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Topology of automorphism groups of parabolic geometries

CHARLES FRANCES

KARIN MELNICK

We prove for the automorphism group of an arbitrary parabolic geometry that the C 0–
and C1–topologies coincide, and the group admits the structure of a Lie group
in this topology. We further show that this automorphism group is closed in the
homeomorphism group of the underlying manifold.

53C10, 57S05, 57S20

1 Introduction

It is well known that the automorphism group of a rigid geometric structure is a Lie
group. In fact, as there are multiple notions of rigid geometric structures, such as
G–structures of finite type, Gromov rigid geometric structures or Cartan geometries,
the property that the local automorphisms form a Lie pseudogroup is sometimes taken
as an informal definition of rigidity for a geometric structure.

There remains, however, some ambiguity about the topology in which this transforma-
tion group is Lie. It is a subgroup of Diff.M/, assuming the underlying structure is
smooth, so one may ask whether it admits the structure of a Lie group in the C1–,
Cm– for some positive integer m, or even the compact–open topology. A related
interesting question is whether the automorphism group is closed in Homeo.M/.

Theorems of Ruh [14] and Sternberg [17, Corollary VII.4.2] state that, if H is the
automorphism group of a G–structure of finite type of order m, then H is a Lie
group in the Cm–topology on DiffmC1.M/. Gromov proved a similar result in
[5, Corollary 1.5.B] for a smooth Gromov-m–rigid geometric structure. In the case of
a smooth Riemannian metric .M; g/, the results above yield a Lie group structure for
the C 1–topology on the isometry group Isom.M; g/.

The classical theorems of Myers and Steenrod [11], however, say that in this Riemannian
case the C 0– and Cm–topologies coincide on Isom.M; g/ for all m. Nomizu [12]
proved the same for the group of affine transformations of a connection (under an
assumption of geodesic completeness, which can be removed). The essence of the proof
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136 Charles Frances and Karin Melnick

is that exponential coordinates locally convert affine transformations to linear maps,
and a sequence of linear transformations converging C 0 automatically converges C1 .

This article is concerned with the topology of local automorphisms of parabolic ge-
ometries (see Section 1.2 below for the general definition). These form a rich class of
differential-geometric structures which behave differently from Riemannian metrics
in the sense that their automorphisms can have strong dynamics, so, for example, a
convergent sequence of automorphisms need not limit to a homeomorphism. Parabolic
geometries do not determine a connection; without the exponential map, it is no longer
clear that a C 0–limit of smooth automorphisms should be smooth.

1.1 Statement of main results

We first briefly survey some results for specific parabolic geometries, which will be
generalized by our main theorem. We remark that the first two theorems below, of
Ferrand and Schoen, are proved by geometric-analytic techniques that are quite specific
to the structures in question.

� In the course of proving the Lichnerowicz conjecture on Riemannian conformal
automorphism groups, Ferrand showed, using techniques of quasiconformal
analysis, that if a homeomorphism f is a C 0–limit of smooth conformal maps,
then f is also smooth and conformal [9; 1].

� Schoen [15] reproved Ferrand’s result above, and extended it to strictly pseudo-
convex CR structures. His proof uses scalar curvature and the conformal Laplace
operator in the conformal case, and the analogous Webster scalar curvature and
pseudoconformal subelliptic operator in the CR setting.

� In [3], the first author proved for conformal pseudo-Riemannian structures that
if a sequence of smooth local conformal transformations converges C 0 , then
it converges C1 . His approach is very different from the analytic techniques
of [9; 15]: he uses the Cartan connection associated to these structures and the
dynamics of the action on null geodesics.

We prove a generalization of the results recounted above to local automorphisms of
arbitrary parabolic geometries. Parabolic geometries are a broad family of geometric
structures which nonetheless admit an extensive general theory. Well-known examples
include the conformal semi-Riemannian structures and strictly pseudoconvex CR
structures mentioned above, as well as more general nondegenerate CR structures,
projective structures and so-called path geometries, which encode ODEs (see Čap and
Slovák [19] for a comprehensive reference). Definitions 1.4 and 1.5 below explain
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Topology of automorphism groups of parabolic geometries 137

precisely what is meant by parabolic geometry and automorphism/automorphic im-
mersion. An automorphic immersion can be informally defined as a differentiable
immersion f W U !M, where U �M is an open set, which preserves the Cartan
geometry C on M. When U DM and f is also a diffeomorphism, f is said to be an
automorphism of .M; C/. The set of automorphisms is a group that will be denoted by
Aut.M; C/. Our main results can then be stated as follows:

Theorem 1.1 Let .M; C/ be a smooth parabolic geometry. Let fk W U ! M be a
sequence of automorphic immersions of .M; C/ converging in the C 0–topology on U
to a map h. Then h is smooth and fk! h also in the C1–topology.

In Section 3.3 we will also prove the following:

Theorem 1.2 Let .M; C/ be a smooth parabolic geometry. Then Aut.M; C/ is a Lie
transformation group in the compact–open topology. Moreover, Aut.M; C/ is closed in
Homeo.M/ for this topology.

1.2 Definitions

Parabolic geometries are most conveniently defined in terms of Cartan geometries.
Let G be a Lie group with Lie algebra g, and P < G a closed subgroup. We will
assume throughout the article that the pair .G; P / is effective, meaning G acts faithfully
on G=P. A noneffective pair can always be replaced by an effective one, with the same
quotient space G=P (see Sharpe [16]).

Definition 1.3 A Cartan geometry C on a manifold M, with model space X DG=P,
comprises . �M;!/, where � W �M !M is a principal P –bundle and ! is a g–valued
one-form on �M satisfying:

� For all yx 2 �M, !yx W Tyx �M ! g is a linear isomorphism.

� For all g 2 P, R�g! D .Adg/�1 ı! , where Rg denotes the right translation
by g on �M.

� For all X 2 p, !.X�/�X, where X�.yx/D d
ds

ˇ̌
0
yx:esX .

The basic example of a Cartan geometry modeled on X DG=P is the flat geometry
on X comprising .G; !G/, where !G is the Maurer–Cartan form.

Definition 1.4 A parabolic geometry is a Cartan geometry modeled on X D G=P,
where G is a semisimple Lie group with finite center and without compact local factors
and P < G is a parabolic subgroup.
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Our notion of parabolic subgroup is the standard one, which will be recalled in
Section 2.5.1.

Essentially all classical rigid geometric structures correspond to a canonical Cartan
geometry. The process of canonically associating a Cartan geometry is called the
equivalence problem for a given geometric structure (see [16] for examples). Parabolic
geometries admit a uniform solution of the equivalence problem, in which each corre-
sponds to a type of “filtered manifold” (barring one exception, projective structures);
see Čap and Slovák [19, Section 3.1] and Tanaka [18].

Definition 1.5 For .M; C/ a smooth Cartan geometry with C D . �M;!/, an auto-
morphism is f 2 Diff.M/ which lifts to a bundle automorphism yf of �M satisfying
yf �! D ! . The group of automorphisms is denoted by Aut.M; C/.

For an open subset U � M, a smooth immersion f W U ! M is an automorphic
immersion of .M; C/ if it lifts to a bundle map yf W yU D ��1.U /! �M satisfying
yf �! D !j yU .

As .G; P / is effective, the elements f 2 Aut.M; C/ correspond bijectively to their
lifts yf to �M satisfying yf �! D ! , and similarly for automorphic immersions (see
Melnick [10, Proposition 3.6]).

1.3 Lie topology on the automorphism group

For CD . �M;!/ a smooth Cartan geometry on M, the group Aut.M; C/ can be endowed
with the structure of a Lie transformation group as follows (we refer to the definition
in Palais [13, Chapter IV] of Lie transformation group). The Cartan connection defines
a framing P of �M, the pullback by ! of any basis in g. The automorphisms of a
framing form a Lie transformation group; more precisely:

Theorem 1.6 (S Kobayashi [8, Theorem I.3.2]) Let N be a smooth, connected
manifold with a smooth framing P.

(1) Aut.P/ < Diff.N / admits the structure of a Lie transformation group.

(2) For mD 0; : : : ;1, the Cm–topology on Aut.P/ coincides with the Lie topol-
ogy.

(3) A sequence fk 2Aut.P/ converges in the Lie topology if and only if there exists
z 2N such that fk.z/ converges in N.
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Denote by cAut.M; C/ the group of bundle automorphisms of �M preserving ! . This is
a C1–closed subgroup of Aut. �M;P/, so it is closed in the Lie topology and inherits
the structure of a Lie transformation group. The isomorphism cAut.M; C/ŠAut.M; C/
then provides the latter with the structure of a Lie group, in fact of a Lie transformation
group of M. The underlying topology on Aut.M; C/, the pullback of the C1–topology
on cAut.M; C/, will henceforth be referred to as the Lie topology. For U �M, the
automorphic immersions defined on U admit a similarly defined topology, which we
will also call the Lie topology.

Recall that the Lie topology on Aut.M; C/, as well as all Cm–topologies, are second
countable. A sequence .fk/ of automorphic immersions of .M; C/ converges in the
Lie topology if and only if the lifted sequence . yfk/ converges C1 . Thus, if .fk/
converges for the Lie topology to an automorphic immersion, then it does for the C1–
topology on M. In cases where �M is a subbundle of the r –frames of M, and yfk are
the corresponding natural lifts of fk , then C1–convergence of .fk/ on M conversely
implies convergence in the Lie topology. Such is the case for many parabolic geometries,
but this property in general is unclear. Our proofs will go via the Lie topology on
Aut.M; C/, thus showing that it coincides with all Cm–topologies for mD 0; : : : ;1,
and similarly for automorphic immersions of .M; C/.

1.4 Structure of the proof

A sequence .fk/ of automorphic immersions converging in the C 0–topology gives rise
to a holonomy sequence .pk/ in P. The action of .pk/ on G=P reflects many features
of the action of .fk/ on M. Section 2 contains the definition of holonomy sequences
and their equicontinuity properties relative to those of .fk/. In Section 3, we translate
the problem to a statement about holonomy sequences on G=P. The proof of this
statement, Theorem 3.1, proceeds by induction on rkRG. The base case, rkRG D 1,
is recalled from Frances [2] in Section 4. The task for the remainder of the paper is,
given a holonomy sequence .pk/ not conforming to the conclusion of Theorem 3.1,
to find an invariant lower-rank subvariety of G=P on which .pk/ exhibits the same
behavior, thus contradicting the induction hypothesis. Section 5 develops tools for
identifying such a lower-rank subvariety, corresponding to certain manipulations on
the root spaces of g. In Section 6, we apply these tools to complete the induction step.
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2 Holonomy and equicontinuity with respect to segments

Let .M; C/ be a Cartan geometry modeled on X DG=P, not necessarily parabolic.

Definition 2.1 A sequence fk W U ! M of automorphic immersions of .M; C/ is
equicontinuous at x 2 U if there exists y 2 M such that for any xk ! x in U,
fk.xk/! y .

If fk W U !M converges C 0 , then .fk/ is clearly equicontinuous at every point of U.
The following theorem says that, conversely, equicontinuity at a single point implies
local C 0–convergence, at least for parabolic geometries.

Theorem 2.2 Let .M; C/ be a smooth parabolic geometry and .fk/ a sequence
of automorphic immersions equicontinuous at x 2 M. Then there exists an open
neighborhood U of x on which a subsequence of .fk/ converges C1 to a smooth
map h.

Note that Theorem 2.2 implies Theorem 1.1.

2.1 Holonomy sequences

Let fk W U!M be a sequence of automorphic immersions of .M; C/ which is equicon-
tinuous at x 2 U, with lifts yfk W yU ! �M. Associated to .fk/ is a holonomy sequence
.pk/ in P, whose behavior around the basepoint oD ŒP � 2G=P reflects much of the
local behavior of fk around x .

Definition 2.3 Let xk ! x in U. A sequence .pk/ of P is a holonomy sequence
of .fk/ along .xk/ when there exist yxk 2 ��1.xk/ such that fyxkgk2N and fyykg D
f yfk.yxk/:p

�1
k
gk2N are bounded in �M. A holonomy sequence of .fk/ at x is any

holonomy sequence along some sequence xk! x .

We will denote by Hol.x/ the set of all holonomy sequences of .fk/ at x . Equiconti-
nuity of .fk/ at x ensures that Hol.x/ is nonempty. Indeed, given y 2M such that
fk.x/! y , choose any yx 2 ��1.x/ and yy 2 ��1.y/. Then there exists a sequence
.pk/ in P such that yfk.yx/:p�1k ! yy , so .pk/ 2Hol.x/.

2.2 Equicontinuity with respect to segments

Equicontinuity of a sequence .fk/ at x will have strong consequences on the lo-
cal behavior of its holonomy sequences around the basepoint o 2 G=P. A useful
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notion to capture this local behavior is equicontinuity with respect to segments. An
unparametrized segment in G=P is a set of the form Œ��D fet� :o j t 2 Œ0; 1�g for some
� 2 g. Note that distinct �; � 2 g may define the same unparametrized segment.

We fix a Riemannian metric in a fixed neighborhood of o in X, with respect to which
we will measure the length of segments Œ�� in this neighborhood, and denote the results
by L.Œ��/.

Definition 2.4 A sequence .pk/ in P is equicontinuous with respect to segments if,
whenever a sequence of segments Œ�k� satisfies L.Œ�k�/! 0 and pk :Œ�k�D Œ�k�, every
cluster value of .�k/ in g is in p.

Observe that the condition L.Œ�k�/! 0, hence the very notion of equicontinuity with
respect to segments, does not depend on the choice of Riemannian metric, since any
two are bi-Lipschitz equivalent in a neighborhood of o.

2.3 Relation of equicontinuity and equicontinuity with respect to
segments

Proposition 2.5 Let .M; C/ be a Cartan geometry and fk W U !M a sequence of
automorphic immersions of .M; C/. If .fk/ is equicontinuous at x 2 U, then every
holonomy sequence .pk/ 2Hol.x/ is equicontinuous with respect to segments.

The proof will use the development of curves  W Œ0; 1�! �M, a notion which we now
recall. Given such a smooth curve  , the equation !G.z 0.s//D !. 0.s//, where !G
is the Maurer–Cartan form of G, defines an ODE on G. The solution z such that
z.0/D id will be called the development of  .

The Cartan connection also yields an exponential map on �M : any u in g defines the
!–constant vector field U � on �M by !.U �/� u; denote by f't

U �
g the corresponding

local flow. Observe that whenever u 2 p, the flow f't
U �
g is globally defined and

corresponds to right multiplication by etu in the bundle �M (by the third axiom in
Definition 1.3). The exponential map at yx 2 �M is defined in a neighborhood U D Uyx
of the origin in g by

u 7! exp.yx; u/ WD '1
U �
:yx:

Shrinking U if necessary makes the exponential map at yx a diffeomorphism onto a
neighborhood of yx in �M. For u 2 U � g, we will denote the exponential of u at yx
in M by exp.yx; u/, and the exponential in the Lie group G by eu .
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It is easy to see that whenever yf W �M ! �M is the lift of an automorphic immersion
of M,

exp.yx; u/D exp. yf .yx/; u/:

The P –equivariance property of ! leads to a corresponding equivariance property for
the exponential map, for all p 2 P,

(1) exp.yx; u/:p�1 D exp.yx:p�1; .Adp/:u/:

Last, we recall the following crucial reparametrization lemma:

Lemma 2.6 [4, Proposition 4.3] Let ; ˛W Œ0; 1�! �M be smooth curves, with .0/D
˛.0/, and let qW Œ0; 1�! P be a smooth map satisfying q.0/D id.

(1) Assume that for the developments z and z̨ , the relation z.s/D z̨.s/:q.s/ holds
in G for every s 2 Œ0; 1�. Then .s/D ˛.s/:q.s/ holds in �M.

(2) In particular, if u; v 2 g and if there exists a smooth aW Œ0; 1�! Œ0; 1�, with
a.0/D 0 and a.1/D 1, such that

esu D ea.s/vq.s/ for all s 2 Œ0; 1�;

then, for every yy 2 �M such that exp.yy; u/ or exp.yy; v/ is defined,

exp.yy; u/D exp.yy; v/:q.1/:

Proof of Proposition 2.5 Assume for a contradiction that .fk/ is equicontinuous at x ,
but that some holonomy sequence .pk/ of .fk/ at x does not act equicontinuously
with respect to segments. Then yyk D yfk.yxk/:p�1k is bounded for a bounded sequence
.yxk/ projecting to xk! x . After passing to a subsequence, we can assume yxk! yx
and yyk! yy .

Since .pk/ is not equicontinuous with respect to segments, passing again to a sub-
sequence, there exists a sequence of segments Œ�k�, with L.Œ�k�/! 0, as well as a
sequence .�k/ in g converging to �1 … p, such that, for all k ,

(2) pk :Œ�k�D Œ�k�:

This condition can be expressed by the relation, valid for all s 2 Œ0; 1�,

esAd.pk/.�k/ D e'k.s/�k :pk.s/:
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Here, pk W Œ0; 1�! P with pk.0/D 0 denotes a smooth path and 'k W Œ0; 1�! Œ0; 1� a
nondecreasing diffeomorphism. Given � > 0 arbitrary small, let 0 < �k < 1 be such
that 'k.�k/D � for all k . Then write

(3) esAd.pk/.�k�k/ D e.'k.�ks/='k.�k//'k.�k/�k :pk.�ks/:

Note that L.Œ�k�k�/! 0. Thus, for � sufficiently small, we can replace �k and �k
by �k�k and 'k.�k/�k , so that (2) holds, with the extra property that exp.yyk; �k/ is
defined for all k 2N , and �1 is in an injectivity domain of the map u 7! exp.yy; u/.
In particular, if we call y WD �.yy/, the fact that �1 … p implies, shrinking � again if
necessary, �.exp.yy; �1//¤ y .

The next step is to show that �.exp.yxk; �k// is defined for k large enough, and
converges to x . To this aim, define a left-invariant Riemannian metric �G on G by
left-translating any scalar product h ; i on g, and a corresponding Riemannian metric �
on �M, with

�.u; v/ WD h!.u/; !.v/i:

By the definition of � , if  is a curve in �M and z its development in G, then
L�G .z/D L�./. Fix � > 0 small enough that for all k 2N , the �–ball B.yxk; �/ of
center yxk and radius � has compact closure in �M.

Now consider the curve s 7! es�k . We fix † a small submanifold of G containing 1G ,
which is transverse to the fibers of �X W G!X DG=P and such that the restriction
of �X to † yields a diffeomorphism  W †! U, where U is a neighborhood of o
in X. For k large enough, there exists a smooth qk W Œ0; 1�! P, with qk.0/ D id,
such that ˛k.s/D es�k :qk.s/ is contained in †. Of course,  .˛k.Œ0; 1�//D Œ�k�. Two
Riemannian metrics on † are always locally bi-Lipschitz equivalent, hence there exist
C1; C2 > 0 such that, for k large enough,

C1L.Œ�k�/� L�G .˛k/� C2L.Œ�k�/:

We infer that L�G .˛k/! 0; in particular, for k � k0 , L�G .˛k/ < � . Now consider,
for each k � k0 , the first-order ODE on �M
(4) !.ˇ0k/D ˛

0
k

with initial condition ˇk.0/D yxk . If Œ0; ��
k
/, is a maximal interval of definition for

s 7! exp.yx; s�k/ then, for all k , ˇk.s/ WD exp.yxk; s�k/:qk.s/ for s 2 Œ0; ��
k
/ is a

maximal solution of our ODE, by Lemma 2.6. By the definition of L� , we have
L�.ˇk/ D L�G .˛k/. If ��

k
� 1, the inequality L�G .˛k/ < � implies that ˇk is
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included in the relatively compact set B.yxk; �/; this contradicts the maximality of ��
k

.
We thus infer ��

k
> 1, which ensures that ˇk.1/, hence exp.yxk; �k/D ˇk.1/:qk.1/�1

is defined. Moreover, L�.ˇk/DL�G .˛k/! 0, so ˇk.1/! yx . Projecting to M gives
�.exp.yx; �k//! x .

Now Lemma 2.6, combined with equation (3) above says that, for all k � k0 ,

fk.exp.yxk; �k/:p
�1
k /D exp.yyk;Ad.pk/�k/D exp.yyk; �k/:pk.1/:

Projecting this relation on M, we obtain

yfk.�.exp.yxk; �k///D �.exp.yyk; �k//:

After possibly passing to a subsequence, the right-hand term converges to

�.exp.yy; �1//¤ y;

while we just showed �.exp.yxk; �k//! x ; this yields the desired contradiction with
the equicontinuity of .fk/ at x .

2.4 Vertical and transverse perturbations of holonomy sequences

Proposition 2.5 translates equicontinuity of .fk/ at x to a property of sequences
in Hol.x/, which are in turn sequences of P acting on X DG=P. In this section we
define several operations on sequences in P which preserve Hol.x/.

Holonomy sequences involve many choices: of .xk/, .yxk/ and .yyk/D . yf .yxk/p�1k /,
in the notation of Definition 2.3. The right and left vertical perturbations of .pk/
correspond to other possible choices of .yxk/ and .yyk/, respectively.

Definition 2.7 Let .pk/ be a sequence in P. A vertical perturbation of .pk/ is a
sequence qk D lkpkmk where .lk/ and .mk/ are two bounded sequences in P.

Transverse perturbations of .pk/ correspond roughly to other possible choices of .xk/
converging to x .

Definition 2.8 For .pk/ a sequence of P, a sequence .qk/ of P is said to be a
transverse perturbation of .pk/ when there exist two sequences .�k/ and .�k/ in gnp

such that:

(1) qk D e
��kpke

�k :

(2) The sequences .�k/ and .�k/ both converge to 0.

(3) For every s 2R, e�s�kpkes�k belongs to P.

Geometry & Topology, Volume 23 (2019)



Topology of automorphism groups of parabolic geometries 145

The other choice of .xk/ in this case is �.exp.yxk; �k//, as will be seen in the proof
below.

Lemma 2.9 Let .M; C/ be a Cartan geometry and let fk W U !M be a sequence of
automorphic immersions. For any x 2 U, the set of holonomy sequences Hol.x/ is
stable by vertical and transverse perturbations.

Proof We consider .pk/ a sequence belonging to Hol.x/. By definition, there exists
.yxk/ a bounded sequence in �M such that yyk D yfk.yxk/:p�1k is bounded and the
projection xk on M converges to x .

Assume that .qk/ is obtained from .pk/ by vertical perturbation, namely there exist
bounded sequences .lk/ and .mk/ in P such that qk D lkpkmk . Then .yxk :mk/ is
bounded in �M, and still projects on .xk/. Moreover,

yfk.yxk :mk/q
�1
k D yyk :l

�1
k

is still bounded in �M. It follows that .qk/ is a holonomy sequence at x .

We now handle the case of a transverse perturbation qk D e��kpke�k . The sequence
.yxk/ is bounded and �k ! 0, hence .yzk/ D .exp.yxk; �k// is bounded in �M, too;
moreover, �.yzk/ converges to x . It remains to show that yfk.yzk/:q�1k is bounded
in M. Write this expression as yfk.yzk/:p�1k :pkq

�1
k

. By the equivariance (1) of the
exponential map,

yfk.yzk/:p
�1
k D exp. yfk.yxk/:p

�1
k ;Ad.pk/�k/:

Point .2/ in the definition of transverse perturbation says that qk.s/D e�s�kpkes�k

belongs to P for all s 2R. Thus,

esAd.pk/�k D es�kqk.s/p
�1
k ;

where s 7!qk.s/p
�1
k

is a smooth path in P passing through id when sD0. Lemma 2.6
then implies

exp. yfk.yxk/:p
�1
k ;Ad.pk/�k/D exp.yyk; �k/:qkp

�1
k :

Right translation by pkq
�1
k

gives yfk.yzk/:q�1k D exp.yyk; �k/. This expression is
bounded, because .yyk/ is a bounded sequence, and �k tends to zero by definition of a
transverse perturbation.
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2.5 Admissible operations

In this section, we specialize to X DG=P a parabolic model space, and define some
operations on holonomy sequences specific to parabolic geometries. We first introduce
some notation in g.

2.5.1 Notation in g Let G be semisimple with no compact local factors and with
finite center. We denote by ‚ a Cartan involution of the semisimple Lie algebra g.
Associated to ‚, we choose a Cartan subspace a, and ˆDf˛1; : : : ; ˛rg a set of simple
roots. The positive and negative roots are denoted by ˆC and ˆ� , respectively. The
usual decomposition of the Lie algebra g into root spaces is

gD
X
˛2ˆ�

g˛˚ a˚m˚
X
˛2ˆC

g˛:

Recall that the Lie algebra m is centralized by a, and lies in the Lie algebra k comprising
the C1–eigenspace of the Cartan involution ‚.

We will denote by nC (resp. n� ) the sum
P
˛2ˆC g˛

�
resp.

P
˛2ˆ� g˛

�
.

The minimal parabolic subalgebra of g is pmin D a˚m˚ nC. A general parabolic
subalgebra p is one containing pmin , and is obtained as follows (up to conjugacy in G ):
there exists ƒ¨ˆ, possibly empty, such that

pƒ D
X
˛2ƒC

g�˛˚ pmin;

where ƒC is the set of roots in ˆC which are in the span of ƒ. A parabolic subgroup
of G is any Lie subgroup Pƒ<G with Lie algebra pƒ for some ƒ. We will sometimes
denote this group simply by P when ƒ is understood.

We denote by nCƒ the nilpotent radical of p, which equals
P
˛2.ƒC/c g˛ . Here .ƒC/c

stands for the positive roots, written as linear combinations of roots in ˆ involving at
least one root which is not in ƒ. Notice that nCƒ is an ideal of nC and of p. Finally,
we call hƒ the Lie algebra hƒ D aË nCƒ.

We denote by A, NCƒ and Hƒ the connected Lie subgroups of G with Lie algebras
a, nCƒ and hƒ , respectively; they are all subgroups of Pƒ .

2.5.2 Reduced holonomy sequences A sequence .pk/ in P will be called reduced
when it is a sequence of Hƒ .
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Lemma 2.10 Any sequence .pk/ in P D Pƒ can be converted by left and right
vertical perturbation to .qk/ 2Hƒ .

Proof Consider the Levi decomposition of PƒDSƒËNCƒ , where Sƒ is the connected
reductive subgroup of G with Lie algebra spanned by a and the positive and negative
root spaces of ƒC. Write pk D sknk according to this decomposition. As Sƒ is
reductive, it admits a KAK decomposition, according to which skD l 0kaklk , with ak 2
ADexp.a/ and lk; l 0k 2K . As G has finite center, K is contained in a maximal compact
subgroup of G and is a maximal compact subgroup of Sƒ . Then pk D l 0kakn

0
k
lk ,

where n0
k
D l�1

k
nklk 2N

C

ƒ . Now qk D akn
0
k

is the desired reduced sequence.

2.5.3 Weyl reflections For X DG=P parabolic, these are transformations of holo-
nomy sequences in Hƒ , which will be useful in our proof.

For any root ˛ , the Weyl reflection is �˛W a�! a� , with

�˛.�/D � �
2h˛; �i

h˛; ˛i
˛; � 2 a�:

Recall that for ˛ positive, �˛ preserves ˆCnf˛g and ˆ�nf�˛g, assuming 2˛ is not
a root (in which case �˛ preserves ˆCnf˛; 2˛g and ˆ�nf�˛;�2˛g). Recall that
whenever � is a root, A˛� D 2h˛; �i=h˛; ˛i is an integer.

For any root ˛ , there exists k˛ 2 G such that Ad.k˛/ preserves a and the action of
Ad.k˛/ on a� coincides with that of �˛ (see [7, Proposition 6.52c]). In the sequel, we
will denote by r˛ any automorphism of G such that the action induced on g preserves a
and sends every root space gˇ to the corresponding g�˛.ˇ/ ; for instance, r˛ could be
conjugacy by k˛ .

Let ˛ 2ƒC. If a root ˇ is a linear combination with integer coefficients of roots in ƒ,
then so is �˛.ˇ/; thus, �˛ preserves ƒC[�ƒC. As �˛ sends all positive roots except
multiples of ˛ to positive roots, it also preserves ˆCnƒC D .ƒC/c . We conclude
that for every ˛ 2 ƒC, an automorphism r˛ preserves the connected subgroups A
and NCƒ and the identity component P 0ƒ ; in particular, it sends sequences .pk/ in Hƒ
to r˛.pk/ in Hƒ . Note that, in general, Pƒ may not be invariant by r˛ .

2.5.4 Definition of admissible operations, perturbations

Definition 2.11 Let X D G=P be a parabolic variety with P D Pƒ . For .pk/ a
sequence of P, an elementary admissible operation on .pk/ is of one of the three
following types:
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(1) A vertical perturbation of .pk/.

(2) A transverse perturbation of .pk/.

(3) For .pk/ in Hƒ , a Weyl reflection r˛ applied to .pk/, with ˛ 2ƒC.

An admissible perturbation of a sequence .pk/ in P is a sequence .qk/ which is
obtained from .pk/ by finitely many elementary admissible operations.

Note that the result of an admissible perturbation of a sequence .pk/ of P is always
in P. Weyl reflections are only allowed on sequences of Hƒ , which must be kept in
mind when applying successive admissible operations.

We conclude this section with an important remark about Weyl reflections. We observed
at the end of the last paragraph that a Weyl reflection r˛ always coincides with
the conjugacy by some element k˛ 2 G. We also observed that r˛ preserves the
identity component P 0 of P, so that actually k˛ belongs to NorG.P 0/, the normalizer
of P 0 in G. This normalizer NorG.P 0/ has Lie algebra p (see [19, Lemma 3.1.3
and Corollary 3.2.1(4)]), so that the inclusion P � NorG.P 0/ holds. Observe that,
in general, these groups need not coincide. However, when P D NorG.P 0/, any
Weyl reflection r˛.pk/ is actually a vertical perturbation of .pk/. We thus get a
straightforward rephrasing of Lemma 2.9, namely:

Lemma 2.12 Let .M; C/ be a parabolic geometry modeled on X D G=P, where
P D NorG.P 0/. Let x 2M, and let .fk/ be a sequence of automorphic immersions
which is equicontinuous at x . Then, if .pk/ is in Hol.x/, any admissible perturbation
of .pk/ is in Hol.x/.

The case of equality, P D NorG.P 0/, will thus be technically more convenient, since
it means that Weyl reflections on holonomy sequences again yield holonomy sequences.
It is explained in Section 3.2 why this equality may be assumed.

3 Translation of the main theorem to the model space

Via the holonomy sequences associated to an equicontinuous sequence .fk/ of auto-
morphic immersions, we can translate Theorem 2.2 to an assertion about sequences
of Hƒ acting equicontinuously with respect to segments on X.
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Theorem 3.1 Let X D G=P be a parabolic variety with P D Pƒ . Given a se-
quence .aknk/ of Hƒ which, together with all of its admissible perturbations, acts
equicontinuously with respect to segments on X, the factor .nk/ is bounded.

Theorem 3.1 is proved in Sections 4, 5 and 6.

3.1 Derivation of Theorem 2.2 from Theorem 3.1

Given a sequence .fk/ of automorphic immersions as in the statement of Theorem 2.2,
let .pk/ be a holonomy sequence of .fk/ at x . We can assume by Lemmas 2.9 and 2.10
that pk 2Hƒ for all k .

We will first deduce Theorem 2.2 under the extra assumption that P equals NorG.P 0/.
Section 3.2 explains how to dispense with this assumption.

Proposition 2.5 ensures that .pk/ acts equicontinuously with respect to segments
on X. Lemma 2.12 says that in fact every admissible perturbation of .pk/ does
(under our assumption P D NorG.P 0/). Now the hypotheses of Theorem 3.1 are
satisfied. The conclusion implies that .ak/ is a right vertical perturbation of .pk/,
which by Lemma 2.9 also belongs to Hol.x/. The action of Ad.ak/ on g preserves
the subalgebra n� ; denote by Lk the endomorphism Ad.ak/jn� .

Lemma 3.2 The sequence .Lk/ is bounded in End.n�/.

Proof The representation of Ad.ak/ on n� is diagonalizable with eigenvalues

.�1.k/; : : : ; �s.k//:

Assume for a contradiction that Lk is unbounded; we may assume that �1.k/ is un-
bounded and, after passing to a subsequence, that j�1.k/j!1. Taking a subsequence
also allows us to assume that, in �M, the sequence yyk D fk.yxk/:p�1k converges to yy .

For each k , let �k be in the �1.k/–eigenspace of Lk such that �k! �1 ¤ 0; these
can moreover be chosen in the injectivity domain of expyyk, and such that �1 is in the
injectivity domain of expyy . Set �k WD �k=�1.k/. Because �k ! 0, the exponential
exp.yxk; �k/ is defined for sufficiently large k , and satisfies

fk.exp.yxk; �k//:a
�1
k D exp.yyk; �k/:

Projecting to M gives a contradiction to the equicontinuity of .fk/ at x , namely
�.exp.yxk; �k//! x , while �.exp.yyk; �k//! �.exp.yy; �1//¤ �.yy/.
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Now, again passing to a subsequence of .fk/, we may assume that Lk tends to some
L 2 End.n�/. Let K � �M be a compact set containing both sequences .yxk/ and .yyk/,
and let U and V be relatively compact neighborhoods of 0 in n� , such that:

(1) Lk.U/� V for every k 2N .

(2) For every yz 2K , the map ˆyz W u 7! �.exp.yz; u// is defined on U and V, and is
a diffeomorphism from U and V onto their respective images.

There exists an open neighborhood U of x such that U � ˆyz.U/ for yz 2 K close
enough to yx . Then define the smooth map hW U !M by hDˆyy ıLıˆ�1yx . Because
Lk converges smoothly to L, and since on U, for k large enough,

fk Dˆyyk ıLk ıˆ
�1
yxk
;

.fk/ converges smoothly to h on U. Thus, Theorem 2.2 is proved.

3.2 Justification of the assumption P D NorG .P
0/

Let .fk/ be a sequence of automorphic immersions as in Theorem 2.2. In general,
P � NorG.P 0/, and they have the same Lie algebra, as remarked above (again, see
[19, Lemma 3.1.3 and Corollary 3.2.1(4)]). Thus, P 0 D NorG.P 0/ is an isogenous
supergroup of P. The following lemma gives a general procedure for inducing a
Cartan geometry modeled on G=P to one modeled on G=P 0, with respect to which
the automorphism group behaves nicely.

Lemma 3.3 Let C D . �M;!/ be a Cartan geometry on the manifold M, modeled
on X D G=P. Let P 0 < G be a closed subgroup, with P � P 0 and .P 0/0 D P 0 .
Then there exists a Cartan geometry C0 D . �M 0; !0/ on the manifold M, modeled on
X 0 DG=P 0, such that:

(1) Every automorphic immersion of .M; C/ is an automorphic immersion of
.M; C0/.

(2) The corresponding inclusion of Aut.M; C/ into Aut.M; C0/ is a homeomorphism
onto a closed subgroup with respect to the Lie topologies on each.

Proof The bundle �M 0 is obtained as the quotient �M �P P 0, where P acts diagonally
by p:.yx; q/D .yx:p�1; pq/, freely and properly. There is an obvious commuting right
P 0–action on MD �M �P 0, which descends to �M 0, making it a P 0–principal bundle
over M.
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To construct the Cartan connection on �M 0, we first build a one-form z! 2�1.M; g/.
For .�; u/ 2 T.yx;q/M, let

z!.yx;q/.�; u/ WD Ad.q�1/!yx.�/C .!P 0/q.u/;

where !P 0 is the Maurer–Cartan form of P 0. It is readily checked that z! satisfies the
equivariance relation .Rp/� z! DAd.p�1/ ı z! for every p 2 P 0, and that it is invariant
under the diagonal action of P on M. Moreover,

z!.yx;q/.Tyx �M � f0g/D Ad.q�1/ ı!yx.Tyx �M/D g;

showing that z!W TM! g is onto at each point.

For X 2 p, let X� 2 X . �M/ be as in Definition 1.3, and let  be the curve

.t/D etX :.yx; q/D .yx:e�tX ; etXq/:

Then
z!. 0.t//D Ad.q�1/ ı!yx.�X

�/CAd.q�1/X D 0

since !.X�/ � X. Hence, the kernel of z!.yx;q/ contains the tangent space to the
P –orbits on M; by a dimension argument, these spaces are equal. We infer that z!
induces a 1–form !0 2�1. �M 0; g/, which is the desired Cartan connection on �M 0.
We prove point (1) for f 2 Aut.M; C/. The argument for automorphic immersions is
similar. Let yf be the lift of f to �M, and define zf WM!M by zf .yx; q/D . yf .yx/; q/.
The P –equivariance of yf gives the equivariance relation p: zf .yx; q/D zf .p:.yx; q//;
obviously, zf ..yx; q/:p0/ D zf .yx; q/:p0 for every p0 2 P 0. Thus, zf induces a bundle
morphism yf 0 of �M 0 covering f .

To prove that f 2 Aut.M; C0/, it remains to check that yf 0 preserves !0. To this end,
we compute zf � z! and show that it coincides with z! :

z!
. yf .yx/;q/

.Dyx
yf .�/; u/D Ad.q�1/ ı! yf .yx/.Dyx

yf .�//C .!P 0/q.u/

but ! yf .yx/.Dyx
yf .�//D !yx.�/ because f 2 Aut.M; C/. Finally,

z!
. yf .yx/;q/

.Dyx
yf .�/; u/D Ad.q�1/!yx.�/C .!P 0/q.u/D z!.yx;q/.�; u/;

as desired, so (1) is proved.

There is a natural P –equivariant, proper embedding j W . �M;!/! . �M 0; !0/ defined
by j.yx/ WD Œ.yx; e/�, the P –orbit in M of .yx; e/. For f 2 Aut.M; C/ with respective
lifts yf and yf 0 to �M and �M 0, we have j ı yf D yf 0 ı j .
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Now consider a sequence fk 2Aut.M; C/ converging for the Lie topology of Aut.M; C0/
to an automorphism f . By Kobayashi’s theorem (Theorem 1.6), the sequence of
lifts yf 0

k
converges in the C1–topology of �M 0 to a diffeomorphism yf 0, which clearly

preserves !0. Properness of j implies that j. �M/ is closed. Then yf 0 preserves j. �M/,
because every yfk does. Thus, yfk D j�1 ı yf 0

k
ı j converges smoothly on �M to

yf WD j�1 ı yf 0 ı j , which preserves ! and covers f . It follows that f 2 Aut.M; C/,
and, by Kobayashi’s theorem, fk! f in the Lie topology of Aut.M; C/. We conclude
moreover that Aut.M; C/ is closed in the Lie topology of Aut.M; C0/.

Conversely, given fk ! f in the Lie topology of Aut.M; C/, with f 2 Aut.M; C/,
the lifts yfk ! yf smoothly on �M. These correspond, as in the proof of (1), to
automorphisms yf 0

k
and yf 0 of . �M 0; !0/ with yf 0

k
! yf 0 on j. �M/. For any yy 2 �M 0,

there exists p0 2P 0 such that yy:p0 2 j. �M/. It follows by Theorem 1.6(3) that yf 0
k
! yf 0

smoothly on each connected component of �M 0 ; in other words, fk! f holds in the
Lie topology of Aut.M; C0/. Thus, Aut.M; C/ ,! Aut.M; C0/ is a homeomorphism
onto its image with respect to the Lie topologies on each group.

Now, given a sequence .fk/ as in Theorem 2.2, Lemma 3.3 with P 0DNor.P 0/ allows
us to consider .fk/ as a sequence of automorphic immersions of .M; C0/, modeled on
X 0 DG=P 0. The proof of Section 3.1 says that .fk/ converges smoothly on M to a
smooth map h. We have thus shown that Theorem 3.1 implies Theorem 2.2.

3.3 Derivation of Theorem 1.2

Let fk 2 Aut.M; C/ converge to h 2 Homeo.M/ in the C 0–topology. The aim is to
show that h 2 Aut.M; C/, and fk! h in the Lie topology on Aut.M; C/.

By Lemma 3.3(2), we may assume that the model space G=P satisfies P DNorG.P 0/.
As in Section 3.1, .fk/ admits a holonomy sequence ak 2 A at any x 2M, such that
LkDAd.ak/jn� is bounded in End.n�/. Moreover, in the notation of Section 3.1, there
is a neighborhood U of x such that for any accumulation point L of .Lk/ in End.n�/,
a subsequence of .fk/ converges to ˆyy ıLıˆ�1yx on U. Then LjU Dˆ�1yy ıhıˆyx , so
Lk!L. Because h is a homeomorphism, L is injective around 0, hence L2GL.n�/.
As a consequence, .ak/ converges in P.

Now we have yfk.yxk/:a�1k D yyk! yy with .ak/ also converging, so fk.yxk/ tends to
some point yz . As yxk ! yx , for sufficiently large k , yx D exp.yxk; �k/, with �k ! 0

in g. Now yfk.yx/D exp. yfk.yxk/; �k/, so fk.yx/!yz . By Theorem 1.6(3), yfk and the
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inverses yf �1
k

both converge C1 on �M to smooth maps yf and yg , which obviously
satisfy yf ı yg D id. It is easy to see that yf is a bundle automorphism of �M preserv-
ing ! . It lifts h, hence h 2 Aut.M; C/. Finally, because yfk ! yf smoothly on �M,
Theorem 1.6(2) gives that fk! h in the Lie topology on Aut.M; C/.

4 Proof of Theorem 3.1 in rank one

Our proof of Theorem 3.1 will proceed by induction on rkR.G/. The essential ar-
guments for the base case, rkR.G/D 1, are in the paper [2] by the first author. For
the convenience of the reader, the proof is presented here in a manner consistent with
our terminology and notation. Theorem 3.1 in this rank-one case will actually be a
consequence of the following proposition.

Proposition 4.1 Let X DG=P be a parabolic space, with rkR.G/D 1. If pkDaknk
is a sequence of AËNC such that .nk/ is unbounded, then .pk/ does not act equi-
continuously with respect to segments.

Recall the notation of Section 2.5.1. The rank-one Lie algebra can be decomposed as
a vector space direct sum of subalgebras gD n�˚ a˚m˚ nC. The Lie algebra n�

(resp. nC ) is abelian if gD o.1; n/, and nilpotent of index 2, with center of respective
dimension 1, 3 and 7 if g is su.1; n/, sp.1; n/ or f�204 . In all cases, z� (resp. zC )
will denote the center of n� (resp. nC ). The nonequicontinuity will be observed on a
restricted class of segments, namely those Œ�� with

� 2QD fAd.p/u j u 2 z�; p 2 P g:

This set of segments will be denoted by ŒQ� and corresponds to conformal circles
when gD o.1; n/, and to chains and their generalizations in the other rank-one models.
We will adopt the notation PQ (resp. Œ PQ�) for Q n f0g (resp. ŒQ� n fŒo�g).

We now recall two results from [2] regarding these distinguished segments.

Lemma 4.2 [2, Lemme 2] Let .Œ˛k�/ be a sequence of segments in ŒQ�. If Œ˛k�
tends to Œo� for the Hausdorff topology, then L.Œ˛k�/! 0.

Lemma 4.3 [2, Proposition 1(ii)] There exists a continuous section sW Œ PQ�! PQ. In
other words, if a sequence of segments .Œ˛k�/ tends to a segment Œˇ�¤ Œo�, there is a
convergent sequence .�k/ in g such that Œ˛k�D Œ�k�.
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By these two lemmas, if we can find a sequence of segments Œ˛k� in Œ PQ�, tending
to Œo�, such that pk :Œ˛k� tends to Œˇ� 2 Œ PQ� (maybe considering a subsequence), then
.pk/ does not act equicontinuously with respect to segments.

The group A has exactly two fixed points on X, namely o and another point � . To better
understand the action of P on ŒQ�, it is convenient to work in the chart �W nC!Xnfog

given by �.x/D ex :� . In this chart, elements of P act as affine transformations, and
segments Œ˛� 2 Œ PQ� coincide with half-lines Œx; u/D fxC tu j t 2Rg, where x 2 nC

and u is a unit vector in zC (for any given norm in g which is invariant by the Cartan
involution). More precisely, the action of A in the chart � is linear, and is equivalent
to the adjoint action on nC, and the action of an element n D e� with � 2 nC is
given, by the Baker–Campbell–Hausdorff formula, by x 7!

�
IdC 1

2
ad �

�
.x/C � for

all x 2 nC.

Now, let us write nk D evk . By assumption, .vk/ is an unbounded sequence in nC.
We claim there is an unbounded sequence .xk/ in nC such that

(5) xkC
1
2
Œvk; xk�C vk D 0:

To see this, decompose nC as a direct sum nC D h˚ zC (observe that hD f0g when
gD o.1; n/). Split equation (5) into two equations in h and z, namely

xxkCxvk D 0;

where xxk and xvk are the components of xk and vk on h, respectively, and

zxkC
1
2
Œxvk; xxk�C zvk D 0;

where zxk and zvk are the components of xk and vk on zC. If .xvk/ is unbounded, then
so is .xxk/, and the same is true for .xk/. If .xvk/ is bounded, then .zvk/ is unbounded
because .vk/ is unbounded. This forces .zxk/ to be unbounded.

We can now conclude the proof of Proposition 4.1. Since aknk.xk/D 0, then for �
of norm 1 in zC, the sequence of segments Œxk; �/ is mapped to Œ0; �/ by .pk/. Now,
after taking a subsequence, xk=jxkj tends to �1 . Thus, for � ¤��1 , the sequence of
half-lines Œxk; �/ goes to infinity in the chart � , which means that the corresponding
sequence of segments Œ˛k� tends to Œo� in X. On the other hand, pk.Œ˛k�/ is equal
to a constant segment Œ˛� ¤ Œo�, and the nonequicontinuity of .pk/ with respect to
segments follows.
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5 Tools for the induction step: sliding along root spaces

The proof in the previous section for rkR.G/D 1 relies heavily on the fact that the
action of P on the complement of its fixed point o 2G=P is by affine transformations.
In higher rank, the P –action on G=P is a compactification of an affine action, but
no longer a one-point compactification. This difference creates significantly more
complexity, which motivates our choice to prove Theorem 3.1 by induction rather than
directly in arbitrary rank.

The tools developed in this section build on those of Sections 2.4 and 2.5, with the
purpose of simplifying holonomy sequences.

5.1 Essential range of .pk/

The group exponential of G restricts to a diffeomorphism of a onto A by definition.
Moreover, AdNCƒ is unipotent, and Z.G/\NCƒ D 1, so NCƒ is simply connected;
thus, exp restricts to a diffeomorphism nCƒ!NCƒ .

Fix an ordering ˛1 > � � �> ˛r of ˆ, and endow ˆC with the lexicographical ordering.
Then we obtain exponential coordinates ln aD .Z1; : : : ; Zr/ on A and lnnD Y D
.Y ˛/˛2.ƒC/c , where Y ˛ is a vector in g˛ , on NCƒ .

Proposition 5.1 Let pk D aknk 2 Hƒ with exponential coordinates ..Zi
k
/; .Y ˛

k
//.

Then, up to vertical perturbation of .pk/, we may assume each component sequence
.Y ˛
k
/ is either trivial or unbounded.

Proof The group NCƒ is nilpotent; write the lower central series

NCƒ DN
.0/ BN .1/ B � � �BN .d/ B id:

Each n.i/=n.iC1/ is abelian and can be spanned by a direct sum of certain root spaces;
denote the corresponding set of roots by †.i/ . Let …� .ƒC/c be the set of roots ˛
with .Y ˛

k
/ bounded. We first multiply pk on the right by e�Y

˛
k for all ˛ 2…\†.0/ ,

in any order. The Baker–Campbell–Hausdorff formula implies that the resulting
exponential coordinates ..Y 0/˛

k
/ are trivial or bounded for all ˛ 2 …\†.0/ . Then

proceed sequentially through …\†.i/ for i D 1; : : : ; d to obtain .p0
k
/ satisfying the

conclusion of the proposition.

We remark that .Zi
k
/ can also be assumed trivial or bounded by a similar argument,

which is not given because this fact is not needed below.
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Definition 5.2 Let pkD aknk 2Hƒ with exponential coordinates ..Zi
k
/; .Y ˛

k
//. The

essential range of .pk/, denoted by ER.pk/, is the set of roots � 2 .ƒC/c for which
the component sequence .Y �

k
/ is unbounded.

5.2 Transverse and vertical sliding along root spaces

In our proof by induction on the rank of G, the goal will be, given a sequence .pk/
in Hƒ , to obtain roots in the essential range of .pk/ that belong to a lower-rank
subspace of the span of ˆ. More precisely, given �2ER.pk/ such that � has nontrivial
component on some ˛ 2 .ƒC/c , we will perform admissible perturbations on .pk/
to obtain a new sequence .qk/�Hƒ with �� ˛ 2 ER.qk/. Such a manipulation is
possible only under some circumstances, which are enunciated in Propositions 5.5
and 5.6 below. First, the following proposition holds the basic Lie-algebraic calculations
that make our “sliding along g�˛ ” procedure work:

Proposition 5.3 Assume that ˛; �; �C ˛ 2 ˆC. Given a sequence .Yk/ in nC with
.Y �C˛
k

/ unbounded, there exists �k! 0 in g�˛ such that

(1) Œ�k; Y
�C˛
k

�D Œ�k; Yk�
� is unbounded;

(2) .Ad.e�k /Yk/� is unbounded.

Proof The bilinear map g�˛ � g�C˛! g� induced by the bracket is nondegenerate;
we recall the proof of this fact for real semisimple Lie algebras. Denote by B the Killing
form on g, ‚ the Cartan involution as in Section 2.5.1 and H�C˛ 2 a the dual with
respect to B of �C˛ . Then, given Y 2g�C˛ nonzero, Œ‚.Y /; Y �DB.‚.Y /; Y /H�C˛ .
Rescaling Y if necessary, the vectors Y , ‚.Y / and Œ‚.Y /; Y �DH form an sl2–triple.
Consider V D

L
k2Z g�˛Ck.�C˛/ , which is an sl2–module. If Œg�˛; Y � were zero,

then V 0 D
L
k�0 g�˛Ck.�C˛/ would be a submodule with highest weight �˛.H/,

which implies ˛.H/ < 0. On the other hand, V=V 0 is also an sl2–module with lowest
weight �.H/D�˛.H/C .�C˛/.H/ > 0, which is impossible.

Given Y 2 g�C˛ with jY j D 1 (for any norm on g), let

m.Y /D max
X2g�˛; jX jD1

jŒX; Y �j> 0:

Then infY2g�C˛; jY jD1m.Y /� c > 0. In particular, there exist �k 2 g�˛ with j�kj D 1
such that

jŒ�k; Yk�
�
j D jŒ�k; Y

�C˛
k

�j Dm

�
Y �C˛
k

jY �C˛
k
j

�
jY �C˛
k
j � cjY �C˛

k
j
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is unbounded. Observe that replacing �k by �k=jY
�C˛
k
j1=2 gives the same conclusion

with the extra property that �k! 0. Now (1) is proved.

The conjugates in (2) are given, for some m 2N , by

Ad.e�k /Yk D Y
0
k D

mX
jD0

1

j Š
.ad �k/

j .Yk/:

After replacing �k with s�k , the � components are

Y 0�k D

mX
jD0

sj

j Š
.ad �k/

j .Y
�Cj˛

k
/:

From (1), the � components of the terms corresponding to j D 1 form an unbounded
sequence. The following lemma shows that replacing �k by s�k , with a suitable
s 2 .0; 1�, makes the components .Y 0�

k
/ unbounded too.

Lemma 5.4 Let .u0.k//; : : : ; .um.k// be m sequences in a finite-dimensional vector
space V . Assume that one of the sequences .uj .k// is unbounded. Then, for a suitable
choice of s 2 .0; 1�, the sequence u0.k/C su1.k/C s2u2.k/C � � � C smum.k/ is
unbounded.

Proof There exist mC1 values of s in .0; 1�, say s0; : : : ; sm , such that the vectors
vi D .1; si ; : : : ; s

m
i / form a basis of RmC1 . Let j � j be any norm on V . Then, on the

vector space of linear maps L.RmC1; V /, we have two norms,

kf k1 D sup
jvjD1

jf .v/j

and

kf k2 D max
iD0;:::;m

jf .vi /j:

If fk denotes the linear map .�0; : : : ; �m/ 7! �0u0.k/C � � � C �mum.k/, then the
sequence .kfkk1/k2N is unbounded (which is the case under the hypothesis of the
lemma) if and only if .kfkk2/k2N is unbounded. The lemma follows.

Define ˆCmax �ˆ
C to be the subset comprising the positive roots in which all ˛i 2ˆ

occur with a positive coefficient. Observe that this set is nonempty only when G is
simple.
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Proposition 5.5 (transverse sliding) Let pk D aknk 2 Hƒ with ER.pk/ � ˆCmax ,
and assume .pk/ and all its admissible perturbations act equicontinuously with respect
to segments on G=P. Let ˛ 2 .ƒC/c be such that for all � 2 ER.pk/, for all l � 0, if
�� l˛ is a root, then it belongs to .ƒC/c . Suppose ˛C � 2 ER.pk/ for some � 2ˆC.
Then vertical and transverse perturbation of .pk/ yields qk D akn0k 2Hƒ such that
� 2 ER.qk/.

Proof If .Y �
k
/ is unbounded, there is nothing to do. By Proposition 5.1, we may

assume after a vertical perturbation that .Y �
k
/ is trivial for all k for all � … ER.pk/, in

particular for � . Let xk D e�k for �k! 0 in g�˛ . Then, for some m 2N ,

Ad.x�1k /Yk D Y
0
k D YkC

mX
jD1

.�1/j

j Š
.ad �k/

j .Yk/:

By our hypotheses, Y 0
k
2nCƒ , hence n0

k
D eY

0
k 2P and akn0k 2Hƒ . By Proposition 5.3,

we can choose �k! 0 in g�˛ such that the sequence .Y 0�
k
/ is unbounded.

We have the relation
aknke

�k D eAd.ak/�kakn
0
k :

We wish to show that Ad.ak/�k! 0. The action of Ad.ak/ on g�˛ is scalar multi-
plication by �k D e�˛.Zk/ , where Zk D ln ak , so it is enough to show that �k � C,
for some constant C 2R. If this were not the case, then, up to taking a subsequence,
there would be �k! 0 in g�˛ with Ad.ak/�k! �1 ¤ 0. For the product

pke
�k D eAd.ak/�kake

��knke
�k ;

we know from above that ake��knke�k 2 P. Thus, pk :Œ�k� D ŒAd.ak/�k�! Œ�1�,
while L.Œ�k�/! 0, which contradicts the fact that .pk/ acts equicontinuously with
respect to segments.

Now let �k D Ad.ak/�k , which tends to 0. It is easy to verify that

e�s�kpke
s�k 2 P for all s 2R:

Thus, qk D akn0k is a transverse perturbation of .pk/ according to Definition 2.8, and,
because .Y 0�

k
/ is unbounded, it has � 2 ER.qk/, as desired.

Proposition 5.6 (vertical sliding) Let � 2 .ƒC/c and ˛ 2ƒC. Let pk D aknk 2Hƒ
with ˛.Zk/�M >�1 (˛.Zk/�M <1). If �C˛ 2ER.pk/ (or ��˛ 2ER.pk/),
then left and right vertical perturbation of .pk/ yields qk D akn0k 2 Hƒ such that
� 2 ER.qk/.
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Proof We can assume after vertical perturbation that Y �
k
�0. We apply Proposition 5.3

to obtain �k! 0 in g�˛ such that .Y 0�
k
/ is unbounded, where

Y 0k D Ad.x�1k /Yk D YkC

mX
jD1

.�1/j

j Š
.ad �k/

j .Yk/

for some m 2N , with xk D e�k . In this case, Yk 2 n
C

ƒ and ˛ 2ƒC together imply
that .ad �k/j .Yk/ 2 n

C

ƒ for all j 2N . Thus, Y 0
k
2 nCƒ .

Let n0
k
D eY

0
k . The lower bound on ˛.Zk/ implies .Ad ak/.�k/! 0, so

e�Ad.ak/�kaknke
�k D akn

0
k

is obtained by left and right vertical perturbation from .pk/.

The proof for ˛.Zk/�M <1 and Y ��˛
k

unbounded is similar.

5.3 Algebraic proposition to reduce rank

Using the tools developed so far in this section, we will now state the algebraic
proposition that drives our induction step. The next section contains the geometric
interpretation of this result, and explains how to prove Theorem 3.1 by induction
on rkRG.

Proposition 5.7 Let .pk/ D .aknk/ be a sequence of Hƒ with .nk/ unbounded.
Assume that .pk/, together with all its admissible perturbations, acts equicontinuously
with respect to segments. Then an admissible perturbation of .pk/ yields .qk/ such
that ER.qk/ contains a root in .ƒC/cnˆCmax .

The proof of this proposition is given in Sections 6.3 and 6.4 below.

6 Proof of Theorem 3.1 by induction on rank

The first half of this section gives the proof of Theorem 3.1 from Proposition 5.7. The
second half gives the proof of Proposition 5.7.

6.1 Invariant parabolic subvarieties

Let X D G=P with G semisimple of real rank r and P a parabolic subgroup with
a Lie algebra p D pƒ , ƒ ¨ ˆ. Let V � X be a parabolic subvariety through the
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basepoint o. (These will be defined precisely below.) If .pk/ acts equicontinuously
with respect to segments on X and preserves V , then clearly it is equicontinuous
with respect to segments on V . The strategy for our induction argument is to find
.pk/–invariant V �X of rank less than r .

Recall the notation introduced in Section 2.5.1, and denote by B the Killing form
on g. Given a subset ‰ � ˆ, let a0 and m0 be the ideals of a and m, respectively,
commuting with

L
˛2‰C g˛ . Let a‰ D a?0 and m‰ Dm?0 , where the orthogonal is

taken with respect to the scalar product hX; Y iD�B.X;‚Y /. We obtain a subalgebra
of g,

g‰ D
X
˛2‰�

g˛˚ a‰˚m‰˚
X
˛2‰C

g˛:

It is easy to check that g‰ is ‚–invariant, hence reductive, and has trivial center. It
follows that g‰ is semisimple.

The corresponding connected subgroup G‰ < G is closed. Indeed, ad.g‰/ is a
semisimple subalgebra of End.g/, hence is an algebraic subalgebra (see [6, Theorem 3.2,
page 112]). For G0‰ the corresponding Zariski closed subgroup of GL.g/, the group
Ad�1.G0‰/ is closed in G, and so is its identity component G‰ .

A minimal parabolic of G‰ is contained in Pmin . The stabilizer of o in G‰ contains
Pmin \G‰ and is algebraic, hence is a parabolic subgroup of G‰ , denoted by Q‰ .
The orbit G‰:o is a parabolic subvariety V‰ ŠG‰=Q‰ , nontrivial provided ‰ šƒ,
and of rank less than r .

Proposition 6.1 Let pk D aknk 2 Hƒ and let ..Zi
k
/; .Y ˛

k
// be the exponential

coordinates of pk . Then, for any ‰ �ˆ, the variety V‰ �X is invariant by .pk/. If
Zi
k
D 0 for all ˛i 2‰ , then ak acts trivially on V‰ ; if Y ˛

k
D 0 for all ˛ 2‰C\.ƒC/c ,

then nk is trivial on V‰ .

Proof Let � 2
P
˛2‰C g�˛ and x D e� .

Given .Zk/ as in the hypotheses above, ˛.Zk/� 0 for all ˛ 2‰C. Thus, ad.�/ZkD 0
and Ad.x/Zk D Zk for all k . Thus, akx:o D xak :o D x:o, and ak acts trivially
on V‰ .

Now let Y 2 nCƒ with Y ˛ D 0 for all ˛ 2‰C. Write

Ad.x/Y D Y 0 D Y C
mX
kD1

.�1/k

kŠ
.ad �/k.Y /:
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Note that Y 0� D 0 unless �D �C � , with � a sum with negative integral coefficients
of elements of ‰ and � in .‰C/c ; in particular, �C � has positive coefficient on
some simple root of ˆn‰ . In this case, � is a positive root, so Y 0 2 nC, and eY

0

2 P.
Thus, eY x:oD xeY

0

:oD x:o, and eY is trivial on V‰ .

The above calculation with Y 2
P
˛2‰C g˛ shows that V‰ is invariant by eY ; it is easy

to see that A leaves V‰ invariant. For invariance under a general sequence pk D aknk
in Hƒ , we can use the following basic lemma, the proof of which we leave to the
reader:

Lemma 6.2 Let N be a simply connected nilpotent Lie group with Lie algebra n. Let
n0 be an ideal of n, and let Y and Y0 be elements of n and n0 . Then there exists
Y 00 2 n0 such that

eYCY0 D eY eY
0
0 :

This lemma lets us write nk D eWkeUk with Wk 2
P
˛2‰C g˛ and Uk 2

P
.‰C/c g˛ .

We can then conclude because each factor ak , eWk and eUk preserves V‰ .

The unipotent radical of Q‰ is NC‰;ƒ <N
C

ƒ with Lie algebra

nC‰;ƒ D
M

˛2‰CnƒC

g˛:

The analogue of Hƒ in G‰ is H‰;ƒ D A‰ ËNC‰;ƒ. Note that

NCƒ DN
C

‰;ƒ � .N
C

‰ \N
C

ƒ /;

and that the second factor is normal in Hƒ . We will also need below the decomposition
AD A‰ �Aˆn‰ .

6.2 The induction step

Suppose that Theorem 3.1 holds for all parabolic models G=P of real rank at most
r � 1. We will prove using Proposition 5.7 that it holds for all models of real rank r .
Let X DG=Pƒ of rank r be given, and let .pk/ be a sequence of Hƒ which, together
with all its admissible perturbations, acts equicontinuously with respect to segments.
The aim is to show that .nk/ is bounded. If not, then Proposition 5.7 gives, after an
admissible perturbation, .qk/ with ER.qk/ containing a root � 2 .ƒC/cnˆCmax .

There is a proper subset ‰ of ˆ such that � 2‰C. It cannot be that ‰ is contained
in ƒ, because � 2 .ƒC/c . Now qk 2Hƒ preserves V‰ by Proposition 6.1; denote the
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restriction by .q0
k
/, which is a sequence of Q‰ , and let a0

k
n0
k

be the decomposition
into components on A‰ and NC‰;ƒ , respectively. Because � 2 ER.qk/, it follows that
.n0
k
/ is unbounded.

As rkRG‰ � r � 1, the induction hypothesis yields a contradiction provided that all
admissible perturbations of .q0

k
/ in G‰ act equicontinuously with respect to segments

on V‰ . Admissible perturbation in G‰ means more precisely that vertical and trans-
verse perturbations are as in Section 2.4 with g‰ in place of g, and Q‰ in place of P,
and Weyl reflections are done with respect to roots ˛ in .‰ \ƒ/C. The following
lemma ensures that .q0

k
/ satisfies the hypotheses of Theorem 3.1 and allows us to apply

our induction hypothesis:

Lemma 6.3 Let X DG=Pƒ be a parabolic variety, and .qk/ be a sequence of Hƒ .
Assume that .qk/ preserves a parabolic subvariety V‰ on which it restricts to .q0

k
/. If

every admissible perturbation of .qk/ acts equicontinuously with respect to segments
in X, then every admissible perturbation of .q0

k
/ in G‰ acts equicontinuously with

respect to segments in V‰ .

Proof We will prove that any admissible perturbation of the sequence .q0
k
/ in G‰ can

be obtained by an admissible perturbation of .qk/, restricted to V‰ . Assume that .p0
k
/

is obtained from .q0
k
/ by an admissible perturbation in G‰ . We seek an admissible

perturbation .pk/ of .qk/, such that pk preserves V‰ , and the restriction of pk to V‰
is precisely p0

k
. Existence of such .pk/ can be checked for each of the three kinds of

admissible perturbations in G‰ :

(1) Vertical perturbation There are bounded sequences .lk/ and .mk/ in Q‰ such
that p0

k
D lkq

0
k
mk on V‰ . Because Q‰ <P, the desired vertical perturbation of .qk/

in G is simply .pk/D .lkqkmk/.

(2) Transverse perturbation In this case, write p0
k
D e��kq0

k
e�k, where .�k/ and

.�k/ are two sequences of g‰ n q‰ tending to 0. As these are also sequences of g n p,
we can set pk D e��kqke�k ; we will show that this is a transverse perturbation in G.

Let x 2 V‰ . Observe that, because �k; �k 2 g‰ ,

e�s�kqke
s�k :x D e�s�kq0ke

s�k:x for all s 2RI

thus, e�s�kqkes�k preserves V‰ and acts on it by e�s�kq0
k
es�k . Taking x D o gives

e�s�kqke
s�k:oD e�s�kq0

k
es�k:oD o, because the latter is in Q‰ for all s . This proves

e�s�kqke
s�k 2 P for all s 2R, and pk is a transverse perturbation of qk .
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(3) Weyl reflection Let r˛2Aut.G‰/ realize the Weyl reflection �˛ for ˛2.‰\ƒ/C.
Decompose, using Lemma 6.2,

qk D aknk D a
00
ka
0
kn
0
kn
00
k;

where a0
k
2 A‰ , n0

k
2NC‰;ƒ, a00

k
2 Aˆn‰ and n00

k
2 .NC‰ \N

C

ƒ /. By Proposition 6.1,
both a00

k
and n00

k
are in the kernel of the restriction to V‰ , so we can write q0

k
D a0

k
n0
k
.

Now let zr˛ be an automorphism of G effecting �˛ on a� . Because ˛ 2 .‰\ƒ/C, the
derivative of zr˛ preserves the Lie algebras a‰ , aˆn‰ , nC‰;ƒ and .nC‰ \ nCƒ/, so zr˛
preserves the corresponding connected subgroups in G. Thus, zr˛.q0k/D r˛.q

0
k
/, and

zr˛.qk/D zr˛.a
00
k/r˛.q

0
k/zr˛.n

00
k/

preserves V‰ and restricts on it to r˛.q0k/, as desired.

The proof by induction of Theorem 3.1 is now complete, once we prove Proposition 5.7.

6.3 Proof of Proposition 5.7 (assuming the root system of g is not of
type G2 )

Proposition 5.7 is vacuously true if the set ˆCmax is empty. Thus, we assume from now
on that G is a simple Lie group.

Let .pk/D .aknk/ be a sequence of Hƒ with .nk/ unbounded. That means ER.pk/�
.ƒC/c is nonempty. If it contains a root not in ˆCmax , then there is nothing to show, so
we suppose that ER.pk/�ˆCmax . Define the degree of ˛ 2ˆC to be the sum of the
coefficients in the unique expression of ˛ as a positive integral linear combination of
roots in ˆ.

Let YkD lnnk . By Proposition 5.1, we may assume Y �
k
� 0 for �…ER.pk/. To prove

that an admissible perturbation of .pk/ results in .qk/ with ER.qk/ not contained
in ˆCmax , we will show that for any � 2 ER.pk/ of minimal degree, there is a sequence
of admissible operations resulting in �0 2 ER.qk/ with the degree of �0 strictly lower
than the degree of �.

Let � 2 ER.pk/�ˆCmax be of minimal degree. There is some ˛ 2ˆ with h˛; �i> 0;
otherwise, � would be in the negative of the Weyl chamber spanned by ˆ, contradicting
that it is a positive root. For such ˛ ,

A˛� D
2h˛; �i

h˛; ˛i
> 0:
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Case ˛ 2ƒ In this case, the Weyl reflection �˛ 2Wƒ yields

�˛.�/D �
0
D ��A˛�˛ 2 .ƒ

C/c

of smaller degree. The admissible operation r˛ yields qk 2Hƒ with �0 2 ER.qk/.

Case ˛ 2ˆnƒ Note that � D ��˛ 2ˆC, because ��A˛�˛ 2ˆC, and strings are
unbroken.

If P D Pƒ is not a maximal parabolic with ƒDˆnf˛g, then .pk/, ˛ and � satisfy
the hypotheses of Proposition 5.5, which thus gives another holonomy sequence .qk/
with � D ��˛ 2 ER.qk/, which has lower degree than �.

Now suppose P is a maximal parabolic, with ƒDˆnf˛g. Every root in ER.pk/ has
the form �i Dmi˛C�i , where mi � 1, and �i is in the positive integral span of ƒ.
If none of the �i is a root, then again the hypotheses of Proposition 5.5 are satisfied,
so, as above, there is a holonomy sequence .qk/ with ��˛ 2 ER.qk/.

Thus, we may assume that �i is a root for some i .

Lemma 6.4 Let Pƒ<G be a maximal parabolic with ƒDˆnf˛g. If m˛C�2ˆCmax

for m� 1 and � 2ƒC, then ˛ is a valence-one vertex of the Dynkin graph of g — that
is, A˛ˇ ¤ 0 for exactly one element ˇ 2ƒ.

Proof The root � belongs to some basis of simple roots, and the Weyl group W acts
transitively on such sets (see [7, Theorem 2.6.3]), which means there is � 2W sending
some ˛i 2 ˆ to �. This � is moreover a product �i` � � � �i1 of Weyl reflections. Let
�0 D ˛i and �j be the result after performing j reflections. Then one can see that at
each step, �j is a positive root, comprised of simple roots that form a connected subset
of the Dynkin graph. If �ij is the reflection at the j th step, then ˛ij is connected to
exactly one of the simple roots appearing in �j�1 because the Dynkin diagram is a
tree, and it adds a positive multiple of ˛ij to make �j .

We conclude that the elements of ˆ appearing in the decomposition of � correspond to
a connected subset of the Dynkin graph. These are precisely the elements of ƒDˆnf˛g.
As the Dynkin graph is a connected tree, the conclusion follows.

Let ˇ 2 ƒ with A˛ˇ ¤ 0. Write �i D �0 D m0˛ C �0, where �0 2 ƒCmax , and let
c0 2 ZC be the coefficient of ˇ in �0. The product

A˛�0A�0˛ D
.c0/2A˛ˇAˇ˛hˇ; ˇi

h�0; �0i
2 f1; 2; 3g:

Geometry & Topology, Volume 23 (2019)



Topology of automorphism groups of parabolic geometries 165

(Although our root system is not necessarily reduced, the value 4 could only occur
for �0 D 2˛ or ˛ D 2�0, neither of which is the case.) First suppose the Dynkin
diagram has no double or triple edges, so the root system of g is Ar , Dr , E6 , E7
or E8 . Then all roots of ˆC have the same length and A˛ˇAˇ˛ D 1. In this case,
A˛�0A�0˛ D .c

0/2 , so c0 D 1 and A˛�0 D�1D A�0˛ . The ˛–string of �0 comprises
�0 and �0C ˛ . Hence m0 D 1 and �0 D �0C ˛ . The �0–string of ˛ comprises ˛
and �0. Now ��0.�

0/D ˛ , so the Weyl reflection r�0.pk/ is an admissible perturbation
resulting in .qk/ with ˛ 2 ER.qk/.

Under the assumption that g is not of type G2 , there are no triple bonds in the Dynkin
diagram of g, so it remains to consider the root systems with double bonds: Br , BCr ,
Cr and F4 . Let � with A˛� > 0 as above be of minimal degree in ER.pk/: Write
�Dm˛C�, where � — not necessarily a root — is a positive integral combination of
elements of ƒ, and let c 2 ZC be the coefficient of ˇ in �. Because ��A˛�˛ is a
positive root,

(6) 0 < A˛� D 2mC cA˛ˇ �m:

Write ˆD f1; : : : ; rg, numbered from left to right in the Dynkin diagram, where we
follow the ordering of [7]. We have ˛ D 1 or r .

Type Br or BCr For Br , the set ˆCmax comprises, for i D 2; : : : ; r ,

�1 D 1C � � �C r ; �i D �1C i C � � �C r :

If ˛ is the short root, r , then A˛ˇ D �2. The possibility m D 1 is incompatible
with (6). If m D 2, then the same inequality implies c D 1, so � D �r . If r > 2,
then �1.�/ has lower degree, so a Weyl reflection r1 is an admissible perturbation
with the desired effect. Otherwise, r D 2 and � D ˇC 2˛ . In this case, as � is an
element of ER.pk/ of minimal degree, ER.pk/D f�g. There is a rank-one subvariety
V��X left invariant by .pk/ and on which it restricts to .a0

k
nk/ with .nk/ unbounded.

Proposition 4.1 leads to a contradiction.

If ˛ is the long root 1 , then m D 1 and A˛ˇ D �1, so (6) implies c D 1. Then
� D �1 or r > 2 . In the first case, � D 2 C � � � C r 2 ƒ

C is a short root with
A�˛ D�2. Proposition 5.6 permits vertical sliding along ��, resulting in .qk/ with
˛ 2 ER.qk/, or along �, resulting in .qk/ with ˛C 2� 2 ER.qk/. In the latter case,
the Weyl reflection ��.˛C2�/D ˛ , so r� leads to the desired conclusion. Otherwise,
� D �i for 2 < i � r ; in this case, Weyl reflection in i 2 ƒ results in .qk/ with a
minimal element of ER.qk/ of lower degree.
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In BCr , the set ˆCmax comprises f�i W 1 � i � rg from above, together with 2�1 . If
�D 2�1 , then ER.pk/D f�g; in this case, restricting to the rank-one subvariety V�
yields a contradiction to Proposition 4.1.

Type Cr The set ˆCmax comprises, for i D 1; : : : ; r � 1,

�r D 1C � � �C r ; �i D �r C i C � � �C r�1:

If ˛ equals the long root, r , then A˛ˇ D �1 and mD 1. The inequality (6) gives
cD 1 and �D �r . If r > 2, then A1�D 1, and �1.�/ is a root of lower degree. The
remaining possibility is r D 2 with ER.pk/D f˛Cˇ; ˛C 2ˇg or simply f˛Cˇg. In
the first case, the Weyl reflection rˇ results in .qk/ with ˛ 2 ER.qk/. In the second
case, we again apply Proposition 4.1.

When ˛ equals the short root 1 , we first consider � D �i for i ¤ 1. The Weyl
reflection �i .�/ has lower degree. If �D �1 , then ER.pk/D f�g, so Proposition 4.1
completes the proof.

Type F4 The roots in ˆCmax , in terms of the basis fig, are [7, Appendix C]

.1; 1; 1; 1/; .1; 1; 2; 1/; .1; 1; 2; 2/; .1; 2; 2; 1/; .1; 2; 2; 2/;

.1; 2; 3; 1/; .1; 2; 3; 2/; .1; 2; 4; 2/; .1; 3; 4; 2/; .2; 3; 4; 2/:

Recall that ER.pk/ contains �0Dm0˛C�0 with �0 a root in ƒCmax . The roots of ƒCmax

correspond to those of C3 when ˛ equals the long root 1 and B3 when ˛ equals the
short root 4 . In the first case the possibilities are

�0 2ƒ0 D f.1; 1; 1; 1/; .1; 1; 2; 1/; .1; 1; 2; 2/g:

The maximum degree in ƒ0 is 6. As all other roots of ˆCmax have degree at least 6, we
may assume � 2 ER.pk/ of minimal degree belongs to ƒ0. If

ER.pk/D f1C 2C 23C 24g;

then we can invoke Proposition 4.1. Otherwise, a Weyl reflection in 4 or 3 reduces
the degree of � and yields a new holonomy sequence .qk/ with an element of lower
degree in ER.qk/.

In the second case, ƒ0 contains the roots listed above, together with

.1; 2; 2; 1/; .1; 2; 2; 2/:
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Now the maximal degree in ƒ0 is 7, and all other roots of ˆCmax have degree at least 7,
so we may again assume � 2ƒ0. A Weyl reflection in 1 or 2 will reduce the degree
of any � 2ƒ0, giving the desired conclusion in this case.

6.4 Proof of Proposition 5.7 for G2

Assume g is of type G2 , and write ˆD f˛; ˇg with j˛j � jˇj. Then

ˆCmax D f˛Cˇ; 2˛Cˇ; 3˛Cˇ; 3˛C 2ˇg:

Assume first that ƒD f˛g, so A˛ˇ D�3. Given � 2 ER.pk/ of minimal degree, the
goal is to find an admissible perturbation .qk/ with ˇ 2 ER.qk/. As in the previous
section (but with the roles of ˛ and ˇ switched), we can assume that Aˇ�>0. The two
possibilities for � are thus 3˛C2ˇ or ˛Cˇ . In the first case, � is the only element of
ER.pk/, so we can conclude using Proposition 4.1 as in the cases of C2 and B2 . In the
second case, we apply Proposition 5.6. We can assume, after passing to a subsequence,
that ˛.Zk/ is bounded either below or above. If it is bounded below, then a vertical
sliding on .pk/ yields .qk/ with ˇ 2 ER.qk/, as desired. If ˛.Zk/ is bounded above,
then vertical slidings give 3˛C ˇ in ER.qk/. Then the Weyl reflection r˛ on .qk/
gives .sk/ with ˇ 2 ER.sk/.

Now consider ƒD fˇg, so Aˇ˛ D�1. The condition A˛� > 0 leaves the possibilities
2˛ C ˇ or 3˛ C ˇ for �. Unfortunately, the tools used above don’t help in either
of these cases. The solution is to slide along �˛ , although it does not satisfy the
hypotheses of Proposition 5.5.

Let SŠZ.S/S0 be the reductive complement in a Levi decomposition of Pˇ , where S0
is simple of rank one. The group S admits a KAK decomposition, where AD exp.a/
as defined above, and K is a maximal compact subgroup of S0 . Write NC

ˇ
for the

unipotent radical of Pˇ . The decomposition of the corresponding Lie algebra nC
ˇ

into irreducible subspaces under Ad.S/ is E1˚E2˚E3 , where E1 D g˛˚ g˛Cˇ ,
E2 D g2˛Cˇ and E3 D g3˛Cˇ ˚ g3˛C2ˇ . This decomposition can be seen from the
fact that s is contained in the sum of root spaces g�ˇ ˚ g0˚ gˇ .

Recall that pk D aknk with Y �
k
� 0 if � …ER.pk/. Let �k! 0 in g�˛ and xk D e�k ,

and set
qk D e

�Ad.ak/�kpke
�k D akx

�1
k nkxk :

Just as in the proof of Proposition 5.5, Ad.ak/�k! 0 and .qk/ is a transverse pertur-
bation of .pk/; it is in particular a sequence in P, although it may not be in Hˇ . More
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precisely, x�1
k
nkxk 2N

C, which can be deduced from the formula

Ad.x�1k /Yk D YkC

mX
jD1

.�1/j

j Š
.ad �k/

j .Yk/

with Yk D lnnk . Using Lemma 6.2, write qk D akukn00k with akuk 2 S and n00
k
2NC

ˇ
.

Proposition 5.3 gives that ��˛ 2 ER.n00
k
/. Performing this transverse sliding twice if

necessary, depending on �, we arrive at ˛Cˇ 2 ER.n00
k
/.

Next, let l 0
k
a0
k
lk be the KAK decomposition of akuk in S. Finally, set

q0k D a
0
kn
0
k; where n0k D l

�1
k n00klk :

Note that a0
k
2 A and n0

k
2NC

ˇ
, so q0

k
2Hˇ . Clearly .q0

k
/ is a vertical perturbation

of .qk/, so it is an admissible perturbation of .pk/. The conjugation by lk on NC
ˇ

preserves the subspace E1 D g˛˚ g˛Cˇ , so ER.q0
k
/ contains ˛ or ˛Cˇ . If it only

contains ˛Cˇ , then we perform a Weyl reflection rˇ to finally obtain an admissible
perturbation .q00

k
/ of .pk/ with ˛ 2 ER.q00

k
/.
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