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An application of the Duistermaat–Heckman theorem
and its extensions in Sasaki geometry

CHARLES P BOYER

HONGNIAN HUANG

EVELINE LEGENDRE

Building on an idea laid out by Martelli, Sparks and Yau (2008), we use the
Duistermaat–Heckman localization formula and an extension of it to give rational
and explicit expressions of the volume, the total transversal scalar curvature and
the Einstein–Hilbert functional, seen as functionals on the Sasaki cone (Reeb cone).
Studying the leading terms, we prove they are all proper. Among consequences
thereof we get that the Einstein–Hilbert functional attains its minimal value and each
Sasaki cone possesses at least one Reeb vector field with vanishing transverse Futaki
invariant.

53B99, 53CXX, 53DXX

1 Introduction

The general problem motivating our work is: given a polarized Sasaki type manifold
.N 2nC1; �/, does there exist a compatible constant scalar curvature Sasaki (cscS
for short) metric? This is a hard problem and the answer is conjecturally related
to some notion of K–stability — see Collins and Székelyhidi [12] — and is closely
related to the analogous problem in (compact) Kähler geometry; see eg Donaldson
[14; 15], Ross and Thomas [30] and Stoppa [31]. Well-known obstructions are the
K–stability — see [12] — the transversal Futaki invariant — see Futaki, Ono and Wang
[17] — and the Einstein–Hilbert functional — see Legendre [23] and Boyer, Huang,
Legendre and Tønnesen-Friedman [9]. In this paper we study the latter using the
Duistermaat–Heckman localization formula, developing an idea of Martelli, Sparks
and Yau [27]. More precisely, given a Sasaki manifold .N;D;J; �o/ with maximal
torus of automorphisms T � CR, the (reduced) Sasaki cone (or Reeb cone), denoted
by tC , is an open polyhedral cone in t D Lie.T / and contains all the T –invariant
Reeb vector fields on .N;D;J /. Picking a quasiregular Reeb vector field �o 2 tC , that
is, it induces a circle action S1

o � T , we build an orbibundle � W L!W polarizing
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the quotient symplectic orbifold .W WDN=S1
o ; �/ so that there is a biholomorphism

between LnW and the Kähler cone Y0 WDN �R over N . The action of T is defined
on L and the fixed-point set Z D

F
Z consists in a disjoint union of symplectic

suborbifolds of .W; �/. Moreover, the normal bundle of Z in M is T –invariant and
splits with respect to the action into (real) rank 2 symplectic bundles

Ln�nZ

iD0
EZ

i on
which T acts with weight �Z

i 2 t
� (where dim ZD 2nZ ). We recall and explain these

facts in Section 4.1 and we then we use it to prove that

(1) V� D vol.N; �/D .2�/nC1

n!

X
Z

1

dZ

Z
Z

1Qn�nZ

jD0
.c1.E

Z
j /� h�

Z
j ; �i/

:

In [27], Martelli, Sparks and Yau proved that the volume functional V is a rational
function of � 2 tC when the Kähler cone is Gorenstein. This hypothesis is not needed
to get (1) and. moreover. by studying the leading term in (1) we get the following
corollary:

Theorem 1.1 Let .N;D/ be a compact contact manifold of Sasaki type of dimension
2nC 1 and tC a compatible Sasaki cone. The volume functional V W tC ! R is a
rational function homogenous of order �.nC 1/. Moreover, V tends to C1 when �
approaches the boundary of tC .

We also derive a similar formula for the total transversal scalar curvature S� using the
same orbibundle L!W and an extension — see Theorem 3.1 — of the Duistermaat–
Heckman localisation formula. The formula is

(2) S� D
2.2�/nC1

.n�1/!

X
Z

1

dZ

Z
Z

�
��
Z

c1.W /C
Pn�nZ

iD1
h�Z

i ; �i
�Qn�nZ

jD0
.c1.E

Z
j /� h�

Z
j ; �i/

:

As a direct consequence we get the following theorem:

Theorem 1.2 Let .N;D/ be a compact contact manifold of Sasaki type of dimension
2nC 1 with a fixed class of compatible CR–structures ŒJ �. Let tC be a compatible
Sasaki cone. The total transversal scalar curvature functional S W tC!R is a rational
function homogenous of order �n.

Remark 1.3 Tian used the Duistermaat–Heckman localization formula to compute the
Futaki invariant of some Kähler manifolds in [32]. Using the relation found in [23; 9],
Tian’s formula should be related to the derivative of (2) in the regular case.
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Remark 1.4 In the toric case the fixed-point set consists in a set of isolated points.
The formula (2) becomes

(3) S� D
2.2�/nC1

.n�1/!

X
p

1

dZ

Pn
iD1h�

p
i ; �iQn

jD0h�
p
j ; �i

;

which coincides with the one found in [23] using integration by parts.

The claims of Theorems 1.1 and 1.2 may also be obtained by studying the Hilbert
series of the polarized Kähler cone associated to .N;D;J; �/ — see [12] — as pointed
out to us by Tristan Collins.

Now, by analyzing the weights of the action of T on L, using the construction and
Morse’s lemma we get that the leading term, when � 2 tC tends to the boundary of
tC , of the right-hand side of (2) is positive. From this we derive the following result:

Corollary 1.5 When � 2 tC tends to the boundary of tC , S� tends to C1.

The Einstein–Hilbert functional is defined here to be the homogenous functional

(4) H .�/D
S nC1
�

V n
�

on the (reduced) Sasaki cone tC .

In [23; 9] it is shown that this functional detects the Reeb vector field whose transversal
Futaki invariant vanishes. That is, fixing the isotopy class of .D;J / we have

f� 2 t j 9 compatible cscS g � crit.H /:

This is our main motivation to study this functional and, in particular, its critical points.
Nonuniqueness is now known, indeed H is not convex and may possess many critical
points; see Boyer, Huang, Legendre and Tønnesen-Friedman [9; 11; 23]. In this paper
we solve the question of existence by proving that H is proper on the convex (relatively
compact) set of rays of the Sasaki cone.

Corollary 1.6 The Einstein–Hilbert functional is an homogenous rational function
on tC , tending to C1 when � 2 tC tends to the boundary of tC . In particular, it
attains its minimal value along a ray in the interior of the cone tC .
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Corollary 1.7 Any Sasaki cone contains rays of Reeb vector fields with vanishing
transversal Futaki invariant. Moreover, any ray of Reeb vector fields with vanishing
transversal Futaki invariant, in particular a ray of cscS structures, is isolated in any
2–dimensional subcone of the Sasaki cone.

To obtain formula (2) we relate the total scalar curvature of the metric associated to � to
the metric associated to �o on W in order to get something independent. The relation
we found is quite explicit — see (32) — and we get the following corollary:

Corollary 1.8 Within a Sasaki cone there is at most one ray of vanishing transverse
scalar curvature. Moreover, if there is one Sasaki structure with nonnegative transverse
scalar curvature then the total transverse scalar curvature is nonnegative on the whole
Sasaki cone.

The next section gathers facts and conventions we used in this paper. We present in
Section 3 the localization formula of Duistermaat–Heckman and the extension we need.
In Section 4.1 we build the orbiresolution of the cone we will use in the subsequent
sections to prove Theorem 1.1 in Section 4.2 and Theorem 1.2 in Section 4.3. The
final section first gathers the proof of the Corollaries 1.6–1.8. Then we discuss how the
positivity (or nonnegativity) of S� affects the transverse geometry, namely that in a
certain sense the transverse structure is dominated by rational curves. Although the
nonnegativity of S� is sufficient for this, it is not necessary.

Acknowledgements Legendre would like to thank her colleagues J-F Barraud, P
Gauduchon and R Leclercq for illuminating discussions on symplectic manifolds
and equivariant cohomology. We also thank T Collins, J Sparks and S Sun for their
comments on a previous version of this paper and their interest in this work.

Boyer was partially supported by grant #245002 from the Simons Foundation. Legendre
is partially supported by France ANR project EMARKS No. ANR-14-CE25-0010.

2 Some facts and conventions in Sasaki geometry

2.1 Basics of Sasaki geometry

We give in this section the basic definitions and facts we need for our purposes. We
refer to [7] for an extensive study of Sasakian geometry.

Geometry & Topology, Volume 22 (2018)
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2.1.1 Sasaki cone A Sasakian manifold of dimension 2nC1 is a smooth manifold N

endowed with the following structures:

� a cooriented rank 2n contact distribution D ;

� a CR–structure J 2 End.D/ (ie J 2 D�idD + integrability condition);

� a nowhere-vanishing contact form � 2 �.D0/, where D0 WD Annihilator.D/�
T �N ;

� a Riemannian metric g D �2C
1
2
d�. � ;J � /;

� a Reeb vector field � lying in the Lie algebra of CR–diffeomorphisms cr.D;J /
and satisfying the conditions �.�/D 1 and L��D 0.

Any three of these structures determine the remaining ones. For example, given
.D;J; �/ we get � by solving the equations involved, then ˆ 2 �.End(TN)/, defined
as ˆ.�/D 0 and ˆjD D J and finally

g D 1
2
d�. � ; ˆ. � //C �˝ �:

Therefore, the space of Sasaki structures sharing the same CR–structure, denoted by
Sas.D;J /, is in bijection with the cone of Reeb vector fields

(5) crC.D;J /D fX 2 cr.D;J / j �.X / > 0g;

where � is any fixed, nowhere-vanishing, section of D0 . The map crC.D;J / !
Sas.D;J / is given by

(6) � 0 7!

�
�

�.� 0/
;D;J

�
:

To avoid confusion, we sometimes refer to a Sasakian structure redundantly by specify-
ing all the structures involved like .N;D;J; �;g; �/. From [7] we know that crC.D;J /
is an open convex cone in cr.D;J /, invariant under the adjoint action of CR.D;J /.
Moreover, the following result will be useful for our study:

Theorem 2.1 [8] Let N be a compact manifold of dimension 2n C 1 with a
CR–structure .D;J / of Sasaki type. Then the Lie algebra cr.D;J / decomposes as
cr.D;J / D tC p, where t is the Lie algebra of a maximal torus T of dimension k

with 1 � k � nC 1 and p is a completely reducible t–module. Furthermore, every
X 2 crC.D;J / is conjugate to a positive element in the Lie algebra t.

Geometry & Topology, Volume 22 (2018)
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The (reduced) Sasaki cone is the set tC D t \ crC.D;J /. When seeking extremal
or csc Sasaki metrics one deforms the contact structure by � 7! �C dc' , where the
function ' is invariant under the maximal torus T . Thus, the Sasaki cone is associated
with an isotopy class of contact structures of Sasaki type that is invariant under T . This
fact has given rise to several equivalent definitions of tC — see [20; 12; 6] — and is
also called the Reeb cone.

2.1.2 Kähler cones Recall — see eg [24] — that cooriented contact manifolds are in
one-to-one correspondence with symplectic cones. Given a cooriented contact manifold
.N;D/ the symplectic cone over N is given by .D0

C; !/, where D0
C is a connected

component of the annihilator of D0
C devoid of the 0–section and ! is the pullback

of the Liouville symplectic form of T �N via the inclusion D0
C � T �N. There is

a natural projection � W D0
C! N, so that D0

C is an RC–bundle over N. The fibers
coincide with the orbits of the vector field, � 2�.TD0

C/, induced by the RC–action (ie
multiplication) along the fibers, so that .D0

C; !/ is a symplectic cone in the sense that
L�! D ! . Conversely, given a symplectic cone .M; !;RC; �/, then N WDM=RC

and D WD ker.� : !/. Note that any contact 1–form � is a section of D0
C trivializing

it as D0
C DN �RC .

Similarly, Sasakian manifolds are in one-to-one correspondence with Kähler cones.
Any Sasakian structure .g;J; ˆ; �; �/ on .N;D/ provides a Kählerian structure .yg; yJ /
on .D0

C; !/ as follows:

� the metric yg is the unique Riemannian metric which is conic (that is L� yg D yg )
and restricts to g on the submanifold �.N /� D0

C ;

� the complex structure yJ is the unique complex structure which is homogenous
of degree 0 with respect to � (ie L� yJ D 0) and restricts to ˆ on �.N /.

Convention 2.2 Given a manifold N we will let Y WD N �RC be the topological
cone, �N W N !N � f1g the inclusion and r W Y !RC the projection on the second
factor. Any contact 1–form � on N gives rise to a symplectic structure

! WD 1
2
d.r2�/�

so that ��
N
! D 1

2
d�
�

and any compatible Sasaki structure .J; �/ gives a compatible
Kähler structure on Y as

yg WD dr ˝ dr C r2g; yJ WD J � �˝
dr

r
C r

@

@r
˝ �:
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Then, by uniqueness, .Y; !; yg; yJ / is the Kähler cone over .N;D;J;g; �; �/. The
compatible Kähler structure on Y is then determined by a choice Reeb vector field
� 2 tC , giving rise to a polarized affine variety .Y; �/.

2.2 The transverse geometry

Most of the important structure of Sasakian geometry arises from its transverse
Kählerian structure.

2.2.1 The transverse structure One can consider the class Sas.�/ of Sasakian struc-
tures having the same Reeb vector field. Let L� be the line bundle having � as a
section. The inclusion L� ,! TN induces a sequence of bundle morphisms

0!L� ,! TN !Q� ! 0:

For any CR–structure .D;J / in Sas.�/, the restriction followed by projection D!Q�

is an isomorphism and provides a complex structure xJ on Q� . One can consider the
subclass of structures Sas.�; xJ / making the following diagram commute:

(7)

TN

ˆ

��

// Q�

xJ
��

TN // Q�

With that comes a natural notion of transversal holomorphic vector fields h.�; xJ /;
see [8].

For a given Sasakian manifold, .N;g; �;D;J /, the transverse Kähler geometry refers to
the geometry of .D;J;gjD/. More precisely, N is foliated by the Reeb flow. So there
are local submersions �˛W U˛!V˛ , where U˛ and V˛ are open subsets of N and Cn ,
respectively, such that ��˛I Dˆ, where I is the standard complex structure on Cn .
In particular, d�˛W .DjU˛ ;J /! .T V˛; I/ is an isomorphism and the Sasaki metric
is sent to a Kähler structure .g˛; �˛; I/ on V˛ . In the case where � is quasiregular —
equivalently, it is induced by the action of a closed 1–dimensional subtorus S1

�
� T —

the open sets and maps �˛W U˛! V˛ patch up as a global orbifold quotient

(8) � W N !W WDN=S1
�

endowed with the unique symplectic structure � satisfying ��� D 1
2
d�.
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4212 Charles P Boyer, Hongnian Huang and Eveline Legendre

2.2.2 Transverse automorphisms

Convention 2.3 We will adopt the following point of view, brought from toric geome-
try. Instead of working with T � CR.D;J / a Lie group of diffeomorphism of N and
t its Lie algebra of vector fields on N, we consider a torus T D t=ƒ, where t is the
Lie algebra and ƒ� t a lattice and an injective morphism �W T ,! CR.D;J /. Given
a 2 t, the vector field induced on N is Xa D ��.a/ or, equivalently, is given at p 2N

by

Xa.p/D
�

d

dt
exp.ta/ �p

�
tD0

;

where expW t ! T is the quotient map. By maximality, a Reeb vector field � is
necessarily induced from the action of T and so there exists b 2 t such that � DXb .
We write tC D ��1.tC/ and call it the (reduced) Sasaki cone as well.

Let T be a maximal torus embedded in CR.D;J / with Lie algebra t. For any T –
invariant compatible pair .�; �/ (ie such that .N;g; �;D;J / is a Sasakian manifold
with T

�
,�! Isom.N;g/) there is a �–momentum map

��W N ! t�

in the sense that for any a 2 t, we have

�
1
2
d�.Xa; � /D dh��; ai:

Such a map always exists since one can take h��; ai D 1
2
�.Xa/ (this is the one we

pick in this paper). The image of �� lies in the affine subspace

Hb D
˚
x 2 t� j hx; bi D 1

2

	
;

where b 2 tC � t is such that Xb D � is the Reeb vector field of �. Such an element b

exists by the maximality of T .

We can consider the infinitesimal t–action on the open subset U˛ . Since � is induced
by the action of T , this action descends as an infinitesimal action of t=Rb on V˛ . It
is easy to see that the resulting action should be Hamiltonian. However, the .t=Rb/–
momentum map is not the map x�� making the following diagram commute:

(9)

U˛

�˛

��

��
// t�

id
��

V˛
x��
// t�

Geometry & Topology, Volume 22 (2018)
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Indeed, the image of this one is not in .t=Rb/� (ie hx��; aC tbi ¤ hx��; ai in general).
The momentum map of the .t=Rb/–action on .V˛; �˛/ can be taken to be

(10) L�� D x�� �xo

for any xo 2Hb . Therefore, for any class Œa� 2 t=Rb ,

h L��; Œa�i D
1
2
�.Xa/� hxo; ai:

Remark 2.4 As a direct consequence of this discussion, for any a 2 t� , we can see
�.Xa/ as a function on V˛ and, more precisely, we can identify t with the set of
affine-linear functions on the linear space Hb � fxog ' .t=Rb/� , in the sense that
1
2
�.Xa/D h L��; Œa�iC hxo; ai, where the second term is a constant.

Remark 2.5 If � is quasiregular, it induces an S1 –action, corresponding to a subgroup
S1
�
�T , and we have a global symplectic orbifold quotient .W DN=S1

�
; �/. The image

of the momentum map �bD Im L���Hb�fxog is a compact polytope. Then, the Sasaki
cone can be identified with the affine-linear functions on Hb �fxog ' .Lie.T=S1

�
//�

which are positive on �b ; see [23].

2.2.3 Transverse curvatures The Kähler structure .g˛; �˛; I/ on V˛ has a connec-
tion rT

˛ and curvatures RT
˛ , RicT

˛ , �T
˛ , sT

˛ , . . . . Since ��˛r
T
˛ and ��

ˇ
rT
ˇ

coincide on
U˛ \Uˇ , these objects patch together to define global objects on N , the transversal
connection and curvatures rT , RT , RicT , �T , sT , . . . . See [7; 17] for more details.
These tensors are basic, notably the transversal Ricci form �T satisfies

�T .�; � /D 0; L��T
D 0

and lies in the basic first Chern class 2�cB
1
.F�/.

Since the exterior derivative preserves this condition, the graded algebra of basic forms
is a subcomplex of the de Rham complex. Moreover, one can define the basic exterior
derivative dB as the restriction of the differential to these forms; its adjoint is ıB
and the basic Laplacian is �B D dBıB C ıBdB . The Hodge theorem holds for the
basic cohomology in this context; for a Sasaki metric g there exists a unique basic
function  g (of mean value 0) such that

�T
D �T

H C i@x@ g;
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where �T
H

is �B –harmonic. Note that

�B g D sT
�

S�

V�
D sT

�xsT ;

where V� is the volume of .N;g/ with volume form

dv� D
�^ .d�/n

n!
;

S� is the total transversal scalar curvature, that is

(11) S� WD

Z
N

sT dv� ;

and xsT is the average transverse scalar curvature. The volume of the Sasakian manifold
.N;D;J; �/ does not depend on the chosen structure in Sas.�/— see [7] — and the
total transversal scalar curvature does not depend on the chosen structure in Sas.�; xJ /;
see [17].

3 The Duistermaat–Heckman localisation formula and
extensions

Let .M; !/ be a symplectic compact manifold admitting a Hamiltonian action of S1

generating the (Hamiltonian) vector field X 2 �.TM / associated to H W M !R. In
this section, to fit with [28], we take the convention that

(12) X
:! D dH:

Let Z WD Fix S1 be the fixed-point set of S1 . It is known that Z consists in a union
of smooth symplectic submanifolds Z D

F
l Zl , so the normal bundle EZ of any

component, say Z � Z , bears a symplectic structure as well and splits into a sum
of rank 2 bundles EZ D

L
j EZ

j according to the action of S1 , acting on EZ
j with

weight �Z
j ; here and after j runs from 1 to n�mZ , where 2mZ D dim Z . The

Duistermaat–Heckman theorem [16] says that, under these conditions, we have

(13)
Z

M

e!�H
D

X
Z

e�H .Z/

Z
Z

Y
j

e�
�
Z
!

2�c1.E
Z
j /C �

Z
j

;

where, in the right-hand side, Z denotes a generic connected component of Z ,
H.Z/ the (single) value H is taking on that component and �Z W Z ,!M the inclusion.
For any form  2�.M /, we write e D

P
k�0  

k=k!.
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In the simpler case where H is Morse — equivalently, Z is a collection of isolated
points — the formula reads

(14)
Z

M

e!�H
D

X
p

e�H .p/

e.p/
;

where e.p/ is the product of the weights at p 2Z .

Here, we will use the following extension:

Theorem 3.1 Let � 2 �2
S1.M / be a closed form and f 2 C1.M / be such that

X
: � D df ; then

(15)
Z

M

.� �f /e!�H
D

X
Z

Z
Z

.��
Z
� �f .Z//e�

�
Z
!�H .Z/Qn�mZ

jD1
.c1.E

Z
j /C �

Z
j =2�/

:

Remark 3.2 The Duistermaat–Heckman formula (13)–(14) has been explained and
generalized in term of equivariant cohomology by Atiyah and Bott [1] and Berline and
Vergne [4]. The claim (15) is a particular case of Theorem 7.13 of [3, page 216]. A
mixture of the equivariant cohomology approach and the original proof of Duistermaat
and Heckman is given in [28] when H is a Morse function.

Remark 3.3 Whenever a torus T acts on .M; !/ in a Hamiltonian fashion and with
a momentum map

�W M ! t�;

it might be interesting to use formula (15) when varying X D�Xa , where a 2 t lies
in the lattice ƒ of circle subgroups. Then H D h�; ai and we have to replace �Z

j D

�h�Z
j ; ai for some (fixed) weights �Z

1
; : : : ; �Z

n�mZ
2ƒ� . By continuity, formula (15)

is valid for any a 2 t such that h�Z
j ; ai ¤ 0 for j D 1; : : : ; n�mZ .

Remark 3.4 As explained in [27], the Duistermaat–Heckman formula (13) holds on
a noncompact manifold assuming that Z lies in the interior of M and the measure
tends to 0 on the boundary of M. Indeed, the proof is essentially of local nature, up to
the final integration. Moreover, the power series involved in formulas (13) and (15)
are proved to coincide term by term. Therefore, it holds on a noncompact manifold
when understood as “if the left-hand side of (15) converges, then it coincides with the
right-hand side of (15), which, then, converges”.
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Remark 3.5 Formula (13) also holds for orbifolds, as pointed out in [27], with the
slight modification

(16)
Z

M

e!�H
D

X
Z

1

dZ
e�H .Z/

Z
Z

Y
j

e�
�
Z
!

.2�c1.E
Z
j /C �

Z
j /=2�

;

where dZ is the order of the orbifold group of the generic points of Z . Again this
orbifold extension is also straightforward for formula (15), which becomes

(17)
Z

M

.� �f /e!�H
D

X
Z

1

dZ

Z
Z

.��
Z
� �f .Z//e�

�
Z
!�H .Z/Qn�mZ

jD1
.c1.E

Z
j /C �

Z
j =2�/

:

Remark 3.6 Another case of extension is when ! is degenerated. Indeed, the only
property of ! which is actually important is the relation X

: ! D dH — see [3] —
together with the nice properties of Hamiltonian group actions, which may be ensured
by other means than the nondegeneracy of ! .

4 Applications in Sasakian geometry

4.1 An orbiresolution of the cone

Pick �o 2 tC , a quasiregular Reeb vector field on .N;D/ with symplectic orbifold
quotient .W; �/. Denote by So D .N;D;J; �o; �o;go/ the quasiregular Sasakian
structure on N associated to �o . Let bo 2 t be the lattice element giving the Reeb
vector field �o D Xbo

and S1
o � T the closed subgroup (a 1–dimensional torus)

induced by bo . We obtain an orbifold resolution of the Kähler cone with the cone point
included, Y D Y0[f0g, by constructing the line orbibundle L over W . We construct it
as a Kähler reduction as follows. The Kähler cone .Y0; !o;Jo/ — see Section 2.1.2 —
comes equipped with the Hamiltonian action of T and the (homogenous) momentum
map

y�W Y0! t�;

called the universal momentum map by Lerman [24], so that, with respect to Convention
2.2, we have

1
2
r2
D hy�; boi:

Recall also that we have a natural smooth projection pW Y0!N .
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On the symplectic product .Y0 �C; !oC!std/ we consider the Hamiltonian function

�.y; z/D hy�y ; boi �
1
2
jzj2

with Hamiltonian vector field �o�@� inducing an S1 –action, which we denote by S1
A .

One can check that

��1
�

1
2

�
D
˚
.y; z/ j hy�y ; boi D

1
2
C

1
2
jzj2

	
'N �C

and that �o� @� is nowhere zero on ��1
�

1
2

�
. Therefore, 1 2R is a regular value of �

and we can perform the symplectic reduction

LD ��1
�

1
2

�
=S1

A;

which is an orbifold with a natural symplectic form � defined by q��D i�.!oC!std/,
where qW ��1

�
1
2

�
! L is the quotient map and iW ��1

�
1
2

�
,! Y0 �C is the inclusion.

A point of L is an orbit Œ.y; z/�A D S1
A � .y; z/. On the level set z D 0 the action

of S1
A coincides with the one of S1

o and we get L \ fŒ.y; z/�A j z D 0g ' W WD

fŒp.y/�o D S1
o � p.y/g. The space L is a line bundle over W with bundle map

�.Œ.y; z/�A/D Œp.y/�o . Moreover, there is a smooth bijective map

(18) f W L0! Y0; Œ.y; z/�A 7!
�

z

jzj
�o p.y/; jzj

�
;

where �o denotes the action of S1 induced by �o (that is e2�i� �oxD expT .�bo/�x ) and
L0DfŒ.y; z/�A2L j z¤0gDLn.0–section/. Note that the pullback q�f W Y0�C!Y0

is C�–invariant and one can check by direct computation that .q�f /� ı .JoC i/D

Jo ı .q�f /� . Hence, f W L0 ! Y0 is biholomorphic and we get a birational map
f W LÜ Y0 .

Note that the total space of L inherits the Hamiltonian action of G D .T �S1/=S1
A

with momentum map

L�W L! g� '
˚
.˛; t/ 2 t�˚R j h˛; boi D

1
2
C

1
2
t
	
:

Given u 2 T we may consider the element Œ.u; 1/�S1
A
2G ; this gives an isomorphism

making f an equivariant map. In what follows we identify the action of G and T

using that latter map. The image of L� is identified with the truncated polyhedral cone˚
x 2 Im y�� t� j hx; boi �

1
2

	
.

The zero section W ,! L, with its induced symplectic structure, is naturally identified
with the symplectic quotient .W; �/ — see (8) — associated to the quasiregular Reeb
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vector field �o DXbo
. Also the action of G coincides with the action of T=S1

o with
momentum map L��o

W W ! .t=Rbo/
� ; see Section 2.2.2.

4.1.1 The weights of the torus action on the orbiresolution Let Z � L be a con-
nected component of the fixed-point set of T . In particular, Z �W is seen inside L
as the zero section. For p 2Z , the action of T gives a decomposition into equivariant
bundles

(19) TpLD TpW ˚Lp D TpZ˚

� n�mZM
jD0

EZ
j ;p

�
:

Here, and in what follows, Lp is canonically identified with its tangent in TL.

Since Z �W , the fiber Lp is one of the summands in the right-hand side of (19) and
we put

Lp DEZ
0;p:

We can easily compute the weight of the action of T on the fiber Lp . Indeed, p is fixed
by T if and only if for any y 2 Y0 such that Œp.y/�o D p we have fXa.y/ j a 2 tg D

R�o.y/. Then, for such a point p D Œ.y; 0/�A and b 2 t we can define ıb 2 R by
ıbXbo

.y/DXb.y/, so that

Œ.expT .tb/y; z/�A D Œ.expT .tb� tıbbo/ �y; e
tıb z/�A D Œ.y; e

tıb z/�A:

Therefore, the weight �Z
0
2 t� is

(20) h�Z
0 ; bi D ıb D �o.Xb/q

for any q 2N \��1.p/.

Note that the other weights �Z
1
; : : : ; �Z

n�mZ
2 t� all lie in .t=Rbo/

� ' b0
o � t� , the

annihilator of bo , since
Ln�mZ

jD0
EZ

j ;p � TpW and W � FixL S1
o .

4.2 The volume functional

To prove Theorem 1.1 when the Kähler cone is Gorenstein, Martelli, Sparks and
Yau [27] suggest to use the Duistermaat–Heckman formula (13), proved in [16], on
the crepant resolution of the cone (with its cone point), assuming the existence of an
approximation of the pulled-back cone metric on the resolution. Further, they produce
an algebrogeometric proof of their theorem. Our proof follows the lines of the first
suggested approach in [27], but we get rid of the assumption on the existence of the
approximation, use an orbiline bundle, and we don’t need the assumption that the
Kähler cone is Gorenstein.
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Let .N;D;Jg; �; �/ be a Sasakian manifold of dimension 2nC 1 and .Y0; !;J / its
Kähler cone; see Convention 2.2. We denote by Y D Y0[f0g the union of Y0 with
its cone point. Note that, with respect to the notation of Section 2.1, the Hamiltonian
function of � is 1

2
r2 , in the sense that !.�; � / D �d

�
1
2
r2
�
, since ! D 1

2
d.r2�/.

Moreover, using Fubini’s theorem and integration by parts, we have

(21) V� WD

Z
N

�^ .d�/n

n!
D

anC1

n!

Z
Y0

e�ar2=2 !nC1

.nC 1/!

for any a> 0. The natural idea is to use the Duistermaat–Heckman formula to expand
the right-hand side term as a rational function of � 2 tC ; however, � has no fixed point.
An idea of Martelli, Sparks and Yau is then to use a resolution of Y and approximate
the Kähler structure of .Y0; !;J / on it.

We will use the Duistermaat–Heckman formula (16), Remark 3.3 of Martelli, Sparks
and Yau [27] and the observation (21) on the total space of L constructed in Section 4.1.
Observe that in these formulas ! is not required to be symplectic and � does not need
to be defined everywhere. Namely we note that

(i) equation (21) holds if and only if Y0 DN �RC and

r2
2 C1.Y0/; ! D 1

2
d.r2�/ 2�2.Y0/; � is invariant by dilationI

(ii) equation (16) holds if and only if ! is closed and !.X; � /D dH ;

(iii) (16) coincides with (21) (for aD 1) if and only �1
2
r2 D�H.

Observe that the restriction of the function z!jzj on ��1
�

1
2

�
�Y0�C (see Section 4.1)

is well defined on the quotient L and that jzj2 is smooth. Moreover, jzj D f �r , where
the map f is defined by (18) and r is the projection on the second factor of Y0 ; see
Convention 2.2.

The vector field � DXb , as a vector field on Y0 , commutes with the action of �o , thus
of A, and descends as a well-defined vector field, still denoted by � DXb , on L. The
contact form �� on N, associated to � , is not basic with respect to �o and thus not
well defined on L a priori. However, we can define z� on LnW by imposing z�.�/D 1,
dz�.�; � /D 0 and that z� coincides with f �� on r�1.1/. It does not define z� uniquely
but we only need these conditions to make our argument work. Note that � commutes
with the vector field r @

@r
induced by the dilation on the second factor of N �C . Hence,

z� is invariant by the dilation, that is homogenous of degree 0 with respect to r @
@r

.
Then, using observation (i) above, (21) holds on Y0 ' LnW for ! WD 1

2
d.r2z�/.
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Now we can forget z� and work with the right-hand side of (21) for aD 1. Indeed, the
1–form z� cannot be extended continuously on L but r2z� can and then ! is a smooth
closed 2–form on L. So, the integrand of the right-hand side of (21) makes sense on L
and then, because W has measure zero, we have

(22)
Z

N

�^ .d�/n

n!
D

1

n!

Z
L

e�r2=2 !nC1

.nC 1/!
:

Here, we identify N with r�1.1/� L.

We can use (16) with ! , X D�� and H D 1
2
r2 , which are defined on the whole L.

The equation !.X; � /D 1
2
dr2 holds on W , because both sides vanish, and on LnW ,

thanks to the fact that z�.X / D �1, dz�.X; � / D 0 and ! D 1
2
d.r2z�/. Hence, using

observations (ii) and (iii) above we get that (16) coincides with (22). That is,

(23)
Z
L

e�r2=2 !nC1

.nC 1/!
D

X
Z

1

dZ

Z
Z

Y
j

e�
�
Z
!

c1.E
Z
j /C �

Z
j =2�

D

X
Z

1

dZ

Z
Z

Y
j

e�
�
Z
!

c1.E
Z
j /� h�

Z
j ; bi=2�

;

where the last line comes from Remark 3.3 to highlight the dependence on b 2 tC .

In the formula (23), the fixed-point set Z D
S

Z of X lies in W , on which ! vanishes
identically. Thus, in the integrand of the right-hand side of (23), only the first term of
the power series in ��

Z
! does not vanish a priori. In conclusion, we have

(24) VXb
D

1

n!

X
Z

.2�/n�mZ

dZ

Z
Z

n�mZY
jD0

1

2�c1.E
Z
j /� h�

Z
j ; bi

;

which can be written as a rational function of the h�Z
j ; bi using the relation .1�x/�1DP

s�0 xs . Since the integration over Z picks up only the term of degree 2mZ , the
factor .2�/mZ goes out and we get a rational function of order �.nC 1/ up to the
overall factor .2�/nC1 ,

(25) VXb
D
.2�/nC1

n!

X
Z

1

dZ

Z
Z

n�mZY
jD0

1

h�Z
j ; bi

�X
s�0

�
c1.E

Z
j /

h�Z
j ; bi

�s �
:

This concludes the proof of Theorem 1.1 �

Remark 4.1 If we start with a generic b 2 tC , (25) holds for the dense open subset
of tC of elements sharing the same fixed-point set fZg �W which coincides with
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the fixed points of T=S1
�o

, the maximal torus acting on W . For example, in the toric
case starting with a generic b 2 tC , then fZg is the fixed-point set of the torus and so
consists of a finite number of isolated points. In this case, formula (25) gives back the
formulas in [26; 23] as expected.

Corollary 4.2 When b 2 tC tends to the boundary of tC , VXb
tends to C1.

Proof When b 2 tC tends to the boundary of tC (but away from 0 2 @tC ), there is at
least one point p 2N such that �o.Xb/p! 0 by definition of tC ; see (5). Therefore,
p is a minimum of the function �o.Xb/D h��o

; bi and ��o
.p/ lies in the boundary

of the polytope �o D ��o
.N /, which, up to translation is the moment polytope of

.W; �;T=S1
o /.

Recall from Section 2.2.2 that the function �o.Xb/ is the pullback to N of an affine-
linear function on �o , so that it is a Morse–Bott function on N of even index. By a
well-known argument — see [19] — �o.Xb/ has a unique minimum in the sense that
there is a unique connected component zZ � crit.�o.Xb//�N such that zZ is a local
minimum, thus it is a global minimum and there is no other part of N on which �o.Xb/

tends to 0 faster than it does on zZ .

Moreover, near Z D �. zZ/�W and seen as a function on W it can be locally written
as �o.Xb/Dloc

Pn�mZ

iD1
jvi j

2h�Z
i ; biC cb , where cb is a constant and vi 2EZ

i in the
decomposition (19) corresponding to the action of T=S1

o endowed with an invariant
and compatible metric j � j; see eg [24]. Since p is a minimum we have

h�Z
i ; bi> 0

for iD1; : : : ; n�mZ . Therefore, combining this with the observations of Section 4.1.1,
in particular that c1.E

Z
0
/D ��

Z
c1.L/D ��Z Œ�=2�� > 0 and h�Z

0
; bi D �.Xb/p , we get

that the leading term of VXb
, which is

(26)
.2�/nC1

n!dZ

� n�mZY
jD0

1

h�Z
j ; bi

�Z
Z

�
c1.E

Z
0
/

h�Z
0
; bi

�mZ

;

is positive and tends to C1 when h�Z
0
; bi D �o.Xb/p! 0.

4.3 The total transversal scalar curvature functional

4.3.1 Variation of the transverse scalar curvature The goal is to understand better
how the function � 7!S� varies with � when D is a fixed (cooriented) contact structure
with a compatible CR–structure .D;J / on N ; see (6).
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Given a Sasaki structure .N;D;J; �; ��/ on N , we recall from [17] that

(27) sT �� ^ .d��/
n

n!
D 2

�T
�
^ �� ^ .d��/

n�1

.n� 1/!

and �T
�

is defined on each patch U˛ � N as the pullback of the Ricci form ��;˛ of
the Kähler structure .g�;˛; !�;˛; I/ induced on V˛ (see the notation from the second
paragraph of Section 2.2, taken from [17]; here we add the index � to emphasize the
dependence in the structure).

Consider another Sasaki structure .N;D;J; �o; �o/ compatible with the same CR–
structure .D;J / and �o 2 tC . The associated transversal Ricci form �T

o 2�
�
N;
V2 D

�
is not basic with respect to � . Indeed, L��T

o � 0 by T –invariance of the Sasaki
structure .N;D;J; �o; �o/, but there is no reason for �T

o .�; � / to vanish identically.
Actually, �o commutes with � by hypothesis and descends as a Killing vector field on
.V˛;g�;˛; !�;˛; I/. Therefore, by the well-known formula — see [18, Lemma 1.23.4] —
we have that

(28) ��;˛.�o; � /D�
1
2
d�g�;˛h L�� ; Œbo�i;

where L�� W V˛ ! .t=Rb/� is the momentum map and bo is such that �o D Xbo

(see Section 2.2.2).

Up to a constant, the pullback by ��;˛ of the function h L�� ; Œbo�i coincides with
h�� ; boi D

1
2
��.�o/, which is globally defined on N. For any function f 2 C 2.V˛/

we have ��
�;˛
�g�;˛f D�g���

�;˛
f because � is a Riemannian fibration with totally

geodesic fibers [33]. Therefore, on N , we have the global formula

�T
� .�o; � /D�

1
2
d�g� h�� ; boi;

or, similarly,

(29) �T
o .�; � /D�

1
2
d�goh��o

; bi:

In particular, putting fo;� WD
1
2
�goh��o

; bi we get that the 2–form

ˇ D �T
o C �� ^ dfo;� �fo;�d�� D �

T
o � d.fo;���/

is closed and �–basic (ie basic with respect to � ). So the two closed 2–forms �T
�

and ˇ lie in the same de Rham cohomology class, namely c1.D/, and are both � –basic
and J –invariant. Therefore, there exists a �–basic function f 2 C1

B
.N / such that

(30) �T
� �ˇ D dBdc

Bf:
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Note that any basic function f 2 C 2
B
.N / defines a function, still denoted by f , on

each chart V˛ and, applying a classical Kähler formula on .V˛;g�;˛; !�;˛; I/ (see
eg [18]), we have

ddcf ^ .!T
�
/n�1

.n� 1/!
D�.�g�;˛f /

.!T
�
/n

n!
;

where �g�;˛ is the Laplacian associated to the metric g�;˛ . Therefore, we have, for
any basic function f 2 C 2

B
.N /,

dBdc
B
f ^ �� ^ .d��/

n�1

.n� 1/!
D�.�

g�
B
f /
�� ^ .d��/

n

n!
;

where �g�
B
f D d�

B
dBf is the basic Laplacian.

Putting this, (30) and (27) in (11) and using the fact that �� ^ �� � 0, we get

(31) S� D 2

Z
N

�T
�
^ �� ^ .d��/

n�1

.n� 1/!

D 2

Z
N

ˇ^ �� ^ .d��/
n�1

.n� 1/!
C

Z
N

.dBdc
B
f /^ �� ^ .d��/

n�1

.n� 1/!

D 2

Z
N

ˇ^ �� ^ .d��/
n�1

.n� 1/!
�

Z
N

.�
g�
B
f /
�� ^ .d��/

n

n!

D 2

Z
N

ˇ^ �� ^ .d��/
n�1

.n� 1/!

D 2

Z
N

.�T
o � d.fo;���//^ �� ^ .d��/

n�1

.n� 1/!

D 2

Z
N

�T
o ^ �� ^ .d��/

n�1

.n� 1/!
� 2

Z
N

fo;�

�� ^ .d��/
n

.n� 1/!
:

Note that fo;� D
1
2
�goh��o

; bi D 1
4
�go�o.�/ is linear with respect to � 2 tC . Putting

dvo D .�o ^ .d�o/
n/=n!, another way to write (31) is

(32) S� D

Z
N

sT
o

�o.�/n
dvo� 2

Z
N

fo;�

�o.�/nC1
dvo

D

Z
N

sT
o

�o.�/n
dvoC

nC1

2

Z
N

jd�o.�/j
2
go

�o.�/nC2
dvo:

Corollary 4.3 Within a Sasaki cone there is at most one ray of vanishing transverse
scalar curvature. Moreover, if there is one Sasaki structure with nonnegative transverse
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scalar curvature then the total transverse scalar curvature is nonnegative on the whole
Sasaki cone.

4.3.2 A localization formula for the total transverse scalar curvature Using polar
coordinates on Y0 D N �R>0 , Fubini’s theorem and integration by parts, we have,
for any � 2�1.N /, � 2�2.N / and a> 0,

(33)
Z

N

�^� ^ .d�/n�1

.n� 1/!
D

an

.n� 1/!

Z
Y0

e�ar2=2� ^!
n

n!
;

where ! D 1
2
dr2�.

Given a Sasakian manifold .N;D;J;g; �; �/ of dimension 2nC1 as above, we use the
notation of Sections 4.2 and 2.1. We consider the resolution f W LÜ Y of Section 4.1
associated with a quasiregular Reeb vector field �o 2 tC , inducing the isometric action
of a circle S1

�o
� T whose quotient Kähler orbifold is .W; �o; LJo; Lgo/. Recall that L is

obtained as the quotient of ��1
�

1
2

�
DN �C by the action of S1 induced by �o� @� .

In particular, a �o basic k –form on N descends as a well-defined k –form on L; for
example, �T

o and fo;� are both defined on the total space of L. Then, we can use the
observations (33) and (21) to modify respectively the first and the second term of the
last line of (31) as follows:

(34)
.n� 1/!

2
S� D

Z
N

�T
o ^ �� ^ .d��/

n�1
�

Z
N

fo;��� ^ .d��/
n

D

Z
Y0

e�r2=2�
T
o ^!

n

n!
�

Z
Y0

fo;�e
�r2=2 !nC1

.nC 1/!

D

Z
Y

e�r2=2.�T
o �fo;�/e

!

D

Z
Y

.�T
o �fo;�/e

!�r2=2;

where ! D 1
2
dr2�� .

Using Theorem 3.1 in the orbifold case (see Remark 3.5) with X D�� and H D 1
2
r2 ,

we get

(35)
.n� 1/!

2
S� D

X
Z

1

dZ

Z
Z

.��
Z
�T

o �fo;�.Z//e
��
Z
!Qn�mZ

jD0
.c1.E

Z
j /C �

Z
j =2�/

D

X
Z

1

dZ

Z
Z

.��
Z
�T

o �fo;�.Z//e
��
Z
!Qn�mZ

jD0
.c1.E

Z
j /� h�

Z
j ; bi=2�/

:
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Again, the fixed-point set Z D
S

Z of X lies in W , on which ! vanishes identically.
Thus, in the integrand of the right-hand side of (35), only the first term of the power
series in ��

Z
! does not vanish a priori. In conclusion, we have

(36) S� D
2

.n� 1/!

X
Z

1

dZ

Z
Z

.��
Z
�T

o �fo;�.Z//Qn�mZ

jD0
.c1.E

Z
j /� h�

Z
j ; bi=2�/

D
2.2�/nC1

.n� 1/!

X
Z

1

dZ

�Z
Z

.��Z�
T
o =2�/^

� n�mZY
jD0

1

h�Z
j ; bi

X
s�0

�
c1.E

Z
j /

h�Z
j ; bi

�s �

�fo;�.Z/

Z
Z

n�mZY
jD0

1

h�Z
j ; bi

X
s�0

�
c1.E

Z
j /

h�Z
j ; bi

�s �
:

Remark 4.4 Whenever the fixed-point set Z of X consists in a set of isolated points
Z D fpg, formula (36) simplifies as

(37) S� D
2.2�/nC1

.n� 1/!

X
p

1

dp

�fo;�.p/QnC1
jD1h�

p
j ; bi

:

4.3.3 Proof of Theorem 1.2 Using (36) and the facts that ��
Z
�T

o =2�; c1.E
Z
j / 2

H 2
dR.Z;Q/ and �Z

j 2ƒ
� (see Remark 3.3), to prove Theorem 1.2 it remains to show

that fo;�.Z/ 2Q.

Lemma 4.5 Let .M n; !;J;g/ be a Kähler orbifold endowed with an effective Hamil-
tonian isometric action of a torus T m and a momentum map �W M ! t� (where
t WD Lie.T /). For any Z , a connected component of FixM T with dim Z D 2mZ ,
denoting the equivariant decomposition by TzM D TzZ˚

Ln�mZ

jD1
EZ

j with weights
�Z

1
; : : : ; �Z

n�mZ
, we have

.�g�/z D�2

n�mZX
jD1

�Z
j

at any z 2Z .

Proof We prove the lemma for M a manifold. Since the result is local this assumption
is not restrictive.

Let first recall some consequences of the symplectic slice theorem; see eg [2; 25]. We
choose z 2M, a fixed point of T , and call �W T ! Symp.TxM; !/ the representation
such that �� D dz� , where � 2 T is viewed as a diffeomorphism of M ; we write
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the corresponding representation as �i W T ! Symp.EZ
i ; !i/. With this notation,

�Z
i D d�i 2 t

� are the weights of the action � . Note that W0 is the tangent space of
the connected component Z of the fixed-point set of T .

Let b 2 t and put �b D h�; bi. The Laplacian �g�b is also �tr Hessg�b , where we
have at z , for vector fields X and Y defined near z ,

(38) Hessg�b.X;Y /Drd�b.X;Y /

DX.d�b.Y //

D�X.!.Xb;Y //

D�!.rX Xb;Y /

by using twice the fact that z is a critical point of �b and the Kähler condition rJ D 0.
Hence, since Xb is a real holomorphic vector field, that is, rJ Y Xb D JrY Xb , and
LX!.Xb;Y /D 0 for any X 2 �.T Z/, we obtain

�g�b D

nX
iD1

!.rwi
Xb; wi/C!.rJwi

Xb;Jwi/;

where fwi ;Jwig is a normal symplectic basis of Ei for i D 1; : : : ; n � mZ and
fwi ;Jwig

n
iDn�mC1

is a normal symplectic basis of TzZ . Thanks to the fact that Xb

is real holomorphic, it reduces to

�g�b D 2

nX
iD1

!.rwi
Xb; wi/:

Consider the path �tDexp tb in the torus T , so .d�/.b/D d
dt

ˇ̌
tD0

��t
2symp.TzM; !/

and v 2 TzM with the flow s �M
�
ie d

ds

ˇ̌
sD0

s D v
�
. With this notation,

(39) d�b.v/D
d

dt

ˇ̌̌
tD0

d

ds

ˇ̌̌
sD0

.�t ı s/

D
d

ds

ˇ̌̌
sD0

d

dt

ˇ̌̌
tD0

.�t ı s/

D
d

ds

ˇ̌̌
sD0

Xb.s/

D dXb.v/;

seen as a section XbW M ! TM. Recall that g induces a Riemannian metric on TM,
denoted by g as well, so the g–orthogonal decomposition into the vertical and hor-
izontal parts of T.z;v/.TM /D Tv.TzM /˚Hr gives dXb.v/D rvXb C zv . Hence,
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identifying Tv.TzM /D TzM, we obtain

�g�b D 2

nX
iD1

!.rwi
Xb; wi/D 2

nX
iD1

!.d�b.wi/; wi/D�2

n�mX
iD1

hd�i ; bi:

A direct consequence of this lemma, applied on a Kähler orbifold .W; �o; LJo; Lgo/, is
that for � DXb , the function

�2fo;�.z/D�.�
goh L�o; Œb�i/z D 2

� n�mZX
jD1

�Z
j ; Œb�

�
D 2

� n�mZX
jD1

�Z
j ; b

�
;

when restricted on Z , is a rational polynomial. Actually it is a linear function with ra-
tional coefficients. Recall from Section 4.1.1 that �Z

1
; : : : ; �Z

n�mZ
lie in the annihilator

of bo 2 t and thus are defined on t=Rbo .

This completes the proof of Theorem 1.2.

Corollary 4.6 When b 2 tC tends to the boundary of tC , SXb
tends to C1.

Proof This goes essentially as the proof of Corollary 4.2. When b 2 tC tends to the
boundary of tC (but away from 0 2 @tC ), there is at least one point p 2N such that
�o.Xb/p! 0, by definition of tC ; see (5). Therefore, p is a minimum of the function
�o.Xb/D h��o

; bi and, arguing as in the proof of Corollary 4.2, we get that there is a
unique connected component zZ � crit.�o.Xb//�N such that zZ is a local minimum,
thus it is a global minimum and there is no other part of N on which �o.Xb/ tends
to 0 faster than it does on zZ . Moreover,

h�Z
i ; bi> 0

for i D 1; : : : ; n�mZ and — see Section 4.1.1 — we have h�Z
0
; biD �o.Xb/p . Hence,

the leading term of SXb
in (36) is the one where h�Z

0
; bi appears with the greater

exponent. This term is

(40)
�2fo;�.Z/

dZ .n� 1/!

� n�mZY
jD0

1

h�Z
j ; bi

�Z
Z

�
c1.E

Z
0
/

h�Z
0
; bi

�mZ

:

It is positive by the observations above, Lemma 4.5 and since c1.E
Z
0
/D ��

Z
c1.L/D

��
Z
Œ�=2�� > 0 (see Section 4.1.1) and tends to C1 when h�Z

0
; bi D �o.Xb/p! 0.
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5 The Einstein–Hilbert functional and scalar curvature

Here, by scalar curvature we mean the transverse scalar curvature sT
�

of a Sasakian
structure S D .D;J; �; �;g/. Of course, sT

�
is related to the scalar curvature sg of

the Sasaki metric g by sg D sT
�
� 2n [7]. Recall the Einstein–Hilbert functional (4),

which can be written in terms of the average scalar curvature xsT
�

as

H .�/D
S nC1
�

V n
�

D .xsT
� /

nC1V� :

Since it is invariant under the transverse homothety operation � 7! a�1� with a 2RC ,
it descends to a function on the space of rays of the Sasaki cone tC . We have:

Lemma 5.1 When b 2 tC tends to the boundary of tC , H .Xb/ tends to C1.

Proof Both S and V tend to C1 when b tends to the boundary of tC . Moreover,
considering the leading terms (26) and (40) in equation (4) and putting h�Z

0
; bi D

�o.Xb/p as a factor, we see that H .Xb/ behaves as

C.b/

h�Z
0
; bimZC1

;

where C.b/ is a rational function tending to

fo;�.Z/
nC1

� n�mZY
jD1

1

h�Z
j ; bi

��Z
Z

c1.E
Z
0 /

mZ

�
> 0

when h�Z
0
; bi D �o.Xb/p! 0.

Equation (32) has several interesting consequences. Recall the definition of the type
of a Sasakian structure. A Sasakian structure .N; �; �;ˆ;g/ is said to be of positive
(negative) type if c1.F�/ can be represented by a positive (negative) definite basic .1; 1/
form. If c1.F�/ vanishes, it is of null type. When none of these hold it is of indefinite
type. If dim tC � 2, then the Sasakian structure is either of positive or indefinite type.

Lemma 5.2 Fix a Sasaki structure S0 D .D;J; �0/ such that its Sasaki automorphism
group has dimension at least two.

(1) There is no more than one ray of Reeb vector fields � 2 tC having vanishing
transverse scalar curvature sT

0
and if there is one such ray r0 then for all � 2

tC n fr0g we have S� > 0.
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(2) If S0 satisfies sT
0
> 0 almost everywhere, then S� > 0 for all � 2 tC . In

particular, if S0 is of positive type, then S� > 0 for all � 2 tC .

Note that if Lemma 5.2(1) holds, then the ray r0 is the unique global minimum of the
Einstein–Hilbert functional H and H .�/D 0 for all � 2 r0 . Moreover, no � 2 tC has
strictly positive scalar curvature. Somewhat more generally, we have:

Proposition 5.3 If the dimension of tC is at least two and there exists � 2 tC such
that S� � 0, then all elements of the Sasaki cone are of indefinite type.

Proof Since dim tC > 1, a Sasakian structure is either positive or indefinite. Suppose
to the contrary that there is a Sasakian structure in tC of positive type; then taking this
to be �o in (32) gives a contradiction.

5.1 A global minimum

We now show that H always attains a global minimum.

Theorem 5.4 Let .N;D/ be a contact manifold of Sasaki type with a T action of
Reeb type. Then there exists �min 2 t

C that minimizes H . Moreover, if H .�min/¤ 0

and the corresponding Sasaki metric is extremal, it must have constant scalar curvature.

Proof Recall [9] that a set † is a transversal subset of tC if † � tC
k

and that †
meets each ray passing through tC in a single point and is a codimension-one relatively
compact subset of tC whose closure does not contain 0. Let xtC denote the closure
of tC . Since H .�/ is scale-invariant, H j† is independent of †. We choose † to be
any intersection of xtC with a transverse hyperplane. Then P DxtC \† is a simple
compact convex polytope. Now, by Lemma 5.1, H .�/ tends to C1 as � tends to the
boundary @P. Thus, since H is a continuous function on the interior Pı D P n @P,
there exists �min such that H .�/�H .�min/. This proves the first statement.

For the second statement we assume that S�min ¤ 0. Then it follows from [9] that
the Sasaki–Futaki invariant F� vanishes at � D �min . So, if Smin is extremal, it has
constant scalar curvature.

Note that the ray rmin of �min is generally not necessarily unique. However, by
Lemma 5.2(1), it is unique if there exists a Sasakian structure in tC with vanishing
transverse scalar curvature, in which case H .�/� 0 for all � 2 tC and equality holds
if and only if � D a�min , where a 2RC . In this case we get a unique global minimum.
Explicit examples are given by Proposition 5.17 of [10].
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There are counterexamples to the second statement of Theorem 5.4 if we drop the
hypothesis that Smin is extremal. See [6] for many examples where the entire Sasaki
cone is relatively K–unstable and admits no extremal Sasaki metrics.

Another functional of interest to handle the case when S� < 0 and n is odd is defined
by

(41) H1.�/D sign.S�/jH .�/j:

It follows as in the proof of Theorem 5.4 that H1 also has a global minimum �1 min

giving
H1.�/�H1.�1 min/

for all � 2 tC .

5.2 Positivity and rational curves

Recall that a projective algebraic variety X of complex dimension n is said to be
uniruled if there exists a dominant rational map X 0 � CP1 Ü X, where X 0 is a
variety of dimension n � 1. It is well known that a uniruled variety has Kodaira
dimension �1 and that there is a rational curve through each point. Its relation with
Sasakian geometry was mentioned briefly in Theorem 7.5.33 of [7], which states that a
compact quasiregular Sasakian structure of positive type has a uniruled quotient variety.
This follows directly by a result of Miyaoka and Mori [29]. In the simply connected
case there is a topological classification of positive Sasakian 5–manifolds due to Kollar
[22], which shows how the existence of irrational curves determines the torsion in
H2.N

5;Z/ (see also Section 10.2.1 of [7]). However, a recent result of Heier and
Wong [21] shows that the hypothesis that the Sasaki manifold be of positive type can
be weakened considerably.

Theorem 5.5 (Heier and Wong) Let N be a regular compact Sasaki manifold with
Reeb field � .

(1) If S� > 0, then its quotient variety is uniruled.

(2) If S� D 0, then either its quotient is uniruled or its canonical line bundle is
torsion. In particular, if the dimension of tC > 1, the quotient is uniruled.

Remark 5.6 It appears quite likely that this result can be generalized to the quasiregular
case, although one would need to work with the orbifold canonical bundle. This seem-
ingly entails generalizing the methods of Boucksom, Demailly, Păun and Peternell [5]
to the case when the variety X is a normal projective variety with cyclic quotient
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singularities. Nevertheless, below we are able to generalize Theorem 5.5 to a certain
class of orbifolds.

The nonnegativity of a particular S� is, however, far from the last word. Indeed,
Example 5.16 of [10] gives a quasiregular Sasakian structure on an S3 bundle over a
Riemann surface of genus 23 with constant transverse scalar curvature equal to �16� .
This is not only uniruled, but a ruled manifold.

Here we are content to consider a special case.

Theorem 5.7 Let N be a compact manifold of dimension 2nC1 with a CR–structure
.D;J / of Sasaki type with Sasaki cone tC of dimension at least two. Suppose further
that all quasiregular � 2 tC have S1 quotients of the form .W� ; ��/, where W� is a
smooth projective variety and �� is a branch divisor depending on � . If S� � 0 then
W� is uniruled.

Proof Recall [7] that a branch divisor has the form

�D
X

i

�
1�

1

mi

�
Di ;

where Di is an irreducible hypersurface contained in the orbifold singular locus and
mi is the ramification index of Di and the sum is finite. The orbifold first Chern class
and the first Chern class of X are related by

(42) corb
1 .W; �/D c1.W /�

X
i

�
1�

1

mi

�
c1.Li/;

where Li is the line bundle associated to Di . Now 2�c1.W / is represented by the
Ricci form �W , and 2�corb

1
.W; �/ is represented by the orbifold Ricci form �orb

which is the pushforward of the transverse Ricci form �T , which is well defined since
it is basic. Let ! be any Kähler form on X ; then, by the work of Demailly [13],
2�c1.Li/ is represented by the curvature current c.Li/ of a singular Hermitian metric
on Li . Now equation (42) implies

(43)
Z

W

�^!n�1
D

Z
W

�orb
^!n�1

C

X
i

�
1�

1

mi

� Z
W

c.Li/^!
n�1:

Note that the scalar curvature of the orbifold Kähler metric !0 is just the transverse
scalar curvature of the corresponding Sasakian structure. The cohomology class
Œ!0� 2H 2.W;Q/ defines a positive orbiline bundle L on .W; �/, so it is orbiample.
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It follows from orbifold theory that Ll , where l D lcm.mi/, is an ample line bundle
on X. Thus, l Œ!0� 2H 2.W;Z/ and, since Ll is ample, l Œ!0� can be represented by a
Kähler form, which we choose to be ! . This impliesZ

W

�orb
^!n�1

D ln�1

Z
W

�orb
^!n�1

0 D
ln�1

2n

Z
W

sT!n
0 D C S�

for some C > 0. If we let SW denote the total scalar curvature of X, this and
equation (43) implies

SW D C S� C
X

i

�
1�

1

mi

� Z
W

c.Li/^!
n�1:

Since the Di are effective, it follows from Proposition 4.2(b) of [13] that c.Li/ satisfies
c.Li/� �! for some � > 0, so this equation implies

(44) SW � C S� C �n!
X

i

�
1�

1

mi

�
VW :

So S� � 0 implies SW > 0, and the result follows by the Heier–Wong theorem,
Theorem 5.5.

Actually, by looking at sequences of quasiregular Reeb fields that approach the boundary
of tC , we can do better.

Corollary 5.8 Assuming the hypothesis of Theorem 5.7, if there exists a sequence
f�kg of quasiregular Reeb fields tending to the boundary in tC and such that W� DW�k

is independent of k , then W� is uniruled.

Proof Since the dimension of tC is a least 2, we know by Corollary 4.6 that S�!C1

near the boundary. So there exists a quasiregular � 2 f�kg � tC such that S� > 0.

Our assumption that all quasiregular � 2 tC have a codimension-one orbifold singular
set is restrictive. It is, however, realized by a fairly large collection of Sasaki families,
for example those coming from the S3

w –join studied in [11]. For these one can also
easily construct sequences satisfying the conditions of Corollary 5.8.
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