

T3 D f.�t�1; t; t/ j t 2C�g � .C�/3

are three one-dimensional complex tori in .C�/3 . Since the characteristic variety of the
free group Fr has dimension r , this implies that the only possible surjection AT �Fr

is restricted to r D 1.

Note that any short exact sequence

1! Fs!AT ! Z! 0

splits and the action of Z on AT is trivial in homology. Therefore AT D Fs ÌZ is
called an IA–product of free groups and by [8, Corollary 3.4] the Poincaré polynomial
PAT

.t/ of AT should factor as a product of linear terms in ZŒt �. However, since the
complement X D P2 n C of the conic and three tangent lines shown in Figure 5 is a
K.AT ; 1/–space, it is enough to calculate PX .t/. One can easily check that h0.X /D 1

and h1.X /D 3. Moreover, using the additivity of the Euler characteristic,

�.X /D �.P2/�
X

�.Ci/C # Sing.C/D 3� 4�.P1/C 3D 1

D h0.X /� h1.X /C h2.X /D�2C h2.X /;

where the Ci are the irreducible components of C and �.Ci/D �.P1/D 2 since they
are all rational curves. Therefore h2.X /D 3 and thus

PAT
.t/D PX .t/D 3t2

C 3t C 1;

which is not a product of linear factors in ZŒt �.

However, as shown in the proof of Theorem 2 (see Section 4.2) its 4–fold cover X4

is the complement of a line arrangement of fibered type, whose fundamental group
�1.X4/ is a finite-index normal subgroup of AT , which is an IA–free product of free
groups F3 ÌF3 .
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