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Higher enveloping algebras

BEN KNUDSEN

We provide spectral Lie algebras with enveloping algebras over the operad of little G –
framed n–dimensional disks for any choice of dimension n and structure group G ,
and we describe these objects in two complementary ways. The first description is
an abstract characterization by a universal mapping property, which witnesses the
higher enveloping algebra as the value of a left adjoint in an adjunction. The second, a
generalization of the Poincaré–Birkhoff–Witt theorem, provides a concrete formula in
terms of Lie algebra homology. Our construction pairs the theories of Koszul duality
and Day convolution in order to lift to the world of higher algebra the fundamental
combinatorics of Beilinson–Drinfeld’s theory of chiral algebras. Like that theory,
ours is intimately linked to the geometry of configuration spaces and has the study of
these spaces among its applications. We use it here to show that the stable homotopy
types of configuration spaces are proper homotopy invariants.

17B99, 55R80, 55P35

1 Introduction

As the structure inherited by the tangent space to the identity element of a Lie group,
Lie algebras are classically tied to the smooth geometry of manifolds. In this work, we
explore a more primitive source for this same type of algebraic structure. Our guiding
philosophy is that the Lie bracket is an emergent feature of the topology of manifolds.

Our eventual goal is to formulate and prove a statement about the relationship between
Lie algebras and manifolds in terms of algebras over the operad of little n–dimensional
disks. Before doing so, we undertake a brief tour of some of the manifestations of this
relationship, beginning with its first appearance in the study of configuration spaces.

1.1 Configuration spaces

In his study of the braid groups, Arnold [3] was led to consider the cohomology of
Confk.R

2/, where for a manifold M we write

Confk.M /D f.x1; : : : ;xk/ 2M k
W xi ¤ xj if i ¤ j g
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4014 Ben Knudsen

for the configuration space of k ordered points in M . His approach, later adapted
to Euclidean spaces of higher dimension by Cohen [14, Part III], was to exploit a
natural family of cohomology classes f!ij gi¤j , where !ij is dual to the submanifold
Mij � Confk.R

n/ defined by allowing the points xi and xj to orbit freely at fixed
distance about their center of mass; see Sinha [36] for a beautiful discussion of this
point of view. More precisely, !ij is the class pulled back under the Gauss map

Confk.R
n/! Sn�1; .x1; : : : ;xk/ 7!

xi �xj

kxi �xjk
;

from the standard volume form on Sn�1 . The cohomology ring of Confk.R
n/ is

generated by these classes subject only to the following two relations, which we have
named suggestively:

Antisymmetry !ij D .�1/n�1!ji :

Jacobi !ij!jk C!ki!ij C!jk!ki D 0:

To explain in what sense these names are deserved, we turn to the theory of iterated
loop spaces.

1.2 Loop spaces

Let .X;x0/ be a pointed space and �nX WDMap..In; @In/; .X;x0// the associated
n–fold loop space, where I D Œ�1; 1�. Given rectilinear self-embeddings ff1; : : : ; fkg

of In with disjoint images, we obtain a k –to-one operation mf1;:::;fk
on �nX by

setting

mf1;:::;fk
.'1; : : : ; 'k/.t/D

�
'i.f

�1
i .t// if t 2 imfi ;

x0 else.

As the embeddings vary, we obtain a map

mk W En.k/� .�
nX /k !�nX;

where En.k/ is the space of rectilinear embeddings of
`

k In into In . The compati-
bility relations among the various mk are summarized by saying that the collection
En D fEn.k/gk�0 forms an operad and that the maps mk endow �nX with the
structure of an En –algebra; see Boardman and Vogt [9] and May [32] for early
articulations of these ideas.

The connection to Lie algebras lies in the observation that the map En.k/!Confk.R
n/

given by evaluation at the origin is a homotopy equivalence for each k , so that, at the
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level of homology, there is an induced operation

ŒM12�˝H�.�
nX /˝2

!H�.�
nX /;

called the Browder bracket; see Browder [12]. Equipped with this operation, the shifted
homology H�Cn�1.�

nX / obtains the structure of a graded Lie algebra, for which
antisymmetry and the Jacobi identity are guaranteed by the corresponding relations in
the cohomology of configuration spaces.

1.3 Enveloping algebras

More homotopically, one might expect that the .n�1/–fold suspension of a differential
graded En –algebra — such as the singular chain complex C�.�

nX / — should naturally
carry the structure of a Lie algebra, perhaps up to homotopy.

Since E1 is equivalent to the operad governing associative algebras, the statement for
n D 1 is nothing more than the familiar fact that the commutator in an associative
algebra is a Lie bracket. Classically, this observation is the beginning of a fruitful
interplay between these two types of algebra, the avatar of which is the universal
enveloping algebra, the left adjoint to the forgetful functor taking an associative algebra
to its commutator Lie algebra.

Our first result generalizes this situation to higher dimensions and nonzero character-
istics. We will actually prove a more general version of this result, stated below in
Section 2.1, which takes into account the action of a structure group G!O.n/.

Theorem A (G D feg) Let C be a stable, presentably symmetric monoidal 1–
category. There is an adjunction of 1–categories between nonunital En –algebras and
Lie algebras in C fitting into a commuting diagram of adjunctions:

AlgL.C/

Un

))

��

Algnu
En
.C/

��

oo

C

Œ1�n�

77

L

EE

C

Enu
n

XX

Œn�1�
oo
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4016 Ben Knudsen

Here we use the notation Œr � of homological algebra for the r –fold suspension in C,
and AlgL.C/ denotes the 1–category of spectral Lie algebras in C; see Section 3.1.

The left adjoint Un is the titular higher enveloping algebra functor, and its construction
is the main objective of this paper; however, almost all of the work will go toward
exhibiting the right adjoint forgetful functor; see Section 1.7 below for an outline of
this argument. The functor Un provides a wide class of examples of En –algebras,
one which crucially includes the free algebras; indeed, a free En –algebra — which is
simply a tensor algebra when nD 1 — is the higher enveloping algebra of a free Lie
algebra. Since free En –algebras are built from the homotopy types of configuration
spaces, this formal consequence of Theorem A suggests an approach to the study of
these spaces premised on Lie algebras. We will return to this idea in Section 1.4 below.

We close this section by pointing out that, if C is taken to be the underlying1–category
of the model category of chain complexes over a field k of characteristic zero, then
AlgL.C/ is equivalent to the underlying 1–category of the category of differential
graded Lie algebras with the induced model structure. Thus, Theorem A implies that
dg En –algebras — C�.�

nX IQ/, for example — carry a shifted dg Lie structure, up
to homotopy; in particular, there is an induced adjunction at the level of homotopy
categories. A Quillen adjunction, given by induction and restriction along the map of
operads constructed in Fresse [21], is also available in this case. The value of the derived
left adjoint of this adjunction is another candidate for a higher enveloping algebra, and
we expect the two to coincide. We choose to offer this alternative construction both
because of its greater generality and because it admits a remarkably explicit description,
to which we now turn.

1.4 Poincaré–Birkhoff–Witt

Classically, one forces the universal enveloping algebra U.L/ to have the desired
universal mapping property by defining it as the quotient of the free associative algebra
on L by the relation

x˝y �y˝x D Œx;y�:

This relation is inhomogeneous with the respect to the natural grading of the tensor
algebra by word length and, after passing to the associated graded for the induced
filtration of U.L/, becomes the defining relation of the symmetric algebra. The classical
Poincaré–Birkhoff–Witt theorem formalizes this observation, asserting an isomorphism

gr U.L/Š Sym.L/:
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In particular, at the level of underlying vector spaces, the universal enveloping algebra
is indistinguishable from the symmetric algebra.

We prove the following generalization of this result; see Section 3.3 for the full version.

Theorem B (G D feg) Let L be a Lie algebra in C. There is a natural equivalence
of augmented En –algebras

Un.L/˚ 1C ' CL.�nL/:

Here, CL denotes the functor of Lie chains, defined in this generality as the monadic
bar construction against the free Lie algebra monad.

In order to understand how this result generalizes the Poincaré–Birkhoff–Witt theorem,
we recall that, in characteristic zero, the functor CL is modeled by the classical
Chevalley–Eilenberg complex CE.L/, which is the graded vector space Sym.LŒ1�/
equipped with a differential determined by the Lie bracket of L (see Fresse [20, Part 6]
for a comparison), while the cotensor �nL ' L.R

n/C is modeled by the tensor
product APL.S

n/˝L, where APL is the functor of (reduced) piecewise-linear de Rham
forms (see Hinich [25, Lemma 4.8.3]). Since the Lie bracket in this tensor product is
homotopically trivial, we have the equivalence of underlying chain complexes

Un.L/' CE.APL.S
n/˝L/' Sym.LŒ1� n�/:

The algebra appearing on the right-hand side of the equivalence of Theorem B has long
been an object of interest. In particular, in its guise as a factorization algebra, it is an
important player in the approach to quantum field theory pioneered by Costello and
Gwilliam; see Gwilliam [24, Sections 4.6–4.7] and Costello and Gwilliam [15, Part III,
Section 6.6], for example. From this point of view, Theorem A may be interpreted as
endowing this well-known object with a useful universal property.

In combination with the theory of factorization homology, Theorem B offers excellent
computational opportunities. Some of these are explored in Knudsen [29], Drummond-
Cole and Knudsen [17] and Brantner, Hahn and Knudsen [11], which employ the theory
developed here in studying the homology of configuration spaces of manifolds. As a
further illustration of its effectiveness, we include the following application.

Theorem C Let M be an n–manifold. For any k � 0, the †k –equivariant homotopy
type of †1C Confk.M / depends only on the homotopy type of the one-point compacti-
fication MC . In particular, the stable homotopy types of the unordered configuration
spaces of M depend only on the homotopy type of MC .
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This result improves on [2, Corollary B], which is nonequivariant and requires M to
be compact, connected and piecewise-linear; however, that work also provides explicit
bounds on the number of suspensions necessary to achieve homotopy invariance. Our
methods are unable to replicate such bounds.

1.5 The Ran space

Our approach to the results outlined above lies in importing the ideas of Beilinson and
Drinfeld [8] and Francis and Gaitsgory [19] from algebraic geometry into topology. We
now recall some of the context of those works. Throughout this motivational section,
the reader unfamiliar with the theory of D–modules is invited instead to imagine
sheaves, as D–modules will play no role in the remainder of the paper.

The starting point is the so-called Ran space of a variety X , which may be thought of
heuristically as the space

Ran.X /D fS �X W 0< jS j<1g

of finite subsets of X (in the topological context, this heuristic is a definition). The
collection of D–modules on Ran.X / carries a remarkable monoidal structure, the
chiral tensor product, which is computed on stalks by the formula

.F ˝ch G/S D
M

SDS1qS2

FS1
˝GS2

:

Motivated by conformal field theory, Beilinson and Drinfeld were led to consider a
certain algebraic structure emerging from this tensor product, which may be phrased
either in cocommutative terms as a factorization algebra or in Lie terms as a chiral
algebra. As shown in [19], this duality is an instance of the Koszul duality between
cocommutative coalgebras and Lie algebras.

One advantage of working on the chiral or Lie side is that one is able to construct
examples by passing through a second monoidal structure, the star tensor product,
which is computed on stalks as

.F ˝?G/S D
M

SDS1[S2

FS1
˝GS2

:

This tensor product interpolates between the ordinary tensor product and the chiral
tensor product, and through it an ordinary Lie algebra gives rise to a chiral Lie algebra,
its chiral envelope, and thereby to a factorization algebra.
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The connection to our previous discussion is indicated by a theorem of Lurie [31,
Theorem 5.5.4.10], which asserts that En –algebras may be realized as certain “factor-
izable” cosheaves on the Ran space of Rn — roughly, these are cosheaves F equipped
with equivalences FS '

N
x2S Fx for every finite subset S � M . Motivated by

this theorem, our strategy will be to build a topological framework corresponding to
that of [8] and [19], and to construct higher enveloping algebras by “passing to the
chiral side”.

In more detail, we introduce the absolute Ran category, a category fibered over the
category of framed manifolds, and an 1–category of constructible cosheaves on this
category. We define two symmetric monoidal structures on this 1–category and
proceed according to the following table of analogies:

D–module on Ran.X / constructible cosheaf on Rann

chiral tensor product disjoint tensor product
star tensor product overlapping tensor product

factorization algebra on X nonunital En–algebra
chiral envelope higher enveloping algebra

As mentioned above, factorization algebras in the context of [8] and [19] are defined to
be a special kind of cocommutative coalgebra, while En –algebras are modeled rather
as certain symmetric monoidal functors. Thus, if this table of analogies is to have any
sense, we must answer the following question: How is a symmetric monoidal functor
like a cocommutative coalgebra?

1.6 Day convolution

In a very general setting, when W is symmetric monoidal, Fun.V;W/ carries the rather
pedestrian symmetric monoidal structure of pointwise tensor product. If V is also sym-
metric monoidal, however, one obtains a more interesting symmetric monoidal structure,
that of Day convolution. Defined in the setting of ordinary categories in Day [16] and in
the 1–categorical context of Glasman [23] (see also Lurie [31, Corollary 4.8.1.12]),
the convolution of functors F and G is the left Kan extension in the following diagram:

V�V

˝V

��

F�G
// W�W

˝W
// W

V

Geometry & Topology, Volume 22 (2018)
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One of the attractive features of this tensor product is that providing a functor F with
the structure of a commutative algebra for Day convolution is equivalent to providing F

with a lax monoidal structure, with the lax structure maps supplied by the components

F.v1/˝F.v2/! colim
v1˝v1!v

F.v1/˝F.v2/! F.v/

of the algebra structure map. In this way, symmetric monoidal functors from V to W

naturally form a full subcategory of commutative algebras for Day convolution.

In order to answer the question posed above, we turn the discussion of the previous
paragraph on its head. Taking the right Kan extension instead of the left produces a
different tensor product, for which a cocommutative coalgebra is precisely an oplax
functor. Since a symmetric monoidal functor may be viewed equally as a lax functor
with an extra property or as an oplax functor with an extra property, we find that
such functors naturally form a full subcategory of cocommutative coalgebras for this
alternative form of convolution.

1.7 Sketch of the argument

Once fleshed out, the ideas alluded to so far constitute a passage among four different
models for En –algebras, as indicated in the schematic

n topological
model

oProposition
2.1.8
'

n discrete
model

oProposition
2.5.6
'

n cocommutative
model

oLemma
3.2.2
'

n Lie
model

o
:

The leftmost equivalence, which closely follows the ideas of Lurie [31, Chapter 5],
models En –algebras as symmetric monoidal functors out of a certain category disjoint
unions of disks, while the middle equivalence is provided by the theory of Day convolu-
tion. The rightmost equivalence passes through Koszul duality between Lie algebras and
cocommutative coalgebras as in Quillen [34], the absence of connectivity hypotheses in
this equivalence owing to the notion of symmetric monoidal pronilpotence introduced
in Francis and Gaitsgory [19]. Combining these equivalences produces an embedding
of nonunital En –algebras into the 1–category of Lie algebras in the disjoint monoidal
structure on constructible cosheaves on the absolute Ran category.

Now, the disjoint and overlapping tensor products are related by a natural transformation,
so that Lie algebras for the former may be viewed as Lie algebras for the latter. We use
this natural relationship to produce the forgetful functor of Theorem A by embedding its
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source and target into these two categories of Lie algebras, as depicted in the diagram

Algnu
En
.C/

��

� � Corollary 3.2.3
// AlgL.cShvcbl.Rann;C/q/

��

AlgL.C/
� � Proposition 3.3.3

// AlgL.cShvcbl.Rann;C/[/

From here, Theorem B is within close reach, since the functor CL , as the avatar of
Koszul duality, is baked into the definition of the forgetful functor.

Linear outline
� Section 2.1 We discuss G –framed manifolds and related algebraic structures,

comparing topological and discrete incarnations.

� Sections 2.3–2.4 We introduce the absolute Ran category and constructible
cosheaves on it, and we discuss various push and pull operations for the latter.

� Sections 2.5–2.6 We introduce the disjoint monoidal structure on constructible
cosheaves, realizing disk algebras as factorizable cocommutative coalgebras
therein, and we show that this monoidal structure is pronilpotent.

� Sections 3.1–3.2 We discuss the Koszul duality relating cocommutative coalge-
bras and Lie algebras, and we characterize those Lie algebras whose associated
cocommutative coalgebras are factorizable, thereby obtaining a Lie theoretic
model for disk algebras.

� Sections 3.3–3.4 We complete the proofs of the main theorems.

� Sections 4–5 We provide various deferred constructions and arguments.
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Conventions

(1) We work in an 1–categorical context, where for us an 1–category will always
mean a quasicategory. The standard references here are [30; 31]. We use the same
symbol for an ordinary or topological category and the corresponding 1–category, as
well as for a topological space and its 1–groupoid of singular simplices. The terms
initial and final are always understood in the 1–categorical sense, and (co)limits are
always 1–categorical (co)limits, which correspond (in the presence of a comparison
to some model category) to homotopy (co)limits.

(2) In a monoidal context, we write Symk.c/ WD .c˝k/†k
, where, in accordance

with the previous convention, we intend the 1–categorical coinvariants. We may
distinguish among multiple monoidal structures on the same underlying 1–category
using superscripts (eg ˝q and ˝[ ). When performing constructions involving a
monoidal structure, we may use the corresponding symbol to indicate which monoidal
structure is intended (eg Symk

q
).

(3) We use the superscript “nu” to indicate nonunital algebraic structures and noncouni-
tal coalgebraic structures (eg Coalgnu

Com.V/ for the 1–category of noncounital cocom-
mutative coalgebras in the possibly nonunital symmetric monoidal1–category V). For
more on nonunitality in 1–categorical algebra, we refer the reader to [31, Section 5.4].

(4) Where possible, left adjoints are written on the left to aid in their identification.
In more spatially complicated situations, left adjoints are written with bent arrows. A
hooked arrow indicates a fully faithful functor.

(5) In an abstract setting, restriction along the functor j is denoted by j \ (we owe this
piece of notation to David Gepner), left Kan extension by j! , and right Kan extension
by j� . In situations more closely related to geometry, we may employ the notation j !

and j � , where j ! is always the right adjoint of j! and j � the left adjoint of j� . The
reader is warned that the functors j � and j ! may have no relation to the functor j \ .

Geometry & Topology, Volume 22 (2018)
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(6) We write cŒk� for the k –fold suspension of the object c . With a structure group
G! Top.n/ in mind, we reserve the notation †nc D .Rn/C˝ c for the same object
with G –action inherited from Rn ; if c already carried a G –action, then †nc carries
the diagonal action. Thus, we have the following commuting diagram:

ModG.C/
†n

// ModG.C/

��

C

†n

77

triv

OO

Œn�
// C

The dual remarks apply to �n . We regard ModG as symmetric monoidal with the Carte-
sian monoidal structure (or equally, by stability, the co-Cartesian monoidal structure).

(7) Every manifold considered herein may be embedded as the interior of a compact
manifold with boundary (such an embedding is not part of the data).

(8) We write Fin for the category of finite sets and Surj for the wide subcategory on
the surjective functions. An object of Fin is typically denoted by a letter such as I

or J , and we write UI for the I –indexed set fUigi2I . For a topological space X with
connected components fXigi2I , we identify X with the I –indexed set XI .

2 The Ran space

2.1 Structured manifolds and disk algebras

Following [31, Section 5.1], we write En for the 1–operad obtained from the topolog-
ical operad of rectilinear embeddings of open n–dimensional unit cubes (see [9; 32]).
The 1–operad En and its algebras are the fundamental objects of study for us, but it
will be useful to work in a slightly more general setting. The references for the material
in this section are [5] and [31, Chapter 5], although, for the sake of typographical clarity,
we shall at times depart from the notation of these references. We make almost no
use of the theory of 1–operads outside of this section, but the reader seeking further
information should consult [31].

As usual, we let Top.n/ denote the topological group of selfhomeomorphisms of Rn .
Recall that an n–manifold has a tangent microbundle classified by a map M!BTop.n/,
well defined up to homotopy, called the tangent classifier of M .

Geometry & Topology, Volume 22 (2018)
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Definition 2.1.1 Let G ! Top.n/ be a continuous group homomorphism. A G–
framing on an n–manifold M is a map M ! BG lifting the homotopy class of the
tangent classifier.

Following [5], there is a topological category MfldG of G –framed n–manifolds and G –
framed embeddings among them, where the space of G –framed embeddings from M

to N is defined as the homotopy pullback

EmbG.M;N /

��

// Map=BG.M;N /

��

Emb.M;N / // Map=BTop.n/.M;N /

Disjoint union of G–framed manifolds endows MfldG with a symmetric monoidal
structure.

Remark 2.1.2 In [5], the authors consider manifolds structured by an arbitrary fibra-
tion B! BTop.n/. In the notation of that reference, MfldG WDMfldBG

n . Our results,
and their proofs, are valid in this more general setting.

Definition 2.1.3 The 1–operad EG is the operadic nerve of the endomorphism
operad of Rn in MfldG .

Remark 2.1.4 In the notation of [31, Chapter 5], EG WD EBG . This object is an
1–operadic analogue of the semidirect product of G with the little disks operad in
the sense of [35].

Example 2.1.5 Taking G to be the trivial group, [31, Example 5.4.2.15] provides an
equivalence EG ' En of 1–operads.

In general, an EG –algebra may be thought of informally as an En –algebra together
with a compatible G –action. Indeed, there is a forgetful functor

AlgEG
.C/!ModG.C/ WD Fun.BG;C/;

which is obtained by restricting the action of EG to the space of unary operations, the
topological monoid EmbG.Rn;Rn/'G ; see [5, Lemma 2.8].

In what follows, we will be interested in the 1–category Algnu
EG
.C/ of nonunital

EG –algebras in a suitable stable target C. We now state the full version of the main
theorem.

Geometry & Topology, Volume 22 (2018)
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Theorem A Let C be a stable, presentably symmetric monoidal 1–category and
G ! Top.n/ a continuous group homomorphism. There is a forgetful functor from
nonunital EG –algebras to Lie algebras in G–modules in C fitting into a commuting
diagram of adjunctions

AlgL.ModG.C//

UG

**

��

Algnu
EG
.C/

��

oo

ModG.C/

�nŒ1�

44

L

EE

ModG.C/

Enu
G

XX

†nŒ�1�
oo

The proof will require a significant amount of preparatory work and is completed below
in Section 3.3. The first reduction is to replace EG with a discrete model.

Definition 2.1.6 We define three categories.

(1) MfldG is the ordinary category with the same objects and morphisms as MfldG .

(2) DG �MfldG is the subcategory with objects the G –framed manifolds homeo-
morphic to

`
k Rn for some k � 0 and morphisms the G –framed embeddings

that surject on �0 .

(3) EucG � MfldG is the full subcategory spanned by the G–framed manifolds
homeomorphic to Rn .

Both MfldG and DG are symmetric monoidal under disjoint union.

Definition 2.1.7 Let F W DG! C be a functor.

(1) We say that F is locally constant if F sends isotopy equivalences to equivalences
in C.

(2) We say that F is reduced if F.¿/' 0.

The definition of local constancy extends in the obvious way to functors F W EucG! C.
Note that a morphism in DG is an isotopy equivalence if and only if it is a �0 –bijection;
in particular, every morphism in EucG is an isotopy equivalence.

The following result asserts that we may work with the discrete category DG without
loss of information. This result is essentially [31, Theorem 5.4.5.9], and we shall
employ the language of that reference for the duration of its proof.
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Proposition 2.1.8 Let C be a symmetric monoidal1–category. There is a commuting
diagram

Algnu
EG
.C/

��

// Fun˝.DG ;C/

��

ModG.C/ // Fun.EucG ;C/

in which both horizontal arrows are fully faithful with essential image the locally
constant functors.

Proof Letting EucG �MfldG denote the full subcategory spanned by the objects
of EucG ; the functor EucG! EucG is localization at the set of isotopy equivalences.
Combining this fact with the equivalence EucG ' BG of [5, Lemma 2.8] supplies the
bottom functor, its full faithfulness and the identification of the essential image.

We turn now to the top equivalence. Letting Eı
G

denote the endomorphism operad
of Rn in MfldG , we note that DG is equivalent to the symmetric monoidal envelope
(see [31, Section 2.2.4]) of the 1–operad .Eı

G
/nu controlling nonunital Eı

G
–algebras;

thus, in light of the equivalences BEucG ' BG ' .EG/
˝

h1i
, it will suffice by [31,

Theorem 2.3.3.23] to verify that Eı
G
! EG is an approximation of 1–operads in the

sense of [31, Section 2.3.3], which follows by the argument of [31, Lemma 5.4.5.11].

2.2 Globalization

We turn now to the relation of these notions to the larger category MfldG . We make
the following obvious generalization.

Definition 2.2.1 We say that a functor F W MfldG! C is locally constant if F sends
isotopy equivalences to equivalences in C.

We write Funloc.MfldG ;C/� Fun.MfldG ;C/ for the full subcategory spanned by the
locally constant functors. Denoting the inclusion by | W DG!MfldG , then it is obvious
that | \F is locally constant whenever F is. Less obviously, we have the following
result, whose proof is deferred momentarily for the sake of continuity.

Lemma 2.2.2 If F W DG! C is locally constant, then so is |!F .

Thus, the .|!; |
\/–adjunction descends to an adjunction between subcategories of locally

constant functors. This adjunction also interacts well with the symmetric monoidal
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structures at hand; indeed, [6, Lemma 2.15] implies that the .|!; |
\/–adjunction lifts to

an adjunction between 1–categories of symmetric monoidal functors, ie that we have
a diagram

Fun˝.DG ;C/

��

,,

Fun˝.MfldG ;C/oo

��

Fun.DG ;C/

|!

++

Fun.MfldG ;C/
|\

oo

in which both horizontal pairs are adjoint pairs and both square diagrams commute.

Definition 2.2.3 Let A be a nonunital EG –algebra in C. Factorization homology
with coefficients in A, denoted by

R
A, is the value on A of the composite

Algnu
EG
.C/

Proposition
2.1.8
,! Fun˝.DG ;C/

|!
�! Fun˝.MfldG ;C/:

Note that
R

A is locally constant by Lemma 2.2.2. Moreover, the factorization homology
retains all of the information of A; indeed,

R
Rn A'A˚1C as nonunital EG –algebras.

Remark 2.2.4 Factorization homology of the nonunital EG –algebra A as defined
here coincides with the factorization homology of the unital EG –algebra A˚ 1C as
defined in [5] (essentially, this identification follows from Proposition 2.19 of that
work). The reader is cautioned not to conflate this with the version of factorization
homology for nonunital disk algebras defined in [31, Section 5.5.4], denoted there
by
R nu

A. These two objects do not coincide.

Proof of Lemma 2.2.2 We have a factorization of | as the composition

DG

|1
�! DiskG

|2
�!MfldG ;

where DiskG �MfldG is the full subcategory spanned by the objects of DG ; that is,
morphisms in DiskG need not surject on �0 . The lemma will follow upon verifying
that .|1/! and .|2/! each preserve local constancy.

For the first claim, we note that |1=UI
receives a final functor from the discrete category

of subsets of I , which sends S � I to the object .US ;US !UI /. Therefore, we have
the natural equivalence

.|1/!F.UI /'
M
S�I

F.US /;

which implies the local constancy of .|1/!F .
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For the second claim, let F 0W DiskG ! C be locally constant, let 'W M ! N be an
isotopy equivalence, and consider the commuting diagram

DiskG=M

lM
��

'
// DiskG=N

lN
��

DiskG=M

z'
// DiskG=N

where DiskG � MfldG is the full subcategory spanned by the objects of DiskG .
Let F 0

M
denote the composite DiskG=M ! DiskG

F 0
�!C, and note that '\F 0

N
' F 0

M
.

According to [5, Proposition 2.19], the functor lN is localization at the set of isotopy
equivalences, so we have a factorization F 0

N
' l

\
N

F 00
N

by local constancy. Thus,

.|2/!F
0.M /' colim F 0M

' colim'\F 0N

' colim'\l
\
N

F 00N

' colim l
\
M
z'\F 00N

' colim z'\F 00N
' colim F 00N

' colim l
\
N

F 00N

' colim F 0N

' .|2/!F
0.N /;

where the fifth equivalence follows from the fact that lM is a localization and hence
final, the sixth from the fact that z' is an equivalence and hence final, and the seventh
from the fact that lN is a localization and hence final.

2.3 The absolute Ran category

Let M be an n–manifold. The Ran space of M is a topological space whose underlying
set is the set

Ran.M /D fS �M W 0< jS j<1g

of finite subsets of M . Following [31, Section 5.5.1], we topologize Ran.M / as follows.
Let D.M / denote the partially ordered set of nonempty open subsets UI �M with
Ui ŠRn and inclusions that surject on �0 . We equip Ran.M / with the topology gen-
erated by fS �UI WS\Ui ¤¿; i 2 IgUI2D.M / . Thus, in particular, we have a functor

D.M /! Op.Ran.M //:
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Remark 2.3.1 In [31, Section 5.5.2], the poset D.M / is denoted by Disj.M /nu .

The reader interested in further information regarding the space Ran.M / may con-
sult [37], [8, Section 3.5.1], [31, Section 5.5] or [7, Section 3.7]. Except in the proof
of Lemma 4.2.3 below, the main role in what follows of the Ran space as such will be
as a guiding analogy in our exploration of the structural features of a certain category,
which we now define.

Definition 2.3.2 The (G –framed) absolute Ran category is the category RanG speci-
fied as follows:

(1) An object of RanG is a G–framed manifold M and a submanifold UI �M

with Ui ŠRn .

(2) A morphism from UI �M to VJ �N is a G –framed embedding 'W M !N

such that
(a) '.UI /� VJ , and

(b) �0.'jUI
/W I ! J is surjective.

Forgetting the submanifold defines a functor � W RanG ! MfldG , while equipping
UI �M with the G –framing induced by M defines a functor �W RanG!DG .

Remark 2.3.3 Our choice of terminology is motivated by the observation that there
is an isomorphism ��1.M /ŠD.M /qf¿g. Since D.M / is a basis for the topology
of Ran.M /, we think of RanG as something like a bundle over the moduli (category)
of G –framed manifolds with fiber over M the Ran space of M (with the addition of
a disjoint basepoint f¿g).

We shall say that a morphism ' 2 RanG is an isotopy equivalence if �.'/ 2DG is an
isotopy equivalence. The reader is cautioned that, in this case, �.'/ is typically not an
isotopy equivalence.

Definition 2.3.4 Let F W RanG! C be a functor.

(1) We say that F is a constructible cosheaf if F sends isotopy equivalences to
equivalences in C.

(2) We say that F is reduced if F.¿�¿/' 0.

We write cShvcbl.RanG ;C/� Fun.RanG ;C/ for the full subcategory spanned by the
constructible cosheaves (resp. cShvcbl

0 .RanG ;C/, reduced constructible cosheaves).
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Remark 2.3.5 If F W RanG ! C is a constructible cosheaf, then, according to [31,
Proposition 5.5.1.14 and Lemma 5.5.4.13] and Remark 2.3.3, the restriction of F to the
fiber ��1.M /ŠD.M /qf¿g determines a C–valued cosheaf on the topological space
Ran.M /C that is constructible with respect to the natural stratification by cardinality.
Thus, the data of a reduced constructible cosheaf on RanG amounts to a functorial
choice of constructible cosheaf on the Ran space of each G –manifold separately.

Lemma 2.3.6 Restriction along �W RanG!DG induces the horizontal equivalences
in the commuting diagram

Funloc.DG ;C/
� // cShvcbl.RanG ;C/

Funloc
0 .DG ;C/

OO

� // cShvcbl
0 .RanG ;C/

OO

Proof Fix F1 2 Funloc.DG ;C/ and F2 2 cShvcbl.RanG ;C/. The lemma follows from
the following five claims:

(1) The restriction �\F1 is a constructible cosheaf. The claim is immediate from the
definitions.

(2) The right Kan extension ��F2 is locally constant. By Lemma 2.3.7 below, we
have the natural equivalence ��F2.UI /' F2.UI � UI /, and the claim follows
by constructibility.

(3) The unit F1! ���
\F1 is an equivalence. This is immediate from Lemma 2.3.7.

(4) The counit �\��F2! F2 is an equivalence. By Lemma 2.3.7, the value of the
counit at UI �M is the value of F2 on the morphism UI � UI ! UI �M ,
which is an equivalence by constructibility.

(5) F1 is reduced if and only if �\F1 is reduced. The claim is immediate from the
definitions.

Lemma 2.3.7 The object .UI � UI ; idUI
/ is initial in UI # � .

Proof Given an object VJ �M of RanG and a morphism 'W UI ! VJ in DG , the
composite UI

'
!VJ �M defines a morphism from UI � UI to VJ �M in RanG

lifting ' . Since a G –framed embedding is determined by the restriction of its codomain
to its image, this lift is unique.
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We obtain a functor

� !
WD �\| \W Funloc.MfldG ;C/! cShvcbl.RanG ;C/:

Note that � ! is not the restriction of �\ to the subcategory of locally constant functors;
indeed, �\F is almost never a constructible cosheaf. Our choice of notation is justified
by the following lemma, which guarantees that the suggested adjunction

�!W cShvcbl.RanG ;C/� Funloc.MfldG ;C/ W�
!

does in fact exist.

Lemma 2.3.8 If F W RanG!C is a constructible cosheaf, then �!F is locally constant.

Proof The functor � admits a section � W DG ! RanG , given by �.UI /D UI � UI ,
and clearly �� D | . The equivalence �!�! ' 1 yields a natural transformation �!! �\

by adjunction, whence a natural transformation

|! ' �!�!! �!�
\:

Unwinding the definitions, the component of this map on the object M is the map
induced on colimits by the functor |=M ! �=M induced by � . To show this map is
an equivalence, we note that it factors as a composite of functors

|=M ! ��1.M /! �=M ;

both of which are final. But now the proof is complete, for

�!F

Lemma
2.3.6
' �!�

\�!F ' |!�!F

is locally constant by Lemma 2.2.2, since �!F is locally constant by Lemma 2.3.6.

Within Ran.M / lies a closed subspace naturally identified with the manifold M ,
namely the subspace of singletons. The corresponding object in our context is the
following:

Definition 2.3.9 The (G –framed) absolute diagonal is the full subcategory DiagG �

RanG spanned by the objects UI �M with jI j D 1.

Definition 2.3.10 A locally constant cosheaf (resp. sheaf) on the absolute diagonal is
a functor F W DiagG! C (resp. Diagop

G
) sending every arrow to an equivalence in C.
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We write cShvloc.DiagG ;C/�Fun.DiagG ;C/ and Shvloc.DiagG ;C/�Fun.Diagop
G
;C/

for the full subcategories spanned by the locally constant cosheaves and the locally
constant sheaves, respectively.

Remark 2.3.11 The fiber over M of the projection DiagG ! MfldG is the poset
Euc.M / of Euclidean neighborhoods in M . Since BEuc.M /'M , we see that the
data of a locally constant (co)sheaf on the absolute diagonal amounts to a functorial
choice of locally constant (co)sheaf on each G –manifold separately.

Classically, one knows that the compactly supported sections of a sheaf F assemble
into a cosheaf Fc , and, in good situations, this correspondence between sheaves and
cosheaves is an equivalence, which goes by the name of Verdier duality. We have the
following analogue in the absolute context:

Lemma 2.3.12 Restriction along �W DiagG ! EucG induces a commuting diagram
of equivalences

ModG.C/' Funloc.Eucop
G
;C/

o�n

��

� // Shvloc.DiagG ;C/

o .�/c
��

ModG.C/' Funloc.EucG ;C/
� // cShvloc.DiagG ;C/

2.4 Push and pull

In this section, we study various functorialities for constructible cosheaves, guided
by the analogy between RanG and Ran.M /. The pushforward and pullback functors
introduced here will form the basis for our later arguments; for the sake of continuity,
we defer their construction to Section 4.

A map of fundamental importance to the Ran space of a manifold M is the so-called
main diagonal

M ! Ran.M /; x 7! fxg:

The corresponding functor in the absolute context is the inclusion ıW DiagG!MfldG .
The restriction and left Kan extension adjunction corresponding to this functor induces
an adjunction

ı!W cShvloc.DiagG ;C/� cShvcbl.RanG ;C/ Wı
!:
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There is also an exceptional pullback ı� and an adjunction

ı�W cShvcbl.RanG ;C/� cShvloc.DiagG ;C/ Wı!:

For more on these functors, see Section 4.1.

Definition 2.4.1 We say that a constructible cosheaf F W RanG! C is supported on
the diagonal if F.UI �M /' 0 whenever jI j ¤ 1.

According to Corollary 4.1.2, the pushforward ı! is fully faithful with essential image
the constructible cosheaves supported on the diagonal.

The Ran space of a manifold M is naturally a (nonunital) topological monoid under
the multiplication

Ran.M /2! Ran.M /; .S;T / 7! S [T:

In order to formulate the corresponding push and pull functors, we make the following
obvious definition:

Definition 2.4.2 Let F W RanG �MfldG
RanG! C be a functor.

(1) We say that F is a constructible cosheaf if F sends pairs of isotopy equivalences
to equivalences in C.

(2) We say that F is reduced if F.¿�¿;�/' F.�;¿�¿/' 0.

Although the multiplication introduced above has no obvious incarnation as a functor
RanG �MfldG

RanG! RanG , we nevertheless have an adjunction

�!W cShvcbl.RanG �MfldG
RanG ;C/� cShvcbl.RanG ;C/ W�

!:

It turns out that �! is also the right adjoint to �! , a fact corresponding to the proper-
ness of the multiplication map Ran.M /2! Ran.M /, and we shall at times use the
alternative notation �� when we wish to emphasize the role of this pushforward as a
right adjoint. The functor �! obeys the formula

�!F.UI �M / '
M

I1[I2DI

F.UI1
�M;UI2

�M /:

In particular, if F is reduced, then so is �!F . For more on these functors, see
Section 4.2.
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As for the absolute diagonal, the main piece of functoriality relevant for our purposes
concerns the map �W DiagG ! DiagG �MfldG

DiagG . With the evident extension of
the notion of locally constant cosheaf to DiagG �MfldG

DiagG , we have as before that
the .�!; �

\/–adjunction descends to an adjunction

�!W cShvloc.DiagG ;C/� cShvloc.DiagG �MfldG
DiagG ;C/ W�

!;

and that �! admits a right adjoint ��. For more on these functors, see Section 4.3.

These two pullback functors induce two tensor products on locally constant cosheaves

F ˝! G D�!.F �G/ and F ˝�G D��.F �G/;

where � denotes the external tensor product. Through the equivalence of Lemma 2.3.12,
the former, pointwise tensor product corresponds to the ordinary tensor product of
G –modules, while the latter corresponds to the tensor product

M ˝�N '�n.†nM ˝†nN /

for G –modules M and N .

Remark 2.4.3 The reader is cautioned not to conflate the tensor product ˝� with the
star tensor product ˝? of [8] and [19]. The analogue of the latter in our context is the
overlapping tensor product ˝[ ; see Section 5.

The functors introduced in this section interact as predicted by the topological analogy.
For example, since the square

M // M �M // Ran.M /�Ran.M /

��

M // Ran.M /

is a pullback and the maps involved are proper, we should expect a base change result
to hold. A precise statement of this result, whose proof may be found in Section 4.3, is
the following:

Lemma 4.3.2 The canonical map ı��!!��.ı� ı/� is an equivalence.

This observation will be a key ingredient in Proposition 3.3.3 and thereby in the main
theorems.
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2.5 Factorizable coalgebras

In this section, we arrive at the promised cocommutative coalgebra model for nonunital
EG –algebras; see Proposition 2.5.6 below. Prerequisitely, we introduce the following
symmetric monoidal structure:

Proposition 2.5.1 Let C be a stable, presentably symmetric monoidal 1–category.
There is a symmetric monoidal structure on Fun.DG ;C/, called right Day convolution,
with tensor product given by the formula� RDO

J

Fj

�
.UI / '

M
Fin.I;J /

O
J

Fj .Uf �1.j//;

and an equivalence of 1–categories

Funoplax.DG ;C/' CoalgCom.Fun.DG ;C//

covering the identity on Fun.DG ;C/.

The proof of this proposition will involve a detour through the formalism of Day
convolution and is deferred to Section 5.1; however, it is worth remarking that, under
the asserted equivalence, the components of the oplax structure on a functor F are
identified with the components of the comultiplication on the corresponding coalgebra.
Since our interest, through the equivalence of Proposition 2.1.8, lies in the oplax
functors that happen to be symmetric monoidal, it will be useful to give a name to
the criterion guaranteeing that the a cocommutative coalgebra corresponds to such a
functor.

Definition 2.5.2 We say A 2 CoalgCom.Fun.DG ;C// is factorizable if the composite

A.UI / �!

RDO
I

A.UI /'
M

Fin.I;I /

O
I

A.Uf �1.i//
�idI
��!

O
I

A.Ui/

is an equivalence for every UI 2DG .

Remark 2.5.3 This condition is equivalent to the apparently stronger requirement that
the composite

A.UI /!

RDO
J

A.UI / '
M

Fin.I;J /

O
J

A.Uf �1.j//
�f

�!

O
J

A.Uf �1.j//

be an equivalence for every UI 2DG , every J and every f W I ! J .
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Remark 2.5.4 If A is factorizable, then A.¿/' 1C .

Letting Fact.Fun.DG ;C// � CoalgCom.Fun.DG ;C/RD/ denote the full subcategory
spanned by the factorizable coalgebras, we have the following:

Corollary 2.5.5 The dashed equivalence exists in the commuting diagram

Fun˝.DG ;C/

��

� // Fact.Fun.DG ;C//

��

Funoplax.DG ;C/
� // CoalgCom.Fun.DG ;C/RD/

From the formula of Proposition 2.5.1, we see that the tensor product of locally constant
functors is again locally constant; therefore, through the equivalence of Lemma 2.3.6,
we obtain a tensor product on constructible cosheaves. We refer to this monoidal
structure as the disjoint monoidal structure. Where necessary, the symbol q will be
used to disambiguate the disjoint tensor product from other tensor products (eg ˝q ).

The formula also makes it clear that the tensor product preserves the property of being
reduced, so that Funloc

0 .DG ;C/ and cShvcbl
0 .RanG ;C/ inherit nonunital symmetric

monoidal structures. We note that, for reduced functors FJ , we have the formula� qO
J

Fj

�
.UI / '

M
Surj.I;J /

O
J

Fj .U��1.j//;

which should be compared to the formula for the value on stalks of the chiral tensor
product of [19, page 4].

We shall say that a cocommutative coalgebra in cShvcbl.RanG ;C/ is factorizable if
the corresponding coalgebra in Fun.DG ;C/ is, and we shall say that a noncounital
cocommutative coalgebra in cShvcbl

0 .RanG ;C/ is factorizable if its counitalization is.
We extend the notation Fact to these cases in the obvious way.

The main result of this section is the following:

Proposition 2.5.6 There is an equivalence

Algnu
EG
.C/' Fact.cShvcbl

0 .RanG ;C//:
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Proof From the definitions, we have the dashed factorization in the diagram

Coalgnu
Com.Funloc

0 .DG ;C/RD/
� _

��

Coalgnu
Com.Funloc.DG ;C/RD/

.�/˚1RD

��

CoalgCom.Funloc.DG ;C/RD/

Coalgnu
Com.cShvcbl

0 .RanG ;C/q/
� //

Fact.cShvcbl
0 .RanG ;C//

� ?

OO

��

Fact.Funloc.DG ;C// //

where the unit for ˝RD is

1RD.UI /'

�
1C for I D¿;
0 else.

It will suffice to show that this functor is an equivalence, since we have the equivalence
AlgEG

.C/' Fact.Funloc.DG ;C// by imposing local constancy on Corollary 2.5.5 and
invoking Proposition 2.1.8.

Now, 1RD is factorizable and, in fact, initial in Fact.Funloc.DG ;C//; indeed, it is the
factorizable coalgebra corresponding to the trivial algebra 0 2 Algnu

EG
.C/, which is

initial. Thus, we obtain a fully faithful factorization of the inclusion as indicated in the
diagram

Fact.Funloc.DG ;C//� _

��

� � // CoalgCom.Funloc.DG ;C//

Coalgcoaug
Com .Funloc.DG ;C//

55

Since adjoining the counit induces an equivalence between noncounital and coaug-
mented coalgebras, this implies that the dashed functor is fully faithful. To see that it
is also essentially surjective, it suffices to note that the coaugmentation coideal of A is
reduced and factorizable by Remark 2.5.4.

Now, the argument given below in Section 5.1 in the case of DG shows that right
Day convolution exists on Fun.MfldG ;C/ and obeys the same formula. Because
the functor | is symmetric monoidal, | \ obtains an oplax structure for right Day
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convolution, and, from the explicit formula

| \.F ˝RD G/.UI /D .F ˝
RD G/.|.UI //

'

M
I1tI2DI; Ij¤¿

F.|.UI1
//˝G.|.UI2

//

D

M
I1tI2DI; Ij¤¿

| \F.UI1
/˝ | \G.UI2

/

' .| \F ˝RD | \G/.UI /;

we see that this oplax monoidal structure is in fact strong monoidal. Thus, as the left
adjoint of a strong monoidal functor, |! inherits an oplax structure, and the .|!; |

\/–
adjunction lifts to an adjunction between the respective1–categories of cocommutative
coalgebras, which we abusively indicate by the same symbols.

Lemma 2.5.7 If A 2 CoalgCom.Fun.DG ;C// is factorizable, then so is |!A.

Proof For UI 2MfldG , the value of the left Kan extension |!A on UI is computed
as the colimit over the overcategory |=UI

; see [30, Section 4.3.2]. By inspection,
sending an object VJ ! UI with underlying map of finite sets f W J ! I to the tuple
.Vf �1.i/! Ui/i2I determines an equivalence of categories |=UI

'
Q

I |=Ui
. Using

this observation, we compute that

|!A.UI /' colim
|=UI

A' colimQ
I |=Ui

A

' colimQ
I |=Ui

O
I

A

'

O
I

colim
|=Ui

A

'

O
I

|!A.Ui/;

where for the third equivalence we have used our assumption that A is factorizable to
obtain the equivalences A

�`
I Vf �1.i/

�
'
N

I A.Vf �1.i// naturally in V and f , and
for the fourth equivalence we have used that ˝ distributes over colimits, since C is
presentably symmetric monoidal.

2.6 Nilpotence

In this section, following [19, Section 5.1.2], we establish an excellent property of the
disjoint monoidal structure, its pronilpotence.
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Definition 2.6.1 [19] Let V be a nonunital presentably symmetric monoidal stable
1–category. We say that V is pronilpotent if it can be exhibited as a limit

V �
�! lim

Nop
Vi

of nonunital presentably symmetric monoidal stable 1–categories such that

(1) V0 D pt,

(2) for every i � j , the transition functor fi;j W Vi! Vj commutes with limits and
colimits, and

(3) for every i , the restriction of the tensor product to ker.fi;i�1/˝Vi is null.

We say that V is nilpotent of order r if fi;j is an equivalence for i; j � r .

Remark 2.6.2 Using (3) inductively with (1) as a base case, it is easy to see that
.rC1/–fold tensor products vanish in V when V is nilpotent of order r .

To establish this property in the case at hand, we will exploit the filtration of RanG by
cardinality.

Definition 2.6.3 The k –truncated absolute Ran category is the full subcategory
RanG;k � RanG spanned by the objects UI �M with jI j � k .

Definition 2.3.4 extends in the obvious way to a notion of (reduced) constructible
cosheaf on RanG;k .

Lemma 2.6.4 Let f W F1!F2 be a morphism and F an object in cShvcbl.RanG ;C/.
If f jRanG;k

is an equivalence, then so is .f ˝q idF /jRanG;k
.

Proof Given an object UI �M with jI j � k , we have the commuting diagram

.F1˝
q F /.UI �M /

.f˝qF /.UI�M /

��

� //
M

I1qI2DI

F1.UI1
�M /˝F.UI2

�M /

L
f .UI1

�M /˝idF.UI2
�M /

��

.F2˝
qG/.UI �M /

� //
M

I1qI2DI

F2.UI1
�M /˝G.UI2

�M /

For each I1q I2 D I , we have jI1j � jI j � k , so f .UI1
�M / is an equivalence by

assumption. Hence the right-hand vertical arrow is an equivalence, so the left-hand
vertical must also be an equivalence by two-out-of-three.
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From [31, Proposition 2.2.1.9], we conclude that cShvcbl.RanG;k ;C/ inherits a sym-
metric monoidal structure, and cShvcbl

0 .RanG;k ;C/ a nonunital symmetric monoidal
structure, rendering the restriction from RanG symmetric monoidal. These successive
localizations assemble to form an inverse system

cShvcbl
0 .RanG ;C/! . � � � ! cShvcbl

0 .Rank;G ;C/! cShvcbl
0 .RanG;k�1;C/! � � � /

of nonunital symmetric monoidal 1–categories. Since equivalences of nonunital
symmetric monoidal1–categories are detected at the level of underlying1–categories,
and since the natural map

colim
N

RanG;k ! RanG

is an equivalence, we conclude that the induced map

cShvcbl
0 .RanG ;C/

�
�! lim

Nop
cShvcbl

0 .RanG;k ;C/

is an equivalence of nonunital symmetric monoidal 1–categories.

Proposition 2.6.5 The disjoint monoidal structure on cShvcbl
0 .RanG ;C/ is pronilpotent.

Proof Having exhibited cShvcbl
0 .RanG ;C/ as a sequential limit, there are three points

to verify.

(1) Every object of RanG;0 is of the form ¿�M , so cShvcbl
0 .RanG;0;C/D f0g by

constructibility and reduction.

(2) The transition functor cShvcbl
0 .RanG;i ;C/! cShvcbl

0 .RanG;j ;C/ is restriction
along the inclusion RanG;j ! RanG;i , which is both a right and a left adjoint
and hence commutes with limits and colimits.

(3) Let F1 and F2 be objects of cShvcbl
0 .RanG;k ;C/ such that the restriction of F1

to RanG;k�1 is trivial, and let UI � M be such that jI j � k . We have the
equivalence

.F1˝
q F2/.UI �M / �

�!

M
I1qI2DI; Ij¤¿

F1.UI1
�M /˝F2.UI2

�M /:

Since I2¤¿, we have jI1j< jI j � k , so F1.UI1
�M /' 0 by our assumption

on F1 . Hence each term of the above sum vanishes, as desired.
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3 Lie models

3.1 Lie algebras

It has long been known that the structure of a Lie algebra is controlled by an operad in
graded abelian groups, the Lie operad, whose †n –module of arity n operations is the
homology of a certain partially ordered set of partitions; see [20]. Recently, the concept
of a Lie algebra has been lifted to the world of stable homotopy. These spectral Lie
algebras are algebras over the operad introduced in [13], denoted here by the letter L,
whose components are the Spanier–Whitehead duals of these same partition posets,
and which, upon passing to Z–modules, recovers the familiar Lie operad. At the time
of writing, spectral Lie algebras are the subject of intense investigation; see [1; 10; 27],
for example.

Our passage from the cocommutative model of Proposition 2.5.6 to the world of Lie
algebras will rely on a fundamental relationship enjoyed by these structures. Since
its discovery and spectacular exploitation by Quillen in the seminal paper [34], this
relationship of Koszul duality has been studied intensively in increasingly general
contexts; see [22; 26; 13; 19; 18], for example. From a modern viewpoint, it would
seem that Lie algebras should be thought of as being defined by this duality.

The use of Koszul duality for spectral operads in a higher categorical context is well-
established in the literature, but its foundations remain folklore at the time of writing,
and it is beyond the scope of this paper to alter this state of affairs. We now summarize
the precise version of the theory that we shall employ, which is gathered from [19,
Sections 3 and 4].

Let V be a stable nonunital presentably symmetric monoidal 1–category. The main
player is the functor

xCL
W AlgL.V/! Coalgnu

Com.V/

of (reduced) Lie chains. This functor has the following features:

(1) There is a functorial filtration xCL.L/' colimN
xCL.L/�k of cocommutative

coalgebras with associated graded coalgebra

gr xCL.L/ WD
M
k�1

cofib. xCL.L/�k !
xCL.L/�kC1/' Sym.LŒ1�/:

(2) The composite of xCL with the forgetful functor to V is naturally equivalent,
after a shift of degree �1, to the monadic bar construction B.id;L;�/ against
the free Lie algebra functor.
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When V is a unital symmetric monoidal 1–category viewed as nonunital, we write

CL
WD xCL

˚ 1V

for the corresponding coaugmented cocommutative coalgebra.

Remark 3.1.1 In the setting of chain complexes over a field of characteristic zero,
CL is modeled by the classical Chevalley–Eilenberg complex; see [20] for a comparison.

We have the following key result concerning Lie chains:

Theorem 3.1.2 (Francis–Gaitsgory) Let V be a nonunital presentably symmetric
monoidal stable 1–category with the following properties:

(1) V is pronilpotent.

(2) The norm map .v˝k/†k
! .v˝k/†k is an equivalence for every v 2 V and

k 2N .

Then xCL is an equivalence.

Proof Following [19, Section 3.3], the functor xCL (denoted there by Barenh
Lie ) factors

through the inclusion of the 1–category of noncounital cocommutative coalgebras
that are both conilpotent and equipped with a “codivided copower” structure, which
we denote for the duration of this argument by D. This inclusion is represented on
cofree objects by the compositeM

k�1

.v˝k/†k
!

Y
k�1

.v˝k/†k
!

Y
k�1

.v˝k/†k

of the canonical map from coproduct to product with the product of the respective norm
maps. According to [19, Proposition 4.1.2], the assumption of pronilpotence guarantees
that xCL induces an equivalence AlgL.V/ ' D, so the claim will be proven upon
verifying that D' Coalgnu

Com.C /, for which it suffices to check that each of the arrows
depicted above is an equivalence. The first equivalence follows from pronilpotence as
in [19, Proposition 4.2.1], while the second follows from our assumption (2).

Remark 3.1.3 The observant reader will notice that the statement of Proposition 4.3.3
in [19], the analogue in that work of Theorem 3.1.2, includes the assumption that V is
tensored over a field of characteristic zero. An examination of the proof reveals that
this hypothesis is used only to verify that the norm maps as above are equivalences.
For this reason, Theorem 3.1.2 should be regarded as implicit in [19].
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3.2 Duality and factorization

One of the key insights of [19] is that the condition of factorizability has a particularly
simple interpretation under the duality of Theorem 3.1.2. The basic calculation under-
lying this interpretation is the following lemma; see the conventions on page 4022 for
a notational reminder.

Lemma 3.2.1 Suppose that F 2 cShvcbl
0 .RanG ;C/ is supported on the diagonal. There

is a natural equivalence

SymJ
q.F /.UI �M /'

�N
I F.Ui �M / if jI j D jJ j;

0 else.

Proof We have the natural equivalence

SymJ
q.F /.UI �M / ��!

� M
Surj.I;J /

O
J

F.U��1.j/ �M /

�
†J

:

There are three cases.

(1) If jI j< jJ j, then Surj.I;J /D¿, so the sum in question is empty and we have
SymJ

q
.F /.UI �M /' 0.

(2) If jI j D jJ j, then Surj.I;J / is a free †J –set on the class of a bijection I Š J ,
and the claim follows.

(3) If jI j> jJ j, then for any � 2 Surj.I;J /, we have j��1.j /j> 1 for some j 2 J .
Then F.U��1.j/ �M /' 0 by assumption, so that every term in the sum vanishes.

The proof of the following result is essentially a transcription of the argument of [19,
Theorem 5.2.1].

Lemma 3.2.2 Suppose that L is a Lie algebra in cShvcbl
0 .RanG ;C/. Then xCL

q
.L/ is

factorizable if and only if L is supported on the diagonal.

Proof It suffices to prove the claim for gr xCL
q
.L/' Symq.LŒ1�/ instead. We make

use of the commutative diagram

Symq.LŒ1�/
�

//

��

Symq.Symq.LŒ1�// //

��

Symk
q
.Symq.LŒ1�//

��

Symk
q
.LŒ1�/ //

M
l�0

� M
i1C���CilDk

lO
jD1

Symij

q
.LŒ1�/

�
†l

kDl
// Symk

q
.LŒ1�/

in which the bottom composite is the identity.
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Suppose that L is supported on the diagonal, and evaluate this diagram at UI �M

where jI j D k . By Lemma 3.2.1, the outermost vertical maps become equivalences, so
the top composite does as well, by two-out-of-three. Hence Symq.LŒ1�/ is factorizable
in this case.

Suppose instead that L is not supported on the diagonal. Then there is some object
UI �M with jI j> 1 such that L.UI �M / 6' 0, and we may take jI j to be minimal
with respect to the existence of such an object. Then, by minimality,

Symq.LŒ1�/.UI �M / ' L.UI �M /Œ1�˚
O

I

L.Ui �M /Œ1�;

and we conclude that Symq.LŒ1�/ is not factorizable, since L.UI �M /Œ1� 6' 0.

Corollary 3.2.3 Let C be a stable, presentably symmetric monoidal 1–category.
There is a commuting diagram

Algnu
EG
.C/

��

// AlgL.cShvcbl
0 .RanG ;C/q/

��

ModG.C/
Œ�1�

// ModG ' cShvloc.DiagG ;C/
ı!

// cShvcbl
0 .RanG ;C/

of 1–categories, in which the top functor is fully faithful with essential image the
subcategory of Lie algebras supported on the diagonal.

Proof The disjoint monoidal structure on cShvcbl
0 .RanG ;C/ satisfies the hypotheses

of Theorem 3.1.2; indeed, the first hypothesis is Proposition 2.6.5, while the second
follows from the formulaO

J

F.UI / '
M

Surj.I;J /

O
J

F.Uf �1.j//

and the observation that †J acts freely on Surj.I;J /. Thus, applying Theorem 3.1.2
and Lemma 3.2.2, we obtain the indicated equivalences in the commuting diagram

Fact.cShvcbl
0 .RanG ;C//� _

��

� // AlgL.cShvcbl
0 .RanG ;C/q/�cShvcbl

0
.RanG ;C/

cShvloc.DiagG ;C/
� _

��

Coalgnu
Com.cShvcbl

0 .RanG ;C/q/
� // AlgL.cShvcbl

0 .RanG ;C/q/

Geometry & Topology, Volume 22 (2018)



Higher enveloping algebras 4045

Composing the clockwise composite with the equivalence of Proposition 2.5.6 yields the
top functor in the diagram of the statement, and full faithfulness and the identification of
the essential image follow. It remains to show that this functor introduces a suspension
by �1 at the level of underlying functors; this follows from the observation that the map

LŒ1�D xCL
q.L/�1!

xCL
q.L/

is an equivalence when evaluated on UI �M with jI j D 1.

3.3 Enveloping algebras

In this section, we prove Theorems A and B. As indicated in the introduction, the strategy
is to find a second monoidal structure on the 1–category of constructible cosheaves
on RanG whose relationship to ordinary Lie algebras parallels the relationship of the
disjoint monoidal structure to EG –algebras. We refer to this monoidal structure as
the overlapping monoidal structure and associate to it the symbol [ (eg ˝[ ). The
construction of the overlapping monoidal structure will require the introduction of some
auxiliary concepts and is deferred to the following section (specifically, see Section 5.3).
For now, we content ourselves with the following summary.

Proposition 3.3.1 There is a (unital) symmetric monoidal structure on the 1–category
cShvcbl.RanG ;C/ in which the tensor product is given by the formula

F ˝[G ' �!.F �G/:

Moreover, there is a natural transformation ˝[!˝q endowing the identity functor
on cShvcbl.RanG ;C/ with the structure of a lax monoidal functor.

Remark 3.3.2 This formula should be compared to the description of the star tensor
product given in [19, Section 1.2.1.].

Proposition 3.3.3 Let C be a stable, presentably symmetric monoidal 1–category.
There is a commuting diagram

AlgL.ModG.C//

��

// AlgL.cShvcbl.RanG ;C/[/

��

ModG.C/
�n

// ModG.C/' cShvloc.DiagG ;C/
ı!
// cShvcbl.RanG ;C/

of 1–categories, in which the top functor is fully faithful with essential image the
subcategory of Lie algebras supported on the diagonal.
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Proof By Lemma 4.3.2, the left adjoint in the .ı�; ı!/–adjunction is symmetric
monoidal with respect to the monoidal structure on the domain given by ˝[ and
the monoidal structure on the codomain given by ˝� ; therefore, the adjunction lifts
to an adjunction at the level of 1–categories of Lie algebras. The result now follows
from Lemma 2.3.12 and Corollary 4.1.2.

Proof of Theorem A The identity functor preserves the condition of diagonal support;
therefore, we obtain a forgetful functor as the dashed factorization in the diagram

Algnu
EG
.C/

��

� � Corollary 3.2.3
// AlgL.cShvcbl.RanG ;C/q/

id

��

AlgL.ModG.C//
� � Proposition 3.3.3

// AlgL.cShvcbl.RanG ;C/[/

Since each arrow in the diagram preserves limits and filtered colimits, which in each
case are underlying, this forgetful functor admits a left adjoint UG . To complete the
proof, it suffices to note that the diagram of right adjoints

Algnu
EG
.C/

��

// AlgL.ModG.C//

��

ModG.C/
†nŒ�1�

// ModG.C/

commutes.

Having exhibited the desired forgetful functor, we turn now to the task of making
its left adjoint UG explicit. Since the identity preserves limits and filtered colimits
of Lie algebras, it admits a left adjoint, which we denote by Indq[ . The key result
concerning this functor is the following.

Lemma 3.3.4 If L is supported on the diagonal, then so is Indq[ .L/.

The proof, essentially a transcription of [19, Theorem 6.4.2], is premised on the
following calculation in the overlapping monoidal structure.

Lemma 3.3.5 Suppose that F 2 cShvcbl.RanG ;C/ is supported on the diagonal. There
is a natural equivalence

Symk
[.F /.UI �M / �

�!

M
P

I kiDk

O
I

Symki .F.Ui �M //:
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Proof We have the †k –equivariant equivalence

F˝
[k.UI �M / �

�!

M
Cov.I;k/

kO
jD1

F.USj
�M /:

Since F is supported on the diagonal, the summand corresponding to a k –cover S

vanishes if jSj j ¤ 1 for any 1� j � k . But the set of k –covers S of I with jSj j D 1

for all j is put in †k–equivariant bijection with Surj.f1; : : : ; kg; I/ by sending j to
the unique element in Sj , so we may write

F˝
[k.UI �M / ��!

M
Surj.f1;:::;kg;I /

O
I

F.Ui �M /˝�
�1.i/

D

M
P

I kiDk

Ind†kQ
I†ki

�O
I

F.Ui �M /˝ki

�
:

Passing to †k –coinvariants yields the claim.

We also make use of the following result concerning the interaction of Lie chains with
the induction functor, which is an immediate corollary of [19, Lemma 6.2.6].

Lemma 3.3.6 The following diagram commutes:

AlgL.cShvcbl.RanG ;C/[/

CL
[

��

Indq[
// AlgL.cShvcbl.RanG ;C/q/

CL
q

��

CoalgCom.cShvcbl.RanG ;C/[/
id
// CoalgCom.cShvcbl.RanG ;C/q/

Proof of Lemma 3.3.4 By Lemma 3.2.2, it suffices to show that CL
q
.Indq[ .L// is

factorizable. By Lemma 3.3.6, we have CL
q
.Indq[ .L//' CL

[ .L/; therefore, passing
to the graded coalgebra associated to the filtration of Theorem 3.1.2, applied in the
overlapping monoidal structure, it will suffice to show that Sym[.LŒ1�/ is factorizable
when L is supported on the diagonal. But, by Lemma 3.3.5,

Sym[.LŒ1�/.UI �M /'
M
k�1

M
P

I kiDk

O
I

Symki .L.Ui �M /Œ1�/

'

O
I

Sym.L.Ui �M /Œ1�/

'

O
I

Sym[.LŒ1�/.Ui �M /;

as desired.
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Corollary 3.3.7 Let L be a Lie algebra in ModG.C/. Then UG.L/ is the nonunital
EG –algebra corresponding to CL

q
.Indq[ .ı!Lc//:

Now, Lemma 2.5.7 endows �! ' |!�! with a symmetric monoidal structure preserving
factorizability, and we have the commuting diagram

Algnu
EG
.C/

o

��

R
// Fun˝.MfldG ;C/� _

��

Fact.cShvcbl
0 .RanG ;C//� _

.�/˚1

��

CoalgCom.cShvcbl.RanG ;C/q/
�!
// CoalgCom.Fun.MfldG ;C/RD/

Theorem B Let L be a Lie algebra in ModG.C/. There is a natural equivalence of
augmented EG –algebras

UG.L/˚ 1C ' CL.�nL/:

Proof We have the sequence of equivalencesZ
UG.L/' �!C

L
q.Indq[ .ı!Lc// (by Corollary 3.3.7)

' �!C
L
[ .ı!Lc/ (by Lemma 3.3.6)

' CL.�!ı!Lc/ (by Lemma 5.3.9).

Restricting to DG and invoking Lemma 2.3.12, we obtain the desired equivalence

UG.L/˚ 1C ' CL.�nL/:

3.4 Application to configuration spaces

We now take up the proof of Theorem C. For this, we specialize to the case GDTop.n/
and take C D Fun.†; Sp/ to be the 1–category of symmetric sequences in spectra
equipped with the (left) Day convolution monoidal structure

.X ˝Y /k '
M

iCjDk

†k ^†i�†j
Xi ^Yj :

We consider spectra as symmetric sequences concentrated in arity 1 and write S for
the sphere spectrum.
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We will be interested in the symmetric sequence †1C Conf�.M / of ordered configuration
spaces of M . This object may be interpreted in terms of factorization homology, as
follows.

Lemma 3.4.1 There is a natural equivalence

†1C Conf�.M /'

Z
M

Enu
G .S/:

Proof The claim is immediate from the argument of [5, Proposition 5.5] and the easy
calculation that S˝k is †k ^S , thought of as a symmetric sequence concentrated in
arity k .

Proof of Theorem C We have the natural equivalences

†1C Conf�.M /'

Z
M

Enu
G .S/ (by Lemma 3.4.1)

'

Z
M

UG.L.†
nS�1// (by Theorem A)

'

Z
M

CL.�nL.†nS�1// (by Theorem B)

' CL.MapTop.n/.FrMC ;L.†
nS�1/// (by [5, Proposition 5.13]/;

where Fr denotes the Top.n/–bundle associated to the microtangent bundle.

Thus, it will suffice to show that this spectral Lie algebra depends only on the homotopy
type of MC . For this, we observe that the action of Top.n/ on †nS�1 factors through
the stable J –homomorphism

Top.n/! hAut.S/;

so that, for any N � n, we have

MapTop.n/.FrMC ;L.†
nS�1//'MaphAut.SN /.FrMC�Top.n/ hAut.SN /;L.Sn�1//;

and the claim follows, since the stable spherical fibration associated to the tangent
microbundle is a homotopy invariant by Atiyah duality (see [4] in the smooth case).

Remark 3.4.2 In unpublished work, John Francis gives an alternative proof of this
result using Goodwillie calculus.
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4 Functoriality

In this section, we define the pushforward and pullback functors discussed in Section 2.4,
and we study their interactions.

4.1 The main diagonal

We investigate functoriality arising from ıW DiagG ! RanG , beginning with the left
Kan extension ı! . From the definitions, it is clear that the only arrows in RanG with
source lying in DiagG also have target lying in DiagG , so we have the following
calculation:

Lemma 4.1.1 Let F W DiagG! C be any functor. There is a natural equivalence

ı!F.UI �M /'

�
F.UI �M / if jI j D 1;

0 else.

In particular, if F is a locally constant cosheaf, then ı!F is a reduced constructible
cosheaf.

Corollary 4.1.2 The pushforward ı!W cShvloc.DiagG ;C/! cShvcbl.RanG ;C/ is fully
faithful, with essential image the subcategory of constructible cosheaves supported on
the diagonal.

Combining Lemma 4.1.1 with the observation that the restriction of a constructible
cosheaf is locally constant, we obtain an adjunction

ı!W cShvloc.DiagG ;C/� cShvcbl.RanG ;C/ Wı
!;

where ı! denotes the restriction of ı\ to the indicated domain and codomain. Since
limits and colimits on both sides are pointwise, Lemma 4.1.1 implies that ı! preserves
limits and therefore also admits a left adjoint ı�.

Although we will not need it, a formula for the exceptional pullback ı� is easily
obtained by imitating classical arguments; see [33, Section II.3], for example. Let j

denote the inclusion into RanG of the full subcategory of objects UI �M with jI j> 2.

Lemma 4.1.3 There is a natural equivalence

ı�F ' cofib.ı!j!j
\F ! ı!F /;

where j denotes the inclusion of the full subcategory of objects UI �M with jI j> 2.
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4.2 Matched disks

In order to study the analogue of the multiplication Ran.M /�Ran.M /! Ran.M /

in the absolute context, we require a preliminary definition.

Definition 4.2.1 An object .UI �M;VJ �M / 2 RanG �MfldG
RanG is matched if

Ui \Vj D¿ whenever Ui ¤ Vj .

We write .RanG�MfldG
RanG/# for the full subcategory of RanG�MfldG

RanG spanned
by the matched objects. Note that, if .UI �M;VJ �M / is a matched pair, then
UI [VJ �M is again an object of RanG , which we denote by �.UI �M;VJ �M /.
This construction extends in an obvious way to yield a functor

�W .RanG �MfldG
RanG/#! RanG :

In order to formulate the corresponding push and pull functors, we make the following
obvious definition.

Definition 4.2.2 Let F W RanG �MfldG
RanG! C be a functor.

(1) We say that F is a constructible cosheaf if F sends pairs of isotopy equivalences
in to equivalences in C.

(2) We say that F is reduced if F.¿�¿;�/' F.�;¿�¿/' 0.

We defer the proof of the next result to the end of the section for the sake of continuity.

Lemma 4.2.3 If F W RanG �MfldG
RanG! C is a constructible cosheaf, then F is the

left Kan extension of its restriction to .RanG �MfldG
RanG/# .

Thus, constructible cosheaves on the square of RanG may be identified with a full
subcategory of functors defined on the smaller category of matched objects. Using this
observation, we are able to define the desired pullback �! as the dashed factorization
in the diagram

cShvcbl.RanG ;C/

�!

��

� � // Fun.RanG ;C/

�\

��

cShvcbl.RanG �MfldG
RanG ;C/

� � // Fun..RanG �MfldG
RanG/#;C/

We remark that �! preserves the condition of being reduced.

By Kan extension, the restriction �\ admits left and right adjoints. We have the
following calculation concerning these functors:
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Lemma 4.2.4 There are natural equivalences

�!F.UI �M / '
M

I1[I2DI

F.UI1
�M;UI2

�M / ' ��F.UI �M /:

In particular, if F is a (reduced) constructible cosheaf, then so are �!F and ��F .

Proof Since ��1.UI �M / D f.UI1
�M;UI2

�M /gI1[I2DI and C is stable, it
suffices to note that the obvious functors

��1.UI �M /! �=UI�M and ��1.UI �M /! �UI�M=

are final and initial, respectively.

From the formula of Lemma 4.2.4, we see that the two pushforwards do in fact coincide,
a fact corresponding to the properness of the multiplication map Ran.M /2!Ran.M /.
Indeed, by imitating classical arguments involving the relative diagonal, one can produce
the natural transformation �!! �� inducing this equivalence.

We close with an examination of the interaction between �! and the globalization
functor �! of Section 2.3. We denote by 
 W MfldG !MfldG �MfldG the diagonal
functor.

Lemma 4.2.5 Let F be a constructible cosheaf on RanG �MfldG
RanG . There is a

natural equivalence
�!�!F

�
�! 
 \.� ��/!F

in Funloc.MfldG ;C/.

Proof The obvious equality 
��� D .� � �/� gives rise to the map. To show that
this map is an equivalence, it will suffice to note that it is so after evaluating at a
manifold M , where both sides become colimD.M /2 F .

4.3 Base change

The goal of this section is to prove an analogue of the classical proper base change
theorem applied to the pullback square

M // M �M // Ran.M /�Ran.M /

��

M // Ran.M /
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In order to formulate this result, we must first introduce the analogue of the upper left
horizontal map, the diagonal of M .

We write .DiagG �MfldG
DiagG/# � DiagG �MfldG

DiagG for the full subcategory
of matched objects and denote by �W DiagG ! .DiagG �MfldG

DiagG/# the relative
diagonal functor

�.U �M / D �.U �M;U �M /:

As in Lemma 4.2.3, a locally constant cosheaf on DiagG �MfldG
DiagG is determined

by its restriction to .DiagG �MfldG
DiagG/# , so we obtain a pullback functor �! as the

dashed factorization in the diagram

cShvloc.DiagG ;C/
� � // Fun.DiagG ;C/

cShvloc.DiagG �MfldG
DiagG ;C/

�!

OO

� � // Fun..DiagG �MfldG
DiagG/#;C/

�\

OO

Regarding the left adjoint �! , we have the following easy calculation:

Lemma 4.3.1 Let F W DiagG! C be any functor. There is a natural equivalence

�!F.U �M;V �M /'

�
F.U �M / if U D V;

0 else.

In particular, if F is a locally constant cosheaf, then so is �!F .

As with ı , we see that �! also admits a left adjoint ��. A similar formula to that of
Lemma 4.1.3, proved in the same way, holds for ��.

Returning to the main thread, the pullback square exhibited above corresponds in the
absolute context to the diagram

DiagG
�
// .DiagG �MfldG

DiagG/#
ı�ı
// .RanG �MfldG

RanG/#

�

��

DiagG
ı

// RanG

Since this diagram commutes, there is an induced base change morphism (see [30,
Section 7.3.1]), and we have the following:

Lemma 4.3.2 The canonical map ı��!!��.ı� ı/� is an equivalence.
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Proof Passing to right adjoints, it suffices to show the equivalence .ı � ı/!�! ' �
!ı!

instead. For this, we note that

.ı� ı/!�!F.UI �M;VJ �M /

Lemma
4.1.1
'

�
�!F.UI �M;VJ �M / if jI j D jJ j D 1;

0 else,
Lemma

4.3.1
'

�
F.UI �M / if UI D VJ ; jI j D jJ j D 1;

0 else.

On the other hand, since �.UI �M;VJ �M / 2 DiagG if and only if UI D VJ and
jI j D jJ j D 1, we likewise have

�!ı!F.UI �M;VJ �M /' ı!F.�.UI �M;VJ �M //

'

�
F.UI �M / if UI D VJ ; jI j D jJ j D 1;

0 else.

4.4 Proof of Lemma 4.2.3

Rather than a direct proof making reference only to the categories in question, we choose
to offer a topological proof illustrating the close relationship between the category
RanG and the spaces Ran.M /.

Denoting by D.M /2# the pullback in the diagram

D.M /2#

��

// D.M /2

��

.RanG �MfldG
RanG/# // RanG �MfldG

RanG

we have the commuting diagram of functors

.RanG �MfldG
RanG/#

f
// RanG �MfldG

RanG

D.M /2#

i2
M

OO

''

fM
// D.M /2

jxx

i2
M

OO

Op.Ran.M /2/

The topological input to the proof is the following:

Lemma 4.4.1 The image of D.M /2# in Op.Ran.M /2/ is a basis for the topology
of Ran.M /2 .
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Proof By definition, the topology of Ran.M /2 is generated by the image of D.M /2 .
We will show that the topology generated by the image of D.M /2# is finer than this
topology; since the converse obviously holds, the proof will be complete.

Fix .UI ;VJ /2D.M /2 and finite subsets S�UI and T �VJ whose inclusions surject
on connected components. For each x 2 S [T , we choose a Euclidean neighborhood
x 2Wx �M such that

Wx �

� \
fi2I;x2Ui g

Ui

�
\

� \
fj2J ;x2Vj g

Vj

�
:

Without loss of generality, we may assume that Wx \Wy D¿ for x ¤ y . Then

(1) .WS ;WT / 2D.M /2# ,

(2) S �WS � UI ,

(3) T �WT � VJ , and

(4) the inclusion .WS ;WT /� .UI ;VJ / lies in D.M /2 .

Thus, the topology generated by the image of D.M /2# is finer than the topology
generated by D.M /2 .

We will deduce the global result from the following relative version:

Lemma 4.4.2 If F W D.M /! C is locally constant, then F is the left Kan extension
of its restriction to D.M /2# .

Proof Since j!F is a cosheaf on Ran.M /, and since a cosheaf is left Kan extended
from any choice of basis, Lemma 4.4.1 implies that the counit j!.fM /!f

\
M

j \j!F! j!F

is an equivalence. Using the fact that the inclusion j is fully faithful twice, we obtain
the desired equivalence

.fM /!f
\F ' .fM /!f

\
M

j \j!F ' F:

Proof of Lemma 4.2.3 Let F W RanG �MfldG
RanG ! C be a constructible cosheaf.

We wish to show that the counit f!f
\F ! F is an equivalence.

Now, fix an object .UI �M;VJ �M /. If either I or J is empty, then

f.UI�M;VJ�M / D .RanG �MfldG
RanG/=.UI�M;VJ�M /
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and there is nothing to prove; so assume otherwise. Then the evident functor

fM=.UI ;VJ /! f=.UI�M;VJ�M /

is final, and, using Lemma 4.4.2, we have

f!f
\F.UI �M;VJ �M /' .fM /!.i

2
M /\f \F.UI ;VJ /

' .fM /!f
\

M
.i2

M /\F.UI ;VJ /

' .i2
M /\F.UI ;VJ /

' F.UI �M;VJ �M /:

5 Monoidal structures

In this section, we provide proofs of Propositions 2.5.1 and 3.3.1. These arguments
pass through the formalism of Day convolution, which we begin by reviewing.

5.1 Day convolution

We rely heavily on the following result of [23]; see also [31, Section 4.8.1] for a version
with W the 1–category of spaces, and [16] for the original 1–categorical version.

Theorem 5.1.1 (Glasman) Let V and W be symmetric monoidal 1–categories,
and assume that

(1) W has colimits, and

(2) the tensor product of W distributes over colimits indexed by the 1–categories
˝=v for v 2 V, where ˝W V�V! V denotes the tensor product functor of V.

There is a symmetric monoidal structure on Fun.V;W/, called left Day convolution,
in which the tensor product is given by the formula

.F ˝LD G/.v/ ' colim.˝=v! V�V
F�G
���!W�W

˝
�!W/:

Moreover, there is an equivalence

Funlax.V;W/' AlgCom.Fun.V;W//

covering the identity on Fun.V;W/.
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Proof We explain how each of these claims is either explicit or implicit in [23]. For the
duration of this explanation, we make free use of terminology and notation pertaining
to the theory of symmetric monoidal 1–categories developed in [31, Chapter 2].

The symmetric monoidal structure in question, defined in [23, Definition 2.8], is
exhibited there as a subobject of a larger locally co-Cartesian fibration Fun.V;W/˝ ,
which is simply the internal mapping object of maps between V˝ and W˝ in the
category of simplicial sets over the nerve of the category of pointed finite sets. The
heart of the proof that Fun.V;W/ does in fact inherit a symmetric monoidal structure
from this larger object is [23, Lemma 2.10]. This argument is carried out under the
assumption that the tensor product of W distributes over all colimits, but an examination
of the proof reveals that the only types of colimits that appear are of the form covered
by our assumption (2). Thus, the argument given there applies without change.

Finally, the formula for the tensor product follows from the description of the locally
co-Cartesian edges in Fun.V;W/˝ given in [23, Lemma 2.4], and the equivalence
between lax monoidal functors and commutative algebras is [23, Proposition 2.12].

Under this equivalence, the lax structure maps F.v1/ ˝ F.v2/ ! F.v1 ˝ v2/ of
a lax monoidal functor F are identified with the components of the commutative
multiplication on F . In particular, we obtain an identification of Fun˝.V;W/ with
the full subcategory of commutative algebra objects having the property that these
components are equivalences in W.

The monoidal structure of Theorem 5.1.1 is traditionally called simply Day convolution.
For reasons that will become apparent presently, we prefer the name left Day convolution,
a choice which is justified by the observation that the formula for the convolution of
functors F and G is nothing other than the left Kan extension in the diagram

V�V

˝V
��

F�G
// W�W

˝W
// W

V

We wish to contemplate taking the right Kan extension in the same diagram. Unwinding
the dualities, we arrive at the following definition:

Definition 5.1.2 Let V and W be symmetric monoidal 1–categories. Right Day
convolution, if it exists, is the symmetric monoidal structure opposite to left Day
convolution on Fun.Vop;Wop/.
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In the presence of right Day convolution on Fun.V;W/' Fun.Vop;Wop/op , we obtain
the identification

Funoplax.V;W/' Funlax.Vop;Wop/op
' AlgCom.Fun.Vop;Wop//op

' CoalgCom.Fun.V;W//:

In particular, Fun˝.V;W/ is identified with the full subcategory of cocommutative
coalgebra objects for which the relevant components of the comultiplication are equiv-
alences in W.

It should be emphasized that, while the conditions guaranteeing the existence of left Day
convolution are fairly innocuous — in many cases one is interested in a target whose
tensor product distributes over all colimits — the dual conditions are quite restrictive.
Nevertheless, we have the following existence criterion, which, although not maximally
general, will suffice for our purposes.

Corollary 5.1.3 Let V and W be symmetric monoidal 1–categories. Assume that

(1) W is stable and presentably symmetric monoidal, and

(2) for each v 2 V, the undercategory ˝v= receives an initial functor from a finite
1–category.

Then right Day convolution exists on Fun.V;W/.

Proof Since W is stable and the tensor product of W distributes over colimits, and in
particular finite colimits, it also distributes over finite limits. Applying (2), the result
follows from Theorem 5.1.1.

We shall denote the tensor product of right Day convolution by ˝RD .

We close this section by applying the ideas introduced in the previous section to the
situation in which the domain symmetric monoidal 1–category is DG . To this end,
we consider the undercategory

�`
J

�
UI=

, and we note that a map f W I ! J of finite
sets determines an object of this undercategory, namely the canonical isomorphism
'f W UI Š

`
J Uf �1.j/ . We obtain in this way a functor '.�/ from the set Fin.I;J /,

viewed as a discrete category, and we have the following easy result about this functor:

Lemma 5.1.4 For any UI 2DG , the functor '.�/W Fin.I;J /!
�`

J

�
UI=

is initial.

Combining this calculation with Corollary 5.1.3, we obtain Proposition 2.5.1 as an
immediate corollary.
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5.2 Overlapping disks

Our construction of the overlapping monoidal structure will be premised on the relation-
ship between RanG and a second combinatorial structure emerging from collections of
disks. In this section we introduce the requisite preliminaries, and we construct the
overlapping monoidal structure in the next.

Definition 5.2.1 Let I , J and K be finite sets.

(1) A J –cover of I is a J –indexed collection S D SJ of subsets of I such thatS
J Sj D I .

(2) If S is a J –cover of I and T is a K–cover of J , the composite T ıS is the
K–cover of I defined by .T ıS/k D[j2Tk

Sj .

(3) Let S be a J –cover of I and T an L–cover of K . The disjoint union of S

and T is the J qL cover of I qK given by

.S qT /r D

�
Sr for r 2 J;

Tr for r 2L:

Covers form a category Cov with objects finite sets, morphisms from I to J the set
Cov.I;J / of J –covers of I , and composition defined by composition of covers. We
view Cov as a symmetric monoidal category under disjoint union of sets and covers.
A function f W I ! J determines a J –cover S.f / of I given by S.f /j D f

�1.j /,
and this assignment extends to a symmetric monoidal functor Fin! Cov.

A cover may be pictured graphically as a system of lines drawn between elements of I

and elements of J , where a line connects i and j if and only if i 2 Sj . Such a system
of lines determines a cover precisely when every element of i is connected to some
element of j , and the cover is a function precisely when each i is connected to exactly
one j . At the other extreme from functions are what one might think of as “splittings”,
where each j is connected to exactly one i . As the following example shows, the
addition of these splitting covers is the essential difference between Fin and Cov.

Example 5.2.2 A J –cover S of I determines a canonical cover zS W I !
`

J Sj by
. zS/iDfig, and S factors uniquely as zS followed by the obvious function

`
J Sj!J .

Definition 5.2.3 The category of overlapping (G–framed) disks is the category zDG

specified by the following data:

(1) The objects of zDG are the objects of DG .
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(2) A morphism from UI to VJ in zDG is a J –cover S of I and an element ofQ
J HomDG

.USj
;Vj /.

(3) Composition is given by composition of covers and composition in DG .

Example 5.2.4 Given an object UI and a J –cover of I , there is a canonical morphism
'S W UI !

`
J USj

lying over the cover zS of Example 5.2.2, the components of which
are the identities of the various Ui . The presence of these morphisms, which allow
disks to “split apart”, is the essential difference between DG and zDG .

The category of overlapping disks is symmetric monoidal under disjoint union and
equipped with a symmetric monoidal functor to Fin.

We now imitate our earlier our approach to DG ; we have a functor

Cov.I;J /!
�a

J

�
UI=

;

defined in exactly the same way, and, as before, this functor is initial. Since Cov.I;J /
is finite, Corollary 5.1.3 implies that right Day convolution exists on Fun. zDG ;C/ and
that the tensor product in this monoidal structure is given by the formula� RDO

J

Fj

�
.UI / '

M
Cov.I;J /

O
J

Fj .USj
/:

5.3 Overlapping tensor product

We now begin the task of transferring this monoidal structure to the 1–category of
constructible cosheaves on the RanG . This will require a few additional notions.

Definition 5.3.1 Let M be a G–framed manifold. An I –tuple fUi � M gi2I of
objects of DiagG is said to be disjoint if Ui \Uj D¿ for i ¤ j 2 I .

Note that, if fUi �M gi2I is disjoint, then UI �M is an object of RanG ; thus, we
may locate RanG within a larger auxiliary object, which we now define.

Definition 5.3.2 We define a category eRanG as follows:

(1) An object of eRanG is a G –framed manifold M and an I –tuple fUi �M gi2I

of objects of DiagG .
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(2) A morphism from fUi �M gi2I to fVj � N gj2J is a J –cover S of I such
that fUi � M gi2Sj

is disjoint for each j 2 J , together with an element ofQ
J HomRanG

.USj
�M;Vj �N /.

(3) Composition is given by composition of covers and composition in RanG .

Our constructions fit together into the commuting diagram

RanG
�
//

�
��

eRanG

z�
��

DG

��

// zDG

��

Fin // Cov

We shall say that a functor from zDG is locally constant if its restriction to DG is so,
and we shall say that a functor from eRanG is a constructible cosheaf if its restriction to
RanG is so. The argument of Lemma 2.3.6 yields the following relationship between
these two types of functors:

Lemma 5.3.3 Restriction along �W eRanG!
zDG induces an equivalence

Funloc. zDG ;C/
�
�! cShvcbl.eRanG ;C/:

Since it is clear from the formula for right Day convolution on Fun. zDG ;C/ that the
tensor product of locally constant functors is again locally constant, we obtain in this
way a symmetric monoidal structure on cShvcbl.eRanG ;C/. Our next result asserts that
the 1–category of constructible cosheaves on RanG is a localization of this larger
1–category.

Definition 5.3.4 We say that a constructible cosheaf F W eRanG ! C has disjoint
support if F.fUi �M gi2I /' 0 whenever fUi �M gi2I is not disjoint.

Lemma 5.3.5 The right Kan extension ��W cShvcbl.RanG ;C/ ! Fun.eRanG ;C/ is
fully faithful with essential image the constructible cosheaves with disjoint support.

Proof From the definitions,

.fUi �M gi2I /=� D

�
.fUi �M gi2I /=RanG

if fUi �M gi2I is disjoint,
¿ else.
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Next, we show that this localization is compatible with the monoidal structure inherited
from right Day convolution on zDG .

Lemma 5.3.6 Let 'W F1!F2 be a morphism and F an object in cShvcbl.eRanG ;C/.
If �\' is an equivalence, then so is �\.'˝ idF /.

Proof Evidently, if fUi �M gi2I is disjoint, then any subset is again disjoint. Thus,
we have a commuting diagram

�\.F1˝F /.UI �M /

�\.'˝F /.UI�M /

��

� //
M

I1[I2DI

�\F1.UI1
�M /˝ �\F.UI2

�M /

L
�\'.UI1

�M /˝�\idF.UI2
�M /

��

�\.F2˝F /.UI �M /
� //

M
I1[I2DI

�\F2.UI1
�M /˝ �\F.UI2

�M /

The right-hand vertical arrow is an equivalence by assumption, so the left-hand vertical
arrow is also an equivalence by two-out-of-three.

By [31, Proposition 2.2.1.9], we obtain a second symmetric monoidal structure on
cShvcbl.RanG ;C/ for which the restriction �\ is symmetric monoidal. We refer to
this monoidal structure as the overlapping monoidal structure. Where necessary, the
symbol [ will be used to disambiguate the overlapping tensor product from other
tensor products (eg ˝[ ).

The lax monoidal structure on the identity asserted in Proposition 3.3.1 is obtained after
localization from the oplax structure on the restriction Fun. zDG ;C/! Fun.DG ;C/

arising from the fact that DG!
zDG is symmetric monoidal.

Remark 5.3.7 In terms of explicit formulas, the components of the lax monoidal
structure are given by the projections

[O
J

Fj .UI / '
M

Cov.I;J /

O
J

Fj .USj
/ !

M
Fin.I;J /

O
J

Fj .Uf �1.j// '

qO
J

Fj .UI /

induced by the inclusion f 7! ff �1.j /gj2J of functions into covers.

With the following lemma, we complete the proof of Proposition 3.3.1.

Lemma 5.3.8 There is a natural equivalence F ˝[G ' ��.F �G/.
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Proof Consider the noncommutative diagram

.RanG�MfldG
RanG/# //

�

��

f
// RanG�MfldG

RanG
���
// eRanG�MfldG

eRanG
z��z�
// zDG�

zDG

q

��

RanG
�

// eRanG
z�

// zDG

Although the two composites do not agree, there is an evident map

z���!q.z��z�/.�� �/f;

which induces a natural transformation

��.F �G/! F ˝[G

after taking right Kan extensions. To see that this map is an equivalence, note that, as in
Lemma 4.2.4 and Section 5.2, each of the undercategories in question receives an initial
functor from Cov.�; 2/ (note that ��1.UI �M / is isomorphic to Cov.I; 2/).

From Lemmas 4.2.5 and 5.3.8, we see that �! lifts to a symmetric monoidal functor
between the overlapping and pointwise monoidal structures on Fun.MfldG ;C/. We
record the following fact concerning the interaction of this functor with Lie chains,
which is immediate from [19, Lemma 6.2.6].

Lemma 5.3.9 The following diagram commutes:

AlgL.cShvcbl.RanG ;C/[/

CL
[

��

�!
// AlgL.Funloc.MfldG ;C/pt/

CL
q

��

CoalgCom.cShvcbl.RanG ;C/[/
�!
// CoalgCom.cShvcbl.RanG ;C/pt/
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