
msp
Geometry & Topology 22 (2018) 4145–4161

Endotrivial representations of finite groups and
equivariant line bundles on the Brown complex

PAUL BALMER

We relate endotrivial representations of a finite group in characteristic p to equivariant
line bundles on the simplicial complex of nontrivial p–subgroups, by means of weak
homomorphisms.

20C20, 55P91

Dedicated to Serge Bouc on the occasion of his 60th birthday

1 Introduction

Let G be a finite group, p a prime dividing the order of G and k a field of character-
istic p . For the whole paper, we fix a Sylow p–subgroup P of G.

Consider the endotrivial kG–modules M, ie those finite-dimensional k–linear rep-
resentations M of G which are ˝–invertible in the stable category kG–stab D
kG–mod=kG–proj; this means that the kG–module Endk.M/ is isomorphic to
the trivial module k plus projective summands. The stable isomorphism classes
of these endotrivial modules form an abelian group, Tk.G/, under tensor product.
This important invariant has been fully described for p–groups in celebrated work of
Carlson and Thévenaz [6; 7]. Therefore, for general finite groups G, the focus has
moved towards studying the relative version,

Tk.G; P / WD Ker.Tk.G/
Res
��! Tk.P //:

We connect this piece of modular representation theory to the equivariant topology
of the Brown complex Sp.G/ of p–subgroups; see Brown [4]. This G–space Sp.G/
is the simplicial complex associated to the poset of nontrivial p–subgroups of G, on
which G acts by conjugation. The study of Sp.G/ is a major topic in group theory,
centered around Quillen’s conjecture [12], which predicts that if Sp.G/ is contractible
then it is G–contractible, ie G admits a nontrivial normal p–subgroup. Here, we focus
on the Picard group PicG.Sp.G// of G–equivariant complex line bundles on Sp.G/;
see Segal [13].
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4146 Paul Balmer

Our main result, Theorem 4.1, relates those two theories as follows (see Corollary 4.13):

1.1 Theorem Suppose k algebraically closed. Then there exists an isomorphism

Tk.G; P /' Torsp0PicG.Sp.G//;

where Torsp0PicG.Sp.G// is the prime-to-p torsion subgroup of PicG.Sp.G//.

The left-hand abelian group Tk.G; P / is always finite; see Remark 4.12. About the
right-hand side, it is true for a general finite G–CW–complex X that the group PicG.X/
can be interpreted as an equivariant cohomology group, namely H2G.X;Z/; in particular,
it is a finitely generated abelian group; see Remark 2.7. Some readers will consider
Theorem 1.1 as the topological answer to the modular-representation-theoretic problem
of computing Tk.G; P /.

Since its origin in [4; 12], the space Sp.G/ has been related to the p–local study
of G. Closer to our specific subject, Knörr and Robinson [11] and Thévenaz [15]
already exhibited interesting relations between modular representation theory and
equivariant K–theory of Sp.G/. The connection we propose here does not only relate
invariants of both worlds but appears at a slightly deeper level, in that it connects actual
objects. Indeed, in Construction 3.1, we build complex line bundles over Sp.G/ from
endotrivial representations of G. This construction then yields the isomorphism of
Theorem 1.1. It would actually be interesting to see whether similar constructions exist
for other classes of modular representations of G, beyond endotrivial ones.

The attentive reader will appreciate that modular representations of G live in positive
characteristic whereas complex line bundles on the space Sp.G/ are rather “charac-
teristic zero” objects. This cross-characteristic connection is made possible thanks to
the use of torsion elements and roots of unity. More precisely, we use in a crucial
way the reinterpretation — see Balmer [1] — of the group Tk.G; P / in terms of weak
P –homomorphisms. Let us remind the reader.

1.2 Definition Let K be a field — which will be either k or C in the sequel. A
function uW G!K� DK �f0g is a (K–valued) weak P –homomorphism if:

(WH1) u.g/D 1 when g 2 P.

(WH2) u.g/D 1 if P \P g D 1 (here P g D g�1Pg as usual).

(WH3) u.g2g1/D u.g2/u.g1/ if P \P g1 \P g2g1 ¤ 1.
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The name comes from (WH3), which is a weakening of the usual homomorphism
condition. We denote by AK.G; P / the group of all weak P –homomorphisms from G

to K� , equipped with pointwise multiplication, .uv/.g/D u.g/v.g/.

The main result of [1] is the existence of an explicit isomorphism

(1:3) Ak.G; P /' Tk.G; P /:

This result has already found interesting applications, for instance the computation
of Tk.G; P / for new classes of groups by Carlson, Mazza and Nakano [5] and Carlson
and Thévenaz [8]. Here, we will use the complex version AC.G; P / to build a
homomorphism

LW AC.G; P /! PicG.Sp.G//

which will yield the isomorphism of Theorem 1.1 when suitably restricted to torsion.
Injectivity of L on torsion relies in an essential way on a result of Symonds [14],
namely the contractibility of the orbit space Sp.G/=G.

As often in such matters, it is difficult to predict which way traffic will go on the
new bridge opened by Theorem 1.1. Computations of Tk.G; P / have already been
performed for many classes of finite groups and it seems quite possible that these
examples will produce new equivariant line bundles for people interested in the G–
homotopy type of Sp.G/. Conversely, Theorem 1.1 might prove useful to modular
representation theorists in endotrivial need. Only future work will tell.

Finally, we emphasize that the G–space Sp.G/ can of course be replaced by any G–
homotopically equivalent G–space, like Quillen’s version [12] via elementary abelian
p–subgroups, Bouc’s variant [3] or Robinson’s; see Webb [17].

The paper is organized as follows. The preparatory Section 2 recalls the Brown complex
and includes some comments on mth roots of continuous functions. The central
Section 3 provides the construction of the explicit complex line bundle associated to a
weak homomorphism. Finally, the main result is established in Section 4.

2 The Brown complex and roots of functions

In this preparatory section, we gather some background and notation.

2.1 Notation For an integer m� 1 and a field K (which will be k or C ), we denote
by �m.K/D f� 2K j �m D 1g the group of mth roots of unity in K .
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2.2 Notation The Brown complex Sp.G/ is (the geometric realization of) the sim-
plicial complex with one nondegenerate n–simplex ŒQ0 <Q1 < � � �<Qn� for each
sequence of n proper inclusions of nontrivial p–subgroups, with the usual face opera-
tions “dropping Qi ”. For nD 0, we thus have a point ŒQ� in Sp.G/ for each nontrivial
p–subgroup Q � G. The space Sp.G/ admits an obvious right G–action given by
conjugation on the p–subgroups, that is, Q � g WD Qg D g�1Qg . This G–action
on Sp.G/ is compatible with the cell structure.

Since we have fixed a Sylow p–subgroup P �G, we can consider the subcomplex

Y WD Sp.P /� Sp.G/

on those subgroups contained in P, ie we keep in Y those n–cells ŒQ0 < � � �<Qn�
of Sp.G/ corresponding to nontrivial subgroups of P. This closed subspace Y

of Sp.G/ is contractible, for instance towards the point ŒP �. But more than that,
Y is an N –subspace of Sp.G/ for N D NG.P / the normalizer of P. As such, Y
is even N –contractible. See [16] if necessary. A fortiori, Y is P –contractible. The
translates Yg D Sp.P g/ of the closed subspace Y cover the space Sp.G/:

Sp.G/D
[
g2G

Sp.P g/D
[
g2G

Yg:

We shall perform several “G–equivariant constructions” over Sp.G/ by first per-
forming a basic construction over Y and then showing that the translates of this basic
construction on Yg1 and on Yg2 agree on the intersection Yg1\Yg2 for all g1 and g2 .

2.3 Remark We will be tacitly using the following fact. For g1; : : : ; gn2G (typically
with n� 3), we have P g1\� � �\P gn ¤ 1 if and only if Y g1\� � �\Y gn is not empty.
Clearly a nontrivial P g1 \ � � �\P gn gives a point in Y g1\ � � �\Y gn . Conversely, as
G acts simplicially on Sp.G/, a nonempty intersection Y g1\� � �\Y gn must contain
some 0–simplex ŒQ�, ie some nontrivial p–subgroup Q � P gi for all i .

We shall also often use the following standard notation:

2.4 Notation When �W L1! L2 is a map of complex line bundles on a space X
and �W X ! C� is a continuous function, we denote by � � � the map � composed
with the automorphism (of L1 or L2 ) which scales by �.x/ the fiber over x .

2.5 Remark A G–equivariant complex line bundle L over a (right) G–space X
consists of a complex line bundle � W L!X such that L is also equipped with a G–
action making � equivariant and such that the action of every g2G on fibers Lx!Lxg
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is C–linear. More generally, see [13] for G–equivariant vector bundles. We denote by
PicG.X/ the group of G–equivariant isomorphism classes of such L, equipped with
tensor product. The contravariant functor PicG.�/ is invariant under G–homotopy. In
particular, if X is G–equivariantly contractible, the map Homgps.G;C�/ŠPicG.�/!
PicG.X/ is an isomorphism.

In the case of X D Sp.G/, restriction to the P –subspace Y D Sp.P / yields a group
homomorphism from PicG.Sp.G// to the one-dimensional complex representations
of P, which we shall simply denote by ResGP ,

(2:6) ResGP W PicG.Sp.G//! PicP .Sp.P //Š Homgps.P;C
�/:

2.7 Remark (Totaro) For a compact Lie group G acting on a manifold M, there is
an isomorphism PicG.M/' H2G.M;Z/D H2.M �G EG;Z/, where EG! BG is
the universal G–principal bundle on the classifying space BG ; see [9, Theorem C.47],
where the similar result for a finite group acting on a finite CW–complex is attributed
to [10]. Alternatively, one can see the latter by reducing to the case of manifolds,
since every finite G–CW–complex is G–homotopy equivalent to a (noncompact) G–
manifold. Then the group H2.X �G EG;Z/ can be approached via a Serre spectral
sequence for the fibration X !X �G EG! BG. In particular, using that G is finite,
the spectral sequence collapses rationally to an isomorphism H2.X �G EG;Q/ '
H0.BG;H2.X;Q//, showing that PicG.X/˝Q' .Pic.X/˝Q/G.

2.8 Notation For a subspace Y of a G–space X, like our Y D Sp.P /� Sp.G/DX,
every element g 2G yields a homeomorphism �gW Y ��! Yg . We can transport things
from Y to Yg via this homeomorphism, and we use g�.�/ to denote this idea. For
instance, if f W Y ! C is a function, then g�f W Yg ! C is g�f .x/ WD f .xg�1/.
Another situation will be that of G–equivariant line bundles L �

�!X and L0 �
0

�!X

and a morphism �W LjY ! L0
jY

of bundles over Y , in which case the morphism
g��W LjYg

! L0
jYg

is defined by the commutativity of the following top face:

(2:9)

LjY
�

""

�

��

�g

'
// LjYg

DWg�.�/

##

�
��

L0
jY

�g

'
//

� 0
��

L0
jYg

� 0
��

Y
�g

'
// Yg
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As we use right actions (that is, . � g2g1/ D . � g1/ ı . � g2/), we have .g2g1/� D
.g1/� ı .g2/� .

Let us now say a word about roots of complex functions.

2.10 Remark Throughout the paper, C is given the trivial G–action. Hence, a
G–map f W X !C from a (right) G–space X to C is simply a continuous function
such that f .xg/D f .x/ for all x 2X and all g 2G, that is, essentially a continuous
function xf W X=G!C on the orbit space.

2.11 Proposition Let m� 1 be an integer, X a G–space and f W X!C� a G–map.
Suppose that f is G–homotopic to the constant map 1. Then f admits an mth root
in ContG.X;C�/, ie a G–map f 1=mW X !C� such that .f 1=m/m D f .

Proof By assumption, the induced map xf W X=G ! C� is homotopic to 1. Then
it suffices to observe that xf has an mth root by a standard determination-of-the-
logarithm argument. (Let X D X=G and let H W X � Œ0; 1�! C� be a homotopy
between H.x; 0/D xf .x/ and H.x; 1/D 1. Lifting each t 7!H.x; t/=jH.x; t/j 2 S1

along the fibration R�S1 , we find a map � W X � Œ0; 1�! R such that H.x; t/D
jH.x; t/j � ei�.x;t/ and �.x; 1/ D 0. One can then define the mth root of xf via
xf 1=m.x/D j xf .x/j1=m � ei�.x;0/=m for all x 2X.)

2.12 Corollary If X=G is contractible (eg if X is G–contractible) then for every
integer m� 1, every G–map f W X!C� admits an mth root f 1=m 2ContG.X;C�/.

Proof As such a map f factors via X�X=G, the contractibility of X=G implies
that f is G–homotopically trivial and we conclude by Proposition 2.11.

2.13 Corollary For every integer m � 1, every G–map f W Sp.G/! C� on the
Brown complex admits an mth root f 1=m 2 ContG.Sp.G/;C�/.

Proof The orbit space Sp.G/=G is contractible, by Symonds [14].

3 Constructing line bundles from weak homomorphisms

We now want to associate a G–equivariant complex line bundle Lu on Sp.G/ to
each complex-valued weak homomorphism u 2 AC.G; P / as in Definition 1.2. In
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essence, this is a very standard gluing procedure, familiar to every geometer. We spell
out some details for the sake of clarity and to see where the “weak homomorphism”
conditions (WH1)–(WH3) show up.

3.1 Construction Let uW G!C� be a weak P –homomorphism and Y D Sp.P /�
Sp.G/ as in Notation 2.2. Define Lu as the topological space

Lu WD

� G
s2G

Ys �C

�.
�;

where � is the equivalence relation defined in (3.2) below. We use the notation .y; a/s
to indicate a point .y; a/ in the space Ys �C with index s 2 G ; and we shall write
Œy; a�s 2 Lu for its class modulo �. (As the subsets Ys do intersect in Sp.G/, the
lighter notation .y; a/ would be ambiguous.) Note that the weak P –homomorphism u

does not appear so far; it is used in the equivalence relation:

(3:2) .y; a/s � .z; b/t () y D z and a �u.st�1/D b:

Direct inspection shows that � is an equivalence relation: reflexivity uses (WH1);
symmetry uses that u.g�1/ D u.g/�1 — see [1, Remark 4.2(1)]; transitivity relies
on (WH3) and Remark 2.3. Of course, Lu is equipped with the quotient topology.

3.3 Remark A good way to keep track of what happens is to think of the class Œy; a�s
as a fictional element “a � s 2C living in a fiber over y 2 Sp.G/”, which is not defined
since we do not know how s 2G should act on C. Still, equality between “a �s over y ”
and “b � t over z” should nonetheless mean that they live in the same fiber, ie y D z ,
and that “a � .st�1/D b”. So we decide that the action of st�1 , ie the difference of the
two actions over the point y D z in Ys\Y t , is given via the weak homomorphism u.
This can be compared to [1, Equation (2.7)].

The space Lu admits a continuous projection to the Brown complex

�uW Lu! Sp.G/

simply given by Œy; a�s 7! y and whose fibers are isomorphic to C. More precisely,
for every s 2G, we have a homeomorphism

(3:4) ˛sW 1Ys WD Ys �C '
�! ��1u .Ys/� Lu; .y; a/ 7! Œy; a�s:
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(We denote trivial line bundles by 1.) These are trivializations of Lu over Ys . For all
s; t 2G, the transition maps ˛�1t ˛s on the intersection,

.Ys\Y t/�C
˛s

'
// ��1u .Ys\Y t/ .Ys\Y t/�C;

˛t

'
oo

.y; a/
� // Œy; a�s

(3.2)
D Œy; a �u.st�1/�t

� // .y; a �u.st�1//;

is given by the (constant) linear isomorphism, multiplication by the unit u.st�1/. In
other words, Lu

�u
�! Sp.G/ is a complex line bundle on Sp.G/. We record the above

computation in compact form: for all s; t 2G we have an equality

(3:5) ˛s D ˛t �u.st
�1/ over Ys\Y t

as isomorphisms 1Ys\Y t ��! .Lu/jYs\Y t
. Here we used Notation 2.4.

The right G–action on the space Lu is defined, in the spirit of Remark 3.3, by

Œy; a�s �g WD Œyg; a�sg :

This action clearly makes �uW Lu ! Sp.G/ into a G–map. In view of the above,
G acts linearly on the fibers of �u and thus makes Lu into a G–equivariant complex
line bundle over Sp.G/. We can also observe that the collection of local trivializations
˛sW 1Ys ��! .Lu/jYs

given in (3.4) is “G–coherent”,1 by which we mean that for all
s; g 2G we have

(3:6) g�.˛s/D ˛sg

as isomorphisms 1Ysg ��! .Lu/jYsg
. This fact results directly from the definitions;

see (2.9) and (3.4). Combining this with (3.5) we note for later use the formula

(3:7) g�.˛1/D ˛1 �u.g/ over Y \Yg

as isomorphisms 1Y\Yg ��! .Lu/jY\Yg
for all g 2G such that P \P g ¤ 1.

3.8 Proposition For any two weak P –homomorphisms u; v 2 AC.G; P / we have a
G–equivariant isomorphism Luv ' Lu˝Lv of complex line bundles over Sp.G/.

Proof Note that the trivializations (3.4) of Lu are performed on the closed cover
of Sp.G/ given by .Ys/s2G , which is independent of u. So, it is the same cover
for Lu , Lv and Luv . The statement then follows from the observation that the obvious

1We do not say “G–equivariant” to avoid confusion.
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isomorphisms over Ys (where we temporarily decorate the three morphisms ˛ as ˛.u/ ,
˛.v/ and ˛.uv/ to distinguish the respective line bundles)

.Lu˝Lv/jYs
Š .Lu/jYs

˝ .Lv/jYs

˛
.u/
s ˝˛

.v/
s

 �������
'

1Ys˝1Ys Š 1Ys
˛

.uv/
s
��! .Luv/jYs

patch together into a G–equivariant isomorphism Lu˝Lv
��! Luv on Sp.G/. Veri-

fication of this patching is immediate from (3.5) and the following agreement:

1Ys\Y t ˝1Ys\Y t Š 1Ys\Y t

.�u.st�1//˝.�v.st�1//

��

�uv.st�1/

��

1Ys\Y t ˝1Ys\Y t Š 1Ys\Y t

on the trivial bundle. Finally, the map Lu˝Lv ��! Luv is G–equivariant because
each f˛.:::/s gs2G is a G–coherent collection of maps, as we saw in (3.6).

3.9 Notation As in the introduction, we denote by LW AC.G; P /! PicG.Sp.G//
the homomorphism u 7! ŒLu� defined by Construction 3.1 and Proposition 3.8.

This homomorphism is easily seen to be natural in the following sense:

3.10 Proposition Let G0 � G be a subgroup containing P and consider the G0–
subspace Sp.G0/� Sp.G/. Then the diagram

AC.G; P /
L
//

Res
��

PicG.Sp.G//

Res
��

AC.G
0; P /

L
// PicG

0

.Sp.G0//
is commutative.

3.11 Example Let uW G!C� be a group homomorphism, ie a one-dimensional repre-
sentation. Assume that u is trivial on P. One associates to u a weak P –homomorphism
zu 2 AC.G; P / by forcing (WH2), ie by setting, for every g 2G,

(3:12) zu.g/ WD

�
u.g/ if P \P g ¤ 1;
1 if P \P g D 1:

Then Lzu is isomorphic to the “constant” line bundle (in the sense of [13]), that is,
the line bundle 1u WD Sp.G/ � C with action .y; a/ � g D .yg; au.g//. Indeed,
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inspired by Remark 3.3, one easily guesses the G–equivariant isomorphism Lzu
��! 1u

by sending the class Œy; a�s in Lzu (see Construction 3.1) to the point .y; a � u.s//
in Sp.G/�C D 1u . Verifications are left to the reader.

The modification (3.12) of u into a weak homomorphism zu is irrelevant for the
construction of Lzu since (3.2) only uses values zu.g/ over the subset Y \Yg . Indeed,
either P \P g D 1 and this subset is empty, or P \P g ¤ 1 and zu.g/D u.g/ anyway.
Furthermore, the homomorphism u 7! zu is often injective, even after (post)composition
with L. We do not use the latter but state it for peace of mind:

3.13 Proposition Suppose that Sp.G/ is connected. Let uW G ! C� be a group
homomorphism which is trivial on P and such that the G–equivariant line bundle
1u ' L.zu/ is G–equivariantly trivial on Sp.G/ (for instance if zuD 1). Then uD 1.

Proof A G–equivariant isomorphism 1 ��! 1u is given by multiplication by a map
f W Sp.G/!C� such that f .xg/D f .x/ �u.g/ for all g 2G and x 2Sp.G/. Choose
an integer m � 1 such that u.g/m D 1. Then f mW Sp.G/! C� is a G–map. By
Corollary 2.13, this f m admits an mth root in ContG.Sp.G/;C�/, ie there exists a
G–map yf W Sp.G/!C� such that yf m D f m . Since Sp.G/ is assumed connected,
we have yf D f � � for some constant � 2 �m.C/; see Notation 2.1. Then f is also a
G–map and the above relation f .xg/D f .x/ �u.g/ forces u.g/D 1 for all g 2G.

Assuming Sp.G/ connected is a mild condition. According to [12, Proposition 5.2],
if Sp.G/ is disconnected then the stabilizer H � G of a component is a strongly
p–embedded subgroup, and our discussion can be safely reduced from G to H.

4 The results

We now prove our main result, from which we will deduce Theorem 1.1 stated in
the introduction. Recall from Notation 3.9 the homomorphism LW AC.G; P / !

PicG.Sp.G//, u 7! ŒLu�, from the group of complex-valued weak P –homomorphisms
(Definition 1.2) to the G–equivariant Picard group (Remark 2.5) of the Brown com-
plex Sp.G/.

4.1 Theorem The homomorphism LW AC.G; P / ! PicG.Sp.G// is injective on
torsion subgroups (denoted by Tors) and its image is the kernel of restriction to one-
dimensional representations of P ; see (2.6). In other words, the sequence

(4:2) 0! TorsAC.G; P /
L
�! TorsPicG.Sp.G//

ResG
P

��! Homgps.P;C
�/
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is exact. Consequently, for every integer m � 1 prime to p , our L restricts to an
isomorphism on the m–torsion subgroups2

LW TorsmAC.G; P /
��! TorsmPicG.Sp.G//:

Proof The proof will occupy the next couple of pages. First note that by naturality
of L (Proposition 3.10 applied to G0 D P ), the following square commutes:

AC.G; P /
L

//

Res
��

PicG.Sp.G//

Res
��

0D AC.P; P /
L
// PicP .Sp.P //Š Homgps.P;C�/

This proves that ResGP ıL is trivial (even outside torsion).

We now prove injectivity of L on the torsion of AC.G; P /. Let u 2 AC.G; P / be
an element of m–torsion for some m � 1, meaning that u.g/m D 1 for all g 2 G.
Suppose that we have a G–equivariant trivialization  W 1Sp.G/

��! Lu of the line
bundle L.u/ D Lu (see Construction 3.1). Comparing the restriction  jY to the
trivialization ˛1W 1Y ��! .Lu/jY given in (3.4), we find a P –map ıW Y !C� with

 jY D ˛1 � ı

as isomorphisms 1Y ��! .Lu/jY . Combining the G–equivariance of  with the
relation g�.˛1/D ˛1 �u.g/ on Y \Yg from (3.7), we see that for every g 2G such
that P \P g ¤ 1, we have, for every y 2 Y \Yg ,

(4:3) u.g/D
ı.y/

g�ı.y/
D

ı.y/

ı.yg�1/
:

As the left-hand side belongs to �m.C/, we deduce that ım and g�.ım/ agree on the
intersection Y \Yg . Consequently the family of functions .g�.ım//g2G patch together
into a G–map f W Sp.G/!C� by setting f .x/D ı.xg�1/m whenever x 2 Yg . By
Corollary 2.13, f admits an mth root, ie there exists a G–map f 1=mW Sp.G/!C�

such that .f 1=m/m D f . On Y , the two roots f 1=m and ı of the same map f must
differ by an mth root � 2 �m.C/, which must be constant since Y is connected,
say ı D � � f 1=m . But then, for every g 2 G such that P \ P g ¤ 1 and for any

2By “m–torsion” we mean exactly the annihilator of m itself, not of powers of m .
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y 2 Y \Yg ¤¿ (for which yg�1 2 Y too), relation (4.3) becomes

u.g/D
ı.y/

ı.yg�1/
D

� �f 1=m.y/

� �f 1=m.yg�1/
D 1

by G–equivariance of f 1=m . In the other case, where P \P g D 1, we have u.g/D 1
by (WH2). In short, uD 1 is trivial. This proof uses the contractibility of Sp.G/=G,
since Corollary 2.13 relies on Symonds [14].

We now prove exactness of (4.2) in the middle via another construction.

4.4 Construction Let L be a G–equivariant complex line bundle on Sp.G/ which
is torsion and such that ResGP .L/D 1, ie L restricts to the trivial P –bundle on Sp.P /.
Choose for some m� 1 a G–equivariant isomorphism

!W 1Sp.G/
��! L˝m

over Sp.G/ and choose a P –equivariant isomorphism over Y D Sp.P /,

ˇW 1Y ��! LjY ;

between the trivial bundle 1Y D Y � C and the restriction of L to Y . The P –
equivariance of ˇ means that, for every h 2 P, we have

(4:5) h�.ˇ/D ˇ

as isomorphisms 1Y ��! LjY . There is a choice in the isomorphism ˇ , and we can
replace ˇ by ˇ � ı for any P –map ıW Y !C� . We shall use this flexibility shortly.

Observe that ˇ˝m yields another trivialization of L˝m on Y , which we can compare
to the initial ! , restricted to Y . It follows that we have !jY D ˇ˝m � � for some
P –map �W Y !C� . Since the space Y is P –contractible, Corollary 2.12 produces
an mth root of � , say �1=m 2 ContP .Y;C�/ with .�1=m/m D � . Using this unit to
replace ˇ by ˇ ��1=m , we can and shall assume that ˇW 1Y ��!LjY moreover satisfies

(4:6) ˇ˝m D !jY :

Then, for each g 2 G, consider as before the translate Yg D Sp.P g/ � Sp.G/ and
transport ˇ into an isomorphism g�.ˇ/W 1Yg ��!LjYg

; see (2.9). If the isomorphisms
ˇ and g�.ˇ/ were to agree on the intersection of their domains of definition Y \Yg
for all g 2G, the collection of isomorphisms .g�.ˇ//g2G would patch together into
a global isomorphism 1Sp.G/

��! L, automatically G–equivariant by construction.
Since this cannot happen for nontrivial L, there is an obstruction, and this happens to
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be a weak P –homomorphism. Indeed, for every g 2G such that P \P g ¤ 1, define
what is a priori a function uL.g/ 2 Cont.Y \Yg;C�/ by

(4:7) g�.ˇ/D ˇ �uL.g/ over Y \Yg;

ie by the commutativity of the following diagram of line bundles on Y \Yg :

(4:8)

1Y\Yg
.g�.ˇ//jY\Yg

'
//

�uL.g/WD '

��

.LjYg
/jY\Yg

D LjY\Yg

1Y\Yg
ˇjY\Yg

'
// .LjY /jY\Yg

D LjY\Yg

There is no choice at this step. By convention, we set

(4:9) uL.g/D 1 if P \P g D 1:

In the case P \P g ¤ 1, we are going to prove that uL.g/W Y \Yg!C� is a constant
function. Taking (4.8) to the mth tensor power, replacing both instances of ˇ˝m by !
thanks to (4.6) and using that ! is G–equivariant, we deduce that .uL.g//m D 1

on Y \ Yg . Since this space is nonempty and connected (even contractible), this
implies that the function uL.g/ is actually constant, with value equal to some complex
mth root of unity uL.g/ 2 �m.C/. In other words, the function

uLW G! �m.C/; g 7! uL.g/;

is a candidate to be a complex-valued weak P –homomorphism. It satisfies (WH1) by
P –equivariance of ˇ — see (4.5) and (4.8) for g D h 2 P — and uL satisfies (WH2)
by definition (4.9). To verify the last property, (WH3), consider g1; g2 2G such that
P\P g1\P g2g1¤1, ie such that the subset Z WDY \Yg1\Yg2g1 is nonempty. Then,
juxtaposing the defining diagram (4.8) for uL.g1/ and the one for uL.g2/ transported
by .g1/� , both suitably restricted to this triple intersection Z , we obtain the following
commutative diagram over Z :

(4:10)

1Z
.g1�g2�.ˇ//jZ

'
//

g1�.�uL.g2//D�uL.g2/ '

��

LjZ

1Z
.g1�ˇ/jZ

'
//

�uL.g1/ '

��

LjZ

1Z
ˇjZ

'
// LjZ
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We used at the top left that g1�.�/ is C–linear. Using now that g1�g2� D .g2g1/� ,
the left-hand vertical composite satisfies the commutativity expected of uL.g2g1/, ie
fits in place of uL.g2g1/ in (4.8) for g D g2g1 , after restriction of the latter to Z .
This is where we use that Z ¤¿ to deduce that uL.g2g1/D uL.g2/ �uL.g1/.

It is interesting to see the parallel of these arguments with those of [1], where the
nonemptiness of Z is replaced by the nonvanishing of a suitable stable category. Both
properties are equivalent, namely they both are avatars of the fact that the Sylow P

and its conjugates P g1 and P g2g1 intersect nontrivially.

At this stage, we have associated a weak P –homomorphism uL 2 TorsmAC.G; P /

to an m–torsion G–equivariant line bundle L on Sp.G/ and choices of isomor-
phisms !W 1Sp.G/

��! L˝m and ˇW 1Y ��! LjY satisfying (4.6). We now claim
that L.uL/ ' L. For this, recall the line bundle LuL

of Construction 3.1, which
describes L.uL/. It comes with an isomorphism ˛1W 1Y ��! .LuL

/jY satisfying

g�.˛1/D ˛1 �uL.g/ over Y \Yg

by (3.7). Comparing this formula to the similar one for ˇ in (4.7), we see that the
isomorphism ' WD ˇ ı˛�11 over Y ,

'W .LuL
/jY '

˛�1
1
��! 1Y '

ˇ
��! LjY ;

satisfies g�.'/ D ' on Y \ Yg for all g 2 G. Therefore, the .g�'/g2G patch
together into a morphism 'W LuL

! L which is G–equivariant and an isomorphism
by construction. This finishes the proof of the exactness of the sequence (4.2).

It is immediate that L restricts to an isomorphism on prime-to-p torsion, since
Homgps.P;C�/ is pr –torsion, where jP j D pr , hence every L 2 TorsmPicG.Sp.G//
with m prime to p maps to zero under ResGP .

This finishes the proof of Theorem 4.1.

4.11 Remark Construction 4.4 describes the inverse of L on prime-to-p torsion.

Let us now connect these results over C to positive characteristic objects. We recall
some well-known facts, to facilitate cognition.

4.12 Remark The group Tk.G; P / is always finite. (Indeed, every endotrivial
module in Tk.G; P / is a direct summand of k.G=P / — an explicit projector depending
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on u 2 Ak.G; P / is given in [1]. By Krull–Schmidt it follows that Tk.G; P / has at
most dimk.k.G=P //D ŒG WP � elements.) Also, the order of Tk.G; P / is prime to p ;
see [1, Corollary 5.3]. For an algebraic closure xk of k, one can easily identify the
image of Tk.G; P / ,! Txk.G; P /; see [1, Corollary 5.5].

In fact, the group Tk.G; P / “stabilizes” once k contains all roots of unity, by which
we mean it contains all mth roots of unity for all integers m � 1 prime to p . Here,
“stabilization” means that Tk.G; P /! Tk0.G; P / is an isomorphism for every further
extension k! k0 ; see [1, Corollary 5.5]. This condition is of course fulfilled if the
field kD xk is algebraically closed, or simply if k contains Fp , the algebraic closure
of the prime field. Our Theorem 1.1 is another way of seeing why Tk.G; P / stabilizes
once k contains all roots of unity, by giving it a topological interpretation:

4.13 Corollary The prime-to-p torsion Torsp0PicG.Sp.G// is a finite subgroup
of PicG.Sp.G//. For any field k of characteristic p which contains all roots of unity
(see Remark 4.12), we have an isomorphism, as announced in Theorem 1.1,

Tk.G; P /' Torsp0PicG.Sp.G//;

where Torsp0 denotes the prime-to-p torsion subgroup.

Proof Let k contain all roots of unity (or just the ŒG WP �th roots) and let e be the
exponent of Tk.G; P /. Let m� 1 be an integer, prime to p and divisible by e .

By (1.3), the integer e is also the exponent of Ak.G; P /' Tk.G; P /, hence um D 1
for all u 2 Ak.G; P /. Thus every uW G! k� in Ak.G; P / takes values in �m.k/.
In other words, we can identify the group of k–valued weak P –homomorphisms
Ak.G; P / with the set of functions uW G! �m.k/ satisfying (WH1)–(WH3).

Consider now, inside the group AC.G; P / of complex-valued weak P –homomor-
phisms, the subgroup TorsmAC.G; P / of elements of order dividing m. Again, this is
just the subset of those functions uW G! �m.C/ satisfying (WH1)–(WH3).

Choose now an isomorphism �m.k/ ' Z=m ' �m.C/. This uses that k contains
all mth roots of unity. Combining the above we obtain an isomorphism

(4:14) Ak.G; P /' TorsmAC.G; P /:

Since the left-hand side is independent of such m (prime to p and divisible by e ),
we get Torsp0AC.G; P /D TorseAC.G; P /. Using now Theorem 4.1, it follows that
Torsp0PicG.Sp.G//DTorsePicG.Sp.G//'TorseAC.G; P / via L. The latter is itself
isomorphic to Ak.G; P /' Tk.G; P / by a last instance of (4.14) and (1.3).
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4.15 Remark The isomorphism of Corollary 4.13 is essentially induced by the
canonical homomorphism LW AC.G; P / ! PicG.Sp.G// of Section 3, up to the
choice of an identification between eth roots of unity in k and eth roots of unity in C,
for e the exponent of Tk.G; P /. Another choice of an isomorphism �e.k/' �e.C/

simply changes the isomorphism (4.14) by multiplication with some integer prime to e ,
a rather harmless operation which is of course invertible.

Combining the above with Example 3.11, we obtain:

4.16 Corollary The following properties of G and p are equivalent:

(i) For kD Fp the group Tk.G; P / consists only of one-dimensional representa-
tions G! k� .

(i0) For every field k containing all roots of unity, the group Tk.G; P / consists only
of one-dimensional representations G! k� .

(ii) Every G–equivariant complex line bundle on Sp.G/ which is torsion of order
prime to p is constant, ie Torsp0PicG.�/! Torsp0PicG.Sp.G// is onto.
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