Volume 22, issue 7 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 26, 1 issue

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Rigidity of Teichmüller space

Alex Eskin, Howard Masur and Kasra Rafi

Geometry & Topology 22 (2018) 4259–4306
Abstract

We prove that every quasi-isometry of Teichmüller space equipped with the Teichmüller metric is a bounded distance from an isometry of Teichmüller space. That is, Teichmüller space is quasi-isometrically rigid.

Keywords
quasi-isometric rigidity, Teichmüller metric
Mathematical Subject Classification 2010
Primary: 32G15
References
Publication
Received: 6 October 2017
Accepted: 23 April 2018
Published: 6 December 2018
Proposed: Benson Farb
Seconded: Tobias H Colding, Jean-Pierre Otal
Authors
Alex Eskin
Department of Mathematics
University of Chicago
Chicago, IL
% 60637-1514
United States
Howard Masur
Department of Mathematics
University of Chicago
Chicago, IL
% 60637-1514
United States
Kasra Rafi
Department of Mathematics
University of Toronto
Toronto, ON
% M5S 2E4
Canada