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Operads of genus zero curves and the
Grothendieck–Teichmüller group
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We show that the group of homotopy automorphisms of the profinite completion of the
genus zero surface operad is isomorphic to the (profinite) Grothendieck–Teichmüller
group. Using a result of Drummond-Cole, we deduce that the Grothendieck–Teich-
müller group acts nontrivially on M0;�C1 , the operad of stable curves of genus zero.
As a second application, we give an alternative proof that the framed little 2–disks
operad is formal.
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1 Introduction

The moduli space of genus g curves with n marked points, Mg;n , is defined over Q

and as such its geometric fundamental group

�
geom
1 .Mg;n/ WD �

et
1 .Q�Q Mg;n/

has an action of the absolute Galois group Gal.Q=Q/. In [16], Grothendieck proposed
to study Gal.Q=Q/ via its action on the geometric fundamental groups of all the
stacks Mg;n and the natural maps relating these for various g and n. This collection
he called the “Teichmüller tower”.

A motivation for this idea was a theorem of Belyi’s (see [3]), which implies that the
action of Gal.Q=Q/ on the geometric fundamental group �geom

1 .M0;4/Š yF2 is faithful.
It follows that the absolute Galois group acts faithfully on the whole Teichmüller tower
and it is an open question whether there are other automorphisms. An appealing
aspect of this program is that the Teichmüller tower is a purely topological object
since the geometric fundamental group of Mg;n is also the profinite completion of
the mapping class group �g;n of a genus g surface with n marked points. In this way,
Grothendieck’s proposal creates a remarkable and unexpected bridge between number
theory and low-dimensional topology.
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At the genus zero level, Ihara showed that the image of the action of Gal.Q=Q/
on the geometric fundamental group of M0;4 lies in an explicitly defined profinite
group bGT , constructed by Drinfeld and called the Grothendieck–Teichmüller group.
It is a longstanding problem to determine whether this injection Gal.Q=Q/!bGT
is an isomorphism. Given this, and granting the hypothetical relation between the
absolute Galois group and the Teichmüller tower, one may also wonder whether there
is a relation between bGT and this tower.

In this paper, we show that bGT is the group of homotopy automorphisms of the
genus zero Teichmüller tower. We do so for an operadic definition of the genus zero
Teichmüller tower, which encodes the natural relations between curves, as observed
by Grothendieck. To define the genus zero Teichmüller tower, we replace marked
points by boundary components. More precisely, we replace the group �0;n by �n0 , the
mapping class group of a genus zero Riemann surface with n boundary components.
This is not a drastic change since there is a short exact sequence

1! Zn! �n0 ! �0;n! 1

obtained by collapsing boundary components to points. The advantage, however, is
that the collection of spaces fB�nC10 gn�0 supports a much richer algebraic structure
because of this small change. Indeed, two Riemann surfaces with boundary can be glued
together along one of their boundary components. This gives us composition maps

B�nC10 �B�mC10 ! B�nCm0 :

If we replace the group �nC10 by a certain homotopy-equivalent groupoid S.n/, we
obtain the structure of an operad on the collection of spaces fBS.n/g. This means
that the composition maps satisfy associativity, †–equivariance and unital conditions.
This object is denoted by M and called the genus zero surface operad (we refer the
reader to Definition 6.5 for a more precise definition). It is a suboperad of the operad
constructed by Tillmann [29, Definition 2.3] and it is equivalent to the classical framed
little 2–disks operad (Proposition 6.8). Our first main theorem (Theorem 8.4) can then
be stated as follows:

Theorem The group bGT is isomorphic to the group of homotopy automorphisms of
the profinite completion of the genus zero surface operad.

Besides the gluing along boundary components, there are also natural maps �nC10 !�n0
for n � 0, corresponding to filling in boundary components (ie extending diffeo-
morphisms to the missing disks by the identity). We prove in Section 11 a variant
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of the above theorem, in which we incorporate these operations to the genus zero
surface operad. This does not affect the conclusion and the group of automorphisms
remains bGT.

The theorem implies that there is a faithful action of Gal.Q=Q/ on the profinite
completion of the genus zero surface operad. If we look at this result aritywise, this is
not particularly surprising as the group y�n0 has an obvious action of bGT that is faithful
when n is at least 3. The difficulty in this theorem is to show that this action of bGT is
compatible with the operad structure and accounts for all the operad automorphisms. A
corollary of this result is a new proof of the formality of the operad M, or, equivalently,
the operad of framed little disks (see Section 9).

The compatibility of the bGT action with the operad structure is somewhat related to a
result of Hatcher, Lochak and Schneps [18] that a certain subgroup of bGT acts on the
collection of the profinite completion of the pure mapping class groups �mg;n of a genus g
Riemann surface with n punctures and m boundary components. They show that this
action is compatible with certain geometric operations relating these groups: it preserves
conjugacy classes of Dehn twists along closed embedded curves and it is compatible
with the operation of extending a diffeomorphism on a subsurface by the identity.

When dealing with profinite completions, an important observation is that the profinite
completion of an operad in spaces is no longer an operad, but rather an operad “up to
homotopy”. This technical detail requires the use of 1–operads and is the topic of
Sections 4 and 5. Another key step in the proof is to replace the genus zero surface
operad by a homotopy-equivalent one: the parenthesized ribbon braid operad. This
operad has a very combinatorial description that makes computing automorphisms
more practical.

Returning to M0;n , the gluing of curves along marked points creates a nodal singularity
and so the collection fM0;ng does not form an operad. This can be fixed if we allow
curves with singularities, ie if we replace the schemes M0;n by their compactifica-
tions M0;n , the moduli spaces of stable genus zero curves with n marked points. Indeed,
the collection of spaces fM0;nC1g has the structure of an operad; the composition maps

M0;nC1 �M0;mC1!M0;nCm

are obtained by gluing curves (possibly with nodal singularities) along marked points.

The genus zero surface operad M maps to the operad fM0;�C1g. By a theorem
of Drummond-Cole, the latter can be seen as an operadic quotient of the former by
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homotopically killing the circle in arity 1. Our second main theorem (Theorem 10.3)
is the following:

Theorem The action of bGT on the profinite completion of the genus zero surface
operad extends to an action of bGT on the profinite completion of M0;�C1 . Moreover,
this action is nontrivial.

We point out that the complex analytic spaces underlying the schemes M0;n are simply
connected, and so the geometric fundamental groups of these schemes are trivial. This
deviates from most of the literature, where bGT actions are constructed on schemes
whose associated complex analytic spaces are K.�; 1/’s.

Finally, there is also a standard action of the absolute Galois group of Q on the profinite
completion of the operad M0;�C1 , coming from the fact that this operad can be obtained
as the geometric étale homotopy type of an operad in Q–schemes. It seems plausible
that the bGT action that we construct coincides with the action of the absolute Galois
group of Q restricted along the injection Gal.Q=Q/!bGT.
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2 Homotopical recollections

This background section serves as a brief overview of the homotopical constructions
that we use in the paper. Throughout we use the language of Quillen model categories,
and take [19] as our standard reference. We also make a mild but essential use of the
vantage point of 1–categories (via relative categories, recalled below). Throughout
we use the term space to mean simplicial set.

2.1 Relative categories and derived mapping spaces

A relative category is a pair .C ;W / where C is a category and W is a wide subcategory
of C whose arrows we will call weak equivalences in C. A relative functor

F W .C ;W /! .D;W 0/
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is a functor F W C !D such that F.W /�W 0. The homotopy category of C, denoted
by HoC, is the category obtained from C by formally inverting the maps in W .

The homotopy category of C does not capture all of the higher-order homotopical
information contained in the relative category. As a homotopical enhancement for
HoC, Dwyer and Kan [10] constructed a simplicial category L.C ;W /, together with a
natural embedding C ! L.C ;W /, with the property that the category of components
of L.C ;W / (ie the category obtained by applying �0 to the morphism spaces of
L.C ;W /) agrees with HoC.

The simplicial category L.C ;W / has the same objects as C and for any two objects
X and Y in C a space of maps RMapC .X; Y /. We will write RMap.X; Y / if C is
understood. One of the important features of L.C ;W / is that its morphism spaces are
homotopically meaningful; that is, for any Y in C and weak equivalence X ! X 0,
the induced maps

RMap.X 0; Y /!RMap.X; Y /

and
RMap.Y;X/!RMap.Y;X 0/

are weak equivalences of spaces. Calculating RMap for an arbitrary relative category is
often not a feasible task. The situation simplifies if the relative category comes equipped
with extra structure. If C has the extra structure of a simplicial model category, then
we have the following:

Theorem 2.1 [11, Corollary 4.7] Let C be a simplicial model category, and let
X and Y be objects in C such that X is cofibrant and Y is fibrant. Denote by
MapC .X; Y / the space of maps in C coming from the simplicial structure. Then
RMapC .X; Y / is related to MapC .X; Y / by a natural zigzag of weak equivalences.

2.2 Adjunctions

A simplicial Quillen pair .L;R/ between simplicial model categories C and D gives
rise to a homotopy adjunction

LLW L.C ;W /� L.D;W 0/ WRR

of simplicially enriched categories in the sense that there is a weak equivalence of
spaces

RMap.LL.X/; Y /'RMap.X;RR.Y //;
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natural in X 2 C and Y 2D, where L and R denote, respectively, the left and right
derived functor constructions. That is to say, given a cofibrant replacement Xc ��!X

of X and a fibrant replacement Y ��! Yf , we obtain a weak equivalence

MapD.L.Xc/; Yf /'MapC .Xc ; R.Yf //

of nonderived mapping spaces.

2.3 Spaces and groupoids

We write S for the category of simplicial sets with its usual Kan–Quillen simplicial
model structure. We write G for the category of groupoids with a model structure in
which weak equivalences are equivalences of categories, cofibrations are morphisms
that are injective on objects, and fibrations are isofibrations. Isofibrations are those
functors which have the right-lifting property against the map Œ0�! E, where Œ0�
denotes the trivial category with a single object 0 and E denotes the groupoid with
two objects 0 and 1 and exactly two nonidentity morphisms 0! 1 and 1! 0. In
particular, every object in G is both fibrant and cofibrant. For details, see [1, Section 5].

The relationship between S and G is classical: the classifying space functor

BW G ! S

has a left adjoint � which assigns to a space X its fundamental groupoid �X. The
model category structure on G is simplicial with mapping space given by

Map.C;D/ WDMap.BC;BD/

for every pair of groupoids C and D. The pair .�; B/ then forms a simplicial Quillen
pair. The classifying space functor preserves and reflects all weak equivalences and
fibrations and is homotopically fully faithful in the sense that the natural map

RMap.C;D/!RMap.BC;BD/

is a weak equivalence for every pair of groupoids C and D.

2.4 Operads

A symmetric sequence in spaces is a sequence of spaces fP.n/gn�0 , in which each
space P.n/ is equipped with an action of the symmetric group †n . An operad in
spaces P is a symmetric sequence fP.n/gn�0 together with composition maps

ıi W P.n/�P.m/! P.nCm� 1/
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for i 2 f1; : : : ; mg which are compatible with the symmetric group actions and subject
to associativity and unit axioms. A map of operads is a map of symmetric sequences
which preserves the operadic structure. Substitution of the word space for the word
groupoid gives us the notion of an operad in groupoids.

We denote by Op.S / and Op.G / the category of operads in S and G, respectively.
These categories are equipped with simplicial model category structures in which weak
equivalences and fibrations are defined levelwise. More explicitly, a map of operads
f W P! Q is a weak equivalence (respectively, fibration) if f .n/W P.n/! Q.n/ is a
weak equivalence (respectively, fibration) for each nonnegative integer n. For more
details, consult [4, Theorem 3.1].

Both the classifying space functor B and the fundamental groupoid functor � preserve
products, and so induce an adjunction

� W Op.S /�Op.G / WB

by levelwise application. It follows from [5, Theorem 4.7] that this is a simplicial
Quillen adjunction. Moreover, B is homotopically fully faithful.

The functor which to a groupoid G associates its set of objects Ob.G/ is product-
preserving, and hence induces a functor Ob from the category of operads in groupoids
to the category of operads in sets.

An operad P is fibrant if each object P.n/ is fibrant. In practice, it is more difficult to
tell if an operad is cofibrant. However, for operads in groupoids we have the following
useful criterion:

Proposition 2.2 [20, Proposition 6.8] The cofibrations in Op.G / are morphisms
of operads in groupoids f W P! Q with the property that Ob.f / has the left lifting
property with respect to operad maps which are levelwise surjective. In particular, any
operad P in groupoids with the property that Ob.P/ is free as an operad in Set is
cofibrant in Op.G /.

3 Profinite completion

Given any small category C, the associated category of pro-objects in C (also called
the pro-category of C ), Pro.C /, is obtained by freely adding all cofiltered limits to C.
Formally, the opposite of Pro.C / is the full subcategory of the category of functors
from C to Set spanned by those which are filtered colimits of representables. If C
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has finite limits, then the opposite of Pro.C / is also equivalent to the category of finite
limit-preserving functors from C to Set.

Alternatively, Pro.C / is the category whose objects are pairs .I; X/ where I is a
cofiltered category and X D fXigi2I is a diagram I ! C. Morphisms are defined as

HomPro.C /.fXgi ; fY gj /D lim
j2J

colim
i2I

HomC .Xi ; Yj /:

Clearly, C embeds fully faithfully in Pro.C /.

Example 3.1 Let Fin be the category of finite sets. The category of profinite sets
bSet WD Pro.Fin/ is the associated pro-category. The category of profinite sets is
equivalent to the category of compact, totally disconnected Hausdorff spaces and
continuous maps. There is an adjunction�.�/W Set� cSet Wj�j;

where the right adjoint sends a diagram to its limit in Set. The left adjoint sends a
set X to the diagram R 7!X=R , where R runs over all equivalence relations on X
with finitely many equivalence classes. Another description of yX is as the finite
limit-preserving functor Fin! Set which sends a finite set F to Hom.X; F /.

Example 3.2 The category of profinite groups bGrp is the category of pro-objects
in the category of finite groups. This category is equivalent to the category of group
objects in bSet (see eg [22, page 237]). In other words, the category of profinite groups
is the category of topological groups whose underlying topological space is a totally
disconnected, compact Hausdorff space. There exists an adjunction�.�/W Grp�bGrp Wj�j;

where the right adjoint sends a profinite group to the underlying discrete group. The
left adjoint �.�/ is called profinite completion. It sends a group G to the inverse limit
of the diagram

N !G=N;

where N runs over normal subgroups of G with finite index and G=N is given the
discrete topology.

Definition 3.3 We say that a groupoid A is finite if it has finitely many morphisms
(and so also finitely many objects). The category of all finite groupoids will be denoted

Geometry & Topology, Volume 23 (2019)



Operads of genus zero curves and the Grothendieck–Teichmüller group 307

by f G. The associated pro-category is called the category of profinite groupoids. It
will be denoted by yG WD Pro.f G /.

Definition 3.4 Let A be a profinite groupoid. Let S be any finite set and G be any
finite group; then we define:

� H 0.A; S/ WD Hom yG .A; S/.

� Z1.A;G/ WD Hom yG .A;�==G/, where �==G denotes the groupoid with a
unique object whose group of automorphisms is the group G.

� B1.A;G/ WD Hom yG .A;G/, where G denotes the group G seen as a discrete
groupoid (ie with only identity morphisms).

� H 1.A;G/ WDZ1.A;G/=B1.A;G/, where the quotient is taken with respect to a
certain right action of the group B1.A;G/ on Z1.A;G/ (see [20, Definition 4.1]
for more details).

The following two results are proved in [20].

Theorem 3.5 The category yG admits a left proper, cocombinatorial model structure
in which a map A! B is a weak equivalence in yG if

(1) for all finite sets S, H 0.B; S/!H 0.A; S/ is an isomorphism, and

(2) for all finite groups G, H 1.B;G/!H 1.A;G/ is an isomorphism.

The cofibrations are the maps which are monomorphisms on objects.

As with groups, there exists an adjunction

(1) �.�/W G � yG Wj�j
in which the right adjoint sends a profinite groupoid, seen as diagram of groupoids, to
its limit in G. The left adjoint �.�/W G ! yG is called profinite completion.

Proposition 3.6 [20, Proposition 4.22] The profinite completion functor�.�/W G ! yG
is a left Quillen functor.

Remark 3.7 As a left adjoint, the profinite completion functor should not be expected
to preserve limits. However, it does preserve certain products. More precisely, suppose
A and B are two groupoids with finitely many objects. Then 1A�B is isomorphic to
yA� yB . This fact appears in [20, Proposition 4.23].
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Recall that S denotes the category of simplicial sets. We always consider this category
as a simplicial model category with the Kan–Quillen model structure. We denote the
underlying relative category by S .

The definition of a profinite space and the homotopy theory of such is more involved
than that of profinite groupoids. We begin by describing an 1–categorical incarnation
of the category of profinite spaces. A space is said to be � –finite if it has finitely many
components and finitely many nontrivial homotopy groups, each of which is finite.
The category S�–fin of � –finite spaces forms a relative subcategory of S . It has finite
homotopy limits since a homotopy pullback of � –finite spaces is � –finite. We can
thus form Pro.S�–fin/, which is an 1–category with all limits. The pro-category of an
1–category is defined similarly to the 1–categorical case but replacing Set with S
(see eg around [23, 7.1.6.1]). We view Pro.S�–fin/ as a homotopical enhancement of
Example 3.1 and call it the 1–category of profinite spaces.

A presentation of this 1–category as a model category is given by Quick [26]. Denote
the category of simplicial objects in profinite sets Fun.�op;bSet/ by yS . Quick equips
the category yS with a model structure in which the cofibrations are the monomorphisms
and the weak equivalences are those maps that induce isomorphisms on �0 , �1 and on
twisted cohomology with finite coefficients. This model structure is cocombinatorial. It
is proved in [2, Corollary 7.4.8] that its underlying1–category models the1–category
of profinite spaces.

The adjunction Set�bSet between sets and profinite sets induces an adjunction

(2) �.�/W S � yS Wj�j;
which Quick shows to be a Quillen adjunction in [26, Proposition 2.28].

The following definition is due to Serre:

Definition 3.8 A discrete group G is said to be good if for any finite abelian group M
equipped with a G action, the map G! yG induces an isomorphism

H i . yG;M/ Š�!H i .G;M/:

Proposition 3.9 Let X and Y be two connected spaces whose homotopy groups are
good. Then the map 1X �Y ! yX � yY is a weak equivalence of profinite spaces.

Proof The profinite completion of a finite product of groups is the product of the
profinite completions, and so the profinite completion of �i .X �Y / is isomorphic to

b�iX �b�iY :
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For a connected space Z whose homotopy groups are good, the profinite completion
of �iZ is isomorphic to �i yZ by [27, Theorem 3.14]. The hypothesis holds for X
and Y by assumption, and also for the product X �Y since a product of good groups
is a good group. We conclude that the map 1X �Y ! yX � yY is an isomorphism on
homotopy groups.

In order to finish this proof it suffices to prove that weak equivalences in yS are detected
on homotopy groups. This is claimed without proof in the last paragraph of the second
section of [27], and thus we give a quick proof here. In [2, Theorem 7.4.7], it is shown
that there is a Quillen equivalence

‰W LPro.S /� yS Wˆ;

where LPro.S / is a certain Bousfield localization of Isaksen’s model category on
Pro.S / (defined in [21]). Since weak equivalences in Pro.S / are detected on homotopy
groups, it follows that the same is true in yS.

Remark 3.10 The proposition also holds if X and Y have finitely many path com-
ponents. However, it does not hold when the set of components is infinite. As a
counterexample, let us take X and Y to be the discrete space N ; we claim that the
map

2N �N! yN � yN

is not an isomorphism. Indeed, let us consider the map f W N �N ! f0; 1g which
sends .x; y/ to 1 if x > y and 0 otherwise. Then this map extends to a map 2N �N

by the universal property of the profinite completion. However, it is an easy exercise
to check that, if P and Q are two equivalence relations on N that are such that the
quotients N=P and N=Q are finite, then there cannot exist a map g that makes the
triangle

N �N .N=P /� .N=Q/

f0; 1g

f
g

commute. In fact, one can even show that if there exists such a g , then P and Q must
both be the finest equivalence relation on N (ie the one for which the equivalence
classes are singletons).
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4 1–operads

The profinite completion of a product of spaces is not in general isomorphic to the
product of the profinite completions. However, in favorable cases, as in Proposition 3.9,
the comparison map is a weak equivalence. For this reason — and under the assumptions
of Proposition 3.9 — the profinite completion of an operad does not yield an operad
but rather an 1–operad. We explain this in detail below, after giving a meaning to the
term 1–operad which suits our purpose.

We use the dendroidal category � from [24]. Objects of � are finite rooted trees. Each
such tree T 2� generates a colored operad �.T / which has the set of edges of T for
colors and operations are generated by the vertices of T . A morphism in � from S

to T is defined as an operad map from �.S/ to �.T /. (For more details, see [24].)

Some objects in � are given special mention and notation: the tree with no vertices (ie
consisting of a single edge, the root) is denoted by �; the tree with a single vertex and
nC 1 edges is called the nth corolla and is denoted by Cn . For a tree T and vertex v
with jvj input edges, there is an inclusion Cjvj ,! T which selects the edges connected
to v ; this gives rise to a map XT ! XCjvj for X a contravariant functor on �. A
dendroidal object in C is a contravariant functor X from � to C. The category of
dendroidal objects is denoted by dC.

Definition 4.1 Let C be a model category. An 1–operad in C is a dendroidal
object X such that the map X�!� is a weak equivalence and, for every tree T , the
Segal map

XT !
Y
v2T

.XCjvj/f

induced by the inclusion of corollas in T , is a weak equivalence in C. Here, the product
runs over all vertices of T , jvj denotes the set of inputs at v , and the subscript f
denotes a fibrant replacement in C.

A couple of comments on the definition above: The first condition should be interpreted
as the requirement that the dendroidal object X has a single color. The role of the
fibrant replacements is to guarantee that the product is the homotopy product. In many
cases, like in the category of spaces or groupoids, every finite product is a homotopy
product hence such fibrant replacements are not needed.

Given a model category C, the category of dendroidal objects dC admits a model
category structure in which a map X ! Y is a weak equivalence if XT ! YT is a
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weak equivalence in C for every tree T . We say such a weak equivalence is given
levelwise.

Definition 4.2 The relative category of infinity operads Op1.C / is the full relative
subcategory of dC spanned by 1–operads (Definition 4.1) and the levelwise weak
equivalences between them.

By definition, given two 1–operads X and Y , the derived mapping space in Op1 is
simply the derived mapping space RMap.X; Y / computed in dC.

When C is the category of spaces or groupoids, an 1–operad will be a fibrant object
in the left Bousfield localization of dC at the Segal mapsa

v2T

�.�; Cjvj/!�.�; T /

for every tree T , and at the map ¿ ! �.�; �/. We denote this model structure
by LS .dC /. (See also around Proposition 5.5 in [7] and [6, Proposition 4.3] for the
monochromatic case.) If C is the category of profinite spaces, there are technical
challenges to performing a similar left Bousfield localization. This stems from the
fact that the model structure on profinite spaces is not cofibrantly generated but rather
fibrantly generated. The definition of Op1.C / above allows us to circumvent this
issue, while still being robust enough for our purposes.

4.1 The nerve of an operad

For a monochromatic operad P in C, one can associate a dendroidal object NP, called
the nerve of P, by declaring

.NP/T WD
Y
v2T

P.jvj/

for every tree T . Note that the value of NP at � is a point. This is an 1–operad if P

is levelwise fibrant or if in C finite products and finite homotopy products agree.

The following theorem is essentially due to Cisinski and Moerdijk, slightly adjusted to
our context.

Theorem 4.3 (Cisinski and Moerdijk) Let C denote the category of spaces or
groupoids. The nerve functor N is a right Quillen equivalence from the model structure
on monochromatic operads in C to LS .dC /, the localization of the projective model
structure on dendroidal objects in C where the fibrant objects are the 1–operads.
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The following technical step will be used in the proof of Theorem 4.3:

Lemma 4.4 Let C denote the category of spaces or the category of groupoids, and
let Z WD�.�; Cn/�K be an object of dC with K a space (or a groupoid) and Cn a
corolla. Let F.K/ denote the free operad on the (nonsymmetric) sequence with K in
degree n and empty otherwise. Then the map

Z!NF.K/

is a weak equivalence in LS .dC /.

Proof We prove this for C the category of spaces. Since the nerve functor BW G!S

commutes with N and F , the case of groupoids follows.

For a dendroidal space Z , the reduction Z� is the dendroidal space given by the
pushout

(3)

�.�; �/�Z� Z

�.�; �/ Z�

where the top horizontal map is the adjoint to the identity. The map in the statement of
the lemma factors as

(4) Z!Z�!NF.K/:

According to [6, Proposition 4.4], the right-hand map is a weak equivalence in a
Segal-type model structure obtained from dC� , the category of dendroidal objects X
for which X� is the terminal object of C. The inclusion of that model structure
into LS .dC / preserves all weak equivalences, hence the right-hand map is also a weak
equivalence in LS .dC /.

It remains to show that the left-hand map of (4) is a weak equivalence. The top
horizontal map of the square (3) is a Reedy cofibration of dendroidal spaces, therefore
the square is a homotopy pushout. Moreover, the left-hand map in that square is a weak
equivalence in LS .dC /, so the result follows.

Proof of Theorem 4.3 We take C to be the category of spaces. The case of groupoids
is similar. The nerve functor N has a left adjoint � . The value of � on a representable
�.�; T / is the free operad on a sequence fX.n/g with X.n/ the set of vertices of T
with n inputs. This prescription uniquely defines � . The pair .�; N / is Quillen since N
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preserves fibrations and weak equivalences. Moreover, N detects weak equivalences, ie
N is homotopy conservative. Therefore, to show that the pair is a Quillen equivalence,
it is enough to show that the derived unit map

X !NL�.X/

is a weak equivalence for every dendroidal object X.

Lemma 4.4 shows that the derived unit map is a weak equivalence for dendroidal
spaces of the form �.�; C / �K for C a corolla and K a space. Using the Segal
condition, we can deduce that this is also the case for dendroidal spaces of the form
�.�; T /�K for T an arbitrary tree. Given an arbitrary dendroidal space X, take a
resolution Z�! X by representables. That is, each Zn is given by a coproduct of
dendroidal spaces of the form �.�; T /�K , for T a tree, and the natural map

hocolim
Œn�2�op

Zn!X

is a degreewise weak equivalence. The unit map X !NL�X factors as

hocolim
Œn�2�op

Zn! hocolim
Œn�2�op

NL�.Zn/!NL�
�
hocolim
Œn�2�op

Zn
�
:

We have already established that the first map is a weak equivalence. To see that the
second map is a weak equivalence, we use the fact that taking homotopy colimits
over �op commutes with finite homotopy products and so the Segal condition is
preserved. Hence, it is enough to show that the second map is a weak equivalence once
we evaluate on corollas. This verification amounts to checking that the underlying map
of sequences

hocolim
Œn�2�op

L�.Zn/! L�
�
hocolim
Œn�2�op

Zn
�

is a weak equivalence, which holds since L� preserves homotopy colimits.

5 Profinite completion of operads

The adjunctions (1) and (2) relating groupoids and profinite groupoids and the space
version, give rise to simplicial Quillen adjunctions

dS � d yS and dG � d yG ;

where all the categories are equipped with model structures where weak equivalences
are given levelwise.
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Given an 1–operad X in spaces or groupoids, write yX for the dendroidal object
obtained by applying profinite completion levelwise. In general, yX is not an1–operad.
If it is, then we have a weak equivalence

RMap. yX; Y /'RMap.X; jYf j/;

natural in Y 2 Op1. yS /, where jYf j is the 1–operad in spaces whose value at a
tree T is j.YT /f j, and f is a fibrant replacement functor in yS. In these circumstances,
we call yX the profinite completion of the 1–operad X.

In general, it is reasonable to define the profinite completion of X as the 1–operad
characterized by the formula above. In other words, it is the 1–operad in profinite
spaces which corepresents the functor

Y 7!RMap.X; jYf j/

for Y 2 Op1. yS /. At any rate, in the cases that we are interested in, the levelwise
profinite completion always produces an 1–operad, using the following observation:

Proposition 5.1 Let P be an operad in spaces such that each P.n/ has finitely many
components and its homotopy groups are good. Then .NP/^ is an 1–operad in
profinite spaces.

Proof This is an immediate consequence of Proposition 3.9.

Remark 5.2 For operads in groupoids, the situation is nicer. Indeed, if P is an operad
in groupoids in which each groupoid P.n/ has finitely many objects, then .NP/^ is
a strict operad in profinite groupoids by Remark 3.7. This applies for instance to the
operads PaB and PaRB defined in the next section.

6 Braids and ribbon braids

The braid group on n strands, hereafter denoted by B.n/, is the fundamental group of
the space of unordered configurations of n points in the complex plane. This group
has a preferred presentation with generators fˇig1�i�n�1 which are subject to the
so-called Artin relations

� ˇi ǰ D ǰˇi if ji � j j � 2,
� ˇiˇiC1ˇi D ˇiC1ˇiˇiC1 .

The braid and symmetric groups fit in a short exact sequence of groups

1! PB.n/! B.n/!†n! 1;
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where PB.n/ is the pure braid group on n strands. The pure braid group is also the
fundamental group of the space of ordered configurations of points in the plane. In terms
of generators, B.n/!†n sends the elementary braid ˇi to the permutation .i; i C 1/.

In this paper, we are also concerned with the ribbon versions of these two groups.
The ribbon braid group, denoted by RB.n/ is the fundamental group of the space of
unordered configurations of n points in the plane, where each point is equipped with a
choice of a label in S1 . There is an obvious map RB.n/! B.n/ that corresponds, at
the space level, to forgetting the data of the label. This map is split surjective (a section
exists at the space level by giving each point in the configuration a fixed label). There
is a presentation of the ribbon braid group RB.n/ that is compatible with the inclusion
of B.n/. It has generators ˇi with i in f1; : : : ; n� 1g and �j with j in f1; : : : ; ng
subject to the relations

� ˇi�j D �jˇi for j … fi; i C 1g,

� ˇi�iC1 D �iˇi ,

� �i�j D �j�i if i ¤ j ,

as well as the Artin relations. Another way to think of this group is to let B.n/ act on
the left on Zn by the composite

B.n/!†n! GLn.Z/;

where the second map is the map that sends a permutation to its permutation matrix.
The reader can easily check from the above presentation that there is an isomorphism
RB.n/Š B.n/ËZn .

There is also a map RB.n/!†n that is given in terms of generators by sending ˇi to
.i; iC1/ and �j to the identity. This map is surjective and its kernel is the pure ribbon
braid group on n strands, denoted by PRB.n/. This group is also the fundamental
group of the space of ordered configurations of n points in the plane each equipped
with a choice of a label in S1 . This space splits as a product of the space of ordered
configurations of n points in the plane with the space .S1/n . It follows that PRB.n/
splits as PB.n/�Zn .

6.1 Colored (ribbon) braid operad

In this section, we describe two operads in groupoids, CoB and CoRB, which are
central to the paper. They are models for the operad of little 2–disks and its framed
version (in the variants without 0–arity operations).
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We first recall the definition of the nonunital associative operad below.

Definition 6.1 The operad † is an operad in sets whose arity 0 term is the empty
set and whose arity n term (for n positive) is the symmetric group †n . Operadic
composition ık W †m �†n! †mCn�1 consists of placing � 2 †n in position k of
� 2†m and reindexing. For example, .132/ ı2 .12/D .1423/.

Definition 6.2 The operad of colored braids CoBD fCoB.n/gn�0 consists of a col-
lection of groupoids CoB.n/ defined as follows:

� CoB.0/ is the empty groupoid.

� For n > 0, the set of objects Ob.CoB.n// is †n .

� A morphism in CoB.n/ from p to q is a braid ˛ 2 B.n/ whose associated
permutation is q�1p .

The categorical composition in CoB.n/,

HomCoB.n/.p; q/�HomCoB.n/.q; t/! HomCoB.n/.p; t/;

is given by the concatenation operation of braids, inherited from the braid group. We
write a � b for the categorical composition of a and b .

The operadic composition operation

ık W CoB.m/�CoB.n/! CoB.mCn� 1/

is defined as follows: On objects, it is given by operadic composition of permutations,
as in the associative operad. On morphisms, it corresponds to replacing a chosen strand
by a braid; given morphisms ˛ in CoB.m/ and ˇ in CoB.n/, the braid ˛ ık ˇ is
obtained by replacing the kth strand in ˛ by the braid ˇ as in the picture below:

1 2

2 1

2 1

3 2 12 1

2 3 1

ı2 D
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Remark 6.3 Any morphism in CoB.n/, ie a braid, has an expression as a categorical
composition of elementary braids ˇi . Moreover, each elementary braid can be expressed
as an operadic composition of an identity morphism (a trivial braid) and a morphism ˇ

in CoB.2/, the nontrivial braid on two strands pictured below:

1 3 2 4 5

 1 2 3 4 5

 2 1 

1 2 1 2 3 4 

1 2 3 4 

ı2 D

Therefore, any morphism in CoB.n/ can be expressed as a categorical composition of
morphisms obtained as operadic compositions of identities and ˇ .

The operad CoB has a ribbon version CoRB, which we now define.

Definition 6.4 [31, Example 1.2.9] The groupoid of colored ribbon braids on n

strands CoRB.n/ is the groupoid defined as follows:

� CoRB.0/ is the empty groupoid.

� For n > 0, the set of objects Ob.CoRB.n// is †n .

� A morphism in CoRB.n/ from p to q is a pair .
; Œx1; : : : ; xn�/ where 
 2
HomCoB.n/.p; q/ and xi 2Z. We think of such a morphism as a braid equipped
with the additional data of a twisting number xi for each strand i .

Composition of morphisms in CoRB.n/ is given by composing the morphisms in
CoB.n/ and adding the twisting numbers. The identity element is the trivial braid with
no twists on each strand.

The sequence of groupoids CoRBD fCoRB.n/gn�0 forms an operad. On objects, it
is the associative operad, as for CoB. To define the operadic composition on mor-
phisms, we first introduce some notation: for a nonnegative integer m, we write Rm
for the element .ˇ1 : : :ˇm�1/m in PB.m/. Given morphisms .
; Œx1; : : : ; xn�/ and
.˛; Œy1; : : : ; ym�/ in CoRB.n/ and CoRB.m/, respectively, their operadic composition
(at entry k ) is the morphism

.!; Œx1; : : : ; xk�1; xkCy1; : : : ; xkCym; : : : ; ym�/
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in CoRB.nCm� 1/ with

! WD 
 ık ..Rm/
xk �˛/;

where .Rm/xk is the xk –fold categorical composition of Rm considered as an auto-
morphism in CoB.m/ and ık is the operadic composition product in CoB. Since Rm
is an element of the center of PB.m/, the operation just defined is compatible with the
groupoid structure. The operadic identity is given by the trivial braid with one strand
and no twists.

Below is a picture of a special case of the operadic composition in CoRB, corresponding
to .id; Œ1�/ ı .id; Œ0; 0�/:

1 2

 1 2

 1 2

 1 2

 1

 1 

1
1 1

ı D

(When it is nonzero, we draw the twisting number of a strand in a gray box over that
strand.)

Another example of an operadic composition in CoRB is pictured below:

1 2

 1 2

 1 2

 1 2

 1 2 3

 1 2 3

1 3 -3 7 8-2 3

1
ı1 D

The operad CoRB is a model for the genus zero surface operad and, equivalently, the
framed little 2–disks operad, whose definitions we now recall.

Let F0;nC1 denote an oriented surface of genus zero and with nC 1 boundary com-
ponents. We choose one of these boundary components and call it marked and we
say the other n components are free. We also assume each boundary component @i
comes equipped with a collar, ie a neat embedding of Œ0; �/�S1 in a neighborhood
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of @i . The mapping class group �nC10 is the group of isotopy classes of orientation-
preserving diffeomorphisms of F0;nC1 which fix collars pointwise. By gluing the
boundary components of surfaces one obtains composition maps, but these are not
strictly associative nor unital. To fix the issue, we recall a construction of Tillmann
[29, Construction 2.2], and a later improvement by Wahl [32, Section 3.1], which
replaces the mapping class group �nC10 with an equivalent connected groupoid.

We begin by defining a groupoid EnC1 whose objects are surfaces with n free boundary
components having a particular decomposition into standard pairs of pants P and
standard disks D. By a standard pair of pants we mean a fixed pair of pants with
(variable) collars at each boundary component and an assigned ordering of the free
boundary components. A morphism in EnC1 is an isotopy class of diffeomorphisms
that preserves the boundary collars and their ordering. By gluing the marked boundary
component of a surface to the i th free boundary component of another surface, one
obtains composition maps ıi W EnC1 � EmC1! EnCm . These are associative, but still
not unital. Moreover, there are now too many objects in EnC1 , so Tillmann identifies
two such surfaces if one can be obtained from the other by replacing a subsurface of
the form P ı1 P by a subsurface of the form P ı2 P. To have a strict unit, Tillmann
then introduces a second identification by declaring two surfaces equal if one can be
obtained from the other by replacing a subsurface of the form P ı1D or P ı2D by a
circle. After making these two identifications, any object has a unique representative as
a surface having no subsurfaces of the form P ı2P, P ı1D or P ı2D. For n¤ 1, let
Sn denote the full subgroupoid of En spanned by these special surfaces. As explained
by Wahl, it is a consequence of the Alexander trick that there is a canonical way to,
given a morphism in En , produce a morphism in Sn such that the resulting maps

ıi W SnC1 �SmC1! EnC1! SnCm

are associative. Now we can define the surface operad.

Definition 6.5 [29, Definition 2.3; 32, Section 3.1] The surface groupoids SC.n/
are defined by:

� SC.0/ is the trivial groupoid, whose only object is the standard disk D.

� SC.1/ is a groupoid with one object S1 and with Z as morphisms (thought of
as the Dehn twists around that circle).

� For n� 2, SC.n/ is the groupoid Sn defined above. Namely, an object in SC.n/
is a surface having no subsurfaces of the form P ı2P, P ı1D or P ı2D, together
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with an ordering of the boundary components and a choice of collar around each.
Morphisms are isotopy classes of orientation-preserving diffeomorphisms that
fix the collars and their ordering.

The groupoids SC.n/ assemble into an operad. The operadic composition maps ıi
in SC are induced from E as explained above. When no arity 1 operations are involved,
this corresponds to the gluing of surfaces at the object-set level. Composition with arity 0
operations is essentially filling in a boundary component of a surface. Composition
with arity 1 operations maps is more subtle. When n > 1, the composition map

ıi W SC.n/�SC.1/! SC.n/

sends a surface to itself, but changes the diffeomorphism on the collar of the relevant
free boundary component by a Dehn twist. When nD 1, the composition corresponds
to addition of integers.

The space BSC.n/ is homotopy-equivalent to B�nC10 and we define the unital genus
zero surface operad MC to be the operad

MC.n/D BSC.n/' B�nC10 :

The nonunital variant of SC is defined as

S.n/D
�
∅ for nD 0;
SC.n/ for all n > 0;

and the genus zero surface operad M as

M.n/D BS.n/' B�nC10 :

Remark 6.6 There exists a canonical isomorphism between the groupoids S.n/ and
CoRB.n/ which extends to an isomorphism of operads. We alternatively could have
defined the genus zero surface operad M as BCoRB.

Definition 6.7 The framed little 2–disks operad FD is an operad given in positive
arity n by the space of all smooth, orientation-preserving embeddings of the disjoint
union of n disks into a single disk (see for example [13, page 20]). We define FD.0/

to be the empty space.

By remembering where the center of each disk goes and the value of the derivative at
each of those centers, the space FD.n/ is homotopy-equivalent to the space of ordered
configurations of n points in the disk each equipped with a label in S1 . This space is
itself homotopy-equivalent to BPRB.n/.
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Proposition 6.8 [31, Proposition 1.3.14] The classifying space of the operad CoRB

is weakly equivalent to the operad FD.

6.2 Parenthesized ribbons

The goal of this section is to give a cofibrant resolution of the operad CoRB, called the
parenthesized ribbon braid operad and denoted by PaRB.

The operad of objects of PaRB is the free operad generated by a single operation in
arity 2. We give a more concrete description below.

Definition 6.9 Let S be a finite set. We define the set of nonassociative monomials
of length n, MnS, inductively as

� M0S D∅,

� M1S D S, and

� MnS D p̀CqDnMpS �MqS.

Alternatively, MnS is the set of rooted, binary (ie each vertex has exactly two incoming
edges) planar trees with n leaves labeled by elements of S. A shorthand notation for
elements MnS is as parenthesized words in S. For example, for S D fa; b; c; dg, the
expression .a.db//.ba/ represents an element in M5S.

Definition 6.10 Let MDfM.n/g be the symmetric sequence where M.n/ is the subset
of Mnf1; : : : ; ng consisting of the monomials in f1; : : : ; ng where each element of
the set occurs exactly once. The symmetric group †n acts from the right on M.n/ by
permuting the elements of the set f1; : : : ; ng. The symmetric sequence M becomes an
operad with operadic composition given by replacing letters by monomials (or grafting
binary trees). For example, we have the composition

.1.34//.25/ ı4 .13/2D .1.3..46/5///.27/:

The operad M is called the magma operad.

There is an obvious operad map uW M!† which forgets the parenthesization.

Definition 6.11 The operad of parenthesized braids PaB is the operad in groupoids
defined as follows:

� The operad of objects is the magma operad, ie Ob.PaB/DM.
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� For each n � 0, the morphisms of the groupoid PaB.n/ are morphisms in
CoB.n/:

HomPaB.n/.p; q/D HomCoB.n/.u.p/; u.q//:

The collection of groupoids fPaB.n/gn�0 forms an operad. On objects, it has the
operad structure of M and on morphisms that of CoB.

There is also a ribbon version of PaB.

Definition 6.12 The operad of parenthesized ribbon braids PaRB is the operad in
groupoids defined as follows:

� The operad of objects is the magma operad, ie Ob.PaRB/DM.

� For each n � 0, the morphisms of the groupoid PaRB.n/ are morphisms in
CoRB.n/:

HomPaRB.n/.p; q/D HomCoRB.n/.u.p/; u.q//:

The collection of groupoids fPaRB.n/gn�0 forms an operad in groupoids. On objects,
it has the operad structure of M and on morphisms that of CoRB.

Recall that a map P! Q of operads in groupoids is a weak equivalence if, aritywise,
P.n/! Q.n/ is a weak equivalence of groupoids.

Lemma 6.13 The forgetful map PaRB! CoRB is a weak equivalence of operads in
groupoids. Therefore, PaRB is also a model for the genus zero surface operad.

Proof The map is surjective on object sets for each arity n, and it is bijective on
morphisms by construction.

Corollary 6.14 PaRB is a cofibrant replacement of CoRB.

Proof From Proposition 2.2 we know that an operad P in groupoids is cofibrant if
Ob.P/ is free. The magma operad M (Definition 6.10) is free on one operation of
arity 2, therefore the result follows.

7 Operad maps out of PaRB

Throughout this section, P is a fixed operad in groupoids. For � 2†m and x an object
or morphism in P.m/, we write �x for the action of � on x .

Geometry & Topology, Volume 23 (2019)



Operads of genus zero curves and the Grothendieck–Teichmüller group 323

Lemma 7.1 [12, Theorem 6.2.4] The set of operad maps from PaB to P is identified
with the set of triples .m; ˇ; ˛/ where m 2 ObP.2/, ˇ is a morphism in P.2/ from m

to �m, where � D .21/ is the nontrivial element in †2 , and ˛ is a morphism in P.3/

between m ı1m and m ı2m. These triples are subject to the pentagon and hexagon
relations spelled out below.

The hexagon relations state that the diagrams

(5)

m ı1m

.213/ �m ı1m m ı2m

.213/ �m ı2m .231/ �m ı1m

.231/ �m ı2m

mı1ˇ ˛

.213/˛ ˇı2m

.213/mı2ˇ .231/˛

and

(6)

m ı2m

.132/ �m ı2m m ı1m

.132/ �m ı1m .312/ �m ı2m

.312/ �m ı1m

mı2ˇ ˛�1

.132/˛�1 ˇı1m

.132/mı1ˇ .312/˛�1

commute in P.3/.

The pentagon relation states that the diagram

(7)

..m ı1m/ ı1m/

..m ı2m/ ı1m/ m ı .m;m/

..m ı1m/ ı2m/

..m ı2m/ ı2m/

idı1˛ ˛ı1id

˛ı2id

˛ı3id

idı2˛

commutes in P.4/.
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Proof This is proved in detail in [12, Theorem 6.2.4]. One implication is easy: a map
of operads from PaB to P determines such a triple .m; ˇ; ˛/, where m is the image
of the object .12/ 2 PaB.2/, and ˇ and ˛ (called the braiding and the associator,
respectively) are the images of the morphisms pictured in Figure 1. The reverse
implication involves a version of the coherence theorem of Mac Lane.

In preparation for the definition of the Grothendieck–Teichmüller group, we recall some
standard notations. Let Y be a profinite group and let ˛ and ˇ be elements of Y . Let
f be an element of yF2 , the profinite completion of the free group on two generators x
and y . Let � W F2!Y be a homomorphism defined by �.x/D˛ and �.y/Dˇ . Then,
we write f .˛; ˇ/ for the image of f under � . (By the universal property of profinite
completion, to specify a map from a group G to a profinite group Y is equivalent to
specifying a map from the profinite completion of G to Y .)

For 1� i < j � n, we follow common practice and denote by xij the element of the
pure braid group PB.n/ given by . ǰ�1 : : :ˇiC1/ˇ

2
j�1. ǰ�1 : : :ˇiC1/

�1 .

Definition 7.2 (Drinfeld) The Grothendieck–Teichmüller monoid bGT is the monoid
of endomorphisms � of yF2 of the form

�.x/D x�; �.y/D f �1y�f

for some .�; f / 2 yZ� yF2 satisfying the following equations:

(I) f .x; y/f .y; x/D 1.

(II) f .z; x/zmf .y; z/ymf .x; y/xm D 1, with z D .xy/�1 and mD 1
2
.�� 1/.

(III) f .x12; x23x24/f .x13x23; x34/D f .x23; x34/f .x12x13; x24x34/f .x12; x23/.

The first two equations hold in yF2 and the last equation holds in cPB.4/.
The pair .�; f / is uniquely determined by � . This follows from equation (III), which
guarantees that f belongs to the commutator subgroup of yF2 . The multiplication of
two such pairs .�; f / � .�; g/ is given by

.��; f .gx�g�1; y�/ �g/:

The Grothendieck–Teichmüller group bGT is the group of units of bGT .

The following proposition translates the definition bGT into operadic language:

Proposition 7.3 The monoid bGT is the monoid of endomorphisms of bPaB fixing the
objects.

Geometry & Topology, Volume 23 (2019)



Operads of genus zero curves and the Grothendieck–Teichmüller group 325

Proof (see [12, Propositions 11.1.3 and 11.3.4]) By Lemma 7.1, an endomorphism
of bPaB fixing the objects is uniquely specified by pair .ˇ; ˛/, where ˇ is a morphism
in bPaB.2/ from .12/ to .21/ and ˛ is a morphism in bPaB.3/ from .12/3 to 1.23/, ie
ˇ 2 yZ and ˛D .n; f /2 yZ�yF2 . The pair .ˇ; ˛/ is subject to the hexagon and pentagon
relations. The hexagon relations force n to be 0 (see the proof of Proposition 11.5).
Drinfeld shows in [8, Section 4] that equations (I) and (II) taken together are equivalent
to both hexagon relations, and that equation (III) is equivalent to the pentagon relation.

The goal of this section is to prove the following lemma. As in Definition 6.4, we
write � for categorical composition.

Lemma 7.4 The set of operad maps from PaRB to P is identified with the set of pairs
.g; �/ where g D .m; ˇ; ˛/ is an operad map from PaB to P and � is a morphism
in P.1/, subject to the relation that the image of .�; id/ under the map

ı1W MorP.1/�MorP.2/!MorP.2/

agrees with the categorical composition ˇ � �ˇ � .id ı .�; �//, where id ı .�; �/ is the
image of .id; �; �/ under the operadic composition map

MorP.2/�MorP.1/�MorP.1/!MorP.2/:

Before we go into the proof, let us fix some notation. The elements � , m, ˇ and ˛
will be the images in P of certain elements in PaRB, which we now describe. We will
use boldface notation � , m, ˇ and ˛ for these elements in PaRB, and set mD .12/
and � to be the morphism in PaRB.1/ of the form .id; Œ1�/ pictured in Figure 1 along
with the other elements.

1

 (1      2)      3            

   1    (2      3)              2            1      

  1            2      

Figure 1: ˛ (left), ˇ (center) and � (right)
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For a sequence of integers n1; : : : ; nk , we write

Œn1; : : : ; nk�

for the morphism in PaRB.k/ given by the pair .id; Œn1; : : : ; nk�/. (This is also the
image of .id;�n1 ; : : : ;�nk / under the operadic composition map

MorPaRB.k/�MorPaRB.1/� � � � �MorPaRB.1/!MorPaRB.k/;

where �m denotes the m–fold categorical composition of � .) The reader should note
that there is one such morphism for each object of PaRB.k/, however, we do not
include the object in the notation in order to keep it as light as possible.

Proof Starting with the map gW PaB! P, we want to lift it to a map f W PaRB! P

such that precomposition of f with the canonical map PaB! PaRB is g . We first
define f .k/W PaRB.k/! P.k/ for each k using g and � , and then use the relation in
the statement of the lemma to show that the definition is indeed a map of operads.

Firstly, it is enough to describe f .k/ on morphism sets; the definition extends to
object sets via the source-target maps. Recall that a morphism in PaRB.k/ is a
pair .
; Œn1; : : : ; nk�/, where 
 is a morphism in PaB.k/ and each ni is an in-
teger, and that the categorical composition in PaRB.k/ separates the braid con-
catenation and the addition of twists on each strand. Therefore, any morphism
.
; Œn1; : : : ; nk�/ in PaRB.k/ has a unique expression as a categorical composition of
the form .
; Œ0; : : : ; 0�/ � .id; Œn1; : : : ; nk�/, which we abbreviate as 
 � Œn1; : : : ; nk�.

Now we come to the definition of f . We declare f .�/D � ,

f .Œn1; : : : ; nk�/D g.id/ ı .�
n1 ; : : : ; �nk /

and
f .
 � Œn1; : : : ; nk�/D g.
/ �f .Œn1; : : : ; nk�/:

One easily checks that f .k/ is a map of groupoids for each k .

We now check that f is a map of operads. Let 
 � Œn1; : : : ; nk� and 
 0 � Œm1; : : : ; m`�
be elements in MorPaRB.k/ and MorPaRB.`/ respectively. We need to show that

(8) f .
 �Œn1; : : : ; nk�ıi 

0
�Œm1; : : : ; m`�/Df .
 �Œn1; : : : ; nk�/ıif .


0
�Œm1; : : : ; m`�/:

Writing 
 � Œn1; : : : ; nk�ıi 
 0 � Œm1; : : : ; m`� as a categorical composition of 
 ıi 
 0 and
Œn1; : : : ; nk� ıi Œm1; : : : ; m`�, we can express the left-hand side of (8) as

g.
 ıi 

0/ �f .Œn1; : : : ; nk� ıi Œm1; : : : ; m`�/:
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On the other hand, using that P is an operad, the right-hand side of (8) is equal to

.g.
/ ıi g.

0// � .f .Œn1; : : : ; nk�/ ıi f .Œm1; : : : ; m`�//:

Now, since g is a map of operads we know that g.
 ıi 
 0/D g.
/ıi g.
 0/. Therefore,
the equations (8) hold if and only if the equations

f .Œn1; : : : ; nk� ıi Œm1; : : : ; m`�/D f .Œn1; : : : ; nk�/ ıi f .Œm1; : : : ; m`�/

hold. At this point, we remind the reader that Œn1; : : : ; nk� is notation for an automor-
phism of some unspecified object in PaRB.k/; thus, the equation above is really a
collection of equations, one for each choice of objects that makes the source and target
of both sides coincide.

There are further reductions to be made. As a first step, by expressing Œn1; : : : ; nk�
as Œn1; : : : ; nk� � idk and Œm1; : : : ; m`� as id` � Œm1; : : : ; m`�, we split the problem into
two:

(9) f .idk ıi Œm1; : : : ; m`�/D f .idk/ ıi f .Œm1; : : : ; m`�/

and

(10) f .Œn1; : : : ; nk� ıi id`/D f .Œn1; : : : ; nk�/ ıi f .id`/;

where we use the notation idk or id` to denote the identity of an unspecified object in
arity k or `. By definition of f , the equation (9) is always satisfied.

In order to check equation (10), we do a further reduction. Using that

Œn1; : : : ; nk�D Œn1; 0; : : : ; 0� � Œ0; n2; 0; : : : ; 0� � � � Œ0; : : : ; 0; nk�

we may assume that, for a given i , nj is zero for all j ¤ i and ni D 1. Thus,
equation (10) holds if and only if the equation

f .Œ0; : : : ; 1; : : : ; 0� ıi id`/D f .Œ0; : : : ; 1; : : : ; 0�/ ıi f .id`/;

holds, where 1 is in the i th position.

To proceed, we look at a generalization of equation (9): for any morphism S 2

MorPaRB.`/, we have that f .idk ıi S/ D f .idk/ ıi f .S/. Using this, and the fact
that Œ0; : : : ; 1; : : : ; 0�D idk ıi Œ1�, we deduce that equation (10) holds if and only the
equation

(11) f .� ı id`/D f .�/ ıf .id`/

holds (recall that Œ1�D � ).
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By assumption, equation (11) holds when ` D 2. Indeed, the relation � ı id2 D
ˇ � �ˇ � .id ı .�;�// holds in PaRB and, applying f , we obtain the identity

f .� ı id2/D f
�
ˇ � �ˇ � .id ı .�;�//

�
:

By definition of f , the right-hand side equals ˇ ��ˇ �.idı.�; �// and so, by hypothesis,
it equals � ı id2 .

Now assume that equation (11) has been established (for a chosen `). By associativity
of operadic composition, we have equations

.� ı id`/ ıj id2 D � ı id`C1 and .� ı id`/ ıj id2 D � ı id`C1:

Since Ob.PaRB/ is generated by arity 2 operations, any object in PaRB.`C 1/ is in
the image of at least one of the composition maps

ıj W PaRB.`/�PaRB.2/! PaRB.`C 1/

In particular, the equation

f .� ı id`C1/D � ı id`C1

holds if and only if, for each j , the equation

(12) f ..� ı id`/ ıj id2/D .� ı id`/ ıj id2

holds. But as we have already observed, the equation f .� ı id2/D � ı id2 holds. If
we reverse all the steps that let us reduce equation (8) to equation (11), we see that (8)
holds when `D 2. In particular, equation (12) holds for each j .

7.1 Endomorphisms of PaRB fixing the objects

We write End0.PaRB/ and End0.PaB/ for the set of endomorphisms of PaRB and
PaB which are the identity on objects.

Definition 7.5 The operad of twists T is the operad in groupoids which in degree n
is the group Zn seen as a groupoid with a unique object. The operadic composition

ıi W T.n/�T.m/! T.nCm� 1/

is given by the formula

.a1; : : : ; an/ ıi .b1; : : : ; bm/ WD .a1; : : : ; ai�1; ai C b1; : : : ; ai C bm; aiC1; : : : ; an/:
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Note that there is a trivial morphism from any operad in groupoids to T which sends
any morphism to .0; : : : ; 0/.

Lemma 7.6 The trivial morphism is the only morphism from PaB to T.

Proof By Lemma 7.1, such a morphism is determined by where it sends ˇ and ˛. Let
us call the image of these two morphisms .x; y/ 2Z2 and .a; b; c/ 2Z3 , respectively.
The pentagon relation gives us

.2a; 2bC a; cC 2b; 2c/D .2a; aC b; bC c; 2c/;

which implies that b D 0. The two hexagon relations force a , c , x and y to all
be 0.

Proposition 7.7 The following holds:

(1) Any endomorphism of PaRB fixing the objects has to preserve PaB� PaRB.

(2) The induced map
End0.PaRB/! End0.PaB/

is an isomorphism.

Proof Using Lemma 7.4 and the notation therein, an endomorphism of PaRB fixing
the objects is uniquely specified by a pair .g; �/, where g D .m; ˇ; ˛/ represents a
map from PaB to PaRB fixing the objects and � is a morphism in PaRB.1/. We claim
that the map g has to send PaB to PaB. Indeed, there is a nontrivial map PaRB! T

that sends a ribbon braid to the list of its twists. We can form the composite

PaB
g
�! PaRB! T

and according to Lemma 7.6 such a map has to be the trivial map. Therefore, g factors
through the inclusion PaB! PaRB (viewing PaB as the suboperad whose morphisms
have no twists). This proves (1).

By taking the underlying braiding together with the number of twists on each strand,
the set MorPaRB.2/.12; 12/ is identified with MorPaB.2/.12; 12/�Z�Z, ie 2Z�Z�Z.
Recall that the set of morphisms in PaB.2/ from .12/ to .21/ agrees with Z, the braid
group on two strands. The morphism ˇ � �ˇ is thus given by a triple .2ˇ1; ˇ2; ˇ3/ in
2Z�Z�Z and � is given by a single integer. By part (1), ˇ2 and ˇ3 have to be zero.
The relation

(13) � ı idD ˇ � �ˇ � .id ı .�; �//;

Geometry & Topology, Volume 23 (2019)



330 Pedro Boavida de Brito, Geoffroy Horel and Marcy Robertson

which holds in the set of morphisms on PaRB.2/ from .12/ to .12/, may then be
expressed as a relation

.2�; �; �/D .2ˇ1; 0; 0/ � .0; �; �/:

Therefore, ˇ1D � . Hence we can construct a map End0.PaB/!End0.PaRB/ sending
g to .g; ˇ1/ which is an inverse to the restriction map.

7.2 Endomorphisms of PaRB up to homotopy

The category of operads in groupoids is cotensored over groupoids. It follows that we
can define a homotopy between two maps of operads in groupoids. We denote by E
the groupoid completion of Œ1�D f0 < 1g and by s and t the two maps Œ0�!E. For
f; gW P!Q two maps of operads, a homotopy between f and g is a map H W P!QE

such that when we postcompose with the two maps QE ! Q induced by s and t , we
recover f and g . The relation “being homotopic” is an equivalence relation between
maps from P to Q and this equivalence relation is compatible with composition of
morphisms. It follows that for P an operad in groupoids, the set of endomorphisms
of P up to homotopy gets a monoid structure. We denote that monoid by HoEnd.P/.

Proposition 7.8 The composition

End0.PaRB/! End.PaRB/! HoEnd.PaRB/

is an isomorphism.

Proof The surjectivity of this map can be translated by saying that any endomorphism
of PaRB is homotopic to one that fixes the objects. This can be proven exactly as in
[20, Theorem 7.8].

Now, we prove injectivity. We define HoEnd0.P/� HoEnd.P/ to be those homotopy
classes that contain an endomorphism fixing the objects. We denote by End0.PRB.3//
the monoid of endomorphisms of PRB.3/ that preserve the subgroup PB.3/ and
by HoEnd0.PRB.3// the monoid of endomorphisms of PRB.3/ that preserve the
subgroup PB.3/ modulo homotopies. We construct a commutative diagram

End0.PaRB/ HoEnd0.PaRB/ HoEnd0.PRB.3//

End0.PaB/ HoEnd0.PaB/ HoEnd.PB.3//

f

g
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The map labeled f is induced by the restriction map

End0.PaRB/! End0.PaRB.3//! End0.PRB.3//;

where the first map is the restriction to arity 3 and the second map is the restriction to
an object in PaRB.3/. The map labeled g is defined analogously.

The right-hand vertical map is obtained by restriction to the subgroup PB.3/. This is
well defined, as we now explain. Let u and v be two endomorphisms of PRB.3/Š

PB.3/�Z3 fixing the subgroup PB.3/�PRB.3/ and such that there exists an element h
in PRB.3/ such that u.x/Dh�1v.x/h. Since the subgroup Z3 in PRB.3/ is contained
in the center, we may assume without loss of generality that h lies in PB.3/ and we
deduce that the restrictions of u and v to PB.3/ are conjugate. The commutativity of
the diagram is immediate.

By [20, Proposition 7.7], the lower horizontal composite is injective. By our Proposition
7.7, the left vertical arrow is an isomorphism. It follows that the map End0.PaRB/!
HoEnd0.PaRB/ is injective. Since the map

End0.PaRB/! HoEnd.PaRB/

factors through HoEnd0.PaRB/, we are done.

8 The main theorem

Propositions 7.7 and 7.8 have profinite variants, which we state below. The proofs are
similar.

Proposition 8.1 The map

End0.1PaRB/! End0.bPaB/
and the composite

End0.1PaRB/! End.1PaRB/! HoEnd.1PaRB/
are isomorphisms of monoids.

By Proposition 7.3, the monoid End0.bPaB/ is isomorphic to bGT , the Grothendieck–
Teichmüller monoid; it follows that

(14) cGTŠ HoEnd.1PaRB/:
Proposition 8.2 The monoid HoEnd.1PaRB/ is isomorphic to the monoid of path
components of RMap.N 1PaRB; N 1PaRB/.
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Proof We claim that the statement holds for any operad P in groupoids which, like
PaRB, is cofibrant and such that P.n/ has finitely many objects for each n. For such
an operad, the set HoEnd.yP/ is identified with the set of path components of

Map.P; jyPj/;

where Map refers to the mapping space in the category of operads in groupoids. Since
the dendroidal nerve functor is homotopically fully faithful, the map

RMap.P; jyPj/!RMap.NP; N jyPj/

is a weak equivalence of spaces. The dendroidal space N jyPj is an 1–operad by
Remark 5.2. The right-hand mapping space is identified with

RMap.bNP; N yP/

since j�j and N commute and the profinite completion functor agrees with its left (and
right) derived functor since it preserves all weak equivalences. Moreover, bNP ŠN yP

since completion of groupoids with finitely many objects commutes with products
(Remark 5.2).

Given an operad in (profinite) groupoids G, we let BG denote the operad in (profinite)
spaces obtained via the classifying space construction. There is a natural map

(15) .BNPaRB/^! BN1PaRB;
where the left-hand side is an alternative notation for the profinite completion of
BNPaRB. This map is given as the adjoint of the composite

BNPaRB! BN j1PaRBj Š�! jBN1PaRBj;
where the first map is the unit of the adjunction between operads in groupoids and
operads in profinite groupoids.

Lemma 8.3 The map (15) is a weak equivalence.

Proof The pure ribbon braid groups PRB.n/ are good since they split as a product of
good groups PB.n/�Zn and so we can apply [20, Corollaries 5.11 and 5.12]. Thus,
by Proposition 5.1, both sides are 1–operads in profinite spaces. It suffices to prove
that the map is a weak equivalence on corollas, ie that

.BPRB.n//^! B2PRB.n/
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is a weak equivalence for every n. This follows again from the fact that the pure ribbon
braid groups are good.

Putting it all together, we obtain:

Theorem 8.4 There is an isomorphismcGTŠ �0REnd. �M/;

where M denotes the version of the genus zero surface operad without 0–arity opera-
tions.

Proof By Lemma 6.13, REnd. �M/ is weakly equivalent to REnd..BNPaRB/^/. The
latter is weakly equivalent to REnd.BN 1PaRB/ by Lemma 8.3. The classifying space
functor B induces a homotopically fully faithful functor from 1–operads in profinite
groupoids to 1–operads in profinite spaces. In particular, the map

RMap.N1PaRB; N1PaRB/!RMap.BN1PaRB; BN1PaRB/
is a weak equivalence of spaces. By Proposition 8.2 and the isomorphism (14), the
monoid of path components of the source is isomorphic to bGT .

9 Formality of the genus zero surface operad

It has been proved independently by Severa [30] and Giansiracusa and Salvatore [15]
that the framed little disks operad is rationally formal. That is to say, there is a zigzag
of quasi-isomorphisms of dg–operads between C�.FD;Q/ and its homology, seen
as a dg–operad with zero differential. In this section, we exploit the action of the
Grothendieck–Teichmüller group on the profinite completion of the genus zero surface
operad in order to give an alternative proof of the formality of M and, equivalently, FD.
The idea is to use the fact that there is a model for C�.M;Qp/ that is computed using
the profinite completion of M and thus inherits a bGT action. This large supply of
automorphisms on the chains on M allows us to apply a formality criterion introduced
by Guillen, Navarro, Pascual and Roig [17].

In preparation for our proof, we introduce a notation. For X D limiXi a pro-simplicial
set and R a commutative ring, we denote by C �.X;R/ the cosimplicial R–module
given by the formula

C �.X;R/ WD colim
i

C �.Xi ; R/:
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There is a Künneth isomorphism at the level of cosimplicial objects in the sense that
there is a natural isomorphism

C �.X �Y;R/Š C �.X;R/˝R C
�.Y;R/:

In particular, if Q is an operad in pro-simplicial sets, C �.Q; R/ has the structure of a
cosimplicial cooperad in R–modules.

Theorem 9.1 The operad M is formal, that is, there exists a zigzag of quasi-isomor-
phisms of dg–operads in Q–vector spaces,

C�.M;Q/ X !H�.M;Q/:

Proof We follow the strategy of [25]. First, by [17, Theorem 6.2.1], it suffices to
prove that C�.M;Qp/ is formal as a dg–operad in Qp –vector spaces. For any positive
integer n, there is a quasi-isomorphism of cosimplicial cooperads in Z=pn–modules,

C �.M;Z=pn/' C �.BPaRB;Z=pn/' C �.B1PaRB;Z=pn/:
Taking the limit over n (which in this case is a homotopy limit since the transition
maps are surjections), we get a quasi-isomorphism of cosimplicial cooperads,

lim
n
C �.M;Z=pn/' limnC �.B1PaRB;Z=pn/:

We also claim that the map

C �.M;Zp/! lim
n
C �.M;Z=pn/

is a quasi-isomorphism, as can be seen from Milnor’s short exact sequence and the fact
that the cohomology of the spaces M.n/ is finitely generated, which implies that the
Mittag-Leffler condition holds. Tensoring with Qp , we get a quasi-isomorphism of
cosimplicial cooperads over Qp ,

C �.M;Qp/' .limnC �.B1PaRB;Z=pn//˝Zp
Qp:

After dualizing, the universal coefficient theorem, gives us a quasi-isomorphism of
simplicial operads,

C�.M;Qp/' C
�.M;Qp/

_
' ..limnC �.B1PaRB;Z=pn//˝Zp

Qp/
_:

We denote by P the underlying dg–operad of the simplicial operad on the right-hand
side. Our goal is to show that the dg–operad P is formal. By our main theorem, P has
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an action of the group bGT. We claim that the induced mapcGT! Aut.H�.P//

factors as the composite of the cyclotomic character

�W cGT! yZ�! Z�p
with the map

Z�p ! Aut.H�.P//

sending u 2 Z�p to the automorphism �u of H�.P/ that acts as multiplication by un

in homological degree n. Firstly, it is well known that H�.P/ is the operad BV of
Batalin–Vilkovisky algebras. It is generated by a commutative algebra product in arity 2
and degree 0 and an operator � in arity 1 and homological degree 1. Therefore, it
suffices to prove the claim on these two homology groups. It is straightforward that bGT
acts trivially on H0.P.2//. The action of bGT on B 2PRB.1/ Š B yZ is given precisely
by inducing the obvious action of yZ� on yZ along the projection bGT! yZ� (see the
proof of Proposition 7.7(2)). It follows that the action of bGT on H1.P/ is the desired
action. This proves the claim.

Now, we follow the strategy explained by Petersen [25, page 819, Proposition]. We pick
an infinite-order unit u in Zp . Since the cyclotomic character map �WbGT! Z�p is
surjective, we can find an automorphism of P that induces the grading automorphism �u

on the homology.

Remark 9.2 The surjectivity of �WbGT! Z�p follows from the surjectivity of the cy-
clotomic character Gal.Q=Q/!Z�p . Contrary to Petersen’s argument, the proof above
does not rely on the existence of Drinfeld associators. In fact, Drinfeld gives a proof
for the existence of associators using the surjectivity of this map [8, Proposition 5.3].

10 An action of GT on the operad of compactified moduli
spaces

For n� 3, the moduli space M0;n of compact complex algebraic curves of genus zero
with n punctures is identified with the space of configurations of n distinct points on the
complex projective line CP1 modulo the action of PGL2.C/. The Deligne–Knudsen–
Mumford compactification of M0;n , denoted by M0;n , is the space of isomorphism
classes of stable n–punctured complex curves of genus zero. By convention, M0;2D�.
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The collection of moduli spaces M0;�C1 WD fM0;nC1gn�1 forms an operad in spaces
with no arity 0 term [14]. For a curve in M0;nC1 , we consider the first n points as
inputs and the last point as the output. The symmetric group †n acts on M0;nC1

by permuting the labels of the inputs and leaving the output untouched. Operad
composition

ık WM0;nC1 �M0;mC1!M0;nCm

is given by attaching the output of M0;mC1 to the kth input in M0;nC1 and creating
a new genus zero stable curve with one additional double point.

A theorem of Drummond-Cole proved in [9] relates the framed disks operad to the
operad M0;�C1 via a homotopy pushout diagram

(16)
S1 FD

� M0;�C1

in the category of operads in spaces, where S1 and � denote the topological groups S1

and � seen as operads concentrated in arity 1 and the map S1! FD is the inclusion
of arity 1 operations. Given that the operad FD is homotopy-equivalent to M we can
replace FD in the homotopy pushout square.

Proposition 10.1 The homotopy groups of M0;n are good groups.

Proof The spaces M0;n are simply connected, compact, complex manifolds. As such
their homotopy groups are finitely generated abelian groups. More generally, any
finitely generated abelian group is good (see for instance [28, page 5]). Indeed, such
a group is a finite product of copies of Z and Z=n for various n. A finite group is
automatically good and Z is good. The claim then follows from [20, Proposition 5.10].

Corollary 10.2 The dendroidal profinite space .NM0;�C1/
^ is an 1–operad.

Proof This follows from the previous proposition and Proposition 5.1.

The main goal of this section is to prove the following:

Theorem 10.3 There exists an action of bGT on the 1–operad .NM0;�C1/
^ that

makes the map
.NM/^! .NM0;�C1/

^

into a bGT –equivariant map.
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Proof The functor N is a right Quillen equivalence (Theorem 4.3) and hence it
preserves homotopy pushout squares. Therefore, the square

NS1 NM

� NM0;�C1

is a pushout square of 1–operads in spaces. Applying the profinite completion functor
levelwise, we obtain a square of dendroidal objects in profinite spaces. In fact, each
term of this new square is an 1–operad in profinite spaces, by Proposition 5.1. We
claim that this square of 1–operads is a pushout square in the 1–category (relative
category) of 1–operads in profinite spaces. This is a consequence of the following
formal observation. Given a pushout square in the1–category of1–operads in spaces,
consider the resulting square obtained by applying profinite completion levelwise. Then
this square is a pushout in the 1–category of 1–operads in profinite spaces if each of
its terms is an1–operad. To see this, one can use the fact that the hypothetical pushout
has the correct universal property in the 1–category of 1–operads in profinite spaces.

We can now prove the statement of the theorem. The top horizontal map of the square
is the inclusion of arity 1 operations. It follows that the action of bGT on .NM/^

restricts to an action of .NS1/^ in such a way that this map becomes a bGT –equivariant
map. On the other hand, the map .NS1/^!� is obviously bGT –equivariant for the
trivial action on �. It follows that the 1–operad .NM0;�C1/

^ inherits a bGT action
that makes the square bGT –equivariant.

We now want to prove that the action constructed in the previous theorem is nontrivial. In
order to do so, we will prove that this action is nontrivial after application of H�.�;Qp/.
First we need to explain what we mean by H�.X;Qp/ when X is a profinite space.

Construction 10.4 We have explained in the previous section how to construct a
cosimplicial Z=pn–module C �.X;Z=pn/. We can then define C �.X;Z=pn/ as the
associated cochain complex. Define the chain complex

D�.X;Qp/ WD
��

lim
n
C �.X;Z=pn/

�
˝Zp

Qp
�_
:

As in the proof of Theorem 9.1, one can show that D�. yY ;Qp/ is naturally quasi-
isomorphic to C�.Y;Qp/ when Y is a space with finitely generated homology. We
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denote the homology of D�.X;Qp/ by H�.X;Qp/. Since C �.�;Z=pn/ sends ho-
motopy colimits to homotopy limits, we deduce that D�.�;Qp/ preserves homotopy
colimits.

To make explicit the action of bGT on H�. �M;Qp/ we use the p–adic cyclotomic
character �pWbGT! yZ�! Z�p .

Proposition 10.5 Let g be an element of bGT. Then the action of g on the vector
space Hi .1M.n/;Qp/ is given by multiplication by �p.g/i .

Proof This vector space is isomorphic as a bGT –representation to the vector space
Hi .P.n// appearing in the proof of Theorem 9.1. The desired statement can be found
in that proof.

Proposition 10.6 The action of bGT on .M0;�C1/
^ is nontrivial.

Proof A standard argument with simplicial model categories applied to the homotopy
pushout square (16) tells us that the operad M0;�C1 is the homotopy colimit of the
simplicial diagram

Œn� 7!Mt .S1/tn t�;

where t denotes the coproduct in the category of operads. Applying the dendroidal
nerve functor followed by the profinite completion we get a simplicial diagram

Œn� 7!N.Mt .S1/tn t�/^

in the relative category d yS whose homotopy colimit computes .NM0;�C1/
^ . Indeed,

since the category � is sifted, this homotopy colimit coincides with the homotopy
colimit computed in Op1. yS /.

Evaluating at the corolla Cn , we get a simplicial profinite space

Œn� 7!N.Mt .S1/tn t�/^Cn

whose homotopy colimit is .M0;nC1/
^ . We can hit this diagram with the functor

D�.�;Qp/ constructed in Construction 10.4 and we get a simplicial chain complex

Œn� 7!D�.N.Mt .S1/tn t�/^Cn
;Qp/

whose homotopy colimit is D�..M0;nC1/
^;Qp/. This simplicial diagram has an

action of bGT that induces the action of bGT on D�..M0;nC1/
^;Qp/ constructed in
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Theorem 10.3. We thus get a bGT –equivariant spectral sequence of the form

E1s;t DHt ..�t .S
1/ts tM/.n/;Qp/)HsCt .M0;nC1;Qp/:

By the Künneth isomorphism, and Proposition 10.5, we deduce that the action of
g 2bGT on E1s;t is given by multiplication by �p.g/t . This implies that the same is
true for Ers;t for all r . Since the differentials must commute with the bGT action and
d r has degree .�r; r � 1/, we see that only d1 can be nonzero.

Now we study the behavior of the line t D 0 of this spectral sequence. We can do that
by comparing it to the similar spectral sequence, denoted by E 0rs;t , that computes the
pushout square of simplicial operads

� Com

� Com

We have a map of spectral sequences E!E 0 that comes from a map between the two
pushout squares. This map is an isomorphism on the line t D 0 at the E1 page. The
spectral sequence E 0 is very easy to understand: the differential d1 kills everything
except the generator in degree .0; 0/ and no further differentials can occur. Therefore,
the same patterns must occur on the 0th line of the spectral sequence E.

We have said that E collapses at the E2 page. Using the observation that E2s;0 is
trivial for s > 0, we deduce that for positive k the vector space Hk..M0;nC1/

^;Qp/

has a filtration which is compatible with the bGT action and that the action of bGT on
the associated graded splits as a direct sum of representations that are nontrivial.

Remark 10.7 As pointed out to us by the referee, it would be interesting to know
whether the kernel of the cyclotomic character acts nontrivially on .M0;�C1/

^ . The
above proof does not shed light on this question.

11 Unital case

In this section, we allow operads to have nonempty space of 0–arity operations. For us
the most relevant such operad is MC , the variant of the operad of framed little 2–disks
where MC.0/D �. The essential difference between M and MC is that in the latter
we include the operation of filling in boundary components. While this is a substantial
difference, we show that it does not affect the monoid of derived endomorphisms:
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Theorem 11.1 bGT Š �0REnd.2NMC /:

There are two relevant unital variants of the operad PaRB. The first one is an operad
PaRBC which coincides with PaRB in positive arities and is a point in arity 0. The
operadic composition maps ıi of the form

PaRBC.n/�PaRBC.0/! PaRBC.n� 1/

are given (on morphism sets) by removing the i th strand. We do not expect the operad
PaRBC to be cofibrant in any reasonable sense. So we introduce a second operad,
denoted by PaRB? , which is cofibrant as a monochromatic operad in groupoids and
is equivalent to PaRBC . In detail, the operad ObPaRB? of objects of PaRB? is the
free operad on the (nonsymmetric) sequence which is a point in degree 0 and 2 and
empty otherwise. We think of an element in PaRB?.n/ as a parenthesization of a word
a1 : : : a` where each i 2 f1; : : : ; ng occurs exactly once as one of the aj and all the
other symbols are labeled �. (Alternatively, that element may be regarded as a tree
with n leaves where the vertices have either two inputs or no inputs.) For example,
..�.1�//..��/.32/// is an element in ObPaRB?.3/.

There is a canonical map of operads uW ObPaRB?! ObPaRBC that drops the sym-
bols � (and the appropriate parentheses). For instance, the element in the example just
above is sent to .1.32// via this map.

Given two objects x and y in PaRB? , the set of morphisms in PaRB? from x to y is by
definition the set of morphisms in PaRBC from u.x/ to u.y/. This defines the operad
MorPaRB? and thus the operad PaRB? together with a map vW PaRB?! PaRBC .

Proposition 11.2 The map v is a cofibrant replacement of PaRBC in Op.G /.

Proof This map is clearly a levelwise weak equivalence. Moreover, since the operad
ObPaRB? is freely generated by an operation in degree 0 and an operation in degree 2,
we can apply Proposition 2.2 and conclude that PaRB? is cofibrant.

The following two lemmas are variations on Lemmas 7.1 and 7.4.

Lemma 11.3 Let P be an operad in groupoids with P.0/ D � and ObP.1/ D �.
The set of operad maps from PaBC to P is identified with the set of maps g D
.m; ˇ; ˛/W PaB! P subject to the relation ˛ ıi id� D idm for i D 1; 2; 3, where id�
denotes the identity element of � 2 P.0/.

Proof See [12, 6.2.4(c)].
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Lemma 11.4 Let P be an operad in groupoids with P.0/ D �. The set of operad
maps from PaRBC to P is identified with the set of pairs .g; �/ where g D .m; ˇ; ˛/
is an operad map from PaBC to P and � is a morphism in P.1/, subject to the
relation that the operadic composition � ı1 id agrees with the categorical composition
ˇ � �ˇ � .id ı .�; �//.

Proof The proof of Lemma 7.4 applies verbatim, but one extra check needs to be
completed, namely that

f .Œn1; : : : ; nk� ıi id�/D f .Œn1; : : : ; nk�/ ıi f .id�/;

where id� denotes the identity map of the (unique) element in arity 0. This can be
reduced to checking that f .Œ1� ı id�/D f .Œ1�/ ıi f .id�/, which holds automatically
because P.0/D �.

Proposition 11.5 The restriction map End0.PaRBC/! End0.PaRB/ is an isomor-
phism.

Proof Exactly as in Proposition 7.7, we can prove that any endomorphism of PaRBC

fixing the objects has to restrict to an endomorphism of the suboperad PaBC . This is
by definition the suboperad with the same objects but only those morphisms that have
trivial twists. We thus get a commutative square of restriction maps

End0.PaRBC/ End0.PaBC/

End0.PaRB/ End0.PaB/

in which the lower horizontal map is an isomorphism by Proposition 7.7 and the top
horizontal map is an isomorphism by Lemma 11.4. In order to see that the right-hand
vertical map is an isomorphism, it is enough, by Lemma 11.3, to show that for any map
gW PaB! PaBC fixing the objects, the equation ˛ ıi id� D idm automatically holds.
This equation boils down to the condition that the image of ˛ , viewed as an element in
the pure braid group on three strands, under the map @i W PB.3/! PB.2/Š Z which
forgets the i th strand for each i D 1; 2; 3, is zero. We can use one of the hexagon
relations to deduce this. We explain this for i D 2 (the middle strand); the other
cases can be treated similarly. Recall that ˇ 2 PaBC.2/ is by definition the image of
ˇ 2 PaB.2/ under g . The hexagon relation (5) reads

(17) .m ı1 ˇ/ � .213/˛ � .213/.m ı2 ˇ/D ˛ � .ˇ ı2m/ � .231/˛
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in PB.3/. (In this equation, m is shorthand for idm .) By inspection, we have that

@2.m ı1 ˇ/D 0; @2..213/m ı2 ˇ/D ˇ and @2.ˇ ı2m/D ˇ

in PB.2/. (To verify these it may be helpful to draw a picture.) Write n for @2.˛/D
@2..231/˛/. Now apply @2 to both sides of (17) to deduce that 0CnCˇD nCˇCn.
Hence, @2.˛/D 0, as claimed.

Corollary 11.6 The action of bGT on PaRB extends to an action on PaRBC and the
induced map cGT! End0.PaRBC/

is an isomorphism.

In analogy with previous notation, we write Hom0.PaRB?;PaRBC/ for the set of
operad maps which induce the map uW ObPaRB?! ObPaRBC on objects.

Lemma 11.7 The map End0.PaRBC/! Hom0.PaRB?;PaRBC/ is an isomorphism.

Proof This map is injective since the map vW PaRB?! PaRBC is an epimorphism
in the category of operads in groupoids.

Before proving surjectivity, we start by making the observation that the groupoid
PaRBC.n/ sits naturally inside PaRB?.n/ as the full subgroupoid spanned by those
objects that do not have the symbol ?. One should observe that these maps do not
assemble into a map of operads PaRBC! PaRB? . We will use these maps implicitly
to see morphisms in PaRBC as morphisms in PaRB? when needed.

In order to prove the surjectivity of the map under consideration, we first observe that its
image is the set of operad maps f W PaRB?! PaRBC inducing the map u on objects
and with the property that f xDf vx for any morphism x in PaRB? . Now, we observe
that any morphism x in PaRB? can be written as a composition a � vx � b , where a
and b are morphisms in PaB? � PaRB? that are such that ua and ub are identity
maps. Hence, it suffices to prove that f .a/ and f .b/ are identity morphisms. But,
one can prove exactly as in Proposition 7.7 that f has to restrict to a map of operads
PaB?! PaBC . Moreover, by [20, Lemma 6.6], any map of operads PaB?! PaBC

lies in the image of the map

Hom0.PaBC;PaBC/! Hom0.PaB?;PaBC/:

Therefore, f .a/ and f .b/ are identity morphisms, as desired.
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Lemma 11.8 The map

Hom0.PaRB?;PaRBC/! HoHom.PaRB?;PaRBC/

is an isomorphism.

Proof Denote the map under consideration by ˛ . We begin by proving injectivity.
Unlike the inclusion of PaRBC in PaRB? , the inclusion of PaRB in PaRB? is a map
of operads. Hence, by precomposition, we obtain a map

HoHom.PaRB?;PaRBC/! HoHom.PaRB;PaRBC/
Š
�! HoEnd.PaRB/;

which we call � . Using Lemma 11.7 and Proposition 11.5, the map � ı˛ is identified
with the obvious map

End0.PaRB/! HoEnd.PaRB/;

which is an isomorphism by Proposition 7.8. It follows that ˛ is injective.

In order to prove surjectivity, we have to show that any morphism f from PaRB? to
PaRBC is homotopic to one which induces the map v on objects. Since ObPaRB? is
freely generated by � and .12/ in degrees 0 and 2, and since PaRBC.0/ is a point,
Obf is determined by the image of .12/. This image is either .12/, in which case
Obf D v , or .21/. In the second case, a homotopy of f with the required property
can be constructed as in [20, Theorem 7.8].

Proof of Theorem 11.1 We first have an isomorphism

�0REnd. bNMC/' �0REnd.BN1PaRBC/;
which comes from the fact that the map

.BPaRBC.n//
^
! B.PaRBC.n//

^

is an equivalence (by goodness of the pure ribbon braid groups as in Lemma 8.3). By
full faithfulness of the functor B , we are reduced to proving that the action of bGT on
PaRBC induces an isomorphismcGTŠ �0REnd.N1PaRBC/:
Corollary 11.6 and Lemmas 11.7 and 11.8 also hold if we replace PaRB and its variants
by their profinite completion. Hence, we deduce an isomorphismcGTŠ HoHom.1PaRB?;1PaRBC/:
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By adjunction, this gives us an isomorphism

cGTŠ HoHom.PaRB?; j1PaRBCj/Š �0RMap.PaRB?; j1PaRBCj/;
where the second isomorphism comes from the fact that PaRB? is cofibrant. Since
PaRB?! PaRBC is an equivalence, we see that the action of bGT on PaRBC induces
an isomorphism cGTŠ �0RMap.PaRBC;1PaRBC/:
But we have an isomorphism

�0RMap.PaRBC; j1PaRBCj/Š �0RMap.NPaRBC; jN1PaRBCj/;
coming from the fact that N W OpG !Op1G is fully faithful, and an isomorphism

�0RMap.NPaRBC; jN1PaRBCj/Š �0RMap..NPaRBC/
^; .NPaRBC/

^/

by the derived adjunction between 1–operads in profinite groupoids and 1–operads
in groupoids. Putting everything together, we deduce the desired result.
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