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Indicability, residual finiteness, and simple subquotients
of groups acting on trees

PIERRE-EMMANUEL CAPRACE

PHILLIP WESOLEK

We establish three independent results on groups acting on trees. The first implies
that a compactly generated locally compact group which acts continuously on a
locally finite tree with nilpotent local action and no global fixed point is virtually
indicable; that is to say, it has a finite-index subgroup which surjects onto Z . The
second ensures that irreducible cocompact lattices in a product of nondiscrete locally
compact groups such that one of the factors acts vertex-transitively on a tree with
a nilpotent local action cannot be residually finite. This is derived from a general
result, of independent interest, on irreducible lattices in product groups. The third
implies that every nondiscrete Burger–Mozes universal group of automorphisms of a
tree with an arbitrary prescribed local action admits a compactly generated closed
subgroup with a nondiscrete simple quotient. As applications, we answer a question
of D Wise by proving the nonresidual finiteness of a certain lattice in a product of two
regular trees, and we obtain a negative answer to a question of C Reid, concerning
the structure theory of locally compact groups.
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1 Introduction

Given a group G acting by automorphisms on a graph X , the local action of G
at a vertex v 2 VX is the permutation group induced by the action of the vertex
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stabilizer G.v/ on the set of edges E.v/ emanating from v . Various results from the
literature show how restrictions on the local action impact the global properties of
the group G . This phenomenon is strikingly illustrated by the work of M Burger and
S Mozes [4; 5] on lattices in products of trees.

Our first main result provides an illustration of this paradigm in the case that X is a tree.
A (topological) group is called virtually indicable if it has a finite-index (finite-index
open) subgroup admitting a (continuous) surjective homomorphism onto the infinite
cyclic group. A tree is called leafless if it has no vertex of valency 1.

Theorem 1.1 (see Theorem 3.1) Let G be a topological group with a continuous,
cocompact action by automorphisms on an infinite locally finite leafless tree T . Suppose
that the local action F.v/ of G at every vertex v is such that the subgroup of F.v/
generated by its point stabilizers is intransitive on E.v/. Then G is virtually indicable.

For every finite transitive permutation group F of degree d that is generated by its point
stabilizers, there exists an infinite simple group acting transitively on the (undirected)
edges of the d–regular tree whose local action at every vertex is isomorphic to F ; see
[4, Proposition 3.2.1] or the discussion preceding Theorem 1.8 below. The condition
on the local action in Theorem 1.1 can therefore not be weakened. By considering
an Aut.T3/–equivariant embedding of the trivalent tree T3 in the 4–regular tree, one
sees that the hypothesis of minimality of the G–action on T is also necessary in the
theorem, even if G is compactly generated.

A special class of permutation groups satisfying the local condition of the theorem
is that of nilpotent groups; see Lemma 3.3. In that particular case, the minimality
assumption on the G–action can be replaced by the assumption that G be compactly
generated, yielding the following result.

Corollary 1.2 Let H be a locally compact group with a continuous action by automor-
phisms on a locally finite tree T . If the local action of H at every vertex is nilpotent,
then every compactly generated closed subgroup G �H either fixes a vertex or edge
or is virtually indicable.

In particular, if H is a closed subgroup of Aut.T / whose local action at every vertex
is nilpotent, then every compactly generated noncompact closed subgroup of H is
virtually indicable. As pointed out to us by Y Cornulier, that conclusion cannot be
strengthened by the claim that H has a finite-index subgroup all of whose compactly
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generated noncompact closed subgroups are indicable. Indeed, a locally compact group
all of whose compactly generated noncompact closed subgroups are indicable, has an
open locally elliptic radical, hence an open amenable radical. On the other hand, a
closed subgroup of Aut.T / with nilpotent local action at every vertex can be simple
and nonamenable; see Section 2.

A natural framework in which these results are relevant is that of lattices in products
of trees. More generally, if � is a finitely generated lattice in a product of the form
Aut.T / � H , where T is a locally finite tree and H is a locally compact group,
then � is virtually indicable as soon as the local action of � at every vertex of T is
nilpotent. Our second main result shows that in the latter situation the lattice � cannot
be residually finite, unless it is reducible.

Theorem 1.3 (see Corollary 6.4) Let T be a locally finite leafless tree and H be a
compactly generated totally disconnected locally compact group with a trivial amenable
radical. Let � � Aut.T /�H be a cocompact lattice whose projection to H has a
nondiscrete image. If the �–action on T is vertex-transitive and the local action of �
at a vertex of T is nilpotent, then the projection of � to H is noninjective, and � is
not residually finite.

The condition of vertex-transitivity of � on T can be removed if one strengthens
slightly the hypothesis on the local action; see Corollary 6.4.

Theorem 1.3 applies in particular to D Wise’s iconic example of an irreducible lattice
in Aut.T4/�Aut.T6/, where Td denotes the d–regular tree, which we call the Wise
lattice; see Wise [27; 26, Example 4.1]. In [27, Main Theorem 7.5], Wise proves that
his lattice has an inseparable finitely generated subgroup, which he uses to prove that the
double of � over that subgroup, which is an irreducible lattice in Aut.T8/�Aut.T6/,
is not residually finite. We show that the Wise lattice itself already fails to be residually
finite, thereby resolving a problem posed by Wise [27, Problem 10.19].

Corollary 1.4 The Wise lattice � � Aut.T4/�Aut.T6/ is not residually finite.

Remark 1.5 Corollary 1.4 is independently proved in [3] by Bondarenko and Kivva,
via considering square complexes associated to automata.

Theorem 1.3 is deduced from a general statement on irreducible lattices in products of
locally compact groups, a special case of which is the following (see also Theorem 5.14
for another related result of independent interest).

Geometry & Topology, Volume 22 (2018)



4166 Pierre-Emmanuel Caprace and Phillip Wesolek

Theorem 1.6 (see Theorem 5.13) Let GDG1�� � ��Gn be a product of nondiscrete
compactly generated totally disconnected locally compact groups that have a trivial
amenable radical and no infinite discrete quotient. Let � �G be a cocompact lattice
whose projection to Gi is dense for all i . If � is residually finite, then every compact
open subgroup of G has a compact normalizer, and G has a trivial quasicenter.

For our last main result, we study the universal groups of Burger and Mozes [4,
Section 3.2]. These groups depend on a choice of a finite permutation group F and are
denoted by U.F /. For F with degree d , the group U.F / is a closed vertex-transitive
subgroup of Aut.Td /. Whenever F does not act freely, the subgroup generated by
pointwise edge-stabilizers, denoted by U.F /C , is an abstractly simple nondiscrete
closed subgroup of Aut.Td /. When F is transitive and generated by its point stabilizers,
the group U.F /C is a compactly generated nondiscrete simple group acting edge-
transitively on T ; see Proposition 2.11. For such F , the group U.F /C therefore
belongs to the following interesting class of groups.

Definition 1.7 Let S denote the class of nondiscrete totally disconnected locally
compact groups that are topologically simple and compactly generated.

When F is not transitive or not generated by its point stabilizers, the group U.F /C

is not compactly generated; eg see Corollary 2.13. We show that U.F / nonetheless
admits a group in S as a subquotient.

Theorem 1.8 (see Theorem 4.16) Let F be a finite permutation group which does
not act freely. Then U.F / has a compactly generated closed subgroup H admitting
a discrete normal subgroup D such that H=D is a nondiscrete compactly generated
simple group.

Combining Theorems 1.1 and 1.8, we obtain a negative answer to a question asked by
Colin Reid [22, Question 2]; see Section 4.5.
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2 Preliminaries

2.1 Graphs and Bass–Serre theory

Following J P Serre [23], a graph is a tuple � D .V �;E�; o; r/ consisting of a vertex
set V � , a directed edge set E� , a map oW E! V assigning to each edge an initial
vertex, and a bijection r W E!E , denoted by e 7! e and called edge reversal, such that
r2 D id and e ¤ e . Edge reversal and the initial vertex map together give a terminal
vertex map t .e/ WD o.e/. A graph automorphism is a permutation of V � and E�
which respects the maps o and r . For a graph Y and a vertex w 2 V Y , we define
EY .w/ to be the edges with origin w . When clear from context, we suppress the
subscript Y . We say a graph Y is d–regular if jEY .w/j D d for all w 2 V Y .

For graphs X and Y , a graph homomorphism �W X ! Y is given by two functions
�V W VX! V Y and �E W EX!EY such that �V ıoD oı�E and �E .e/D �E .e/.
We say a graph X is a covering graph of a graph Y if there is a graph homomorphism
�W X ! Y such that �V is surjective and .�E /�EX .v/

W EX .v/ ! EY .�V .v// is
a bijection for all v 2 VX . We call the homomorphism � a covering map. The
automorphism group Aut.X/ of the graph X is endowed with the topology of pointwise
convergence for its natural action on the set VX tEX , viewed as a discrete set. In
particular, if X is connected and locally finite, then Aut.X/ is a second countable
totally disconnected locally compact group.

Theorem 2.1 [23, Section 5.4] Let X be a connected graph and H � Aut.X/ be a
closed subgroup acting without edge inversion. The following hold:

(1) There is a covering map �W T !X , where T is the a tree. If X is additionally
n–regular, then T is n–regular.

(2) There is a closed subgroup G � Aut.T / and a continuous surjective homomor-
phism ˆW G!H with the following properties:
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(a) Ker.ˆ/ is discrete. In particular, if H is unimodular, then so is G .
(b) The following diagrams commute for all g 2G :

V T

�V

��

g
// V T

�V

��

VX
ˆ.g/

// VX

ET

�E

��

g
// ET

�E

��

EX
ˆ.g/

// EX

We call the map ˆ given by Theorem 2.1 the covering homomorphism. The group G
is called the lift of H to T .

Throughout this paper, given a group G acting on a set X , the pointwise fixator of
Y �X is denoted by G.Y / . When X is a graph, we set

GC WD hG.e/ j e 2ET i:

We record the following fact from Bass–Serre theory.

Proposition 2.2 Let T be a tree and H be a locally compact group acting continuously
on T with compact edge stabilizers. The quotient graph T=HC is a tree.

Proof The group HC acts without inversion on T , since it is generated by edge
stabilizers. Bass–Serre theory ensures that HC is isomorphic to the fundamental group
of a graph of groups whose underlying graph is X WD T=HC ; see [23, Theorem 13].
Additionally, the fundamental group of a graph of groups maps onto the fundamental
group of the underlying graph; see [23, Section 5.1].

Suppose toward a contradiction that X admits a cycle. The fundamental group of X
thus maps onto Z, hence Z is a quotient of HC . Any homomorphism of a locally
compact group to Z is continuous via [1, Corollary 3]. Any homomorphism HC!Z

therefore has a trivial image, since HC is generated by compact subgroups and Z has
no nontrivial finite subgroups. This is absurd. We conclude that X is indeed a tree.

2.2 Normal subgroups of groups acting on trees

The following basic fact seems to be due to J Tits. For a proof of the first two claims, the
reader may consult [16, Lemma 4.2]. The claim on nonamenability follows easily from
the existence of discrete free subgroups afforded by a standard ping-pong argument; a
detailed proof may be found in [17, Theorem 1].
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Proposition 2.3 (Tits) Let T be a tree with more than two ends. If G �Aut.T / acts
minimally without a fixed end, then every nontrivial normal subgroup N of G is such
that it acts minimally without a fixed end, has a trivial centralizer in Aut.T /, and is not
amenable.

There is an important normal subgroup of G�Aut.Tn/, where Tn is the n–regular tree.
Define � on V Tn by v � w if and only if d.v;w/ is even. This is a G–equivariant
equivalence relation on V Tn which partitions V Tn into two parts. The subgroup G� , of
index 2 in G , is the collection of g that do not interchange the parts. The subgroup G�

acts on Tn without edge inversion.

2.3 Burger–Mozes groups

Let Y be a graph and d > 0 be an integer. A coloring of degree d of Y is a map
cW EY ! Œd � such that for every v 2 V Y , the restriction

cv WD c�EY .v/
W EY .v/! Œd �

is either a bijection or is constant. A vertex v is called c–regular or c–singular
accordingly. The coloring c is called regular if all vertices are c–regular. In that case
Y is d–regular.

Let g 2 Aut.Y /, c be a coloring of degree d , and v 2 V Y be a vertex such that v
and gv are both c–regular. We may then define the local action of g at v as the
permutation of Œd � given by

�c.g; v/ WD cg.v/ ıg ı c
�1
v :

When clear from context or unimportant, we suppress the subscript c . The local action
enjoys two important properties, the proofs of which are easy exercises:

�.gh; v/D �.g; hv/�.h; v/;(1)

�.g�1; v/D �.g; g�1v/�1(2)

for all automorphisms g and h preserving the set of c–regular vertices.

Definition 2.4 Let d > 2 and let T be the d–regular tree. For a permutation group
F � Sym.d/ and cW ET ! Œd � a regular coloring, the Burger–Mozes group is

Uc.F / WD fg 2 Aut.T / j �c.g; v/ 2 F for all v 2 V T g:

We write Uc..F; Œd �// when we wish to emphasize the permutation representation of F .
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The group Uc.F / depends on the coloring c , and this dependence is somewhat myste-
rious. For instance, it is easy to construct regular colorings such that Uc.F / is finite.
There is a class of colorings, however, for which we have good control over the resulting
group.

Definition 2.5 A coloring c of a graph Y is legal if c.e/ D c.e/ for each edge
e 2EY .

Proposition 2.6 Let F;F 0 � Sym.d/ and let c; c0 be regular legal colorings of the
d–regular tree T . If F and F 0 are isomorphic as permutation groups, then Uc.F /
is conjugate to Uc0.F 0/ by some g 2 Aut.T /. In particular, the isomorphism type
of Uc.F / is independent of the choice of regular legal coloring.

Proof In the case F D F 0 , the required assertion is proved by Burger and Mozes
in [4, Section 3.2]. Assume now that F and F 0 are distinct and isomorphic. There thus
exists h2 Sym.d/ with hFh�1DF 0 . Let d be the coloring defined by d.e/ WD hc.e/.
Clearly, d is again a regular legal coloring. For g 2 Uc.F / and v 2 V T , we see that

�d .g; v/D dg.v/ ıg ı d
�1
v D hcg.v/ ıg ı c

�1
v h�1 D h�c.g; v/h

�1:

We conclude that �d .g; v/ 2 F 0 for all g 2 Uc.F / and v 2 V T . Hence, Uc.F / �
Ud .F

0/. The converse inclusion is similar, and thus Uc.F /D Ud .F 0/. We conclude
from our initial observation that Uc.F / is indeed conjugate to Uc0.F 0/.

For c a regular legal coloring, one easily verifies that Uc.f1g/ acts vertex transitively
on T . Therefore, Uc.F / acts vertex transitively on T for any regular legal coloring c
and permutation group F .

Definition 2.7 For d � 3, F � Sym.d/, and c some (equivalently, any) regular legal
coloring, we call the group Uc.F / the Burger–Mozes universal group with local action
prescribed by F and denote it by U.F /.

The term “universal” is justified by [4, Proposition 3.2.2], where it is shown that if
F � Sym.d/ is transitive, then every vertex-transitive subgroup H � Aut.Td / whose
local action at some vertex is isomorphic to F is contained in Uc.F / for some regular
legal coloring c . Adapting the argument there, we obtain a slightly more general fact,
which covers the case where F is intransitive.
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Proposition 2.8 (compare [4, Proposition 3.2.2]) Let T be a tree and H � Aut.T /.
Suppose that we have a bijection kW E.v/! Œd � for some v 2 V T and d > 2 and set

F WD f�k.g; v/ j g 2H.v/g � Sym.d/:

The following assertions hold:

(i) There exists a coloring zk of T satisfying the following properties:

(a) zk�E.v/ D k .

(b) The set of zk–regular vertices coincides with the H–orbit of v .

(c) �zk.g; w/ 2 F for all g 2H and w in the H–orbit of v .

(ii) If H is vertex-transitive, then H � Uzk.F / and zk is a regular coloring.

(iii) In addition, if either F is transitive or every edge of T is inverted by some
element of H , then zk can be chosen to be legal.

Proof (i) Let H:v denote the orbit of v under the action of H . For each w 2H:v ,
fix hw 2 H such that hw.w/ D v . For w D v , let us take hv D 1. We now define
zkW ET ! Œd � by

zk.e/ WD

�
0 if o.e/ …H:v;
k.ho.e/.e// if o.e/ 2H:v:

That zk is a coloring satisfying properties (a) and (b) is obvious from the definition of zk .

To establish property (c), take hw to be as in the definition of zk . We now compute

�zk.hw ; w/D
zkv ı hw ı zk

�1

w D k ı hw ı .k ı hw/
�1
D 1:

We deduce that �zk.hw ; w/D 1 and that �zk.h
�1
w ; v/D 1. For an arbitrary g 2H and

w 2H:v , the element hg.w/gh�1w fixes v , so by definition of F ,

�zk.hg.w/gh
�1
w ; v/ 2 F:

On the other hand,

�zk.hg.w/gh
�1
w ; v/D �zk.hg.w/; gh

�1
w .v//�zk.gh

�1
w ; v/

D �zk.hg.w/; g.w//�zk.g; h
�1
w .v//�zk.h

�1
w ; v/

D 1 � �zk.g; w/ � 1

D �zk.g; w/:

We deduce that �zk.g; w/ 2 F for all g 2H and w 2H:v .

(ii) This is immediate from (i).
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(iii) Let zk be the coloring given by (i). For all i; j 2 Œd �, if there is some element of F
that carries i to j , then fix gij 2 F such that gij .i/D j . We assume that gi i D 1.
Observe that we have such a gij whenever i D zk.e/ and j D zk.e/ for some edge e ,
by our hypotheses.

Fix w 2 V T and for each vertex v 2 V T n fwg, let ev be the edge with origin v on
the geodesic from v to w . We now define a legal coloring cW ET ! Œd � on E.v/ by
induction on d.v;w/ such that for each e2ET there is a g2F such that c.e/Dgzk.e/.
For the base case, we set c.f / WD zk.f / for all f 2 E.w/. Suppose that we have
defined c on E.v/ for all v 2 Bn.w/. Take v such that d.v;w/ D nC 1. Since
t .ev/ 2 Bn.w/, the coloring c is defined on ev . Say that c.ev/D gzk.ev/D g.j / and
zk.ev/D i . We set c.f / WDggij zk.f / for f 2E.w/. It follows that c is a legal coloring.

It is clear that the coloring c satisfies (a) and (b) of (i). Let us argue for (c). Taking
g 2H and w 2H:v ,

�c.g; w/D cg.w/ ıg ı cw D zzkg.w/ ıg ı zk
�1

w y D z�zk.g; w/y

for some z; y 2 F . Since �zk.g; w/ 2 F by claim (i), we infer that �c.g; w/ 2 F ,
verifying (c).

We finish this subsection with some supplementary results that will be useful in recog-
nizing when a subgroup H � Aut.T / is conjugate to a subgroup of U.F /.

Lemma 2.9 Let T be a tree and H � Aut.T / be a closed subgroup. Let v 2 V T be
such that the action of H.v/ on E.v/ has a unique fixed point e . If H is unimodular,
then for every h 2H with hv D t .e/, we have he D e .

Proof We prove the contrapositive. Suppose that he¤e . The subgroup H.e/ fixes hv ,
and hence it also fixes he . We deduce that He �Hhe D hHeh�1 . On the other hand
the unique fixed point of Hhv on E.hv/ is he¤ e , so He ¤Hhe . The compact open
subgroup Hhe is thus conjugate to a proper subgroup of itself, preventing H from
being unimodular.

Corollary 2.10 Let d � 2 and let F � Sym.d C 1/ be a permutation group fixing 0
and acting transitively on f1; : : : ; dg. Let H � Aut.TdC1/ be a vertex-transitive,
unimodular, closed subgroup whose local action is isomorphic to F . Then there is a
regular legal coloring c of TdC1 such that H is a subgroup of Uc.F /.
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Proof Let v 2 V T and e 2 E.v/. Since H is vertex-transitive, there exists h 2H
with hv D t .e/. If e is the unique fixed point of H.v/ on E.v/, then h.e/ D e by
Lemma 2.9. Otherwise, let e0 ¤ e be the unique fixed point of H.v/ on E.v/. Thus
he0 ¤ he is the unique fixed point of H.hv/ on E.hv/. By Lemma 2.9, we have
he0 ¤ e , so he and e lie in the same H.hv/–orbit on E.hv/. There is thus g 2Hhv
with ghe D e .

In either case, we have shown that the edge e 2 E.v/ can be inverted. Since e was
arbitrary, we conclude from Proposition 2.8(iii) that H �Uc.F / for some regular legal
coloring c .

2.4 The group G C

Given a tree T and a subgroup G � Aut.T /, recall that GC D hG.e/ j e 2ET i. The
subgroup GC is normal, and if G is closed in Aut.T /, then GC is open (hence closed)
in G . In particular, G is discrete if and only if GC is discrete. The group GC plays
an important role in the setting of the groups U.F /.

Proposition 2.11 [4, Proposition 3.2.1] Let F � Sym.d/ with d > 2.

(i) U.F / is discrete if and only if F acts freely if and only if U.F /C is trivial.

(ii) If F does not act freely, then U.F /C is abstractly simple.

(iii) ŒU.F / W U.F /C� is finite if and only if ŒU.F / W U.F /C�D 2 if and only if F is
transitive and generated by its point stabilizers.

Remark 2.12 We direct the reader to [11] for detailed proofs of Proposition 2.11.

It is important to notice that U.F /C need not be compactly generated. Indeed, we
have the following (see Definition 1.7 for the definition of S ).

Corollary 2.13 U.F /C 2S if and only if F is transitive and generated by its point
stabilizers.

Proof The “if” part follows from Proposition 2.11. For the converse, observe that
U.F /C is a nontrivial normal subgroup of the vertex-transitive group U.F /, so U.F /C

does not preserve any nonempty proper subtree by Proposition 2.3. Since U.F /C is
compactly generated, it follows from [6, Lemma 2.4] that U.F /C acts cocompactly
on T . Therefore, U.F /=U.F /C is compact, hence finite since U.F /C is open. The
group F is thus transitive and generated by its point stabilizers by Proposition 2.11.
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3 Virtual indicability

Theorem 3.1 Let G be a topological group with a continuous action by automor-
phisms on an infinite locally finite leafless tree T . We assume that G has finitely many
orbits of vertices, and that for every vertex v 2V T , the local action F.v/�Sym.E.v//
of G at v is such that the subgroup of F.v/ generated by its point stabilizers is
intransitive on E.v/. Then G is virtually indicable.

Proof Let 'W G! Aut.T / be the induced homomorphism and set H WD '.G/. The
group HC is open in H , so the restriction of the quotient map H !H=HC to the
dense subgroup '.G/ is surjective. It thus suffices to show that H=HC is virtually
indicable.

If H does not contain any hyperbolic element, then by [24, Proposition 3.4], either
H fixes a vertex or inverts an edge, or H fixes an end and preserves each horoball
centered at that end. In either case, we get a contradiction with the hypotheses that T
is infinite leafless and that the G–action has finitely many orbits of vertices. Thus H
contains hyperbolic elements.

Assume next that H fixes an end � 2 @T . Since H contains a hyperbolic element,
it permutes the horoballs centered at � nontrivially. The Busemann homomorphism1

associated to � yields a continuous, surjective homomorphism H ! Z vanishing
on HC . The group H=HC is thus virtually indicable, as desired.

We assume henceforth that H does not fix an end. The quotient graph X WD T=HC is
a tree by Proposition 2.2, and the natural action of the discrete quotient group H=HC

on X is proper and cocompact. We shall argue that X is an infinite tree by showing
that each vertex of X has degree at least 2. It then follows that H=HC is virtually an
infinite free group and is thus virtually indicable, as required.

Fix a vertex w0 2 V T , let W be the H–orbit of w0 in V T , and say that m is the
degree of w0 in T . Our assumption on the local action of G ensures that m� 2. Fix
c0W E.w0/! Œm� a bijection and set F WD f�c0

.g; w0/ j g 2 H.w0/g. The number
of orbits of F on Œm� is a lower bound for the degree of the image of w0 in the
quotient graph X . Therefore, if F is not transitive on Œm�, then the image of w0 in
the quotient graph X has degree at least 2. Let us assume that F is transitive on Œm�.
Proposition 2.8 provides a coloring cW ET ! Œm� extending c0 such that for each

1Fixing a representative ray x0; x1; : : : of the end � , the Busemann homomorphism is the map H!Z
defined by g 7! limi!1.d.g.xi /; x0/� i � 1/ .
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w 2W , the restriction c�E.w/W E.w/! Œm� is bijective, for each y 2 V T nW , the
restriction c�E.y/W E.y/! Œm� is constant, and �c.g; w/ 2 F for all g 2 H and
w 2W . As F acts transitively, Proposition 2.8 ensures further that k can be chosen in
such a way that k.e/D k.e/ for all e 2ET .

Let FC be the subgroup of F generated by the point stabilizers. Recall that by
hypothesis, FC is intransitive and let B1; : : : ; Bp list the FC–orbits on Œm�. The
FC–orbits form an F –equivariant equivalence relation on Œm�, and as is customary,
we call the Bi blocks. Let � W F ! Sym.fB1; : : : ; Bpg/ be the F –action on the blocks.
It is easy to see that Ker.�/D FC and that the F=FC–action on the blocks is free.

Fix g 2H and suppose that w;w0 2W are such that every vertex different from w

and w0 on the geodesic Œw;w0� is not in W . We infer that c.e/D c.f / for all edges e
and f on Œw;w0�, since c.e/D c.e/ for all edges e . The pair gw and gw0 also enjoys
the same condition on Œgw; gw0�, so c.e/D c.f / for all edges e and f on Œgw; gw0�.
If �c.g; w/ 2 Ker.�/, then the elements c.e/ and c.ge/ belong to the same block for
all e 2 E.w/. Therefore, c.e/ and c.ge/ belong to the same block for all edges e
on Œw;w0�. In particular, the edge f 2E.w0/ on the geodesic from w0 to w is such
that c.f / and c.gf / belong to the same block. Thus, �c.g; w0/ fixes a block, and
hence �c.g; w0/ belongs to Ker.�/, since the F=FC–action on the blocks is free. The
obvious induction argument on d.w;w0/ now shows for all g 2H and w;w0 2W ,
�c.g; w/ 2 Ker.�/ if and only if �c.g; w0/ 2 Ker.�/.

Take g 2H which fixes pointwise an edge e in T . The local action �c.g; o.e// must
fix a block, so �c.g; o.e// 2 Ker.�/, since the action of F=FC on the blocks is free.
By the previous paragraph, �c.g; w/ 2Ker.�/ for all w 2W . As HC is generated by
edge fixators, it follows that �c.g; w/ 2 Ker.�/ for every g 2HC and w 2W . The
degree of the image of w0 in X is thus at least the number of blocks, which is at least 2.

We conclude all vertices of the tree X have degree at least 2, completing the proof.

Remark 3.2 The hypothesis that T be locally finite in Theorem 3.1 is essential.
Indeed, consider the action of the free product G D S1 � S2 of two infinite simple
groups S1 and S2 on its Bass–Serre tree T , which is locally infinite since S1 and S2
are infinite. The G–action on T enjoys all the properties required by Theorem 3.1,
but G is not virtually indicable: indeed G is perfect and does not have any proper
subgroup of finite index.

A class of finite permutation groups satisfying the condition in the theorem is provided
by the nilpotent groups.
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Lemma 3.3 Let F � Sym.�/ be a permutation group on a finite set � of size at
least 2. If F is nilpotent, then the subgroup of F generated by the point stabilizers is
intransitive.

Proof As the result is clear for F intransitive, we may assume that F is transitive.
There exists an F –invariant equivalence relation � on � such that the F –action
on �=� is primitive and nontrivial. The only nilpotent primitive permutation groups
are cyclic of prime order. Letting FC be the subgroup of F generated by the point
stabilizers, the F –action on the �–equivalence classes is through a quotient that acts
freely. We conclude that the FC–action on the �–equivalence classes is trivial. In
particular, every FC–orbit is entirely contained in some �–equivalence class, so FC

is intransitive.

Proof of Corollary 1.2 We assume that G fixes neither a vertex nor an edge. Since G
is compactly generated, it follows that G contains a hyperbolic element. If G fixes
an end � of T , the Busemann homomorphism at � yields an infinite cyclic quotient
of G , so G is virtually indicable. We thus assume that G also does not fix any end.
There exists a minimal nonempty G–invariant subtree X in T . Since the G–action is
fixed-point-free, the tree X is infinite, and X is locally finite since T is locally finite.
The local action of the image of G in Aut.X/ at every vertex v of X is a quotient of
the local action of G � Aut.T / at v . The group G thus acts on X with a nilpotent
local action at every vertex. By Lemma 3.3, all hypotheses of Theorem 3.1 are satisfied,
and the conclusion follows.

4 Simple subquotients

In this section, we prove Theorem 1.8. That is, we show every nondiscrete Burger–
Mozes group admits a subquotient belonging to the class S .

4.1 Reduction to cyclic groups of order p acting on p C 1 points

The first step in the proof of Theorem 1.8 consists in reducing the problem from all non-
free permutation groups F to the rather odd class of permutation groups .Cp; ŒpC 1�/
of cyclic groups of prime order p acting on p C 1 points. Notice that the cyclic
group Cp has only one faithful permutation representation on ŒpC 1� up to conjugacy.
Thus, by Proposition 2.6, the group Uc..Cp; ŒpC 1�// is uniquely defined and does
not depend on the choice of the regular legal coloring c . We shall denote it by U.Cp/.

The required reduction step is realized by the following observation.
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Lemma 4.1 Let F �Sym.d/ be a permutation group and c be a regular legal coloring
of the d–regular tree T . If F does not act freely, then Uc.F / contains a closed
subgroup isomorphic to U.Cp/ for some prime p .

Proof Let i 2 Œd � be such that F.i/ is nontrivial. Replacing the coloring by � ı c for
a suitable permutation � of Œd �, we may assume that i D 0. Let p be a prime dividing
the order of F.0/ and let Cp �F.0/ be a nontrivial cyclic subgroup of order p . We may
find a set �� Œd � of size pC 1 such that 0 2� and Cp cyclically permutes � n fag.
By changing the coloring again if needed, we may assume that �D ŒpC 1�.

Fix a vertex v 2 V T and let X be the subtree spanned by the edges colored by ŒpC1�.
The tree X is a copy of TpC1 , and the restriction of the ambient coloring to X gives
an action of U.Cp/ on X . Taking g 2 U.Cp/, we may extend the action of g on X
to the whole tree T by declaring the local action to be trivial on V T nVX . We thus
deduce that U.Cp/� U.F /.

The following subsidiary fact will be useful to identify U.Cp/ in a context where
certain a priori illegal colorings are allowed.

Lemma 4.2 Let F � Sym.pC 1/ be a permutation group which fixes 0 and tran-
sitively permutes f1; : : : ; pg and let T be the .pC1/–regular tree. If c is a regular
coloring such that c.e/ D 0 implies c.e/ D 0, then Uc.F / D Ud .F /, where d is a
regular legal coloring. In particular, if p is a prime, we have Uc.Cp/D U.Cp/.

Proof Fix a vertex v 2 V T and for each vertex w¤ v , define ew to be the edge with
origin w on the geodesic from w to v . For each i; j 2 f1; : : : ; pg, fix gij 2 F such
that gij .i/D j ; for i D j , we take the element gij to be trivial.

We define the coloring d by defining the value of d on each e 2E.w/ by induction
on d.v;w/. For the base case, wD v , we put d.e/D c.e/ for each e 2E.v/. Suppose
we have defined d on E.w/ for all w 2 Bn.v/. Take w such that d.w; v/D nC 1.
If c.ew/D 0, then we set d.e/D c.e/ for all e 2E.w/. If c.ew/D j ¤ 0, then we
set d.e/ WD gkj c.e/ for e 2 E.w/, where k WD c.ew/. The function d is clearly a
legal coloring.

Taking g 2 Uc.F /, let us compute the local action of g according to d :

�d .g; v/D dg.v/ ıg ı dv D zcg.v/ ıg ı c
�1
v y D z�c.g; v/y

for some z; y 2F . Since g 2Uc.F /, we infer that �c.g; v/ 2F , hence �d .g; v/ 2F .
We conclude that Uc.F /� Ud .F /. The converse inclusion is similar.
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4.2 Frobenius groups

In view of Corollary 2.13, the group U.Cp/C is not a member of S . In fact, by
Theorem 3.1, we know that it is virtually indicable. In order to show that U.Cp/ has a
simple subquotient in S , we shall show that U.Cp/ has a simple subquotient of the
form U.F /C , where F is a Frobenius group of a specific kind that will be associated
to p . Let us first recall the definition of Frobenius groups.

Definition 4.3 A Frobenius group is a transitive permutation group .F; Œn�/ such that
the action is not free, but the stabilizer of every ordered pair of distinct points is trivial.
A point stabilizer F.i/ is called a Frobenius complement.

We shall need the existence of certain Frobenius groups. To experts the next theorem is
likely obvious, but we sketch a proof. We thank Reid for pointing out to us this family
of examples.

Theorem 4.4 For each prime p > 2, there is a finite Frobenius group F such that Cp
is the Frobenius complement and ŒF W Cp� is a power of 2.

Proof Since p is coprime to 2, we may find a nontrivial irreducible representation
�W Cp ! GLn.F2/, where F2 is the field with two elements. The representation �
induces an action CpÕ Fn2 which is fixed-point-free. Consider the semidirect product
F WD Fn2 Ì� Cp .

We now argue that the action of F on the set of left cosets F=Cp shows that F is a
Frobenius group. Certainly this action is transitive and has nontrivial point stabilizers.
Suppose that Cp\hCph�1 is nontrivial. Since Cp has no proper nontrivial subgroups,
we deduce that h 2NF .Cp/. The element h has the form .a; x/, where a 2 Fn2 and
x 2 Cp , and since x 2NF .Cp/, the element a is in NF .Cp/. Considering the conju-
gate .a; 1/.1; x/.a�1; 1/, it follows that �.x/ fixes a , and since �.x/ generates Cp ,
Cp in fact fixes a . We conclude that a D 1 as Cp acts fixed-point-freely on Fn2 ,
so h 2 Cp . Two point stabilizers are thus trivial.

The second claim of the proposition is immediate.

The next proposition is also likely well known. We again sketch a proof for complete-
ness.

Proposition 4.5 A finite Frobenius group is generated by its point stabilizers.

Proof Let F �Sym.n/ be a Frobenius group and L�F be the subgroup generated by
the point stabilizers. If i and j are in distinct L–orbits, then the stabilizer L.i/ D F.i/
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acts freely on the L–orbit of j , whose size is thus a multiple of p D jF.0/j. On the
other hand, L.j / has exactly one fixed point in the L–orbit of j , so the size of that
orbit is congruent to 1 modulo p . This contradiction shows that L acts transitively.
Thus F D LF.0/ D L, as required.

Corollary 4.6 For any nontrivial finite Frobenius group F , the group U.F /C is an
abstractly simple open subgroup of index 2 in U.F /. In particular, U.F /C belongs
to S .

Proof This is immediate from Proposition 4.5 and Corollary 2.13.

4.3 Colorings and blow-ups

We now develop machinery to build new graphs from trees. This technique will, in
particular, allow us to change the local action in stages to arrive at a subquotient
of U.Cp/ which has the form U.F /C for F a Frobenius group.

Definition 4.7 Let Tn be the n–regular tree with n� 3 and c be a regular coloring
of Tn by Œn�. The blow-up of Tn relative to c is the graph Bc.Tn/ defined by
VBc.Tn/ WD V Tn � Œn� and ..v; i/; .w; j // 2 EBc.Tn/ if and only if either v D w
and i ¤ j , or .v; w/ 2 ETn , c..v; w//D i , and c..w; v//D j . When unimportant
or clear from context, we suppress the subscript c .

The blow-up operation replaces the vertices of Tn by complete graphs on n vertices;
see Figure 1. There is also a canonical action of Aut.Tn/ on Bc.Tn/ by graph automor-
phisms: g..v; i// WD .g.v/; �c.g; v/.i//, where �c.g; v/ is the local action relative
to c . The blow-up of an n–regular tree is an n–regular graph. We note a useful
condition to ensure groups acting on blow-ups do not invert edges.

Figure 1: The blow-up of T5
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Lemma 4.8 Let Tn with n � 3, let c be a regular coloring, and suppose that H �
Aut.Tn/ acts on Tn without edge inversion. If h�c.h; v/i acting on Œn� has no size 2
orbits for all v 2 V Tn and h 2H.v/ , then H acts on Bc.Tn/ without edge inversion.

Proof Fix h 2 H . Edges in Bc.Tn/ have either the form ..v; i/; .w; j //, where
.v; w/ 2 ETn , c..v; w// D i , and c..w; v// D j , or the form ..v; i/; .v; j // for
some i ¤ j .

For edges of the form ..v; i/; .w; j //,

h
�
..v; i/; .w; j //

�
D
�
.h.v/; �c.h; v/.i//; .h.w/; �c.h; w/.j //

�
:

Since h does not invert edges of Tn , we see that h cannot invert such an edge.

For edges of the form ..v; i/; .v; j // for some i ¤ j ,

h
�
..v; i/; .v; j //

�
D
�
.h.v/; �c.h; v/.i//; h.v/; �c.h; v/.j /

�
:

If h inverts such an edge, then h.v/D v , �c.h; v/.i/D j , and �c.h; v/.j /D i , which
implies that h�c.h; v/i has an orbit of size 2. We deduce that h also does not invert
these edges. The lemma is now verified.

Definition 4.9 Let Tn be the n–regular tree, c be a regular coloring of Tn , and
P WD fO0; : : : ; Od�1g be an ordered partition of Œn�. The partition blow-up of Tn with
respect to c and P is the graph Bc;P.Tn/ defined as follows: VBc;P.Tn/ WD V Tn�P
and ..v;Oi /; .w;Oj //2EBc.Tn/ if and only if either vDw and i�j D˙1 mod d ,
or .v; w/ 2ETn , c..v; w// 2Oi , and c..w; v// 2Oj .

An example of a partition blow-up is depicted in Figure 2. We stress that in the
case of an ordered partition into singletons, the partition blow-up does not coincide
with the blow-up defined previously. The partition blow-up of T4 with respect to
P WD ff1g; f2g; f3g; f4gg, for instance, is a 3–regular graph.

Given a partition Q of Œn�, the Young subgroup associated to Q is the group of
permutations of Œn� which setwise fix the parts of the partition. Letting P �Sym.Œn�/ be
the Young subgroup associated to P , the Burger–Mozes group Uc.P / acts on Bc;P.Tn/
by g..v;Oi //D .g.v/;Oi /. Taking UCc .P /, it follows that UCc .P / acts on Bc;P.Tn/
without edge inversion.

We need to consider covering trees of the blow-ups. Lifting colorings to covering trees
thereby becomes important.
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Figure 2: The partition blow-up of T8 relative to the ordered partition
ff0; 1g; f2; 3g; f4; 5; 6g; f7gg

Definition 4.10 Let X be an n–regular graph with a coloring c and �W Tn!X the
covering map, where Tn is the n–regular tree. We call zc WD c ı� the lifted coloring
on Tn induced by c .

Lemma 4.11 Let X be an n–regular graph with a regular coloring c , let �W Tn!X

be the covering map, and let ˆW H!Aut.X/ be the covering homomorphism afforded
by Theorem 2.1. Then the lifted coloring zc is a coloring of Tn , and

�zc.g; v/D �c.ˆ.g/; �.v//

for all g 2H and v 2 V Tn .

Proof That zc is a coloring is immediate since �E is a bijection when restricted
to ETn

.v/.

For the second claim, the following diagram commutes for all g 2H and v 2 V Tn ,
via Theorem 2.1:

ETn
.v/

�E

��

g
// ETn

.g.v//

�E

��

EX .�.v//
ˆ.g/

// EX .�.g.v///

Defining �v WD .�E /�E.v/W ETn
.v/!EX .�.v//, we see that

�zc.g; v/D c�.g.v// ı�g.v/ ıg ı�
�1
v ı c

�1
�.v/

D c�.g.v// ıˆ.g/ ı c
�1
�.v/

D cˆ.g/.�.v// ıˆ.g/ ı c
�1
�.v/

D �c.ˆ.g/; �.v//:
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4.4 Simple subquotients

We are now prepared to prove the main theorem of this section, Theorem 4.16, from
which Theorem 1.8 will easily follow. The proof of Theorem 4.16 makes heavy use of
blow-ups, and the argument is inspired by Lemma 9.2 from J Huang’s paper [13].

We begin by proving the p D 2 case of the main technical theorem; this case requires
separate analysis to deal with edge inversions.

Proposition 4.12 For C2 � Sym.3/, the group U.C2/ contains a compactly gener-
ated closed subgroup H admitting a discrete normal subgroup D such that H=D is
isomorphic to Aut.T3/C .

Proof Let G WDAut.T3/C . Consider the G–action on the blow-up X of the trivalent
tree T3 . This action inverts edges, so we take yX the barycentric subdivision of X . By
Theorem 2.1, the group G lifts to a unimodular closed subgroup J of the automorphism
group of the covering tree T of yX .

The tree T has vertices of degree 2 and degree 3; denote the set of degree 3 vertices
by V3 . By construction, the local action of J at v for v 2 V3 is the cyclic group C2
acting on three points. Define a new tree T 0 by V T 0 WD V3 and .v; w/ 2ET 0 if and
only if either .v; w/ 2ET or the geodesic from v to w uses only degree 2 vertices,
other than v and w . The graph T 0 is the 3–regular tree, J � Aut.T 0/ and acts vertex
transitively, and the local action of J at any v 2 T 0 is the cyclic group C2 .

The kernel of the covering homomorphism ˆW J ! G is discrete. In view of the
unimodularity of J , it follows from Corollary 2.10 that J is contained in Uc.C2/D
U.C2/ for some regular legal coloring c of T3 . The group J is thus a compactly
generated closed subgroup of U.C2/ that admits Aut.T3/C as a quotient modulo a
discrete normal subgroup.

For the p >2 case, we proceed by proving three lemmas. For G �Aut.T /, recall from
Section 2.2 that G� is the subgroup of G that preserves the natural bipartition of V T .

Lemma 4.13 For p>2 a prime, suppose .F; Œn�/ is transitive and such that F.0/DCp
and suppose c is a regular legal coloring of Tn . Letting .Cp; Œn�/ WD .F.0/; Œn�/, there
is a regular coloring d of Tn such that

(1) for all e 2ETn , d.e/D 0 if and only if d.e/D 0, and

(2) there is a closed subgroup K�Ud ..Cp; Œn�//� admitting a continuous homomor-
phism ˆW K! Uc..F; Œn�//

� with discrete kernel and finite-index open image.
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Proof Set G WD Uc..F; Œn�//� , let X be the blow-up Bc.Tn/, and recall that G acts
on X by graph automorphisms. Since the vertex stabilizers of F equal Cp for p > 2,
the conditions of Lemma 4.8 are satisfied. We conclude that G acts on X without
edge inversion.

For each i 2 Œn�, fix gi 2F such that gi .i/D 0 and say that g0D 1; we may find these
elements since .F; Œn�/ is transitive. Recalling that each v 2 VX has the form .u; i/

for some u 2 V Tn and i 2 Œn�, we define a coloring a on X by

a.e/ WD g�2.o.e//�2.t.e//;

where �2W V Tn � Œn�! Œn� is the projection onto the second coordinate. That c is a
regular legal coloring ensures that a is a regular coloring. The coloring a is also such
that a.e/D 0 if and only if a.e/D 0, again since c is a legal coloring.

Setting a.v;i/ WD a�EX ..v;i//
, the map a�1

.v;i/
W Œn�!EX ..v; i// is such that

a�1.v;i/.j /D
�
.v; i/; .u; g�1i .j //

�
;

where u D v if and only if j ¤ 0. From this observation and a simple, but tedious
computation, it follows that

�a.g; .v; i//D g�c.g;v/.i/ � �c.g; v/ �g
�1
i :

The elements gj are in F for all j 2 Œn�, so �a.g; .v; i// 2 F . Additionally,
�a.g; .v; i//.0/D 0. We deduce that �a.g; .v; i//2F.0/ for all .v; i/2VX . Recalling
that F.0/ D Cp , the local action of G on X is .Cp; Œn�/D .F.0/; Œn�/.

The covering tree of X is Tn . Let d be the lift of the coloring a to Tn . It follows
that d.e/ D 0 if and only if d.e/ D 0 and that d is a regular coloring. Applying
Theorem 2.1, we obtain H � Aut.Tn/ the covering group of G and ˆW H !G the
covering homomorphism. The subgroup H is closed, and the map ˆ has a discrete
kernel. Via Lemma 4.11, �d .g; v/ is an element of .Cp; Œn�/ for all g2H and v2V Tn ,
so in fact H � Ud ..Cp; Œn�//. Taking K WD H \ Ud ..Cp; Œn�//� now satisfies the
lemma.

We now make use of the partition blow-up.

Lemma 4.14 For p > 2 a prime and n > 3 even, suppose that .Cp; Œn�/ is a per-
mutation group with more than two orbits such that 0 is the only fixed point and
suppose that c is a regular coloring of Tn such that c.e/D 0 if and only if c.e/D 0.
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Letting .Cp; ŒpC2�/ be the permutation group given by the cycle .2; : : : ; pC1/, there
is a regular coloring d of TpC2 such that

(1) for all e 2ETpC2 and i 2 f0; 1g, d.e/D i if and only if d.e/D i , and

(2) there is a closed subgroup H � Ud ..Cp; Œp C 2�//� admitting a continuous
homomorphism ˆW K ! Uc..Cp; Œn�//

� with discrete kernel and finite-index
open image.

Proof Set G WD Uc..Cp; Œn�//� . Let O0; : : : ; Ol�1 list the orbits of Cp on Œn� such
that O0 D f0g and observe that l is an even number with l > 2, by our hypotheses.
Take Bc;P.Tn/ the partition blow-up of Tn with respect to P WD fO0; : : : ; Ol�1g and
the coloring c . The group G acts on Bc;P.Tn/, because Cp setwise fixes the parts of
the partition. This action is also without edge inversion, because G acts on Tn without
edge inversion.

The part O0 consists of only one element, so we modify Bc;P.Tn/ as to ensure that for
every vertex v , there are pC2 edges with origin v . To this end, we proceed as follows.
Delete each edge e of the form e D ..v;O0/; .w;O0// and add new, distinct edges
e2; : : : ; epC1 to EBc;P.Tn/ such that o.ei / D .v;O0/ and t .ei / D .w;O0/. Since
c..v; w//D 0 implies c..w; v//D 0, we may define ei WD .e/i . We call the resulting
graph Y , and this graph is .pC2/–regular. The group G acts on Y via extending the
action on Bc;P.Tn/ by declaring that g.ei / WD .g.e//i .

Fixing x a generator for Cp , the element x has a cycle decomposition s1 � � � sl�1 ,
where the si are pairwise disjoint p–cycles and si is the p–cycle that permutes Oi .
Fix hi 2 Sym.Œn�/ such that hisih�1i is the p–cycle .2; : : : ; p C 1/. In particular,
hi .Oi /D f2; : : : ; pC 1g. We now define a regular coloring aW EY ! ŒpC 2� of Y .
Fix a vertex .v;Oi / 2 V Y and let f 2EY ..v;Oi //.

(1) If i D 0, then

a.f / WD

8<:
k if f D ek for some k 2 f2; : : : ; pC 1g;
1 if f D ..v;O0/; .v;Ol�1//;
0 if f D ..v;O0/; .v;O1//:

(2) If i D l � 1, then

a.f / WD

8<:
hl�1c..v; w// if f D ..v;Ol�1/; .w;Oj // with v ¤ w;

0 if f D ..v;Ol�1/; .v;Ol�2//;
1 if f D ..v;Ol�1/; .v;O0//:
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(3) If i ¤ l � 1 and is odd, then

a.f / WD

8<:
hic..v; w// if f D ..v;Oi /; .w;Oj // with v ¤ w;

0 if f D ..v;Oi /; .v;Oi�1//;
1 if f D ..v;Oi /; .v;OiC1//:

(4) If i ¤ 0 and is even, then

a.f / WD

8<:
hic..v; w// if f D ..v;Oi /; .w;Oj // with v ¤ w;

1 if f D ..v;Oi /; .v;Oi�1//;
0 if f D ..v;Oi /; .v;OiC1//:

The map a is a regular coloring, and furthermore, a.e/ D z implies that a.e/ D z
for z 2 f0; 1g. The latter claim follows since l � 1 is odd.

Let us compute the local action �a.g; .v;Oi // for g 2G . If i D 0, then it is immediate
that �a.g; .v;O0// D 1. As the remaining cases are similar, we compute the local
action �a.g; .v;Oi // for i ¤ 0 and even. We see that

a�1.v;Oi /
.k/D

8<:
..v;Oi /; .v;Oi�1// if k D 1;
..v;Oi /; .v;OiC1// if k D 0;
..v;Oi /; .w;Oj // if c.v; w/D h�1i .k/ and k ¤ 0; 1:

It follows immediately that �a.g; .v;Oi //.k/D k for k 2 f0; 1g. For k … f0; 1g, we
see that

�a.g; .v;Oi //.k/D a
�
..g.v/;Oi /; .g.w/;Oj //

�
such that c.v; w/D h�1i .k/. The value c..g.v/; g.w// equals �c.g; v/.c.v; w//, so

a
�
..g.v/;Oi /; .g.w/;Oj //

�
D hi�c.g; v/h

�1
i .k/:

By our choice of hi , we conclude that hi�c.g; v/h�1i acts as some power of the p–
cycle .2; : : : ; pC 1/ on ŒpC 2�. For all g 2G and .v;Oi / 2 V Y , it is thus the case
that �c.g; .v;Oi // 2 .Cp; ŒpC 2�/.

The covering tree of Y is TpC2 . Let d be the lift of the coloring a to TpC2 . It follows
that d.e/D i if and only if d.e/D i for i 2 f0; 1g and that d is regular. Applying
Theorem 2.1, we obtain the covering group H � Aut.TpC2/ of G and the covering
homomorphism ˆW H !G . The subgroup H is closed, and the map ˆ has a discrete
kernel. Via Lemma 4.11, �d .g; v/ is an element of .Cp; ŒpC 2�/ for all g 2H and
v 2 V TpC2 , so in fact H �Ud ..Cp; ŒpC2�//. Taking K WDH \Ud ..Cp; ŒpC2�//�

now satisfies the lemma.
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Lemma 4.15 For p > 2 a prime, suppose .Cp; ŒpC 2�/ is a permutation group given
by the cycle .2; : : : ; p C 1/ and suppose c is a regular coloring of TpC2 such that
c.e/D i if and only if c.e/D i for i 2 f0; 1g. There is a closed subgroup H � U.Cp/
admitting a continuous epimorphism ˆW H ! Uc..Cp; ŒpC 2�//

� with discrete kernel.

Proof Set G WD Uc..Cp; ŒpC 2�//� . Let W WD f0; 1g and U WD f2; : : : ; pC 1g and
let Bc;P.TpC2/ be the partition blow-up of TpC2 with respect to P WD fW;U g and
the coloring c . The group G acts on Bc;P.TpC2/, because Cp setwise fixes the parts
of the partition. This action is also without edge inversion, because G acts on TpC2
without edge inversion.

The part W consists of only two elements, so we modify Bc;P.TpC2/ as to ensure that
for every vertex .v; L/ 2 VBc;P.TpC2/, there are pC 1 edges with origin .v; L/. To
this end, we proceed as follows. For each edge e of the form eD ..v;W /; .w;W // with
c..v; w//D 0, we delete the edge e and add new edges e1; : : : ; ep�1 to EBc;P.TpC2/
such that o.ei / D .v;W / and t .ei / D .w;W /. For the vertex .v;W /, there is also
an edge ..v;W /; .u;W // where c..v; u// D 1. We rename this edge ep . Since
c..v; w//D c..w; v// whenever c..v; w// 2 f0; 1g, we may define ei WD .e/i . We call
the resulting graph Z , and G acts on Z via extending the action on Bc;P.TpC2/ by
declaring that g.ei / WD .g.e//i . This action clearly also does not invert edges.

Fix h2Sym.ŒpC2�/ such that h.2; : : : ; pC1/h�1D .1; : : : ; p/. For f 2EZ..v;W //,
we define

a.f / WD

�
i if f D ei for some i 2 f1; : : : ; pg;
0 if f D ..v;W /; .v; U //:

For f 2EZ..v; U //, we define

a.f / WD

�
0 if f D ..v; U /; .v;W //;
hc..v; w// if f D ..v; U /; .w; U //:

The map a is a regular coloring of Z by ŒpC 1� and a.e/D 0 implies a.e/D 0.

Let us now compute the local action �a.g; .v; L// for g 2G . It is immediate that if
LDW , then �a.g; .v;W //D 1. For LD U , we note that

a�1.v;U /.k/D

�
..v; U /; .v;W // if k D 0;
..v; U /; .w; U // if k D hc.v; w/ and k ¤ 0:

It follows immediately that �a.g; .v; U //.0/D 0. For k ¤ 0,

�a.g; .v; U //.k/D a
�
..g.v/; U /; .g.w/; U //

�
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such that c.v; w/D h�1k . The value c..g.v/; g.w// equals �c.g; v/.c.v; w//, so

a
�
..g.v/; U /; .g.w/; U //

�
D h�c.g; v/h

�1.k/:

By our choice of h, we conclude that h�c.g; v/h�1 acts as some power of the p–
cycle .1; : : : ; p/ on Œp C 1�. We conclude that for all g 2 G and .v; L/ 2 VZ ,
�a.g; .v; L// 2 .Cp; ŒpC 1�/, where .Cp; ŒpC 1�/ is given by the cycle .1; : : : ; p/.

The covering tree of Z is TpC1 . Let d be the lift of the coloring a to TpC1 . It
follows that d.e/D 0 if and only if d.e/D 0. Applying Theorem 2.1, we obtain the
covering group H � Aut.TpC1/ of G and the covering homomorphism ˆW H !G .
The subgroup H is closed, and the map ˆ has a discrete kernel. Via Lemma 4.11,
�d .g; v/ is an element of .Cp; Œp C 1�/ for all g 2 H and v 2 V TpC1 , so in fact
H � Ud ..Cp; ŒpC 1�//. Lemma 4.2 ensures that Ud ..Cp; ŒpC 1�//D U.Cp/, so the
lemma is verified.

We are now prepared to prove the main technical theorem of this section. The hy-
potheses of case (2) of the next theorem are satisfied by the Frobenius groups found
in Theorem 4.4.

Theorem 4.16 Suppose that p is a prime and Cp � Sym.pC 1/.

(1) If pD 2, then U.Cp/ contains a compactly generated closed subgroup H admit-
ting a discrete normal subgroup D such that H=D is isomorphic to Aut.T3/C .

(2) If p > 2 and F � Sym.n/ is a Frobenius group such that the Frobenius com-
plement is Cp and has index a power of 2, then U.Cp/ contains a compactly
generated closed subgroup H admitting a discrete normal subgroup D such that
H=D is isomorphic to U.F /C .

Proof The case of p D 2 is already established in Proposition 4.12. Let us then
suppose that p > 2 and F � Sym.n/ is a Frobenius group such that the Frobenius
complement is Cp and has index a power of 2.

Fix c1 a legal coloring of Tn , let G1 WD Uc1
.F /C , and set .Cp; Œn�/ WD .F.0/; Œn�/.

By Lemma 4.13, there is a coloring c2 of Tn such that Uc2
..Cp; Œn�//

� has a closed
subgroup G2�Uc2

..Cp; Œn�//
� admitting a continuous homomorphism ˆ1W G2!G1

with discrete kernel and finite-index open image. As G1 is compactly generated,
we may take G2 to be compactly generated, and as G1 is simple, ˆ1 is indeed an
epimorphism. Additionally, c2.e/D 0 if and only if c2.e/D 0.
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If .Cp; Œn�/ has two orbits on Œn�, then n D p C 1. Lemma 4.2 supplies a legal
coloring d such that Uc2

..Cp; ŒpC 1�// D Ud ..Cp; ŒpC 1�// D U.Cp/. Therefore,
U.Cp/ contains a compactly generated closed subgroup G2 admitting a discrete normal
subgroup D such that G2=D is isomorphic to G1 D U.F /, as required.

Let us henceforth assume that .Cp; Œn�/ has more than two orbits on Œn�. Since .F; Œn�/
is a Frobenius group, .Cp; Œn�/ has exactly one fixed point, namely 0. We are thus in a
position to apply Lemma 4.14. Letting .Cp; ŒpC2�/ be the permutation group given by
the cycle .2; : : : ; pC1/, there is a coloring c3 of TpC2 such that Uc3

..Cp; ŒpC2�//
�

has a closed subgroup H �Uc3
..Cp; ŒpC2�//

� admitting a continuous homomorphism
ˆW H!Uc2

..Cp; Œn�//
� with discrete kernel and finite-index open image. Additionally,

c3.e/ D i if and only if c3.e/ D i for i 2 f0; 1g. We may find a closed compactly
generated G3 � H such that ˆ2 WD ˆ�G3

W G3 ! G2 has a discrete kernel and a
finite-index open image.

By Lemma 4.15, U.Cp/ has a closed subgroup H admitting a continuous epimorphism
ˆW H ! Uc3

..Cp; ŒpC 2�//
� with discrete kernel. We may find a closed compactly

generated G4 �H such that ˆ3 WDˆ�G4
W G4!G3 is surjective with discrete kernel.

The map ‰W G4 ! G1 by ‰ WD ˆ1 ıˆ2 ıˆ3W G4 ! G1 is continuous and has a
discrete kernel and finite-index open image. As G1 is simple, ‰ is indeed onto. We
conclude that U.Cp/ admits a compactly generated closed subgroup G4 admitting a
discrete normal subgroup D such that G4=D is isomorphic to U.F /C . The theorem
is now verified.

Corollary 4.17 Let F �Sym.d/ be a permutation group that does not act freely. Then
U.F / contains a compactly generated closed subgroup H admitting a discrete normal
subgroup D such that H=D is topologically simple and nondiscrete. In particular,
U.F / admits a subquotient in S .

Proof This is immediate from Lemma 4.1 and Theorem 4.16.

4.5 Elementary groups and relative Tits cores

The class of elementary groups, denoted by E , is the smallest class of totally discon-
nected, locally compact, second countable (t.d.l.c.s.c.) groups that contains the second
countable profinite groups and the countable discrete groups and that is closed under
the elementary operations; see [25]. (These operations are taking closed subgroups,
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Hausdorff quotients, group extensions, and countable directed unions of open sub-
groups.) The class of elementary groups is disjoint from the class S comprising the
nondiscrete compactly generated topologically simple t.d.l.c.s.c. groups.

We say that a topological group H admits a group G as a subquotient if there is some
closed subgroup K �H such that K admits G as a continuous quotient. Admitting a
subquotient a group in S is sufficient to be nonelementary; see [25]. The following
consequence of Corollary 4.17 implies that the nondiscrete Burger–Mozes universal
groups U.F / all admit groups in S as subquotients and are thus nonelementary.

Corollary 4.18 For F a finite permutation group, the following are equivalent:

(1) F acts freely.

(2) U.F / is discrete.

(3) U.F / is elementary.

(4) U.F / does not admit a group in S as a subquotient.

Proof That .1/ implies .2/ follows from Proposition 2.11(i), and .2/ implies .3/ is
immediate. The contrapositive of .3/ implies .4/ is given by [25, Proposition 6.5].
Finally, Corollary 4.17 gives the contrapositive of .4/ implies .1/.

All known examples of nonelementary groups are thus because they admit some group
in S as a subquotient. One naturally asks if admitting a subquotient in S is a necessary
condition to be nonelementary.

Question 4.19 For G a t.d.l.c.s.c. group, if G is nonelementary, then is there a
compactly generated closed H �G such that H has a continuous quotient in S ?

One possible approach to Question 4.19 is via a stronger formulation due to Reid. A
positive answer to Reid’s question, Question 4.20 below, would imply the positive
answer to Question 4.19. For a locally compact group G , recall that g 2G is periodic
if hgi is relatively compact. For any element g 2G , we define the contraction group
of g as

con.g/ WD
˚
x 2G j lim

n!C1
gnxg�n D 1

	
:

The relative Tits core of g in G , denoted by G�g , is defined by

G�g WD hcon.g/[ con.g�1/i:
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Question 4.20 (Reid [22, Question 2]) Let G be a t.d.l.c.s.c. group. If G is nonele-
mentary, then is there g 2G nonperiodic and n� 1 such that gn is an element of the
closure of the relative Tits core of g?

The Burger–Mozes groups U.F / with F nilpotent provide examples demonstrating
that the answer to Question 4.20 is negative.

Corollary 4.21 For F nilpotent, every nonperiodic element g 2 U.F / is such that
gn …G�g for all n¤ 0.

Proof In any locally compact group G , the group hG�g ; gi is compactly generated
for any g 2G . Let now G D U.F / and let g 2 U.F / be a nonperiodic element. The
group H WD hG�g ; gi is thus a compactly generated closed subgroup of U.F /, and g is
hyperbolic. Appealing to Corollary 1.2, H admits an infinite discrete quotient H=O .
Since G�g is topologically generated by contraction groups, it follows that G�g � O .
We deduce that H=G�g is infinite, and thus, gn …G�g for any nonzero power of g .

If in addition F does not act freely, then U.F / is nonelementary by Corollary 4.18,
so we obtain the following consequence of Theorem 3.1, yielding a negative answer to
Question 4.20.

Corollary 4.22 For any nilpotent permutation group .F;�/ such that F does not act
freely on �, the Burger–Mozes universal group U.F / is nonelementary, and every
nonperiodic element g 2 U.F / is such that gn …G�g for all nonzero n.

5 Lattices

5.1 Intersecting lattices with subgroups

The following basic facts are well known.

Proposition 5.1 Let G be a locally compact group, O �G be an open subgroup and
H �G be a closed subgroup.

(i) If H is cocompact in G , then H \O is cocompact in O .

(ii) If H is of finite covolume in G , then H \O is of finite covolume in O .

(iii) If H is a lattice in G , then H \O is a lattice in O .
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Proof All the assertions follow by observing that the openness of O implies that the
image of the canonical projection

O=H \O!G=H

is both open and closed.

5.2 The amenable radical and centralizers of lattices

The following fundamental fact is essentially due to H Furstenberg; see for example
[10, Lemma 16.7]. For completeness, we give a proof via the main result of [2].

Theorem 5.2 Let G be a second countable locally compact group. If G has a trivial
amenable radical, then every closed subgroup of finite covolume has a trivial amenable
radical.

Proof Let H be a closed subgroup of finite covolume in G and R � H be the
amenable radical of H . The orbit map under the conjugation action of G induces a
continuous surjective map G=H ! fgRg�1 j g 2Gg � Sub.G/. Pushing forward the
finite invariant measure on G=H, we get an amenable invariant random subgroup (IRS)
of G . The main result of [2] ensures that this IRS is contained in the amenable radical
of G , which is trivial by hypothesis. We conclude that R is trivial.

The following algebraic consequences will be useful.

Corollary 5.3 Let G be a �–compact locally compact group and H �G be a closed
subgroup of finite covolume. Then the centralizer CG.H/ is contained in the amenable
radical of G . In particular, if G has trivial amenable radical, then H has trivial
centralizer.

Proof It suffices to prove the statement in the special case where the amenable radical
of G is trivial: indeed, if CG.H/ is not contained in the amenable radical R.G/, then
the closure of the image of H in G=R.G/ is a closed subgroup of finite covolume
with a nontrivial centralizer in G=R.G/. We assume henceforth that R.G/D f1g.

By [12, Theorem 8.7], the group G has a compact normal subgroup K such that
G=K is second countable. Since G has a trivial amenable radical, the group K is
trivial, hence G is second countable. Let a 2 CG.H/ and set AD hai and B D AH .
The subgroup B is closed, is of finite covolume in G , and contains A in its center.
Theorem 5.2 implies that A is trivial. We conclude that CG.H/ is trivial.
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Corollary 5.4 Let G be a locally compact group with a discrete amenable radical. If
� �G is a finitely generated lattice, then NG.�/=� is finite. In particular, NG.�/ is
a finitely generated lattice.

Proof Since G contains a finitely generated lattice, it is compactly generated by
[7, Lemma 2.12]. In particular, G is �–compact. By [12, Theorem 8.7], every identity
neighborhood of G contains a compact normal subgroup K such that G=K is second
countable. Applying this fact to an identity neighborhood that intersects trivially the
amenable radical R.G/, which is discrete by hypothesis, we deduce that G is second
countable. By Corollary 5.3, we have CG.�/ � R.G/, so that CG.�/ is discrete,
hence countable since G is second countable. The kernel of natural continuous map
NG.�/!Aut.�/ coincides with CG.�/. As � is finitely generated, its automorphism
group is countable, so NG.�/ is a countable locally compact group. Hence, NG.�/ is
discrete by the Baire category theorem. Since � is of finite covolume in G , it is of
finite covolume in NG.�/ (see [19, Lemma I.1.6]), hence it is of finite index in NG.�/.
The required assertions now follow.

5.3 The discrete residual and the quasicenter

The discrete residual of a topological group G , denoted by Res.G/, is the intersection
of all open normal subgroups of G . A group whose discrete residual is trivial is called
residually discrete. Residually discrete groups are exactly the groups such that each
nontrivial element is nontrivial in some discrete quotient.

The quasicenter of a locally compact group G , denoted by QZ.G/, is the set of
elements whose centralizer is open. It is a characteristic (but not necessarily closed)
subgroup of G containing all discrete normal subgroups.

Lemma 5.5 For G1 and G2 locally compact groups, we have

Res.G1 �G2/D Res.G1/�Res.G2/ and QZ.G1 �G2/D QZ.G1/�QZ.G2/:

Proof If N1 and N2 are open normal subgroups of G1 and G2 , respectively, then the
product N1 �N2 is open and normal in G1 �G2 . This implies that Res.G1 �G2/�
Res.G1/�Res.G2/. Conversely, let N �G1�G2 be an open normal subgroup. There is
a compact identity neighborhood Ki in Gi such that K1�K2 is contained in N . Let Ni
be the smallest normal subgroup of Gi containing Ki . Since the subgroup Ni contains
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an identity neighborhood of Gi , it is open. Since Ki�f1g�N , we have Ni�f1g�N ,
and thus N1 �N2 �N . We conclude that Res.G1 �G2/� Res.G1/�Res.G2/.

For the quasicenter, notice that the inclusion QZ.G1�G2/�QZ.G1/�QZ.G2/ is clear.
The reverse inclusion follows from the fact that the canonical projections of G1 �G2
to G1 and G2 are open maps.

We shall need two further facts.

Proposition 5.6 [8, Corollary 4.1] A compactly generated totally disconnected lo-
cally compact group is residually discrete if and only if it has a basis of identity
neighborhoods consisting of compact open normal subgroups.

Corollary 5.7 Let G be a compactly generated locally compact group with a trivial
amenable radical. If every open normal subgroup of G is of finite index, then the
discrete residual Res.G/ has a trivial centralizer.

Proof By Proposition 5.6, the compactly generated residually discrete (hence to-
tally disconnected) quotient group G=Res.G/ is compact-by-discrete. Since G does
not have any infinite discrete quotient, the same holds for G=Res.G/, and we infer
that G=Res.G/ is compact. In particular G=Res.G/ carries a G–invariant measure of
finite volume. In other words Res.G/ is a closed subgroup of finite covolume in G .
Its centralizer is thus trivial by Corollary 5.3.

5.4 Residually finite irreducible lattices in products

A fundamental discovery of Burger and Mozes [5] is that an irreducible lattice in the
product of two trees which is residually finite must have injective projection to both
factors under natural, mild conditions. That fact is generalized to lattices in products
of groups acting on CAT(0) spaces in [9, Section 2.B]. In this section, we present a
purely algebraic version of that fact, which is based on similar arguments.

Throughout this section, we let G1; : : : ; Gn be nontrivial locally compact groups and
denote by

�i W G1 � � � � �Gn!Gi

the canonical projection to the i th factor.

A group is called Noetherian if it satisfies the ascending chain condition on subgroups.
A group is Noetherian if and only if all its subgroups are finitely generated. Finite
groups are obvious examples of Noetherian groups.
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Lemma 5.8 Let � �G1 �G2 be a lattice such that �1.�/ is dense in G1 . Assume
that the discrete residual Res.G1/ has a trivial centralizer in G1 . If � is residually
Noetherian (eg residually finite), then the restriction �2�� W �!G2 is injective.

Proof The kernel of �2�� is a discrete subgroup of G1 �G2 of the form N1 � f1g

for some subgroup N1 � G1 . In particular, N1 is discrete in G1 . Since N1 � f1g is
normal in � , we see that N1 is normalized by �1.�/. The normalizer of N1 is closed,
so N1 is in fact normal in G1 D �1.�/.

Let now M be a normal subgroup of � such that �=M is Noetherian. Observe that
M \.N1�f1g/ is a discrete subgroup of G1�G2 of the form M1�f1g with M1�G1

discrete. Moreover, since M and N1 � f1g are normal in � , it follows that M1 is
normal in G1 D �1.�/. The quotient

N1=M1 ŠN1 � f1g=M \ .N1 � f1g/

is isomorphic to a subgroup of �=M and is thus finitely generated since �=M is
Noetherian. Hence, its automorphism group is finite or countable.

The conjugation action of G1 on N1=M1 yields a continuous homomorphism G1!

Aut.N1=M1/. The kernel of that homomorphism is a closed subgroup of G1 of finite
or countable index, so the kernel is open by the Baire category theorem. This implies
that ŒRes.G1/; N1��M1 . We thus have

ŒRes.G1/; N1�� f1g �M1 � f1g �M:

Since this is valid for all normal subgroups M of � such that �=M is Noetherian,
that � is residually Noetherian implies that ŒRes.G1/; N1�Df1g. We conclude that N1
is contained in the centralizer of Res.G1/, which is trivial by hypothesis.

5.5 Normalizers of compact open subgroups

Lemma 5.9 Let � � G1 �G2 be a lattice. Assume that G2 is totally disconnected
and that at least one of the following conditions hold:

(1) � is cocompact, G2 is compactly generated, and every cocompact lattice in G2
has a discrete centralizer in G2 .

(2) G2 has Kazhdan’s property (T), and every lattice in G2 has a discrete centralizer.

If �1.�/ has a compact open normal subgroup (eg �1.�/ is discrete in G1 ), then
�2.�/ is discrete in G2 .
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Proof The group O1 WD�1.�/ has a compact open normal subgroup K1 . Additionally,
� is a lattice in O1 �G2 which is cocompact if � is cocompact in G1 �G2 . The
natural projection 'W O1 �G2!O1=K1 �G2 is proper since K1 is compact. Thus,
ƒ WD '.�/ is a lattice in O1=K1 �G2 . Since O1=K1 is discrete, it follows from
Proposition 5.1 that ƒ2 WDƒ\.f1g�G2/ is a lattice in f1g�G2 , and ƒ2 is cocompact
in f1g �G2 if � is cocompact.

Let U2 be a compact open subgroup of G2 such that f1g �U2 intersects ƒ trivially.
The subgroup ƒ1 WDƒ\.O1=K1�U2/ is a lattice in O1=K1�U2 by Proposition 5.1.
Since ƒ2 is a normal subgroup of ƒ, we see that ƒ1ƒ2 is a discrete subgroup.
Moreover, ƒ1ƒ2 is a lattice in ƒ1.f1g�G2/, and ƒ1.f1g�G2/ is of finite covolume
in .O1=K1/ �G2 . We conclude that ƒ1ƒ2 is a lattice in .O1=K1/ �G2 , in view
of [19, Lemma I.1.6], hence ƒ1ƒ2 is of finite index in ƒ.

Let V2 � U2 be the closure of the projection of ƒ1 to G2 and ƒ02 be the projection
of ƒ2 to G2 . The group V2 is compact and normalizes ƒ02 , which is discrete. If hy-
pothesis (1) holds, then ƒ02 is a cocompact lattice in the compactly generated group G2
and is thus finitely generated with a discrete centralizer in G2 . If hypothesis (2) holds,
then ƒ02 is also finitely generated with a discrete centralizer in G2 .

The compact group V2 acts by conjugation on the finitely generated group ƒ02 , so V2
admits an open subgroup of finite index which centralizes ƒ02 . This open subgroup
must be discrete since CG2

.ƒ02/ is discrete. Hence the compact group V2 is discrete,
hence finite. We conclude that ƒ1 has finite image in G2 . Therefore, ƒ1ƒ2 has
discrete image in G2 , so ƒ has discrete image in G2 as Œƒ W ƒ1ƒ2� is finite. The
projection �2W O1�G2!G2 factorizes through 'W O1�G2!O1=K1�G2 . Hence,
� and ƒ have the same image in G2 . That is to say, �2.�/ is discrete.

Lemma 5.10 Let � �G1 �G2 be a lattice. Assume that G2 is totally disconnected
and that at least one of the following conditions hold:

(1) � is cocompact, G2 is compactly generated, and every cocompact lattice in G2
has a discrete centralizer in G2 .

(2) G2 has Kazhdan’s property (T), and every lattice in G2 has a discrete centralizer.

If �2�� W �!G2 is injective, then every compact open subgroup of G1 has a compact
normalizer in G1 .

Proof Let K1 � G1 be a compact open subgroup and set O1 WD NG1
.K1/. The

intersection �O1
WD � \ .O1 �G2/ is a lattice in O1 �G2 by Proposition 5.1, and it
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is additionally cocompact if � is cocompact. Notice that K1\�1.�O1
/ is a compact

open normal subgroup of �1.�O1
/. In view of Lemma 5.9, the projection of �O1

to G2 is discrete. It follows that we may find an open subgroup L � G2 such that
�O1
\ .O1 �L/ D �O1

\ .O1 � f1g/. Applying Proposition 5.1, �O1
\ .O1 � f1g/

is a lattice in O1 �L, and thus, �O1
\ .O1 � f1g/ is a lattice in O1 � f1g. On the

other hand, �2��O1
is injective, hence the intersection �O1

\ .O1 � f1g/ is trivial.
The trivial group is then a lattice in O1 � f1g, which implies that O1 is compact.

Notice that if � � G1 �G2 is a lattice such that �1.�/D G1 , then Ker.�2��/ is a
discrete normal subgroup of G1 , so it is contained in QZ.G1/. In particular, if G1 has
a trivial quasicenter, then the projection of � to G2 is injective. The following partial
converse was observed in a conversation with Marc Burger.

Lemma 5.11 Let � �G1 �G2 be a lattice whose projection to G1 has dense image.
Assume that G1 �G2 is totally disconnected, and that at least one of the following
conditions hold:

(1) � is cocompact, G2 is compactly generated, and every cocompact lattice in G2
has a discrete centralizer in G2 .

(2) G2 has Kazhdan’s property (T), and every lattice in G2 has a discrete centralizer.

If �2�� W �!G2 is injective, then QZ.G1/ is locally elliptic.

In particular, if G1 has trivial locally elliptic radical (eg if G1 has trivial amenable
radical), then QZ.G1/D 1 if and only if the projection �2�� W �!G2 is injective.

Proof Suppose that QZ.G1/ is not locally elliptic. Then there exists a finite subset
†� QZ.G1/ such that h†i is not compact. By the definition of the quasicenter, the
centralizer CG1

.†/ is open, so it contains a compact open subgroup U . The normalizer
NG1

.U / thus contains the noncompact closed group h†i. Applying Lemma 5.10, the
projection �2�� W �!G2 is not injective.

Suppose now that G1 has trivial locally elliptic radical. If �2�� W �!G2 is injective,
then QZ.G1/ is locally elliptic, hence trivial by assumption. The converse part is
straightforward and was observed above.

Combining some of the previous results, we obtain the following criterion. It is good to
keep in mind that, by Corollary 5.3, in a locally compact group with discrete amenable
radical, the centralizer of every lattice is discrete.
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Proposition 5.12 Let � �G1 �G2 be a lattice. Assume that the following hold:

� �1.�/DG1 .

� CG1
.Res.G1//D f1g.

� G2 is compactly generated and totally disconnected, and every cocompact lattice
in G2 has a discrete centralizer in G2 .

� � is cocompact, or G2 has Kazhdan’s property (T) and is such that every lattice
has a discrete centralizer.

If a compact open subgroup of G1 has a noncompact normalizer in G1 , then the
projection of � to G2 is not injective, and � is not residually Noetherian (in particular
not residually finite).

Proof If a compact open subgroup of G1 has a noncompact normalizer, then the
restriction �2�� W �!G2 is not injective by Lemma 5.10. Moreover, the hypotheses
of Lemma 5.8 are all fulfilled, so � is not residually Noetherian.

Theorem 5.13 Let n � 2, and let G D G1 � � � � �Gn be a product of nondiscrete
compactly generated totally disconnected locally compact groups with a trivial amenable
radical. Suppose that for each i , every open normal subgroup of Gi is of finite index.
Let � � G be a lattice such that �i .�/ D Gi for all i . If � is not cocompact, we
assume in addition that G has Kazhdan’s property (T). If � is residually Noetherian,
then QZ.G/D f1g, and for all i , every compact open subgroup of Gi has a compact
normalizer in Gi .

Proof Fix i 2 f1; : : : ; ng. Set H1 WD Gi and H2 WD
Q
j¤i Gj . Every open normal

subgroup of H1 is of finite index, so CH1
.Res.H1//Df1g by Corollary 5.7. Moreover

H2 has a trivial amenable radical, so that every lattice in H2 has a trivial centralizer
by Corollary 5.3. Therefore � � H1 �H2 is a lattice fulfilling all the hypotheses
of Proposition 5.12. It follows that every compact open subgroup of H1 D Gi has
a compact normalizer in Gi . Moreover, the projection of � to H2 is injective by
Lemma 5.8, so QZ.H1/D QZ.Gi /D f1g by Lemma 5.11. Appealing to Lemma 5.5,
we deduce that QZ.G/D f1g.

The following related result describes a similar property under a stronger hypothesis of
irreducibility on the lattice � .
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Theorem 5.14 Let G D G1 � � � � �Gn be a product of nondiscrete locally compact
groups with n� 2 and let � �G be a lattice such that for each i , the projection of �
to
Q
j¤i Gj has dense image.

(i) Assume that CGi
.Res.Gi //D f1g for all i . If � is residually Noetherian, then

the restriction �i�� W �!Gi is injective for all i .

(ii) Assume that G is compactly generated, totally disconnected, with a trivial
amenable radical. If � is not cocompact, assume in addition that G has Kazh-
dan’s property (T). Then QZ.G/D f1g if and only if the projection of � to Gi
is injective for all i .

Proof Let i 2 f1; : : : ; ng and set H WD
Q
j¤i Gj .

(i) By hypothesis, � is a lattice with dense projections in the product H �Gi . In view
of Lemma 5.5, we additionally have CH .Res.H//D f1g. Therefore, �i�� W �!Gi

is injective by Lemma 5.8.

(ii) By assumption, H and Gi both have a trivial amenable radical. By Corollary 5.3,
every lattice in Gi has a trivial centralizer. It follows from Lemma 5.11 that QZ.H/
is trivial if and only if the projection of � to Gi is injective. The required assertion
now follows from Lemma 5.5.

6 Trees and lattices in products

The goal of this section is to apply our abstract results on lattices in product groups
to the geometric setting of groups acting on trees. We first identify a local criterion
controlling the normalizers of compact open subgroups.

6.1 Normalizers of compact open subgroups

Proposition 6.1 Let T be a locally finite tree with more than two ends and G�Aut.T /
be a closed unimodular subgroup acting cocompactly. For each vertex v 2V T and each
edge e2E.v/, suppose that the stabilizer G.e/ fixes an edge f 2E.v/ different from e .
Then there is an edge e 2ET whose stabilizer G.e/ has a noncompact normalizer.

Proof By induction, we build a geodesic edge path .fn/n�0 such that G.fn/ �

G.fnC1/ . As the base and successor cases are the same, suppose we have built our
sequence up to fk . Noting that G

. xfk/
D G.fk/ , our hypothesis ensures that there
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exists fkC1 2E.t.fk// different from xfk such that G.fk/ fixes fkC1 . That is to say,
G.fk/ �G.fkC1/ . This completes our inductive construction.

Since G acts cocompactly on T , the collection of edges ffngn�0 is covered by
finitely many edge orbits. In particular, there is an infinite subset I � N such that
ffngn2I is contained in the same orbit. For m� n with m; n 2 I , the compact open
subgroups G.fn/ and G.fm/ are conjugate. Since G is unimodular, we conclude
that G.fn/ DG.fm/ . For n 2 I , the normalizer of G.fn/ therefore contains elements
mapping o.fn/ arbitrarily far away from itself. The normalizer is thus noncompact.

The hypothesis of Proposition 6.1 is satisfied in the following situation.

Corollary 6.2 Let T be a locally finite tree with more than two ends and G �Aut.T /
be a closed unimodular subgroup acting cocompactly on T . Suppose that for each
vertex v 2V T , the local action of G.v/ on E.v/ is nilpotent and does not have a unique
fixed point. Then G has a compact open subgroup with a noncompact normalizer.

Proof Let F be the natural image of G.v/ in Sym.E.v//, so F is nilpotent by
hypothesis. In view of Lemma 5.10, it suffices to show that for each e 2E.v/, there
exists f 2E.v/ different from e fixed by F.e/ . If e is not a fixed point of F in E.v/,
then F.e/ is a proper subgroup of F . Since F is nilpotent, it follows that F.e/ is
properly contained in its normalizer. Taking g 2 F normalizing F.e/ without fixing e ,
f WD g.e/ is a fixed point of F.e/ different from e . If e is a fixed point of F , then
by hypothesis there exists f 2E.v/ different from e which is also fixed by F . The
conclusion now follows from Proposition 6.1.

We pause to note a supplementary result in the same vein, which applies in particular
to all Burger–Mozes groups Uc.F / with F nilpotent.

Proposition 6.3 Let T be a locally finite tree with more than two ends and G�Aut.T /
be a closed unimodular subgroup acting vertex-transitively on T . Suppose that for each
vertex v 2 V T , the local action of G.v/ on E.v/ is nilpotent. Then G has a compact
open subgroup with a noncompact normalizer.

Proof Let v 2 V T and F � Sym.E.v// denote the local action of G.v/ at v . If F
does not have a unique fixed point, then we may apply Corollary 6.2, since G is
vertex-transitive, and the required conclusion follows. We assume henceforth that F
has a unique fixed point, say e .
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By Proposition 2.8(ii), there exists a regular, but not necessarily legal, coloring c

of T such that G is contained as a closed subgroup in Uc.F /. Moreover, since G
is unimodular and vertex-transitive, we deduce from Lemma 2.9 that c.e/ D c.e/,
where e is the unique edge fixed by the local action.

Let now w 2 V T be an arbitrary vertex and ew 2 E.w/ be the unique edge with
c.ew/D c.e/. For any edge f 2 E.w/ different from ew , the edge-stabilizer G.f /
fixes an edge f 0 2E.w/ which is different from both f and ew . Proceeding as in the
proof of Proposition 6.1, we can construct inductively a geodesic edge path .fn/n�0
such that G.fn/ �G.fnC1/ with c.fn/¤ c.e/¤ c.fn/ for all n. The end of the proof
is identical to that of Proposition 6.1.

6.2 Application to lattices in products of trees

We now obtain the following criterion on the local action ensuring that some lattices
are not residually finite.

Corollary 6.4 Let T be a locally finite leafless tree such that Aut.T / acts cocompactly,
let H be a compactly generated totally disconnected locally compact group with a
trivial amenable radical, and let � � Aut.T /�H be a cocompact lattice. Assume that
at least one of the following conditions is satisfied:

(1) For all v 2 V T and e 2 E.v/, the stabilizer �.e/ fixes an edge f 2 E.v/
different from e . (For example, the natural image of �.v/ in Sym.E.v// is
nilpotent and without a unique fixed point.)

(2) The �–action on T is vertex-transitive, and for every v 2 V T , the local action
of � at v is nilpotent.

If the projection of � to H is nondiscrete, then � is not residually Noetherian, hence
not residually finite.

Proof Let G1�Aut.T / denote the closure of the projection of � . The group G1 acts
cocompactly on T , since � is cocompact, hence G1 acts minimally. Additionally, G1 is
unimodular because G1 �H contains a lattice. In particular, G1 does not fix an end
of T . It follows from Proposition 2.3 that every nontrivial normal subgroup of G1
has a trivial centralizer and is nonamenable. By Corollary 5.3, every lattice in H has
a trivial centralizer. Since the projection of � to H is nondiscrete by hypotheses, it
follows from Lemma 5.9 that G1 is nondiscrete.
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By Proposition 6.1 or Proposition 6.3, either of the hypotheses (1) or (2) implies the
existence of a compact open subgroup K �G1 whose normalizer in G1 is noncompact.
Invoking Proposition 5.12, we deduce that � is not residually Noetherian.

In the special case where T is the 4–regular tree, H D Aut.T / and the local action
of � on T is C2 �C2 , we recover [13, Lemma 9.4].

Proof of Corollary 1.4 It follows from [27, Theorem 5.3] that � contains an element
which fixes a vertex in T6 but whose image in Aut.T6/ generates an infinite group; see
[26, Section II.4] and [21, Proposition 9]. In particular, the projection of � to Aut.T6/
is nondiscrete. On the other hand, the image of � in Aut.T4/ is vertex-transitive, and
one verifies that it acts without inversion. Therefore, if the local action of � on T4 is
not a 2–group, it has exactly two orbits of respective sizes 1 and 3. This implies that
the closure of the image of � in Aut.T4/ is a strictly ascending HNN extension, hence
it is not unimodular, which is absurd since � is a lattice.

An alternative argument consists in computing the local action of � on T4 directly
from the presentation: it is easily verified to be C2 �C2 acting on four points. This
has been done by D Rattaggi in [20]: the Wise lattice is Example 2.36, and its local
action is recorded in the table on page 280 in Section C.5.

The hypotheses of Corollary 6.4 are fulfilled, and the conclusion follows.

Corollary 6.4 applies to numerous other lattices in products of trees. We mention
the following example, which is remarkable by the conciseness of its presentation.
Its irreducibility is due to Janzen and Wise [14]; its nonresidual finiteness has been
observed independently in [3] and provides a positive answer to [14, Question 10].

Corollary 6.5 The group

� D ha; b; x; y j axay; ax�1by�1; ay�1b�1x�1; bxb�1y�1i

is a nonresidually finite vertex-transitive cocompact lattice in Aut.T4/�Aut.T4/.

Proof By [14, Theorem 3], the group � is a discrete subgroup of Aut.T4/�Aut.T4/
acting simply transitively on the vertices of T4�T4 . Moreover [14, Theorem 3] ensures
that the projection of � to both factors in the product Aut.T4/�Aut.T4/ is nondiscrete.
The local action of � on both factors has been computed by Rattaggi in [20, Table C.4
on page 278]. In order to identify the local actions of � in that table, one should
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compare it with the table in Section 7 of [15]. The presentation of the group � is the
entry denoted 2�2:40 in the latter table. That table indicates that the abelianization
of � is C2 � C2 � C3 . With that piece of information at hand, one sees from [20,
Table C.4 on page 278] that the local action of � on the two tree factors is given by
the alternating group Alt.4/ and the dihedral group D8 . The latter being nilpotent, the
nonresidual finiteness of � follows from Corollary 6.4.

Remark 6.6 Since the local action of � on one of the tree factors is nilpotent, it
follows from Corollary 1.2 that � is virtually indicable. This can actually be checked
directly from the presentation: indeed � maps onto the infinite dihedral group D1 D
hs; t j s2; t2i via the assignments a 7! s , b 7! s , x 7! sts and y 7! t .

As a final illustration, we mention the group

ƒD ha; b; c; x; y; z j a2; b2; c2; x2; y2; z2; axax; ayay; azbz; bxbx; bycy; cxczi

considered by N Radu [18, Proposition 5.4], who observes that ƒ is a nonresidually
finite vertex-transitive cocompact lattice in Aut.T3/�Aut.T3/. As mentioned by Radu,
the fact that ƒ is not residually finite can be also deduced from Corollary 6.4.
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