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Birational models of moduli spaces of coherent sheaves
on the projective plane

CHUNYI LI

XIAOLEI ZHAO

We study the birational geometry of moduli spaces of semistable sheaves on the
projective plane via Bridgeland stability conditions. We show that the entire MMP
of their moduli spaces can be run via wall-crossing. Via a description of the walls,
we give a numerical description of their movable cones, along with its chamber
decomposition corresponding to minimal models. As an application, we show that
for primitive vectors, all birational models corresponding to open chambers in the
movable cone are smooth and irreducible.

14D20; 14E30

Introduction

The birational geometry of moduli spaces of sheaves on surfaces has been studied a
lot in recent years; see for instance Arcara, Bertram, Coskun and Huizenga [2], Bayer
and Macrì [6; 7], Bertram, Martinez and Wang [9], Coskun and Huizenga [13; 14; 12],
Coskun, Huizenga and Woolf [15], Li and Zhao [26] and Woolf [33]. The milestone
work in [6; 7] completes the whole picture for K3 surfaces. In this paper, we give a
complete description of the minimal model program of the moduli space of semistable
sheaves on the projective plane via wall-crossings in the space of Bridgeland stability
conditions. As a consequence, we deduce a description of their nef cone, movable cone
and the chamber decomposition of their minimal models.

Geometric stability conditions on P2 The notion of stability condition on a C–
linear triangulated category was first introduced by Bridgeland [10]. A stability
condition consists of a slicing P of semistable objects in the triangulated category and
a central charge Z on the Grothendieck group which is compatible with the slicing. In
particular, in this paper we consider the bounded derived category of coherent sheaves
on the projective plane. A stability condition � D .Z;P/ is called geometric if it
satisfies the support property and all skyscraper sheaves are � –stable with the same
phase; see Definition 1.12.
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The Grothendieck group K.P2/ of Db.P2/ is of rank 3 and KR.P
2/.D K.P2/˝R/

is spanned by the Chern characters ch0 , ch1 and ch2 . Due to the work of Drezet and
Le Potier, there is a Le Potier cone (see Figure 2) in the space KR.P

2/, such that there
exist slope-stable coherent sheaves with character w D .ch0.> 0/; ch1; ch2/ 2 K.P2/

if and only if either w is the character of an exceptional bundle, or it is not inside the
Le Potier cone. As we will show in Proposition 1.16, by taking the kernel of the central
charge, the space of all geometric stability conditions can be realized as a principal
eGLC.2;R/–bundle over GeoLP , which is an open region above the Le Potier curve.
Note that the eGLC.2;R/–action does not affect the stability of objects. We will write a
geometric stability condition as �s;q with .1; s; q/ 2 GeoLP � KR.P

2/ indicating the
kernel of its central charge. Denote the heart of the stability condition �s;q by Coh#s ,
and let M

s.ss/
�s;q

.w/ be the moduli space of �s;q –(semi)stable objects in Coh#s with
character w 2 K.P2/. We address the following questions:

(1) For a Chern character w and a geometric stability condition �s;q , when is
Mss
�s;q

.w/ nonempty?

(2) How does Mss
�s;q

.w/ change when �s;q varies in the space GeoLP of geometric
stability conditions?

The first question is answered step-by-step in several parts of the paper. Generalizing
the result of Drezet and Le Potier for stable sheaves, when the character w is inside the
Le Potier cone and not exceptional (see Corollary 1.22), there is no �s;q –semistable ob-
ject with character w (or �w ) for any geometric stability condition �s;q . In other words,
Mss
�s;q

.w/ is always empty. When the character w is proportional to an exceptional
character, the first question is answered in Corollary 1.22 and Proposition 1.30.

The main case of the first question is when the character is not inside the Le Potier cone.

Theorem A (Lemma 3.12 and Theorem 3.14) Let w 2 K.P2/ be a character which
is not inside the Le Potier cone. Then Mss

�s;q
.w/ is empty if and only if �s;q is below

Llast
w or L

right-last
w in GeoLP .

The notation Llast
w and L

right-last
w is defined in Definition 3.11. As we will see, the

description for the last wall is equivalent to that for the boundary of the effective cone
of the moduli space. This theorem is first proved in Coskun, Huizenga and Woolf [15]
in the ch0 � 1 case and in Woolf [33] in the torsion case. In this paper, we provide
another proof for these results in our setup. Several results in this proof are needed in
the proof of our main theorem on the actual walls.
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Let Ms
GM.w/ be the moduli space of stable sheaves of character w . Assume that w is

outside the Le Potier cone. It was proved in [15] that Ms
GM.w/ is a Mori dream space

of Picard rank 2. In particular, if we consider the stable base locus decomposition
of the effective cone of Ms

GM.w/, there are only finitely many chambers, and each
chamber corresponds to one minimal model of Ms

GM.w/. When varying the line
bundle in the effective cone and considering the corresponding minimal model, this
induces the minimal model program of Ms

GM.w/. The following result realizes this
via wall-crossing, and in particular answers the second question.

Theorem B (Theorems 2.19 and 2.24) Let w be a primitive character. The moduli
space Ms

�s;q
.w/ is smooth and connected for any generic geometric stability condition

�s;q when it is nonempty. Any two nonempty moduli spaces Ms
� .w/ and Ms

� 0.w/
are birational to each other. The actual walls (resp. chambers) are in one-to-one
correspondence with the stable base locus decomposition walls (resp. chambers) of
the effective cone of Ms

GM.w/. In particular, one can run the whole minimal model
program for Ms

GM.w/ via wall-crossing in the space of geometric stability conditions.

The smoothness result can be proved easily for moduli of stable sheaves by applying
Serre duality Ext2.E;E/D Hom.E;E.�3//� and observing that E.�3/ is stable of
a smaller slope. However, for Bridgeland stable objects, they may not remain stable
after twisting by O.�3/. The key point is to develop a method to compare slopes with
respect to different Bridgeland stability conditions in order to conclude the vanishing
of the Hom group. This is achieved first in Li and Zhao [26], and generalized to the
current situation in Section 2. The following consequence seems new to the theory of
MMP of moduli of sheaves.

Theorem C Let w 2 K.P2/ be a primitive character not inside the Le Potier cone.
Then for each chamber in the movable cone of Ms

GM.w/, the corresponding minimal
model of Ms

GM.w/ is smooth.

Based on the explicit correspondence between walls in the space of stability conditions
and walls in the divisor cone, we may describe all stable base locus walls (including
the boundaries of the nef cone, effective cone and movable cone) as actual walls in
the space of stability conditions. Here an actual wall for a Chern character w is a
wall such that curves are contracted from either side of Mss

�˙.w/Ü Mss
� .w/. So it

becomes an important question to ask when a wall is an actual wall. In Section 3, we
give a numerical criterion on actual walls, which depends on only the character w , and
provides an effective algorithm to compute all actual walls for w .

Geometry & Topology, Volume 23 (2019)



350 Chunyi Li and Xiaolei Zhao

We introduce some notation first. The notation l�w (defined in Remark 1.5) stands
for the line segment between KerZ� and w (viewed as points in the real projective
space of P.KR.P

2//). The notation TRwE (defined in Definition 3.15) stands for a
small triangular area determined by w and an exceptional character E . A destabilizing
character v for w cannot appear in the triangle TRwE , because otherwise Mss

� .v/

would be empty by Theorem A. Now we can state the criterion on actual walls:

Theorem D (Theorem 3.16) Let w 2 K.P2/ be a Chern character with ch0.w/� 0

not inside the Le Potier cone. For any stability condition � inside the Bogomolov cone
between the last wall Llast

w and the vertical wall Lw˙ , the stability condition � is on
an actual wall for w if and only if there exists a Chern character v 2 K.P2/ on the line
segment l�w such that ch0.v/ > 0, ch1.w/

ch0.w/
> ch1.v/

ch0.v/
, the characters v and w � v are

either exceptional or not inside the Le Potier cone, and both of them are not in TRwE

for any exceptional bundle E .

On an actual wall, the Chern character w can always be written as the sum of two
proper Chern characters w0 and w�w0 satisfying the conditions in the theorem. The
key is to prove the inverse direction: for two such characters, there exist stable objects
of character w , which are given as the extensions of stable objects of characters w0
and w �w0 , and hence destabilized on the wall. Roughly speaking, the three main
steps are to show:

(1) Ms
� .w

0/ and Ms
� .w�w0/ are nonempty.

(2) The extension group Ext1 between two generic objects in the moduli spaces
Ms
� .w

0/ and Ms
� .w�w0/ is nonzero.

(3) The extensions of two stable objects produce �C or �� stable objects with
character w .

The conditions in the theorem are mainly used in step (1), and step (3) follows from
general computations. For step (2), since we are only making use of numerical charac-
ters, we can only aim to show �.w�w0; w0/ < 0. However, one may wonder about the
case that on an actual wall, generic objects in Ms

� .w
0/ and Ms

� .w�w0/ do not have
nontrivial extensions, but objects on some jumping loci extend to �˙–stable objects.
Should this happen, �.w�w0; w0/� 0 but objects in Ms

� .w
0/ and Ms

� .w�w0/ still
extend to �˙–stable objects. From this point of view, it is a bit surprising to have a
numerical criterion for actual walls. The main point in Theorem D is to rule out this
possibility, and this is done by gaining a good understanding of the last wall and the
extension groups.
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Moreover, the criterion decides all the actual walls effectively, in the sense that it
involves only finitely many steps of computations, and one may write a computer
program to output all the actual walls with a given Chern character w as the input.
We compute the example for w D .4; 0;�15/ by hand to show some details of this
computation; see Figure 1.
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Figure 1: A picture for the actual walls in the case of w D .4; 0;�15/

As two quick applications of Theorem D, we decide the boundary of the nef cone
and the movable cone of Ms

GM.w/ for a primitive character w D .ch0; ch1; ch2/. We
work out the boundary to the left of the vertical wall; the other side is determined by
applying the dualizing functor and considering the character w0 D .ch0;�ch1; ch2/.

Theorem E (Theorem 4.3, the movable cone) Let w be a primitive Chern character
with ch0.w/� 0 not inside the Le Potier cone. When �.E; w/¤ 0 for all exceptional
bundles E with ch1.E/

ch0.E/
< ch1.w/

ch0.w/
, the movable cone boundary on the primitive side

coincides with the effective cone boundary.

When �.E
 ; w/ D 0 for an exceptional bundle E
 with ch1.E
 /

ch0.E
 /
< ch1.w/

ch0.w/
, the bun-

dle E
 can be canonically extended to an exceptional collection E˛ , E
 , Eˇ ; see the
paragraph above Lemma 4.1 for more details. Denote the characters of Eˇ˝O.�3/,
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E˛ and E
 by eˇ�3 , e˛ and e
 , respectively. Then w can be uniquely written
as n2e˛ � n1eˇ�3 for some positive integers n1 and n2 . Define the character P

accordingly, as follows:

P WD
�

e
 � .3 ch0.Eˇ/� n2/e˛ if 1� n2 < 3 ch0.Eˇ/;

e
 if n2 � 3 ch0.Eˇ/:

Then the wall LPw corresponds to the boundary of the movable cone of Ms
GM.w/.

Theorem F (Theorem 4.6, the nef cone) Let w be a primitive Chern character with
ch0.w/ > 0 and

x�.w/ WD 1

2

�ch1.w/

ch0.w/

�2
� ch2.w/

ch0.w/
� 10:

Then the first actual wall Lvw to the left of vertical wall (equivalently, the nef cone
boundary for Ms

GM.w/) is determined by the character v satisfying:

(1) ch1.v/
ch0.v/

is the greatest rational number less than ch1.w/
ch0.w/

with 0< ch0.v/� ch0.w/.

(2) Given the first condition, if ch1.v/ is even (resp. odd ), then ch2.v/ is the
greatest integer (resp. 2 ch2.v/ is the greatest odd integer) such that the point v
is either an exceptional character , or not inside the Le Potier cone.

The result on the nef cone was first proved in Coskun and Huizenga [14] when � is
large enough with respect to ch0 and ch1

ch0
(see Remark 8.7 in [14] for a lower bound).

In Theorem F the bound is explicitly given as x�� 10. This bound on x�.w/ is used to
show that the first wall is not of higher rank. The rest of the proof is a direct application
of our criterion on actual walls.

The result on the movable cone is more subtle. When the Chern character w is right
orthogonal to an exceptional bundle E
 , the jumping locus

f ŒF � 2Ms
GM.w/ j Hom.E
 ;F /¤ 0g

has codimension 1 and is the exceptional divisor that contracted on the movable cone
boundary. However, the wall Lwe
 for Hom.E
 ;F /¤ 0 may not always be the wall
for this contraction. In the case when n2< 3 ch0.Eˇ/, the exceptional divisor is already
contracted at a wall prior to the wall Lwe
 . One simple example of such w is when
.ch0; ch1; ch2/D .1; 0;�4/; in other words, the ideal sheaf of four points. The Chern
character w is right orthogonal to the cotangent bundle �. The other exceptional
bundles E˛ and Eˇ are O.�2/ and O.�1/, respectively, and w can be written as
2ŒO.�2/�� ŒO.�4/�. The jumping locus of Hom.�;w/¤ 0 is the exceptional divisor,
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and it is the same as the jumping locus Hom.I1.�1/; w/¤ 0, where I1.�1/ stands for
the ideal sheaf of one point tensored by O.�1/. Since the wall LI1.�1/w is between
L�w and Lw˙ in the

˚
1; ch1

ch0
; ch2

ch0

	
–plane, the boundary of the movable cone should

be given by LI1.�1/w . Geometrically, the exceptional locus is where any three points
are collinear.

Related work There are several papers studying the birational geometry of moduli of
sheaves on the projective plane via wall-crossing; see, as mentioned earlier, the work of
Arcara, Bertram, Coskun and Huizenga [2], Bertram, Martinez and Wang [9], Coskun
and Huizenga [14; 13; 12], Coskun, Huizenga and Woolf [15], Li and Zhao [26] and
Woolf [33].

The study of the Hilbert scheme of points on P2 first appears in [2], and the wall-
crossing behavior is explicitly carried out for small numbers of points. It is also first
suggested in [2] that there is a correspondence between the wall-crossing picture in the
Bridgeland space and the minimal model program of the moduli space. In [12], the
correspondence between walls in the Bridgeland space and stable locus decomposition
walls in MMP is established for monomial schemes in the plane. In [26], we proved
the full correspondence for Hilbert schemes of points, by establishing similar results as
in Section 2 of this paper, and further generalized this correspondence to deformations
of Hilbert schemes, which are constructed as Hilbert schemes of noncommutative P2 .

For moduli of torsion sheaves, the effective cone and the nef cone are computed in [33].
For general moduli of sheaves on P2 , the theory is built up in [9]. Among other results,
the projectivity of moduli of Bridgeland stable objects is proved in [9]. The effective
cone and the ample cone are computed in [14] and [15], respectively. Also, [15] gives
the criterion for when the movable cone coincides with the effective cone. We refer to
the beautiful lecture notes [13] for details of these results.

Compared with these papers, the smoothness and irreducibility of moduli of Bridgeland
stable objects with primitive characters are only proved in this paper. Combined
with results in variation of GIT, this allows us to deduce the equivalence between
wall-crossing and MMP for moduli of sheaves on P2 suggested in [2]. We include a
different proof for the effective cone result in [15], as our argument on the effective
cone is also closely related to the proof of the criterion on actual walls. The numerical
criterion on actual walls and the result on the movable cone are new. Our result on
the nef cone (Theorem F) follows from the numerical criterion. The nef cone was
first computed in [14] when � is large enough with respect to ch0 and ch1

ch0
(for a
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lower bound see [14, Remark 8.7]); the bound in Theorem F is explicitly given by
x� � 10. Moreover, as a benefit of our setup, most of the paper can treat the torsion
case and the positive-rank case uniformly. We make careful remarks on this throughout
the paper. Another important application of the wall-crossing machinery is towards the
Le Potier strange duality conjecture. A special case is studied in Abe [1].

Organization In Section 1.1, we review some classical work by Drezet and Le Potier
on stable sheaves on the projective plane. We prove some useful lemmas by visualizing
the geometric stability conditions in the

˚
1; ch1

ch0
; ch2

ch0

	
–plane in Section 1.3. These

properties will play a crucial role in the arguments in the paper. In Section 2, we prove
that the moduli space Ms

� .w/ is smooth and irreducible for generic � and primitive w .
After recalling some results in variation of GIT, we show that one can run the minimal
model program for Ms

GM.w/ by wall-crossing. In Section 3, we first compute the
last wall, and then prove the main theorem of the paper: a criterion for actual walls
of Ms

� .w/. In Section 4, we compute the nef and movable cone boundary as an
application of the criterion for actual walls. Moreover, in Section 4.3, we work out the
particular example of the Chern character .4; 0;�15/.
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1 Stability conditions on Db.P 2/

In this section, we recall some properties of the bounded derived category of coherent
sheaves on the projective plane, and the construction of stability conditions on it. In
Section 1.1, we explain the structure of Db.P2/ given by exceptional triples, and the
numerical criterion on the existence of stable sheaves. A slice of the space of geometric
stability conditions is discussed in Section 1.2, and the wall-chamber structure on it
is studied in Section 1.3. In Section 1.4, we study the algebraic stability conditions,
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in other words, the stability conditions associated to the exceptional triples. We also
explain how they are glued to the slice of geometric stability conditions. In Section 1.5,
we explain in detail the difference and advantage of our setup over the one used in
other papers. Finally in Section 1.6, we derive some easy numerical conditions on the
existence of stable objects.

1.1 Review: exceptional objects, triples and the Le Potier curve

Let T be a C–linear triangulated category of finite type. In this article, T will always
be Db.P2/: the bounded derived category of coherent sheaves on the projective plane
over C . We first recall the following definitions from [3; 20; 31].

Definition 1.1 An object E in T is called exceptional if
�

Hom.E;EŒi �/D 0 for i ¤ 0;

Hom.E;E/DC:

An ordered collection of exceptional objects EDfE0; : : : ;Emg is called an exceptional
collection if

Hom.Ei ;Ej Œk�/D 0 for i > j and all k .

Definition 1.2 Let E D fE0; : : : ;Eng be an exceptional collection. We say this
collection E is strong if

Hom.Ei ;Ej Œq�/D 0 for all i; j and for q ¤ 0.

This collection E is called full if E generates T under homological shifts, cones and
direct sums.

An exceptional coherent sheaf on P2 is locally free. We summarize some results on
the classification of exceptional bundles on P2 and introduce some notation, for details
we refer to [18; 20; 24].

The Picard group of P2 is of rank one with generator H D ŒO.1/�, and we will, by
abuse of notation, identify the i th Chern character chi with its degree H 2�i chi . There
is a one-to-one correspondence between exceptional bundles and dyadic integers

n
p

2m

ˇ̌
p 2 Z; m 2 Z�0; p is odd when m¤ 0

o
:

Denote the exceptional bundle corresponding to p
2m by E� p

2m

� . These exceptional
bundles are inductively (on m) given as follows:

� E.n/ DO.n/ for n 2 Z.
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� When m> 0 and p � 3(mod 4), the exceptional bundle E� p
2m

� is given as the
right mutation RE�p�1

2m

�E�p�3
2m

� . In particular, there is a short exact sequence:

E�p�3
2m

�!E�p�1
2m

�˝Hom.E�p�3
2m

�;E�p�1
2m

�/�!E� p
2m

�:

� When m> 0 and p � 1(mod 4), the exceptional bundle E� p
2m

� is given as the
left mutation LE�pC1

2m

�E�pC3
2m

� . In particular, there is a short exact sequence:

E� p
2m

�!E�pC1
2m

�˝Hom.E�pC1
2m

�;E�pC3
2m

�/!E�pC3
2m

�:

We write the Chern characters of E� p
2m

� as

zv� p
2m

� WD zv.E� p
2m

�/D �ch0.E
� p

2m

�/; ch1.E
� p

2m

�/; ch2.E
� p

2m

�/
�
:

They are inductively (on m) given by the formulas
8
ˆ̂̂
<
ˆ̂̂
:

zv.n/D �1; n; n2

2

�
for n 2 Z;

zv� p
2m

�D 3 ch0.E�pC1
2m

�/zv�p�1
2m

�� zv�p�3
2m

�
when m> 0; p � 3 (mod 4);

zv� p
2m

�D 3 ch0.E�p�1
2m

�/zv�pC1
2m

�� zv�pC3
2m

�
when m> 0; p � 1 (mod 4):

Remark 1.3 Here are some observations from the definition:

(1) zv�3
2

�
is the character of the tangent sheaf TP2 DE�

3
2

� .

(2) The exceptional bundle E� p
2m C n

� is E� p
2m

�˝O.n/ for any n 2 Z.

(3) ch1.E.a//

ch0.E.a//
<

ch1.E.b//

ch0.E.b//
if and only if a< b .

For the rest of this section, we recall the construction of the Le Potier curve CLP , which
is closely related to the existence of semistable sheaves.

The Grothendieck group K.P2/ has rank 3. We write KR.P
2/ WDK.P2/˝R. Consider

the real projective space P.KR.P
2// with homogeneous coordinate Œch0; ch1; ch2�; we

view the locus ch0 D 0 as the line at infinity. The complement forms an affine real
plane, which is referred to as the

˚
1; ch1

ch0
; ch2

ch0

	
–plane in this paper. We call P.KR.P

2//

the projective
˚
1; ch1

ch0
; ch2

ch0

	
–plane. For any object F in Db.P2/, we write

zv.F / WD .ch0.F /; ch1.F /; ch2.F //

for the (degrees of) Chern characters of F . When zv.F /¤ 0, we use v.F / to denote the
corresponding point in the projective

˚
1; ch1

ch0
; ch2

ch0

	
–plane. Note that when ch0.F /¤ 0,

the point v.F / is in the
˚
1; ch1

ch0
; ch2

ch0

	
–plane .
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Remark 1.4 In this paper, in all arguments on the
˚
1; ch1

ch0
; ch2

ch0

	
–plane, we assume the

ch1

ch0
–axis to be horizontal and the ch2

ch0
–axis to be vertical. The term “above” means

“the ch2

ch0
coordinate is greater than”. Other terms such as “below”, “to the right” and

“to the left” are understood in a similar way.

Denote �.E� p
2m

�/ by e
� p

2m

�
. To define the Le Potier curve, we need to associate

to E� p
2m

� three more points eC
� p

2m

�
, el

� p
2m

�
and er

� p
2m

�
in the

˚
1; ch1

ch0
; ch2

ch0

	
–plane.

These will be the vertices of the Le Potier curve in the
˚
1; ch1

ch0
; ch2

ch0

	
–plane. The

coordinate of eC
� p

2m

�
is given by

eC
� p

2m

� WD e� p
2m

��
�

0; 0;
1�

ch0.E
� p

2m

�/
�2
�
:

For any real number a, let x�a be the parabola
n�

1;
ch1

ch0
;

ch2

ch0

� ˇ̌
ˇ x� WD 1

2

� ch1

ch0

�2
� ch2

ch0
D a

o

in the
˚
1; ch1

ch0
; ch2

ch0

	
–plane. The point el

� p
2m

�
is defined to be the intersection of x� 1

2

and the line segment leC
� p

2m

�
e
�p�1

2m

� , and er
� p

2m

�
is defined to be the intersection

of x� 1
2

and the line segment leC
� p

2m

�
e
�pC1

2m

� .

Remark 1.5 In this paper we always use lPQ to denote the line segment with endpoints
P and Q, and use LPQ to denote the line through P and Q in the

˚
1; ch1

ch0
; ch2

ch0

	
–plane.

When three points P , Q and R are collinear, we may also write LPQR for the line to
indicate that these three points are collinear.

In fact, the definition of el and er has concrete geometric meaning. Let E be the
exceptional bundle E� p

2m

� . A character w on the line LeC
� p

2m

�
el
� p

2m

�
e
�p�1

2m

� satisfies
the equation

�.E; w/D �.w;E.�3//D 0:

Symmetrically, the line LeC
� p

2m

�
er
� p

2m

�
e
�pC1

2m

� is given by the equation

�.w;E/D �.E.3/; w/D 0

in the
˚
1; ch1

ch0
; ch2

ch0

	
–plane. As we will see later, these lines detect the existence of

morphisms between E and objects of character w .

In the
˚
1; ch1

ch0
; ch2

ch0

	
–plane, consider the open region below all the line segments

leC
� p

2m

�
el
� p

2m

� , ler
� p

2m

�
eC
� p

2m

� and the curve x� 1
2

. The boundary of this open region
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is a fractal curve consisting of line segments leC
� p

2m

�
el
� p

2m

� and ler
� p

2m

�
eC
� p

2m

� for all
dyadic numbers p

2m and fractal pieces of points on x� 1
2

. This curve is in the region
between x� 1

2
and x�1 .

Definition 1.6 We call this boundary curve the Le Potier curve in the
˚
1; ch1

ch0
; ch2

ch0

	
–

plane, and denote it by CLP .

The cone in KR.P
2/ spanned by the origin and CLP is defined to be the Le Potier cone,

denoted by ConeLP .

We say a character v 2 K.P2/ is not inside ConeLP if either ch0.v/ ¤ 0 and the
corresponding point zv is not above CLP in the

˚
1; ch1

ch0
; ch2

ch0

	
–plane, or ch0.v/D 0 and

ch1 > 0.

Remark 1.7 The line segments leC
� p

2m

�
el
� p

2m

� and ler
� p

2m

�
eC
� p

2m

� do not cover the
whole CLP ; the complement forms a Cantor set on x� 1

2
.

The picture for CLP in the
˚
1; ch1

ch0
; ch2

ch0

	
–plane is shown in Figure 2.

x�0

x� 1
2x�1

eC.0/

eC.1/

eC.2/

eC.3/

eC.�1/

eC.�2/

eC.�3/

eC��5
2

�
eC�

5
2

�

ch1
ch0O

ch2
ch0

Figure 2: The Le Potier curve CLP

Given the Le Potier curve, we can now state the numerical condition on the existence
of stable sheaves.
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Theorem 1.8 (Drezet, Le Potier) There exists a slope-semistable coherent sheaf with
character w D .ch0.> 0/; ch1; ch2/ 2 K.P2/ if and only if one of the following two
conditions hold:

(1) w is proportional to an exceptional character.

(2) The point
�
1; ch1

ch0
; ch2

ch0

�
is on or below CLP in the

˚
1; ch1

ch0
; ch2

ch0

	
–plane.

1.2 Geometric stability conditions

In this section, we follow [5; 11] and recall that the space of geometric stability
conditions on P2 is a eGLC.2;R/–principal bundle over a subspace GeoLP of the˚
1; ch1

ch0
; ch2

ch0

	
–plane. Another very good reference with more details is [29].

Definition 1.9 A stability condition � on Db.P2/ consists of a pair .Z;A/ such that:

� A is the heart of a t–structure on Db.P2/.

� The central charge Z is a linear map ZW Knum.Db.P2//!C .

� Z.E/ 2 f�� i� j � > 0; 0< � � 1g for all nonzero E 2A.

� Every nonzero object E 2A admits a finite Harder–Narasimhan filtration

0�E0 �E1 � � � �En DE;

uniquely determined by the property that each factor Fi WDEi=Ei�1 is semistable
and Arg.Z.F1// > Arg.Z.F2// > � � �> Arg.Z.Fn//.

Definition 1.10 We say a stability condition � D .Z;A/ satisfies the support property
if there exists a quadratic form on the vector space Knum.Db.P2//˝R such that:

� The kernel of Z in Knum.Db.P2//˝R is negative definite with respect to Q.

� For any � –semistable object E 2A, we have Q.ŒE�/� 0.

Remark 1.11 There are several equivalent definitions of the support property; we refer
to Appendix A in [8] and Section 4 in [11] for more details. The support property allows
the space of stability conditions to have nice topology and wall-crossing structures.

In some of the literature, different from our terminology, a stability condition is assumed
to satisfy the support property, otherwise it is called a prestability condition.

In applications to geometry, the following type of stability condition is always most
useful.
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Definition 1.12 A stability condition � on Db.P2/ is called geometric if it satisfies
the support property and all skyscraper sheaves k.x/ are � –stable of the same phase.
We denote the set of all geometric stability conditions by StabGeo.P2/.

In order to construct geometric stability conditions, we want to first introduce the
appropriate t–structure. Fix a real number s . A torsion pair of coherent sheaves on P2

is given by:

� Coh�s , the subcategory of Coh.P2/ generated (in the sense of extension) by
semistable sheaves of slope � s .

� Coh>s , the subcategory of Coh.P2/ generated by semistable sheaves of slope
> s and torsion sheaves.

� Coh#s WD hCoh�s Œ1�;Coh>si.
We define the geometric area in the

˚
1; ch1

ch0
; ch2

ch0

	
–plane to be the open set

GeoLP WD f.1; a; b/ j .1; a; b/ is above CLP and not on leeC for any exceptional eg:

Proposition–Definition 1.13 For a point .1; s; q/ 2 GeoLP , there exists a geometric
stability condition �s;q WD .Zs;q;Coh#s/ on Db.P2/ where the central charge is

Zs;q.E/ WD .�ch2.E/C q � ch0.E//C i.ch1.E/� s � ch0.E//:

In this case, Ker.Zs;q/ consists of the characters corresponding to the point .1; s; q/.
We write ��s;q

or �s;q for the phase function of �s;q .

For the proof that �s;q is indeed a geometric stability condition, we refer to [5, Corol-
lary 4.6; 11], which also work well for P2 . Here the phase function �s;q can also be
defined for objects in Coh#s as

�s;q.E/ WD 1
�

Arg.Zs;q.E//:

It is well-defined in the sense that it coincides with the phase function on �s;q –semistable
objects.

Remark 1.14 The definition of �s;q here is different from the usual one as in [2],
which is given as .Z0s;t ;Ps/ (see Section 1.5 for the explicit formulas). When q > s2

2
,

the central charge Zs;q has the same kernel as Z0s;q� s2

2
. Their formulas are slightly

different. The imaginary parts are the same, but the real parts differ by a multiple of
the imaginary part. We would like to use the version here because q� s2

2
is allowed to
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be negative, and the kernel of the central charge on the
˚
1; ch1

ch0
; ch2

ch0

	
–plane is clearly

.1; s; q/.

Remark 1.15 Given a point P D .1; s; q/ in GeoLP , we will also write �P , �P ,
CohP .P

2/ and ZP for the stability condition �s;q , the phase function �s;q , the tilt
heart Coh#s.P2/ and the central charge Zs;q , respectively.

Up to the eGLC.2;R/–action, geometric stability conditions are all of the form given
in Proposition–Definition 1.13.

Proposition 1.16 [11, Proposition 10.3; 5, Section 3] Let � D .Z;P..0; 1�// be
a geometric stability condition such that all skyscraper sheaves k.x/ are contained
in P.1/. Then the heart P..0; 1�/ is Coh#s for some real number s . The central
charge Z can be written in the form

�ch2Ca � ch1Cb � ch0;

where a; b 2C satisfy the following conditions:

� =a> 0 and =b==aD s .

� .1;=b==a; .<a=b==a/C<b/ is in GeoLP .

Thanks to the classification of characters of semistable sheaves on P2 in [18], this
property is proved in the same way as in cases of local P2 in [5] and K3 surfaces
in [11]. Since all discussions in this paper are invariant under the eGLC.2;R/–action,
geometric stability conditions will be identified with the corresponding points in GeoLP .
We will always visualize StabGeo.P2/ as GeoLP in this paper.

1.3 Potential walls and phases

In this section we collect some well-known and useful results about the potential walls.
Since our setup is slightly different from the usual one (see Remark 1.14), we give
statements and proofs for completeness. We hope this can also illustrate the advantage
of our setup.

Definition 1.17 A stability condition is said to be nondegenerate if it satisfies the
support property and the image of its central charge is not contained in any real line
in C . We write Stabnd for the space of nondegenerate stability conditions.

The kernel map for the central charges is well-defined on Stabnd :

KerW Stabnd! PR.KR.P
2//:
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Lemma 1.18 [10, Theorem 1.2] eGLC.2;R/ acts freely on Stabnd with closed orbits,
and

KerW Stabnd=eGLC.2;R/! PR.KR.P
2//

is a local homeomorphism.

Proof By [10, Theorem 1.2], Stabnd!HomZ.K.P2/;C/ is a local homeomorphism,
whose image lies in the subspace of nondegenerate morphisms in HomZ.K.P2/;C/.
When taking the quotient by GLC.2;R/, the space Homnd

Z .K.P
2/;C/=GLC.2;R/ can

be identified with the quotient Grassmannian Gr2.3/Š PR.KR.P
2// as a topological

space. The statement clearly follows.

We have the following description of the potential wall, ie the locus of stability condi-
tions for which two given characters are of the same slope.

Lemma 1.19 (potential walls) Let P D .1; s; q/ be a point in GeoLP , and let E

and F be two objects in CohP .P
2/ whose respective Chern characters v and w are

not zero. Then
ZP .E/ and ZP .F / are on the same ray

if and only if v , w and P are collinear in the projective
˚
1; ch1

ch0
; ch2

ch0

	
–plane.

Proof Z.v/ and Z.w/ are on the same ray if and only if Z.av� bw/D 0 for some
a; b 2 RC . This happens only when v , w and Ker Z are collinear in the projective˚
1; ch1

ch0
; ch2

ch0

	
–plane.

Note that the statement holds even when v and w are torsion, ie when

ch0.v/D ch0.w/D 0:

We introduce some notation for lines and rays on the (projective)
˚
1; ch1

ch0
; ch2

ch0

	
–plane.

Consider objects E and F such that v.E/ and v.F / are not zero, and let �s;q D �P

be a geometric stability condition. Let LEF be the straight line on the projective˚
1; ch1

ch0
; ch2

ch0

	
–plane across v.E/ and v.F /. Write LEP , as well as LE� , for the line

across v.E/ and P . When v.E/ and v.F / are not on the line at infinity, lEF is the
line segment from v.E/ to v.F / on the

˚
1; ch1

ch0
; ch2

ch0

	
–plane. HP is the right half-

plane with either ch1

ch0
> s , or ch1

ch0
D s and ch2

ch0
> q . Write lC

PE
for the ray along LPE

which starts from P and is completely contained in HP . Let LE˙ be the vertical
wall LE.0;0;1/ . Let lEC be the vertical ray along LE.0;0;1/ from E going upward,
and lE� the vertical ray along LE.0;0;�1/ from E going downward.
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The following lemma translates the comparison of slopes into a geometric comparison
of the positions of two rays. This simplifies a lot of computations and will be used
throughout the paper.

Lemma 1.20 Let P D .1; s; q/ be a point in GeoLP , and let E and F be two objects
in Coh#s . The inequality

�s;q.E/ > �s;q.F /

holds if and only if the ray lC
PE

is above lC
PF

.

Proof By the formula of Zs;q , the angle between the rays lC
PE

and lP� at the point P

is ��s;q.E/. The statement follows from this observation.

�
E

F �

P�

lC
PF

lC
PE

w
ch1
ch0O

ch2
ch0 x�D 0

Figure 3: Comparing the slopes at P

An important problem is to study the existence of stable objects with respect to given
stability condition and character. This will be solved in several steps in this paper. Now
we can make the first observation.

Proposition 1.21 Let E 2 Coh#s be a �s;q –stable object. Then one of the following
cases holds:

(1) The rank satisfies ch0.E/D 0, or the point v.E/ is not in GeoLP .
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(2) There exists a slope-semistable sheaf F such that in the
˚
1; ch1

ch0
; ch2

ch0

	
–plane, the

point v.F / is above LEP and between the vertical walls lEC and lPC .

In either case, the line segment lEP is not entirely contained inside GeoLP . In
particular, at least one of v.E/ and .1; s; q/ is outside the negative discriminant
area x�<0 .

Proof Assume that case (1) does not hold; in other words, ch0.E/¤ 0 and v.E/ is
inside GeoLP . We need to show that case (2) must happen. When ch0.E/ > 0, we
have that H0.E/ is nonzero. Let F D H0.E/min be the last quotient factor in the
Harder–Narasimhan filtration of H0.E/. Then F is a slope-semistable sheaf, so v.F /
is outside GeoLP . Let D be H�1.E/ and G be the kernel of H0.E/! F . We may
compare the slopes of E and F :

ch1.E/

ch0.E/
D ch1.F /C ch1.G/� ch1.D/

ch0.F /C ch0.G/� ch0.D/
� ch1.F /

ch0.F /
:

The inequality holds because when D and G are nonzero, we have

ch1.D/

ch0.D/
<

ch1.F /

ch0.F /
<

ch1.G/

ch0.G/
:

Note here that the equality
ch1.E/

ch0.E/
D ch1.F /

ch0.F /

holds only when D and G are both zero. In this case, v.E/D v.F /, hence v.F / is
inside GeoLP , which contradicts our assumption. Therefore, we have a strict inequality,
ie v.F / is to the left of v.E/. As F 2 Coh>s , we have that P is to the left of v.F /.
In addition, as �s;q.E/ < �s;q.F /, by Lemma 1.20 F is above lPE , so case (2) holds.

When ch0.E/< 0, let F DH�1.E/max be the subsheaf of H�1.E/ with the maximum
slope ch1

ch0
. By the same argument, v.F / is to the right of v.E/. As F 2 Coh�s , we

have that v is to the left of LP˙ or on the ray lP� . In addition, �s;q.F Œ1�/ < �s;q.E/,
so by Lemma 1.20, F is above lEP . As lF� does not intersect GeoLP , it follows that
F is to the left of LP˙ .

For the last statement, the region x�<0 is convex, so for any v.E/ and P D .1; s; q/ that
are both in x�<0 , the line segment lEP is also in x�<0 , which is contained in GeoLP .

This induces several useful corollaries. First we get the stability of exceptional bundles
for some stability conditions.
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Corollary 1.22 Let E be an exceptional bundle, and PD .1; s; q/ be a point in GeoLP .
Then E is �s;q –stable if s < ch1

ch0
.E/ and lEP is contained in GeoLP (not including

the endpoints). In the homological shifted case, EŒ1� is �s;q –stable if s � ch1

ch0
.E/ and

lEP is contained in GeoLP .

Proof We will prove the first statement. If E is not �s;q –stable, then there is a
�s;q –stable object F destabilizing E . We have the exact sequence

0! H�1.F /! H�1.E/! H�1.E=F /! H0.F /! H0.E/! H0.E=F /! 0:

Since H�1.E/D 0, we see that H�1.F /D 0 and v.F / lies between the vertical lines
LP˙ and LE˙ . Since �s;q.F / > �s;q.E/, by Lemma 1.20 v.F / is in the region
bounded by lPC , lPE and lEC . As lEP is contained in GeoLP , the line lFP is also
contained in GeoLP . By Proposition 1.21, F is not �s;q –stable, which is a contradiction.
The second statement can be proved similarly.

Remark 1.23 The condition that lEP be contained in GeoLP is also necessary. Any
ray starting from v.E/ may only intersect CLP at most once, and only intersect with
finitely many leeC segments. Suppose that s < ch1

ch0
.E/, and lEP intersects some leeC

segments; we may choose the one with minimum ch1

ch0
–coordinate, and denote it by F .

The segment lFP is contained in GeoLP , and �s;q.F / > �s;q.E/. By Corollary 1.22,
F is �s;q –stable. By [20], Hom.F;E/¤ 0 when ch1

ch0
.F / < ch1

ch0
.E/. This shows that

E is not �s;q –stable.

The second corollary roughly says that when we vary the stability condition in GeoLP ,
stable objects remain stable if the slopes do not change.

Corollary 1.24 Let �s;q be a geometric stability condition and F a � –stable object.
Then for any geometric stability condition � on the line LF� such that l�� is contained
in GeoLP , the object F is also � –stable.

1.4 Algebraic stability conditions

The structure of Db.P2/ can be studied via full strong exceptional collections. First
recall the following definition.

Definition 1.25 An ordered set E D fE1;E2;E3g is an exceptional triple in Db.P2/

if E is a full strong exceptional collection of coherent sheaves in Db.P2/.
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Remark 1.26 The exceptional triples in Db.P2/ have been classified in [20] by
Gorodentsev and Rudakov. In particular, up to a cohomological shift, each collection
consists of exceptional bundles on P2 . In terms of dyadic numbers, their labels are
given by one of the following three cases (p is an odd integer when m¤ 0):

n
p�1

2m
;

p

2m
;

pC1

2m

o
;

n
p

2m
;

pC1

2m
;

p�1

2m
C 3

o
;

n
pC1

2m
� 3;

p�1

2m
;

p

2m

o
:

We recall the construction of algebraic stability conditions associated to an exceptional
triple.

Proposition 1.27 [28, Section 3] Let E be an exceptional triple in Db.P2/. For any
positive real numbers m1 , m2 , m3 and real numbers �1 , �2 , �3 such that

�1 < �2 < �3 and �1C 1< �3;

there exists a unique stability condition � D .Z;P/ such that

(1) the Ej are � –stable of phase �j ;

(2) Z.Ej /Dmj e�i�j .

Definition 1.28 Let E be an exceptional triple fE1;E2;E3g in Db.P2/, and write
‚E for the space of all stability conditions in Proposition 1.27. ‚E is parametrized by

f.m1;m2;m3; �1; �2; �3/ 2 .R>0/
3 �R3 j �1 < �2 < �3; �1C 1< �3g:

We consider the following two subsets of ‚E :

� ‚O
E WD f� 2‚E j �2��1 < 1, �3��2 < 1g.

� ‚Geo
E WD‚E \StabGeo .

We denote by StabAlg the union of ‚E for all exceptional triples in Db.P2/. A stability
condition in StabAlg is called an algebraic stability condition.

Let E D fE1;E2;E3g be an exceptional triple. We write ei for the points �.Ei/

on the
˚
1; ch1

ch0
; ch2

ch0

	
–plane. Let TRE be the inner points in the triangle bounded by

le1e2
, le2e3

and le3e1
in the

˚
1; ch1

ch0
; ch2

ch0

	
–plane. Let e�i be the points associated to ei

defined in Section 1.1, where i D 1; 2; 3 and � could be C, l or r . The points eC
1

,
er

1
, e2 and e3 are on the line �.�;E1/D 0, and eC

3
, el

3
, e2 and e1 are on the line

�.E3;�/D 0. Let MZE be the inner points of the region bounded by the line segments
l
e1e
C
1

, leC
1

e2
, le2e

C
3

, leC
3

e3
and le3e1

.
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x�0

�e1

�e2

�e3

�
eC

1

�
eC

3

�
er

1

�
el

3 ch1
ch0

O

ch2
ch0

Figure 4: TRE and MZE

The next proposition explains how the algebraic part ‚E “glues” onto the geometric
part StabGeo .

Proposition 1.29 Let E be an exceptional triple. Then we have:

(1) ‚O
E D eGLC.2;R/ � f�s;q 2 StabGeo.P2/ j .1; s; q/ 2 TREg.

(2) ‚Geo
E D eGLC.2;R/ � f�s;q 2 StabGeo.P2/ j .1; s; q/ 2MZEg.

In particular, ‚O
E is contained in ‚Geo

E .

Proof We will first prove the second statement. As MZE is contained in GeoLP , by
Corollary 1.22 E2 or E2Œ1� is �s;q –stable for any point .1; s; q/ in MZE . As eC

1
, er

1
,

e2 and e3 are collinear on the line of �.�;E1/D 0, for any point P in MZE , we have
that lE3P is contained in GeoLP . By Corollary 1.22, E3 is stable for any stability
conditions in MZE . For the same reason, E1Œ1� is stable for any stability conditions
in MZE .

For any .1; s; q/ in MZE , E3 and E1Œ1� are in the heart Coh#s . By Lemma 1.20,
�s;q.E1Œ1�/ < �s;q.E3/, hence

�s;q.E3/��s;q.E1/ > 1:

When s � ch1

ch0
.E2/, we have that E3 and E2Œ1� are in the heart Coh#s , and

�s;q.E3/��s;q.E2/ > 0:
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As .1; s; q/ is above Le1e2
, by Lemma 1.20 we also have

�s;q.E2/��s;q.E1/ > 0:

When s < ch1

ch0
.E2/, a similar argument yields the same inequalities for the �s;q.Ei/.

By Proposition 1.27, we get the embedding

Ker�1.MZE/\StabGeo ,!‚E \Stabnd Ker��! P.KR.P
2//:

For .1; s; q/ outside the area MZE , by Lemma 1.20 at least one of the inequalities

�s;q.E2/� �s;q.E1/; �s;q.E3/� �s;q.E2/ or �s;q.E3/��s;q.E1/� 1

holds. Hence �s;q is not contained in ‚E , the second statement of the proposition
holds.

For statement (1), as �2��1 is not an integer, ‚O
E 2 Stabnd . The image of Ker.‚O

E /

is in TRE . By the previous argument, we also have the embedding

.Ker�1.TRE/\StabGeo/=eGLC.2;R/ ,!‚O
E =

eGLC.2;R/ Ker��! TRE � P.KR.P
2//:

The map Ker is a local homeomorphism and the composition is an isomorphism. Since
‚O

E is path-connected, the two maps are both isomorphisms. Thus we get the first
statement of the proposition.

1.5 Remarks on the
˚
1; ch1

ch0
; ch2

ch0

	
–plane

In this section, we want to summarize some properties of our
˚
1; ch1

ch0
; ch2

ch0

	
–plane from

previous sections. The aim is to help the readers gain a better understanding, especially
those who are already familiar with the classical .s; t/–upper half-plane model.

The setup of the space of stability conditions in the paper is different from the classical
.s; t/–upper half-plane model. Recall that we visualize a geometric stability condition
as the kernel of its central charge in K.P2/˝R. In particular, when the central charge
is nondegenerate, which is always the case for geometric stability conditions, the kernel
is a straight line in K.P2/˝R. Further taking the projectivization of K.P2/˝R,
the kernel of the central charge is a point on P.KR.P

2//. For a geometric stability
condition to satisfy the Harder–Narasimhan condition, the kernel of the central charge
has to be separate and away from all the slope-stable characters and torsion characters.
In particular, the kernel can only be in the area GeoLP bounded by the Le Potier
curve. The eGLC.2;R/ action does not affect the kernel of the central charge, and the
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space of the geometric stability condition is realized as a eGLC.2;R/–principal bundle
over GeoLP .

For a point in GeoLP with coordinate .1; s; q/, we may write down a stability condition
�s;q D .Zs;q;Ps/ with heart Ps..0; 1�/D Coh]s and central charge

Zs;q D�.ch2�q � ch0/C i.ch1�s � ch1/

as in Proposition–Definition 1.13. In many other papers, a family of geometric
stability conditions is parametrized by .s; t/ on the upper half-plane H via a map
� 0s;t D .Z0s;t ;Ps/, with the same heart Ps..0; 1�/DCoh]s and a different central charge

Z0s;t D�
�
chs

2C1
2
t2 � ch0

�C i t chs
1 :

Up to the eGLC.2;R/ action, � 0s;t is the same as �s; 1
2
.s2Ct2/ . Note that under this

correspondence, the .s; t/–upper half-plane H is mapped to �<0 in the
˚
1; ch1

ch0
; ch2

ch0

	
–

plane in P.KR.P
2//.

Since this different convention may upset some readers, we want to briefly illustrate
some advantages of our approach, which will become more clear later in the paper.
One most important benefit is that the characters and the stability conditions are on
the same space. As seen in Section 1.3, the potential wall of w and another Chern
character v is the straight line across these two points on the

˚
1; ch1

ch0
; ch2

ch0

	
–plane, or

strictly speaking, the line segment in GeoLP . On the usual .s; t/–upper half-plane, the
potential wall is the semicircle with two endpoints Lvw \ x�0 . Let �P be a stability
condition and w a Chern character on the

˚
1; ch1

ch0
; ch2

ch0

	
–plane; the argument of ZP .w/

is the angle bounded by LP� and lPw . We may compare the slopes of different Chern
characters by their positions on the

˚
1; ch1

ch0
; ch2

ch0

	
–plane, and this reduces a huge amount

of computation. This allows us to deal with several Chern characters and stability
conditions simultaneously.

Moreover, in our setup, the divisor cone can be identified with the
˚
1; ch1

ch0
; ch2

ch0

	
–plane.

For a Chern character w , one may draw its PicR.M
s
� .w// as an HB–coordinate�

H vertical axis; B with slope ch1

ch0

�
with origin at w on the

˚
1; ch1

ch0
; ch2

ch0

	
–plane;

the actual walls are the base locus decomposition walls. The Donaldson morphism
identifies w? with the divisor cone of Ms

GM.w/. Let v belong to w? . Then the
divisor given by v via the Donaldson morphism corresponds to the wall �.�; v/D 0

on the
˚
1; ch1

ch0
; ch2

ch0

	
–plane. The picture for the Chern character .4; 0;�15/ in Figure 1

can now be interpreted from this new viewpoint.
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Another advantage of the
˚
1; ch1

ch0
; ch2

ch0

	
–plane picture is that the space GeoLP is larger

than the usual upper half-plane. As explained previously, up to the eGLC.2;R/ action,
GeoLP is the whole space of geometric stability conditions. The algebraic stability
conditions (quiver regions) for exceptional triples are also easier to understand on
the

˚
1; ch1

ch0
; ch2

ch0

	
–plane than on the upper half-plane. The quiver region with heart

hE1Œ2�;E2Œ1�;E3i in the
˚
1; ch1

ch0
; ch2

ch0

	
–plane is the area that is below le1e3

and above
l
e2e
C
1

and l
e2e
C
3

. Since Chern characters of exceptional bundles are usually not on the
parabola x�0 (this is the case only for line bundles), the endpoints of the semicircular po-
tential walls of them involve complicated computation. On the .s; t/–upper half-plane,
only quiver regions for heart hO.k�1/Œ2�;O.k/Œ1�;O.kC1/i can be neatly described.
In this paper, we need the general quiver regions (eg for heart hO.1/Œ2�; T Œ1�;O.2/i),
which are important to decide the stable area for exceptional characters, and are useful
for understanding the effective and movable cone boundary of the Ms

� .w/. So the˚
1; ch1

ch0
; ch2

ch0

	
–plane seems to be a suitable choice.

1.6 First constraint on the last wall

For a character, it is important to study the set of stability conditions for which there
exist stable objects of the given character. We call this set the stable area of the
character. In this section, we give a first constraint on the stable area.

Proposition 1.30 Let w be a Chern character such that ch0.w/ > 0 and x�.w/ > 0,
and let E be an exceptional bundle such that ch1.E/

ch0.E/
< ch1.w/

ch0.w/
. Suppose w is above the

line Lel eC in the
˚
1; ch1

ch0
; ch2

ch0

	
–plane. Then for any point P 2GeoLP below LwE and

to the left of LE˙ , there is no �P –semistable object F with Chern character w .

Remark 1.31 When ch0.w/ D 0, there is a similar statement. The conditions are
replaced by “ch1.w/ > 0” and “ ch2

ch1
.w/ is greater than the slope of Lel eC ”. The proof

is similar and left to the reader.

Proof By the assumptions and Corollary 1.24, we may assume that P is in MZE for an
exceptional triple E DfE1;E2;E3g such that ch1

ch0
.E3/� ch1

ch0
.E/ and e3 is above lPw .

By an easy geometric property of CLP , the character w is also above Lel
3
e
C
3

. Now E3

satisfies the assumptions; without loss of generality, we may assume that E3 DE .

We argue by contradiction. Assume F is a �P –stable object with Chern character w .
As �P is below LwE , by Lemma 1.20 we have

�P .F / < �P .E/:
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Since E and F are both �P –semistable, we have

Hom.E;F /D 0:

On the other hand, since P is in MZE , it is to the right of LE.�3/˙ . Therefore,
E.�3/Œ1� and F are in the same heart, and we have

.Hom.E;F Œ2�//� D Hom.F;E.�3//D Hom.F;E.�3/Œ1�Œ�1�/D 0:

The vanishing of the two Homs implies �.E;F / � 0. But by the assumptions that
ch0.F /� 0 and that w is above the line Lel eC , which is given by �.E;�/D 0, we
have �.E;F / > 0. This leads to a contradiction.

Remark 1.32 The symmetric statement for w with ch0.w/ < 0 above LeCer and for
E with larger ch1

ch0
can be proved in the same way.

We have the following result on characters of Bridgeland stable objects, generalizing
Theorem 1.8.

Corollary 1.33 Fix a character w . Suppose that there exist �s;q –semistable objects
of character w for some geometric stability condition �s;q . Then w either does not lie
inside ConeLP , or is proportional to an exceptional character.

Proof Suppose w is inside ConeLP and not proportional to any exceptional character.
By Proposition 1.21 there is an exceptional character e such that e is above the
line segment lw� and between vertical walls Lw˙ and L�˙ . We may assume that
ch1.w/
ch0.w/

> s ; then w is above Lel eC . Now by Proposition 1.30, since � is below Lwe

and to the left of Le˙ , there is no � –semistable object of character w , which is a
contradiction.

We also want to introduce the following important notion.

Definition 1.34 Let L be a straight line in the
˚
1; ch1

ch0
; ch2

ch0

	
–plane. Suppose that L

intersects x��0 along a line segment with two endpoints .1; f1;g1/ and .1; f2;g2/.
The ch1

ch0
–length of L\ x��0 is defined to be jf1�f2j.

In the .s; t/–upper half-plane model in [2], the ch1

ch0
–length of LEF \ x��0 is the

diameter of the semicircular potential wall of E and F . This is a measure of the size
of the wall, and we have the following result, which says that for walls of small length,
there exists no stable object.
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Corollary 1.35 Let w 2 K.P2/ be a nonzero character not inside the Le Potier
cone ConeLP , and let � be a geometric stability condition inside the cone x�<0 . When
the ch1

ch0
–length of Lw� \ x��0 is less than or equal to 1, there is no � –stable object F

of character w .

Proof We show the case when ch0.w/ � 0; the other case can be proved similarly.
Among all integers k � ch1.w/

ch0.w/
, let c be the largest one such that w is strictly above

the line LO.c�1/O.c/ . Note that O.cC 1/C is on the line LO.c�1/O.c/ . Since w is
not inside the Le Potier cone, we have ch1.w/

ch0.w/
� c C 1. Now w is not above the

line LO.c/O.cC1/ , so the segment LO.cC1/w \ x��0 has ch1

ch0
–length greater than or

equal to that of LO.c/O.cC1/ , which is 1. By assumption, � is inside the cone x�<0 ,
and it must lie on or below the line LO.cC1/w and to the left of LO.cC1/˙ . Note that
LO.c�1/O.c/ is just LO.cC1/CO.c/l . By Proposition 1.30, there is no � –stable object
of character w .

Remark 1.36 If F is � –stable, in the proof we can see that below L�F there exist
characters of at least two line bundles O.c � 1/ and O.c/.

2 Wall-crossing and canonical line bundles

In this section, we prove our first main theorem: the wall-crossing in stability-condition
space induces the MMP for moduli of sheaves on P2 . In Section 2.1, we review the
construction of the moduli space of semistable objects as moduli of quiver representa-
tions. In Section 2.2, we prove the main technical result on vanishing of certain Ext2 .
In Section 2.3, the generic stability of extension objects is proved. This will be used in
the proof of the irreducibility of moduli of stable objects, which occupies Section 2.4.
We rephrase some results from variation of GIT in our situation in Section 2.5, and use
this to prove our main theorem in Section 2.6.

2.1 Construction of the moduli space

In this section, we review the construction of the moduli space of semistable objects
on P2 with a given character via geometric invariant theory. Let w be a Chern character
and �s;q be a geometric stability condition; we write M

s.ss/
�s;q

.w/ for the moduli space
of �s;q –(semi)stable objects in Coh#s with character w . The line Lw�s;q

passes
through MZE for some exceptional triple E . We may choose a point P in MZE for
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some E such that the line segment lP�s;q
is contained in GeoLP . By Corollary 1.24,

the moduli space Mss
�s;q

.w/ is the same as Mss
�P
.w/.

Let E be the exceptional triple consisting of E1 , E2 and E3 , and let AE be the heart
hE1Œ2�, E2Œ1�, E3i. By Proposition 1.29, E1 , E2 and E3 are �P –stable. We write
the phase �P .Ei/ of Ei at �P as �i ; then �1 < �2 < �3 and �1< �1 < �3� 1< 0.
There is a real number t , 0< t <1, such that �2<�1�t <�1<�2�t <0<�3�t <1.
Let the heart CohP Œt � be generated by �P –stable objects with phases in .t; tC1�. Then
CohP Œt � contains �P –stable objects E1Œ2�, E2Œ1� and E3 . By Lemma 3.16 in [27],
CohP Œt �DAE . For any �P –stable object F in CohP of character w , the phase �P .F /

only depends on w , and is denoted by �P .w/. When �P .w/� t > 0, we have that F

is an object in AE . In particular, when F is a coherent sheaf, there is a “resolution”
for F given as

0!E
˚n1

1
!E

˚n2

2
!E

˚n3

3
! F ! 0:

The character EnD .n1; n2; n3/ is the unique triple such that

n1zv.E1/� n2zv.E2/C n3zv.E3/D w:
When �P .w/� t � 0, we have that F Œ1� is an object in AE . When F is a coherent
sheaf, it appears as the cohomological sheaf at the middle term of

E
˚n1

1
!E

˚n2

2
!E

˚n3

3
:

The character EnD .n1; n2; n3/ is the unique triple such that

n1zv.E1/� n2zv.E2/C n3zv.E3/D�w:
The following easy lemma is useful to determine whether F or F Œ1� is in AE .

Lemma 2.1 Let P be a point in MZE , and F be a �P –stable object in Coh#P . If
LPF is above e3 , then F is in the heart AE . If LPF is above e1 , then F Œ1� is in the
heart AE .

Proof By Lemma 1.20, when LPF is above e3 we have �P .F /��P .E3/. Therefore,
�P .F /� t > 0 and F is in AE . When LPF is above e1 , we have �P .F / < �P .E1Œ1�/.
Therefore, �P .F /� t < �P .E1Œ1�/� t < 0 and F is in AE Œ�1�.

Remark 2.2 The case when P is in TRE and LPF is below both e1 and e3 seems
to be missing from the lemma. However, in this case, by Proposition 1.30, F is not
�P –stable.
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�
w

� �P 0

Figure 5: F Œ1� is in AE and F is in AE0 .

We define QE D .Q0;Q1/ to be the quiver associated to the exceptional triple E . The
set Q0 has three vertices v1 , v2 and v3 . The arrow set Q1 consists of hom.E1;E2/

arrows from v1 to v2 and hom.E2;E3/ arrows from v2 to v3 . Let EnD .n1; n2; n3/

be a dimension character for QE , and Hk be a complex linear space of dimension k .
Then the representation space Rep.QE ; En/ can be identified with

f.I;J / jI 2Hom.Hn1
;Hn2

/˝Hom.E1;E2/; J 2Hom.Hn2
;Hn3

/˝Hom.E2;E3/g:

We denote the composition map between the Ei by

˛E W Hom.E1;E2/˝Hom.E2;E3/! Hom.E1;E3/:

This gives a relation of the quiver QE , and we have the space of quiver representations
with relation

Rep.QE ; En; ˛E/ WD f.I;J / 2 Rep.QE ; En/ j J ı I 2 Hom.Hn1
;Hn3

/˝ ker˛Eg:

As a subvariety of Rep.QE ; En/, the space Rep.QE ; En; ˛E/ is determined by JI D 0,
which contains n1n3 hom.E1;E3/ equations.
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The category AE is equivalent to the category of finite-dimensional modules over the
path algebra (QE ; ˛E ). Any object F in AE with character

n1zv.E1/� n2zv.E2/C n3zv.E3/

can be written as a representation KF (unique up to the GEn –action) in Rep.QE ; En; ˛E/.

Definition 2.3 Let K D .I;J / and K 0 D .I 0;J 0/ be two objects in Rep.QE ; En; ˛E/
and Rep.QE ; En0; ˛E/, respectively. We introduce notation for the following sets of
homomorphisms:

Homi.K ;K 0/ WD
M

j

HomO.Hnj˝Ej ;Hn0
jCi
˝EjCi/:

Here Hni
and Hn0

i
are defined to be the zero space when i ¤ 0; 1; 2. The derivatives

d0 and d1 are linear maps defined by

d0W Hom0.K;K 0/! Hom1.K;K 0/; .f0; f1; f2/ 7! .I 0ıf0�f1ıI;J 0ıf1�f2ıJ /;
d1W Hom1.K;K 0/! Hom2.K;K 0/; .g1;g2/ 7! .J 0ıg1Cg2ıI/:

Let F and G be two objects in AE , and let KF and KG be their representations
in Rep.QE ; ˛E/. The Exti groups of F and G can be computed via KF and KG .

Lemma 2.4 The Ext�.F;G/ groups are the cohomology of the complex

Hom0.KF ;KG/
d0�!Hom1.KF ;KG/

d1�!Hom2.KF ;KG/:

In particular,

ker d0 ' Hom.F;G/; Hom2.KF ;KG/=im d1 ' Ext2.F;G/:

Let E� be a weight character for objects in Rep.QE ; En/; in particular, En � E� D 0. An
object K in Rep.Q; En/ is E�–(semi)stable if and only if for any nonzero proper sub-
representation K 0 of K with dimension character En0 < En, we have En0 � E� <.�/ 0.

Now we want to relate Bridgeland stability of objects to King stability of quiver
representations. Let L be a line on the

˚
1; ch1

ch0
; ch2

ch0

	
–plane not at infinity. Suppose L

intersects le1e3
for an exceptional triple E D fE1;E2;E3g. Let f be a linear function

with variables ch0 , ch1 and ch2 such that the zero locus of f is L. Moreover we
assume that f .zv.E1// is positive. The weight character E�L;E is given, up to a positive
scalar, by �

f .zv.E1//;�f .zv.E2//; f .zv.E3//
�
:
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Lemma 2.5 Let F be an object in AE and P be a point in MZE such that LFP

intersects le1e3
. Then F (or F Œ�1�) is �P –(semi)stable if and only if KF is E�LFP ;E –

(semi)stable.

Proof First we want to modify the stability condition in a way that the central charges
of the exceptional bundles are better behaved, and the weight character remains the
same. Since LFP intersects le1e3

, by Corollary 1.24 we may assume P is in the
triangle area TRE . The central charges of objects E1Œ2�, E2Œ1� and E3 are

ZP .E1Œ2�/D�ch2.E1/C q ch0.E1/C .ch1.E1/� s ch0.E1//i;

ZP .E2Œ1�/D ch2.E2/� q ch0.E2/� .ch1.E2/� s ch0.E2//i;

ZP .E3/D�ch2.E3/C q ch0.E3/C .ch1.E3/� s ch0.E3//i:

There is a suitable real number 0< t<1 such that the new central charge Z�
P
WDei� tZP

maps E1Œ2�, E2Œ1� and E3 to the upper half-plane in C .

Now we can rewrite the stability condition in terms of the weight character. Write

EZ�P WD
�
Z�P .E1Œ2�/;Z

�
P .E2Œ1�/;Z

�
P .E3/

�D Ea�C Eb�i

for two real vectors Ea� and Eb� . The object F is Z�
P

–(semi)stable if and only if for
any nonzero proper subobject F 0 in AE ,

Arg Z�P .F
0/ < .�/ Arg Z�P .F /:

In other words, supposing the dimension vector of KF is EnD .n1; n2; n3/, then for
any nonzero proper subrepresentation KF 0 with dimension vector En0 ,

(2-1) Arg En0 � EZ�P < .�/Arg En � EZ�P :

Let E�� be the vector

�.Eb� � En/Ea�C .Ea� � En/Eb�:

Since each factor of Eb� is nonnegative, the inequality (2-1) holds if and only if

En � Ea�
En � Eb�

< .�/ En
0 � Ea�
En0 � Eb�

;

if and only if En0 � E�� < .�/ 0.
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We can also write EZP WD
�
ZP .E1Œ2�/;ZP .E2Œ1�/;ZP .E3/

� D EaC Ebi for two real
vectors Ea and Eb . As Z�

P
D ei� tZP , the character E� WD .Eb � En/Ea� .Ea � En/Eb is the same

as E�� .
At last we need to show that E� is E�LFP ;E up to a positive scalar. Let f be the linear
function

f .ch0; ch1; ch2/ WD .Ea � En/.ch1�s ch0/� .Eb � En/.�ch2Cq ch0/:

The zero locus of f contains P because f .1; s; q/D 0. We also have

f .zv.F //D f .n1zv.E1/� n2zv.E2/C n3zv.E3//D .Ea � En/.Eb � Ea/� .Eb � En/.Ea � Eb/D 0:

Therefore, the zero locus of f also contains v.F /.

It is easy to check that

.f .v.E1//;�f .v.E2//; f .v.E3///

is the vector E� . Since P is above the line LE1E2
, we have �P .E2Œ1�/<�P .E1Œ2�/ and

the determinant satisfies det
�a1

b1

a2

b2

�
< 0. Similarly, we have det

�a1

b1

a3

b3

�
< 0. Therefore,

the first factor of E�� , which is

�det
h
a1 a2

b1 b2

i
n2� det

h
a1 a3

b1 b3

i
n3;

is always positive. So f .v.E1// > 0.

Now f satisfies the desired properties, and induces the weight character E� . Any other
f satisfying the same properties induces the same character up to a positive scalar.

Remark 2.6 By construction, the character E�LFP ;E (up to a positive scalar) only
depends on the wall L and not the position of P .

To conclude the construction of the moduli space of � –stable objects via geometric
invariant theory, we summarize the previous notation as follows. Let w be a character
and �P a geometric stability condition. Suppose P is in MZE for some exceptional
triple E D hE1;E2;E3i such that LPw intersects lE1E3

. We assume that w or �w
can be written as n1zv.E1/� n2zv.E2/C n3zv.E3/ for a positive-dimension character
EnwD .n1; n2; n3/. Let GEn be the group GL.Hn1

/ � GL.Hn2
/ � GL.Hn3

/ acting
naturally on the spaces Rep.QE ; Enw; ˛E/ and Rep.QE ; Enw/, with stabilizer containing
the scalar group C� .
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Proposition 2.7 Adopting notation as above, the moduli space Mss
� .w/ or Mss

� .�w/
of �P –semistable objects in Coh]P can be constructed as the GIT quotient space

Rep.QE ; Enw; ˛E/==det E�Lw�;E
.GEnw=C

�/

D Proj
M

m�0

CŒRep.QE ; Enw; ˛E/�GEnw=C�; detm E�Lw�;E
:

Proof By the previous discussion and Lemma 2.5, the moduli space Mss
� .w/ or

Mss
� .�w/ parametrizes the E�

Lw� ;E
–semistable objects in AE that have dimension

character Enw . By King’s criterion [23, Proposition 3.1], K in Rep.QE ; Enw; ˛w/ is
E�Lw� –semistable if the point of K in the space Rep.QE ; Enw/ is detE�Lw� –semistable
with respect to the GEnw=C

�–action. The map

CŒRep.QE ; Enw/�G;detm E�

! �
CŒRep.QE ; Enw/�=I˛E

�G;detm E� DCŒRep.QE ; Enw; ˛w/�G;detm E�

is surjective because the group GDGEnw=C
� is semisimple. Therefore, the relation ˛E

does not affect the stability condition. In other words, a point K is detE�Lw� –semistable
with respect to the GEnw=C

�–action on the space Rep.QE ; Enw/ if and only if it is so
on the space Rep.QE ; En; ˛E/. As explained by Ginzburg [19, Chapter 2.2], the moduli
space is constructed as the GIT quotient in the proposition.

Now we have the following consequence on the finiteness of actual walls.

Proposition 2.8 (1) Let w be a character in K.P2 ). Then there are only finitely
many actual walls for Mss

� .w/.

(2) Suppose ch0.w/� 0. Then for any s < ch1

ch0
.w/ and q large enough (depending

on s ), the moduli space M
s.ss/
�s;q

.w/ is the same as the moduli space M
s.ss/
GM .w/

of Simpson (semi)stable coherent sheaves.

Proof By Corollary 1.35, we only need to consider the region from the vertical wall
to the tangent line of x�0 . We may choose finitely many quiver regions MZE such
that each ray from w contained in this region passes through at least one MZE . In
each MZE , there are finitely many walls, because there are only finitely many dimension
vectors of possible destabilizing subobjects.

The second statement is a consequence of the first statement and the standard fact that
�s;q tends to the Simpson stability condition when q tends to infinity.
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2.2 The Ext2 vanishing property

In this section we prove the most important technical lemma. It is about the vanishing
property of Ext2 of � –stable objects. This property is trivial in the slope-stable situation
by Serre duality. But it is more involved in the Bridgeland stability situation since the
objects may not be in the same heart.

Lemma 2.9 Let �P be a geometric stability condition with P in x�<0 , and let E

and F be two �P –stable objects in Coh]P . Suppose P , v.E/ and v.F / are collinear.
Then

Hom.E;F Œ2�/D Hom.F;EŒ2�/D 0:

Proof We divide the proof into two cases.

Case 1 (at least one of zv.E/ and zv.F / is an exceptional character) Assume that
zv.E/ is exceptional. Suppose the dyadic number corresponding to zv.E/ is p

2q , and let
E1 and E3 be exceptional bundles corresponding to dyadic numbers p�1

2q and pC1
2q

respectively. Then Hom.E1;E ) and Hom.E;E3 ) are both nonzero. As E is � –stable,
lE� does not intersect le1e

C
1

nor le3e
C
3

, otherwise this contradicts Lemma 1.20. We
may assume that � is in MZE , where E D fE1;E;E3g. As F has the same phase
as E at � , we have thatF Œ1� is in AE . Since

Hom.EŒ1�;E1Œ2C s�/D 0 for all s 2 Z;

Hom.EŒ1�;EŒ1C s�/D 0 for all s ¤ 0;

Hom.EŒ1�;E3Œs�/D 0 for all s ¤ 1;

we get that Hom.EŒ1�;GŒs�/D 0 for any object G in AE when s¤ 0 or 1. Therefore,
Hom.E;F Œ2�/DHom.EŒ1�;F Œ1C2�/D 0. Similarly, we have Hom.G;EŒ1Cs�/D 0

for any object G in AE when s ¤ 0 or 1. Therefore, Hom.F;EŒ2�/D 0.

Case 2 (neither zv.E/ nor zv.F / is exceptional) By Corollary 1.33, their correspond-
ing points are below the Le Potier curve CLP .

� Case 2.1
�
the ch1

ch0
–length of LEF \ x��0 is greater than 3

�
By the construction

of Bridgeland stability conditions, it is easy to see that the objects E.�3/ and F.�3/

are also stable for any geometric stability conditions on the line LE.�3/F.�3/ . Since
the ch1

ch0
–length of LEF \ x��0 is greater than 3, the intersection point Q of LEF and

LE.�3/F.�3/ is in x��0 . By Corollary 1.24, the objects E , F , E.�3/ and F.�3/ are
all �Q –stable. By Lemma 1.20,

�Q.E.�3//D �Q.F.�3// < �Q.E/D �Q.F /:
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We have
Hom.E;F.�3//;Hom.F;E.�3//D 0:

The statement then holds by Serre duality.

� Case 2.2
�
the ch1

ch0
–length of LEF \ x��0 is not greater than 3

�
Since E is

�P –stable, by Corollary 1.35 and its proof there exists an integer k such that the
points v.O.kC 1//D �1; kC 1; 1

2
.kC 1/2

�
and v.O.kC 2// are below the segment

LEF \ x��0 ; see Figure 6, where e1 , e2 and e3 correspond to O.kC 2/, O.kC 3/

and O.kC4/, respectively. Equivalently, the points v.O.k�1// and v.O.k�2// are
below the segments LE.�3/F.�3/\ x��0 .

x�0

�
� O.kC 3/

�O.kC 4/

�
O.kC 2/C

�O.kC 4/C

�O.k � 1/

�O.kC 1/

�O.k � 1/C

�O.kC 1/C

ch1
ch0

O

ch2
ch0

�
E

�
F

��P

Figure 6: LEF \ x��0 is not greater than 3

Let Ek be the exceptional triple hO.k�1/;O.k/;O.kC1/i. Then by our assumption,
LO.k�1/O.kC1/ must intersect both LEF and LE.�3/F.�3/ . By Lemma 2.1, as the
point v.O.kC 1// is below the segment LEF \ x��0 , both E and F are in AEk

. As
the point v.O.k � 1// is below the segment LE.�3/F.�3/\ x��0 , both E.�3/Œ1� and
F.�3/Œ1� are in AEk

. Therefore, we have

Hom.E;F.�3//D Hom.E; .F.�3/Œ1�/Œ�1�/D 0:

By Serre duality, the statement holds.
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In particular, if an object E is � –semistable for some geometric stability condition � ,
we have Hom.E;EŒ2�/ D 0. To see this, E admits � –stable Jordan–Holder filtra-
tions, and for any two stable factors we have the Hom.�;�Œ2�/ vanishing, hence
Hom.E;EŒ2�/D 0.

As an immediate application, Rep.QE ; En; ˛E/E�–ss is smooth.

Corollary 2.10 Let x be a point in Rep.QE ; Enw; ˛E/E�–ss . Then as a closed subvariety
of Rep.QE ; Enw/, the space Rep.QE ; Enw; ˛E/ is smooth at the point x .

Proof Let K D .I0;J0/ be the quiver representation that x stands for. The dimension
of the Zariski tangent space at x is the dimension of

HomC
�
CŒRep.QE ; Enw/�=.J ı I/; CŒt �=.t2/

�

at .I0;J0/. Each tangent direction can be written in the form .I0;J0/C t.I1;J1/. In
order to satisfy the equation J ı I 2 .t2/, we need

J0 ı I1CJ1 ı I0 D 0:

Hence the space of .I1;J1/ is just the kernel of d1W Hom1.K ;K /! Hom2.K ;K /.
By Lemma 2.9, d1 is surjective. The Zariski tangent space has dimension

hom1.K ;K /� hom2.K ;K /:

On the other hand, Rep.QE ; En; ˛E/ is the zero locus of

n1n3 � hom.E1;E3/D hom2.K ;K /

equations, hence each irreducible component is of dimension at least hom1.K ;K /�
hom2.K ;K /, which is not less than the dimension of the Zariski tangent space at x .
Therefore, Rep.QE ; Enw; ˛E/ is smooth at the point x .

Remark 2.11 When the dimension character En is primitive, G .D GEnw=C
�/ acts

freely on the stable locus. By Luna’s étale slice theorem,

Rep.QE ; Enw; ˛E/E�–s! Rep.QE ; Enw; ˛E/E�–s=G

is a principal G –bundle. Since Rep.QE ; Enw; ˛E/E�–s is smooth, by Proposition IV.17.7.7
in [21] the base space is also smooth.
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2.3 Generic stability

Based on Lemma 2.9, we establish some estimates on the dimension of strictly
semistable objects in this section. The technical result Lemma 2.13 is useful in the
proof of the irreducibility of the moduli space.

Definition 2.12 Suppose En D En0 C En00 with En0 � E� D En00 � E� D 0. Choose F 2
Rep.QE ; En0; ˛E/E�–ss and G 2Rep.QE ; En00; ˛E/E�–ss . We write Rep.QE ;F ;G / for the
subspace in Rep.QE ; En; ˛E/E�–ss consisting of representations K that can be written as
an extension of G by F ,

0! F !K !G ! 0:

We also write Rep.QE ; En0; En00/ for the union of all Rep.QE ;F ;G / such that F 2
Rep.QE ; En0; ˛E/E�–ss and G 2 Rep.QE ; En00; ˛E/E�–ss .

We have the following dimension estimate for Rep.QE ;F ;G /:

Lemma 2.13 dim Rep.QE ;F ;G /���.G ;F /Cdim GEn�hom.F ;F /�hom.G ;G /.

Proof Let X.F ;G / be the subset of Rep.QE ;F ;G / consisting of objects of the
form

I D
�

IF I.G ;F /

0 IG

�
; J D

�
JF J.G ;F /

0 JG

�
;

for a pair .I.G ;F /;J.G ;F // 2 Hom1.G ;F /. The morphisms are shown in the
following diagram:

F W Cn0
1 Cn0

2 Cn0
3

G W Cn00
1 Cn00

2 Cn00
3

I.G ; F / J.G ; F /

IF JF

IG JG

Due to the condition that JıI 2ker˛E˝Hom.Cn1 ;Cn3/, the pair .I.G ;F /;J.G ;F //
is contained in the kernel of the morphism

d1.G ;F /W Hom1.G ;F /! Hom2.G ;F /:

By Lemma 2.9, d1.G ;F / is surjective, hence

dim X.F ;G /� hom1.G ;F /� hom2.G ;F /:
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Each element g2GLEn can be written as a block matrix
�

A
C

B
D

�
, where A2Hom0.F ;F /,

B 2Hom0.G ;F /, C 2Hom0.F ;G / and D2Hom0.G ;G /. When A2Hom.F ;F /,
D 2 Hom.G ;G / and C D 0, we have g �X.F ;G /DX.F ;G /. Therefore,

dimRep.QE ;F ;G /

D dim GEn �X.F ;G /
� dim GEnCdimX.F ;G /�hom.F ;F /�hom.G ;G /�hom0.G ;F /

� ��.G ;F /Cdim GEn�hom.F ;F /�hom.G ;G /:

Definition 2.14 We set

Rep.QE ; En; ˛E/E�–ss
c WD fF 2 Rep.QE ; En; ˛E/E�–ss j hom.F ;F /D cg;

Rep.QE ; En0; En00/E��ss

c;d
WD fK 2 Rep.QE ;F ;G / j hom.F ;F /D c; hom.G ;G /D dg:

The following proposition shows that given a Chern character w not inside ConeLP and
a generic stability condition � , stable objects are dense in the moduli space Mss

� .w/.
Note that this is a nontrivial statement only when w is not primitive.

Proposition 2.15 Let En be a character for Rep.QE ; ˛E/ such that �.En; En/ � �1.
Let E� be a generic weight with respect to En; in other words, E� � En0 ¤ 0 for any En0 < En
that is not proportional to En. We have

dim Rep.QE ; En; ˛E/E�–ss D��.En; En/C dim GEn

for each irreducible component of Rep.QE ; En; ˛E/E�–ss . Moreover,

dim
�
Rep.QE ; En; ˛E/E�–ss nRep.QE ; En; ˛E/E�–s�� ��.En; En/C dim GEn� 1:

In particular, there is no component whose objects are all strictly semistable objects.

Proof The first statement basically follows from the proof of Corollary 2.10. Just note
that hom1.K ;K /�hom2.K ;K / in that proof is exactly ��.En; En/Cdim GEn here. We
will repeat the proof:

Rep.QE ; En; ˛E/ is the zero locus of n1n3 � hom.E1;E3/ equations, hence each irre-
ducible component is of dimension at least ��.En; En/C dim GEn .

On the other hand, for any E�–semistable object K 2Rep.QE ; En; ˛E/E�–ss , by Lemma 2.9
d1W Hom1.K ;K /! Hom2.K ;K / is surjective, and the Zariski tangent space is of
dimension ��.En; En/C dim GEn . Since Rep.QE ; En; ˛E/E�–ss is open in Rep.QE ; En; ˛E/,
each irreducible component of Rep.QE ; En; ˛E/E�–ss is of dimension ��.En; En/Cdim GEn .
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For the second statement, when En is primitive and E� is generic, we have

Rep.QE ; En; ˛E/E�–ss D Rep.QE ; En; ˛E/E�–s;

so the statement holds automatically in this case.

We may assume that EnDmEn0 , where En0 is primitive. Since E� is generic, any strictly
semistable object must be destabilized by an object in Rep.QE ; aEn0/

E�–ss for some
0< a<m. Hence

Rep.QE ; En; ˛E/E�–ss nRep.QE ; En; ˛E/E�–s D
[

1�a�m�1

Rep.QE ; aEn0; .m� a/En0/:

For each object F 2Rep.QE ; aEn0; ˛E/
E�–ss
c , the orbit GaEn0

�F in Rep.QE ; aEn0; ˛E/
E�–ss

is of dimension dim GaEn0
� c . Therefore, by Lemma 2.13, we have

dim Rep.QE ; aEn0; .m�a/En0/
E��ss

c;d

� ��..m�a/En0; aEn0/Cdim GEn�c�d�.dim GaEn0
�c/�.dim G.m�a/En0

�d/

Cdim Rep.QE ; aEn0; ˛E/
E��ss
c Cdim Rep.QE ; .m�a/En0; ˛E/

E��ss

d

� ��..m�a/En0; aEn0/Cdim GEn��..m�a/En0; .m�a/En0/��.aEn0; aEn0/

D��.En; En/Cdim GEnC�.aEn0; .m�a/En0/

� ��.En; En/Cdim GEn�1:

The last inequality holds since �.En; En/� �1. Therefore,

dim
�
Rep.QE ; En; ˛E/E�–ss nRep.QE ; En; ˛E/E�–s�

�max
c;d

˚
dim Rep.QE ; aEn0; .m� a/En0/

E��ss

c;d

	

� ��.En; En/C dim GEn� 1:

In particular, since each component is of dimension ��.En; En/C dim GEn , there is no
component consisting of strictly semistable objects.

2.4 The irreducibility of the moduli space

Based on the results and methods in the previous sections, we are able to estimate
the dimension of the space of new stable objects after a wall-crossing. When the
wall is to the left of the vertical wall, we show that the new stable objects in the next
chamber have codimension at least 3. Together with Proposition 2.15, this will imply
the irreducibility of the moduli space.
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Let w be a character in K(P2 ) with ch0.w/� 0, and �s;q a stability condition with
s < ch1.w/

ch0.w/
and such that .1; s; q/ is contained in MZE . Let En be the dimension

character for w in QE , and E� be the weight character corresponding to Lw� . Let E��
be the character in the chamber below Lw� and E�C in the chamber above Lw� . The
following two lemmas will be used in the proof of Proposition 2.18.

Lemma 2.16 Let K be an object in Rep.QE ; Enw; ˛E/E��–s nRep.QE ; Enw; ˛E/E�C–s .
Then it can be written as a nontrivial extension

0!K 0!K !K 00! 0

of objects in Rep.QE ; ˛E/, where the dimension character En0 of K 0 satisfies

E�� � En0 < 0D E� � En0;
and Hom.K 00;K 0/D 0.

Proof By the assumption on K , it is a strictly E�–semistable object, and is destabilized
by a nonzero E�–stable proper subobject K 0 with E� � En0 D 0. As K is E��–stable, we
have E�� � En0 < 0. Let the quotient be K 00 ; then K 0 and K 00 are the objects we want.

In order to see that Hom.K 00;K 0/D0, suppose there is a nonzero map in Hom.K 00;K 0/.
Then its image zK in K 0 is both a subrepresentation and quotient representation of K .
Let Ezn be the dimension vector of zK . As K is E��–stable, we get E�� � Ezn< 0< E�� � Ezn,
which leads to a contradiction.

For a dimension vector En of QE , write chi.En/ for n1 chi.E1/�n2 chi.E2/Cn3 chi.E3/

for i D 0; 1; 2.

Lemma 2.17 Let En and Em be two dimension vectors of QE .

(1) The Euler character �.En; Em/ can be computed as

ch2.En/ ch0. Em/C ch2. Em/ ch0.En/�ch1.En/ ch1. Em/C 3
2
.ch1. Em/ ch0.En/

� ch0. Em/ ch1.En//C ch0.En/ ch0. Em/:
(2) Suppose ch0.En/�0, let w have character �.ch0.En/; ch1.En/; ch2.En// and P be a

point in x�<0 to the left of the vertical wall Lw˙ such that LPw intersects lE1E3
.

Let E� be E�LPw
, and E�� be the character in the chamber below LPw . Suppose

Em satisfies E�� � Em< 0D E� � Em, and En satisfies E�� � EnD 0D E� � En. Then

ch0.En/ ch1. Em/� ch0. Em/ ch1.En/ > 0:
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Proof The first statement follows from the Hirzebruch–Riemann–Roch formula
for P2 :

�.F;G/D ch2.F / ch0.G/C ch2.G/ ch0.F /� ch1.F / ch1.G/

C 3
2
.ch1.G/ ch0.F /� ch0.G/ ch1.F //C ch0.F / ch0.G/:

For the second statement, by definition of E� we have that E�� is in the same chamber
as E�C �.0; n3;�n2/ for small enough � > 0. We have

ch0.En/ ch1. Em/� ch0. Em/ ch1.En/D .m1;m2;m3/ � E‡;
where E‡ is the vector

�ˇ̌
ˇ̌ ch0.En/ ch1.En/
ch0.E1/ ch1.E1/

ˇ̌
ˇ̌;�

ˇ̌
ˇ̌ ch0.En/ ch1.En/
ch0.E2/ ch1.E2/

ˇ̌
ˇ̌;
ˇ̌
ˇ̌ ch0.En/ ch1.En/
ch0.E3/ ch1.E3/

ˇ̌
ˇ̌
�
:

The vector E‡ is a weight character for En since

En � E‡ D ch0.En/ ch1.En/� ch1.En/ ch0.En/D 0:

When MZE intersects the vertical wall Lw˙ , by Lemma 2.5 E‡ is proportional (up to
a positive scalar) to the character on the vertical wall. As E� is to the left of the vertical
wall, E‡ can be written as a E�� b E�� for some positive numbers a and b . Therefore,
Em � E‡ D�b Em � E�� > 0.

When MZE is to the left of the vertical wall Lw˙ , we have

ch1.Ei/

ch0.Ei/
� ch1.En/

ch0.En/
for i D 1; 2; 3. As ch0.En/� 0, we have

ˇ̌
ˇ̌ ch0.En/ ch1.En/
ch0.Ei/ ch1.Ei/

ˇ̌
ˇ̌> 0:

Since the third term of E� is negative and the character space of En is spanned by E� and
.0; n3;�n2/, the character E‡ can be written as a E�� b.0; n3;�n2/ for some positive
numbers a and b . As E�� is in the same chamber as E�C �.0; n3;�n2/ and Em � E�� < 0,
we get Em � E‡ > 0.

Now we can give an estimate of the dimension of new stable objects after wall-crossing.

Proposition 2.18 The dimension of Rep.QE ; Enw; ˛E/E��–s nRep.QE ; Enw; ˛E/E�C–s is
less than ��.w;w/C dim GEnw � 2.
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Proof By Lemma 2.16, the space Rep.QE ; Enw; ˛E/E��–s nRep.QE ; Enw; ˛E/E�C–s can
be covered by

RepE��–s nRepE�C–s D
[

Em
Rep.QE ; Em; .Enw � Em//E��–s;

where Em satisfies

� E�� � Em< 0D E� � Em,

� �.Enw � Em; Em/� 0.

The second condition is due to Lemmas 2.9 and 2.16. Now, similar to the proof of
Proposition 2.15, we have

dim Rep.QE ; Em; Enw � Em/E��–s
c;d

� ��.Enw � Em; Em/C dim GEnw � c � d � .dim G.Enw� Em/� c/� .dim G Em� d/

C dim Rep.QE ; Enw � Em; ˛E/E���ss
c C dim Rep.QE ; Em/E���ss

d

� ��.Enw � Em; Em/C dim GEnw ��.Enw � Em; Enw � Em/��. Em; Em/
D��.Enw; Enw/C dim GEnw C�. Em; Enw � Em/:

By Lemma 2.17,

��. Em; Enw � Em/� �.Enw � Em; Em/��. Em; Enw � Em/
D �.Enw; Em/��. Em; Enw/
D 3

�
ch0.Enw/ ch1. Em/� ch0. Em/ ch1.Enw/

�

� 3:

The last inequality is due to the second statement of Lemma 2.17.

Now we prove the irreducibility of the moduli space of stable objects. This is well
known to hold for moduli of Gieseker stable sheaves. The moduli spaces are given
by moduli of quiver representations, so the dimension of each component has a lower
bound. The point is, by the previous results, the dimension of new stable objects is
smaller than this lower bound, so an irreducible component cannot be produced after
wall-crossing.

Theorem 2.19 Let w be a primitive character in K.P2/ such that ch0.w/ > 0. For a
generic geometric stability condition � D �s;q with s < ch1

ch0
.w/ not on any actual wall

of w , the moduli space Mss
� .w/ is irreducible and smooth.
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Proof The smoothness is proved in Corollary 2.10. We only need to show the
irreducibility.

For any � , the line Lw� intersects some MZE . In fact, we may always choose E to be
fO.k�1/;O.k/;O.kC1/g. By Proposition 2.7 Mss

� .w/ can always be constructed as

Rep.QE ; Enw; ˛E/==det E�Lw�E .GEnw=C
�/:

In the chamber near the vertical wall, the component that contains Rep.QE ; Enw; ˛E/E�–s

is irreducible since the quotient space Rep.QE ; Enw; ˛E/E�–s=G is Ms
GM.w/, which is

smooth and connected.

By Proposition 2.18, while crossing an actual wall, the new stable locus

Rep.QE ; Enw; ˛E/E��–s nRep.QE ; Enw; ˛E/E�C–s

in Rep.QE ; Enw; ˛E/E��–s has codimension greater than 2. On the other hand, since
Rep.QE ; Enw; ˛E/ is a subspace in Rep.QE ; Enw/ determined by n1n2 hom.E1;E3/

equations, each irreducible component has dimension at least

n1n2 hom.E1;E2/C n2n3 hom.E2;E3/� n1n2 hom.E1;E3/;

which is the same as the dimension of Rep.QE ; Enw; ˛E/E�C–s and is greater than the
dimension of the new stable locus Rep.QE ; Enw; ˛E/E��–snRep.QE ; Enw; ˛E/E�C–s . Since
the stable locus is open in Rep.QE ; Enw; ˛E/, the new stable locus is contained in the
same irreducible component of Rep.QE ; Enw; ˛E/E�C–s . Also, Rep.QE ; Enw; ˛E/E��–s is
still irreducible. Hence the moduli space of Bridgeland stable objects, given as the GIT
quotient, is also irreducible.

Remark 2.20 There is a natural isomorphism

Mss
�s;q

.w/'Mss
��s;q

.�ch0.w/; ch1.w/;�ch2.w//

induced by the map �W F 7!RHom.F;O/Œ1�. In terms of the quiver representation, an
object KF 2 Rep.QE ; En; ˛E/E�–ss given by

KF W E1˝Hn1

IF��!E2˝Hn2

JF��!E3˝Hn3

is mapped to K�.F / 2 Rep.QE_ ; .n3; n2; n1/; ˛E_/.��3;��2;��1/–ss given by

K�.F /W E_3 ˝H�n3

J T
F��!E_2 ˝H�n2

I T
F��!E_1 ˝H�n1

:

The statement in Theorem 2.19 holds for Ms
� .�w/ when � D �s;q with s > ch1

ch0
.w/.
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2.5 Properties of GIT

Birational geometry via GIT has been studied by Dolgachev and Hu [17], and by
Thaddeus [32]. Since the theorems in [17] and [32] are stated based on a slightly
different setup, in this section we recollect some properties from these papers in the
language of affine GIT.

Let X be an affine algebraic G –variety, where G is a reductive group and acts on X

via a linear representation. Given a character �W G! C� , the (semi)stable locus is
written as X E�–s (X E�–ss ). We write CŒX �G;� for the �–semi-invariant functions on X ;
in other words, one has

f .g�1.x//D �.g/ �f .x/ for all g 2G; x 2X:

Denote the GIT quotient by X==E�G WD Proj
L

n�0 CŒX �G;E�n

and the map from X E�–ss

to X==E�G by FE� .

In addition, we need the following assumptions on X and G :

(1) There are only finite many walls in the space of characters on which there are
strictly semistable points, and in the chamber we have X E�–s DX E�–ss .

(2) X E�–s is smooth and the action of G on X E�–s is free.

(3) X==E�G is projective and irreducible.

(4) The closure of X E�–s (if nonempty) for any E� is the same irreducible component.

(5) Given any point x 2X , the set of characters f� j x 2X �–ssg is closed.

Let E� be a generic character (ie not on any walls) such that X E�–s is nonempty. By
assumptions (2) and (3), we have a G –principal bundle X E�–s!X==E�G DX E�–s=G .

Definition 2.21 Let E�0 be a character of G . We define LE�;E�0
to be the line bundle

over X==E�G by composing the transition functions of the G –principal bundles with E�0 .

In other words, viewing X E�–s=G as a complex manifold, it has an open cover with
trivialization of G fibers. The line bundle LE�;E�0

is defined by composing each transition
function on the overlap of charts with E�0 .

Now we are ready to list some properties from the variation of geometric invariant
theory.
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Proposition 2.22 Suppose that X is an affine algebraic G–variety that satisfies the
assumptions (1)–(5), and let E� be a generic character. The following properties hold:

(i) �.X==E�G;L˝n
E�;E�1

/'CŒX E�–s�G;E�n
1 .

(ii) Let E�C be a character of G in the same chamber as E� . Then

CŒX E�–s�G;E�
nC DCŒX �G;E�

nC

for n� 1, and LE�;E�C is ample. Let E�0 be a generic character on the wall of the
E�–chamber. Then LE�;E�0

is nef and semiample.

(iii) There is an inclusion X E�C–ss � X E�0–ss , which induces a canonical projective
morphism prCW X==E�CG!X==E�0

G .

(iv) A curve C (projective, smooth, connected) in X==E�CG is contracted by prC if
and only if it is contracted by X==E�CG! Proj

L
n�0 �.X==E�CG;L˝n

E�C;E�0
/.

(v) Let E�C and E�� be in two chambers on different sides of the wall. Assume
that X E�C–s and X E��–s are both nonempty. Then the morphisms X==E�˙G !
X==E�0

G are proper and birational. If they are both small, then the rational map
X==E��G Ü X==E�CG is a flip with respect to LE�C;E�0

.

Proof (i) This is true for a general G –principal bundle by the flat descent theorem;
see [16, Exposé I, Théorème 4.5].

(ii)–(iii) By assumption (5), X E�–s �X E��–ss for � D 0 or C. By assumption (4), the
natural map CŒX �G;E�n� !CŒX E�–s�G;E�n� ' �.X==E�G , L˝n

E�;E��/ is injective for n 2 Z�0 .
Hence the base locus of LE�;E�� is empty. R.X==E�G , LE�;E��/'

L
n�0 CŒX E�–s�G;E�n� is

finitely generated over C . The canonical morphism X==�G!Proj
L

n�0 CŒX E�–s�G;E�n�

is birational and projective when X E��–s is nonempty. Now we have series of morphisms

prCW X==E�G! Proj
M

n�0

CŒX E�–s�G;E�n� ! Proj
M

n�0

CŒX �G;E�n� DX==E��G:

The morphism prC maps each E�� S–equivariant class to itself set-theoretically. When
E�C is in the same chamber as E� , by assumption (2) this is an isomorphism, implying
that LE�;E�C must be ample and CŒX E�–s�G;E�n� DCŒX �G;E�n� for n large enough. By the
definition of LE�;E�C , it extends linearly to a map from the space of R–characters of G

to NSR.X==E�G ). Since all elements in the E� chamber are mapped into the ample cone,
E�0 must be nef.
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(iv) (() The morphism

X==E�CG!X==E�0
G D Proj

M

n�0

CŒX �G;E�n
0

factors via the morphism

Proj
M

n�0

CŒX E�C–s�G;E�n
0 ! Proj

M

n�0

CŒX �G;E�n
0 :

If a curve C is contracted at Proj
L

n�0 CŒX E�C–s�G;E�n
0 , then it is also contracted at

Proj
L

n�0 CŒX �G;E�n
0 .

()) Suppose C is contracted to a point by prC . Let G0 be the kernel of E�0 . We
show that there is a subvariety P in X E�C–s such that

(I) P is a G0–principal bundle, and the base space is projective and connected;

(II) FE�C.P /D C .

Suppose we find such a P . Then any function f in CŒX E�C–s�G;E�n
0 is constant on each

G0 fiber. Since the base space is projective and connected, it must be a constant on P .
Since FE�C.P /DC , the value of f on F�1

E�C .C / is determined by this constant. Hence
the canonical morphism contracts C to a point.

We may assume G0¤G . Choose N large enough, and finitely many fi in CŒX �G;E�N
0

such that
T

i.V .fi/\ F�1
E�0
.prC.C /// is empty. All points in F�1

E�0
.prC.C // are S–

equivariant in X E�0–ss , so for each point x in F�1
E�C .C / we have that Gx contains all

minimum orbits Gy in F�1
E�0
.prC.C //. Choose y in F�1

E�0
.prC.C // such that Gy is

closed in X E�0–ss , and let

Py D
\

i

fx 2 F�1
E�C .C / j fi.x/D fi.y/g:

For any p 2 C , since G is reductive and the G–orbit F�1E�C .p/ contains y , there is a
subgroup ˇ : C�!G and xp 2F�1E�C .p/ such that y 2ˇ.C�/ � fxpg. Since y 2X E�0–ss ,
there is a E�N

0
–semi-invariant fi such that fi.y/¤ 0. Therefore E�0 ıˇ ¤ 0, and for

any E�0 –semi-invariant function f , we get that f .xp/D f .y/. The point xp is in Py

and therefore FE�.Py/D C .

Let G00 be the kernel of E�N
0

. By the choice of the fi , another point xq on Gxp is
in Py if and only if they are on the same G00–orbit. Since G acts freely on all stable
points, Py becomes a G00–principal bundle over base C . As ŒG00 W G0� is finite, we
may choose a connected component of Py such that, viewing as a G0–principal bundle,
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the induced morphism from the base space to C is finite. This component of Py then
satisfies both conditions (I) and (II) above.

(v) This is due to Theorem 3.3 in [32].

Remark 2.23 When the difference between X E�C–s and X E��–s is of codimension two
in X E�C–s[X E��–s , then since X E�C–s[X E��–s is smooth, irreducible and quasiaffine
by assumption (2), we have

CŒX E�C–s�G;E�n� DCŒX E�C–s[X E��–s�G;E�n� DCŒX E��–s�G;E�n� DCŒX �G;E�n� for n� 0:

In this case, the birational morphism between X s;E�C and X s;E�� identifies the spaces
NSR.X==E�CG/ and NSR.X==E��G/. It maps ŒLE�C;E�� � to ŒLE��;E�� � for all E�� in either
the E�C or E�� chamber.

2.6 Wall-crossing as minimal model program

Let w be a primitive character in K.P2/ such that ch0.w/> 0. We can run the minimal
model program for Ms

GM.w/ via wall-crossing on the space of stability conditions.

Theorem 2.24 Adopting notation as above, the actual walls Lw� (chambers) to the left
of the vertical wall Lw˙ in the

˚
1; ch1

ch0
; ch2

ch0

	
–plane are in one-to-one correspondence

with the stable base locus decomposition walls (chambers) on one side (primitive side)
of the divisor cone of Ms

GM.w/.

Proof Suppose L D Lw� passes through MZE for an exceptional triple E . By
Lemma 2.5, L associates a character (up to a positive scalar) E�L to the group
GEnw=C

� . By Proposition 2.7, the moduli space Mss
� .w/ is constructed as the quo-

tient space Rep.QE ; Enw; ˛E/==det E�L
.GEnw=C

�/. We first check that the G–variety
Rep.QE ; Enw; ˛E/ satisfies the assumptions of Proposition 2.22. Assumption (1) is
due to Proposition 2.8. Assumption (2) is due to Corollary 2.10 and Remark 2.11.
Assumptions (3) and (4) are due to Theorem 2.19 and its proof. Assumption (5) is
automatically satisfied in our case.

By Definition 2.21, the character E�L induces a divisor (up to a positive scalar) ŒLE�L;E�L
�

on Rep.QE ; Enw; ˛E/==det E�L
.GEnw=C

�/. We start from the chamber on the left of the
vertical wall, where Rep.QE ; Enw; ˛E/==det E�L

.GEnw=C
�/ is isomorphic to Ms

GM.w/,
and vary the stability to the wall near the tangent line of x�0 across w . At an actual
destabilizing wall L, let prC be the morphism

Rep.QE ; Enw; ˛E/==det E�LC .GEnw=C
�/! Rep.QE ; Enw; ˛E/==det E�L

.GEnw=C
�/
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as in Proposition 2.22. One of three different cases may happen:

(a) prC is a small contraction.

(b) prC is birational and has an exceptional divisor.

(c) All objects in Ms
L
.w/ become strictly semistable.

By Proposition 2.18, in case (a), we get small contractions on both sides. By property (v)
in Proposition 2.22, this is the flip with respect to the divisor ŒLE�LC;E�L

�. Since the differ-

ent locus between Rep.QE ; Enw; ˛E/E�LC and Rep.QE ; Enw; ˛E/E�L� is of codimension
at least 2, their divisor cones are identified with each other as explained in Remark 2.23.
In particular, before encountering any wall of case (b) or (c), the divisor ŒLE�LC;E�L

� is
identified with a divisor ŒLE�L

� on Ms
GM.w/. The flip Ms

LC.w/Ü Ms
L�.w/ is with

respect to this divisor.

In case (b), by Proposition 2.18, the morphism pr� on the left side,

Rep.QE ; Enw; ˛E/==det E�L� .GEnw=C
�/! Rep.QE ; Enw; ˛E/==det E�L

.GEnw=C
�/;

does not contract any divisors. Hence the Picard number of

Rep.QE ; Enw; ˛E/==det E�L� .GEnw=C
�/

is 1. By property (iv) in Proposition 2.22, case (b) only happens when the canonical
model associated to LE�L

contracts a divisor, in other words, the divisor of LE�L
on

Ms
GM.w/ is on the boundary of the movable cone. The next destabilizing wall on

the left corresponds to the zero divisor, it must be case (c). On the other hand, by
Corollary 1.35, case (c) must happen at a wall before reaching the tangent line. This
terminates the whole minimal model program.

In general, if the boundary of the movable cone is not the same as that of the nef cone,
then case (b) happens. Otherwise, case (b) does not happen and the procedure ends up
with a Mori fibration of case (c).

Remark 2.25 On the vertical wall, the morphism prC is the Donaldson–Uhlenbeck
morphism. If it contracts a divisor, the vertical wall corresponds to the movable
boundary and the minimal model program stops. If prC is a small contraction, the
wall-crossing behavior on the other side of the nef cone is the same as the wall-crossing
behavior of Ms

GM.ch0.w/;�ch1.w/; ch2.w// on the primitive side.
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3 The last wall and criterion for actual walls

In this section, we describe the last wall (Section 3.2) and give a numerical criterion of
actual walls (Section 3.3) for any given Chern character w .

As for the last wall, each character w is associated to an exceptional character e .
We first show (Lemma 3.12) that after the wall Lwe , for any stability condition � ,
there is no � –stable object with Chern character w . Our argument is to show that
Hom.E;F /¤ 0 for the exceptional bundle E and any � –stable object F with Chern
character w . As a consequence, such a stable object F is destabilized by the exceptional
bundle E .

The subtle part is to show (Theorem 3.14) that for any stability condition � in the
chamber before the wall Lwe , the moduli space Ms

� .w/ is nonempty. We will show
that there exist stable objects given by extensions before the wall-crossing. First, we
show that on any wall before the last wall, the pair of destabilizing Chern characters w0
and w�w0 are between their own last walls and the vertical walls. By Corollary 3.10
in [8], the discriminants of w0 and w�w0 are less than that of w . By doing induction
on the discriminant, there exist stable objects with characters w0 and w � w0 . By
Lemma 3.4, the Euler pair �.w0; w�w0/ is negative. This implies that for any stable
objects F and G with Chern characters w0 and w �w0 respectively, the extension
group Ext1.F;G/ is nonzero. By Lemma 3.1, the extension of such a pair of stable
objects F and G is stable before the wall-crossing.

As for the criterion on actual walls, one may numerically compute all the potential
destabilizing pairs of Chern characters w0 and w�w0 . Different from the situation of
the last wall, in this case, not every such pair will offer pairs of stable objects that can be
extended to a stable object before the wall-crossing. Either there are no stable objects
with character w0 and w�w0 , or no such pair of stable objects has nontrivial extension.
We show that the second scenario will not happen by Lemma 3.4 and some detailed
discussions in the proof for Theorem 3.16. The first scenario indeed happens for some
potential walls. In the concrete example in Section 4.3, we study the wall-crossing for
the Chern character w D .ch0; ch1; ch2/D .4; 0;�15/. The pair of Chern characters
w0 D .3;�2; 3/ and w �w0 D .1; 2;�18/ indicates a potential wall. But as there is
no stable object with Chern character w0 on that potential wall, and there is no other
pair of destabilizing Chern characters, this potential wall fails to become an actual
wall. To avoid the first case, we introduce the small triangulated area TRwE for each
exceptional bundle E . We show that a destabilizing Chern character w0 (or w�w0 ) is
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this area if and only if there is no stable object with Chern character w0 (or w�w0 )
with respect to a stability condition on the wall Lww0 . As a consequence, a potential
wall becomes an actual wall when both w and w�w0 avoid these triangle areas.

3.1 Stable objects by extensions

The following lemma is useful to construct new stable objects after wall-crossing.

Lemma 3.1 Let G and F be two �s;q –stable objects of the same phase; in particular,
�s;q is on the line LGF . Suppose we have

��s;qC.G/ > ��s;qC.F / and Hom.G;F Œ1�/¤ 0:

Let f be a nonzero element in Hom.G;F Œ1�/ and C be the corresponding extension
of G by F . Then C is �s;qC–stable.

Proof By Corollary 1.24 and Proposition 1.29, we may assume that �s;q is in a quiver
region MZE so that C , F and G are in the same heart AE Œt � for a homological shift
t D 0 or 1. We write � for �s;q , and �C for �s;qC .

We prove the lemma by contradiction. Suppose D is a �C–stable subcomplex destabi-
lizing C in AE Œt �. We have the diagram

0 // K

��

// D

��

// I

��

// 0

0 // F // C // G // 0

such that the vertical maps are all injective in AE Œt �. Three different cases may happen:

� If I D 0, then ��C.K/D ��C.D/� ��C.C / > ��C.F /. But F is also �C–stable;
this leads to a contradiction.

� If K D 0, then either �� .I/ < �� .G/ D �� .C / or I D G . The second case,
that I DG , is impossible since the extension is nonsplitting. In the first case, as the
phase function is continuous (by the support property), we have ��C.I/ < ��C.C /.
Therefore the object D does not destabilize C at �C , which is a contradiction.

� If both K and I are nonzero, then since F and G are � –stable,

�� .I/� �� .G/D �� .C / and �� .K/� �� .F /D �� .C /:
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When both equalities hold, we have I DG and KDF , and in this case, DDC . If at
least one of the equalities does not hold, then �� .D/ < �� .C /. Again by the continuity
of the phase function, we see that ��C.I/ < ��C.C / and get a contradiction.

In general, we also need the following direct sum version, which can be proved in a
similar way.

Corollary 3.2 Let G and F be two �s;q –stable objects of the same phase. Suppose
we have

��s;qC.G/ > ��s;qC.F / and Hom.G;F Œ1�/D n> 0:

Let f be a rank m map in Hom.G;F˚mŒ1�/, and let C be the object extended by G

and F˚m via f . Then C is �s;qC–stable.

Now we collect some geometric properties of the Le Potier curve. For an exceptional
character e , by the Hirzebruch–Riemann–Roch formula, the equation for LeCer ,
ie �.�; e/D 0, in the

˚
1; ch1

ch0
; ch2

ch0

	
–plane is

ch0.e/
ch2

ch0
� �ch1.e/C 3

2
ch0.e/

� ch1

ch0
C �ch2.e/C 3

2
ch1.e/C ch0.e/

�D 0:

In particular, the slope of LeCer is ch1

ch0
.e/C 3

2
. The line LeCer is parallel to Lee.3/

and Lel e.3/r . A similar computation shows that the slope of LeCel is ch1

ch0
.e/� 3

2
.

We first want to prove the following result, which will be used to prove Lemma 3.4.

Lemma 3.3 (1) Let e be an exceptional character, and p be a point on the line
segment leCer (not on the boundary). Then the line Lep intersects the Le Potier
curve CLP at two points. In addition, the ch1

ch0
–length of these two points is

greater than 3.

(2) Let u and v be two Chern characters with ch0.u/; ch0.v/ > 0 on CLP whose
ch1

ch0
–length is greater than 3. Then �.u; v/ > 0 and �.v;u/ > 0.

Proof (1) We first show that Lep only intersects CLP at two points. Since any point
on CLP to the right of er is above the line Leer , we only need to consider points to
the left of e .

Any e0r to the left of e that is above Lep is also strictly above Leer . Since e , er

and e.�3/r are collinear, e0 is to the left of e.�3/. In other words, e0 satisfies the
inequality

ch1

ch0
.e0/ < ch1

ch0
.e/� 3:
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x�0

x� 1
2x�1

e0l

e0r

�e �
p

� q

ch1
ch0

O

ch2
ch0

Figure 7: The intersection of Lep with CLP

We have that

slope of Lep > slope of Lee0l > slope of Le0.3/r e0l D slope of Le0Ce0r .

Therefore, Lep does not intersect le0l e0C or le0Ce0r .

For any e0l below Lep to the left of e , the line segments le0l e0C and le0Ce0r are
below x� 1

2
. The segment of x� 1

2
between e0l and e0r is below Lep , hence le0l e0C and

le0Ce0r are below Lep , and they do not intersect Lep . Let q be the intersection point
of Lep and x� 1

2
(there are two such points and we consider the one to the left of e ).

When q is not on any segment of x� 1
2

between e0l and e0r , the intersection points of
Lep and CLP are q and p . When q is on the segment between e0l and e0r for an
exceptional character e0 , the second intersection point is either on le0l e0C or le0Ce0r .
So there is only one intersection point other than p .

The points e , er and e.�3/r are collinear, and the ch1

ch0
–length of er and e.�3/r is 3.

Since the ch1

ch0
–length of Lep\ x� 1

2
is increasing when p is moving from er to eC , the

ch1

ch0
–length of Lep \ x� 1

2
is greater than 3. Therefore, the ch1

ch0
–length of Lep \CLP is

greater than 3.

(2) Suppose u is on x� 1
2

. Then the line �.u;�/ D 0 in the
˚
1; ch1

ch0
; ch2

ch0

	
–plane

is Luu.�3/ . Hence the point v in the
˚
1; ch1

ch0
; ch2

ch0

	
–plane is above Luu.�3/ . As ch0.u/

and ch0.v/ are positive, �.u; v/ > 0. The inequality �.v;u/ > 0 is proved similarly.
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Suppose u is on leCer for an exceptional e . We first show that �.u; v/ > 0. The line
�.u;�/D 0 passes through e , and both er and el are below the line �.u;�/D 0. By
the ch1

ch0
–length assumption, v is above both Leer and Leel . Therefore, v is above the

line �.u;�/D 0. Since ch0.u/ and ch0.v/ are positive, �.u; v/ > 0.

The line �.�;u/ D 0 in the
˚
1; ch1

ch0
; ch2

ch0

	
–plane passes through e.3/, and intersects

le.3/e.3/r . If v is on the line segment le.3/e.3/r , then by the case that u is on leCer ,
we get �.v;u/ > 0. If v is not on the line segment le.3/e.3/r , then by the assumption
on the ch1

ch0
–length, v is above the curve �.�;u/D 0, so we also get �.v;u/ > 0.

The case that u is on leCel can be proved in the same way.

Now we can state an important lemma. A similar definition also appears in [15].

Lemma 3.4 Let u and v be Chern characters such that

(1) u and v are not inside the Le Potier cone;

(2) �.v;u/� 0;

(3) in the
˚
1; ch1

ch0
; ch2

ch0

	
–plane, Luv intersects CLP at two points and the ch1

ch0
–length

between them is greater than 3.

Then we have
�.u; v/; �.v;u/ < 0:

Remark 3.5 When both ch0.u/ and ch0.v/ are 0, the third condition does not make
sense. But the statement still holds if the first two conditions hold. To see this, note
that by the second condition,

�.v;w/D �.w; v/D�2�.v;w/D�ch1.v/ ch1.w/� 0:

Now the first condition implies that ch1.w/ and ch1.v/ are both nonzero, so

�ch1.v/ ch1.w/ < 0:

Proof By the first condition, u and v are below x� 1
2

. By the third condition, let f1

and f2 be two characters corresponding to the intersection points of Luv and CLP

such that ch0.f1/ > 0, ch0.f2/ > 0 and ch1

ch0
.f1/ >

ch1

ch0
.f2/.

We may assume that v D a1f1� a2f2 and uD b1f1� b2f2 for some real numbers
a1 , a2 , b1 and b2 . Since u and v are not inside ConeLP , we see a1 and a2 have the
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same sign (or one of them is 0) and b1 and b2 have the same sign (or one of them
is 0). Moreover, by the second condition, we have

(3-1) �.vC au; vC au/��.v� au; v� au/

for any positive number a. Hence a1 , a2 , b1 and b2 all have the same sign. Without
loss of generality, we may assume they are all positive.

As fi is on CLP , we have

�.f1; f1/; �.f2; f2/� 0:

By the third condition, the ch1

ch0
–distance of f1 and f2 is greater than 3. By Lemma 3.3,

�.f1; f2/ > 0 and �.f2; f1/ > 0:

Combining these results, we have

�.u; v/� �b1a2�.f1; f2/� b2a1�.f2; f1/ < 0;

�.v;u/� �b2a1�.f1; f2/� b1a2�.f2; f1/ < 0:

Note that if we have stable objects A and B of characters u and v respectively,
satisfying the conditions in the lemma, then the lemma implies that Ext1.A;B/ > 0

and Ext1.B;A/ > 0. By Lemma 3.1, this implies the existence of stable objects as
extensions on both sides. This observation will be used in the proof of the last wall to
show the nonemptiness of the moduli, and in the proof of the actual walls to show the
existence of objects destabilized on each side of the wall.

3.2 The last wall

In this section, we describe the last wall for a given Chern character w that is not inside
the Le Potier cone ConeLP . By the last wall of w , we mean that for P 2 x�<0 , there is
a �P –stable object of character w or wŒ1� if and only if P is above the last wall. By
a result from Section 3, this wall corresponds to the boundary of the effective cone.
The last wall was first computed in [15] and [33] by Coskun, Huizenga and Woolf. We
would like to state the result based on our setup and give a different proof. To describe
the last wall for character w , we first define the exceptional bundle associated to w .

Definition 3.6 Let E be an exceptional bundle. We define RE to be the closure of the
region bounded by Le.�3/r eer , ler eC , leCel and Lel e.�3/e.�3/l in the

˚
1; ch1

ch0
; ch2

ch0

	
–

plane; see Figure 8. Symmetrically, we define LE to be the closure of the region
bounded by LE.3/l eel , lel eC , leCer and Ler E.3/E.3/r in the

˚
1; ch1

ch0
; ch2

ch0

	
–plane.
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Figure 8: The region of RE

The following property translates an important technical result of [15] into our setup.

Proposition 3.7 [15, Theorem 4.1] The regions associated to the exceptional bundles
cover all rational points not above the Le Potier curve:

a

E exc

RE � P.K.P2//n zCLP:

A similar statement holds for LE .

Proof Let w be a reduced character in P.K.P2// not above CLP . There is a unique
line L

x� 1
2w through w on the

˚
1; ch1

ch0
; ch2

ch0

	
–plane which intersects x� 1

2
at two points f1

and f2 , both of which are to the left of w and have a ch1

ch0
–length of 3. Let f1 be the

points with larger ch1

ch0
. By Theorem 4.1 in [15], there is a unique exceptional bundle E

such that on the curve x� 1
2

, the point f1 is on the segment between el and er . For
any character u on the line Lf1f2

, we have �.f1;u/D 0, hence �.f1; w/D 0. The
points er and el are on the different sides of the line �.�; w/D 0, therefore

�.el ; w/ ��.er ; w/ < 0:

Note that the boundary LE.�3/r EEr is the line: �.er ;�/ D 0, and the boundary
LEl E.�3/E.�3/l is the line �.el ;�/D 0. Hence, w is in RE .
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Remark 3.8 It is possible to show that L
x� 1

2w must intersect a line segment lel er

without using Theorem 4.1 in [15], but the argument is rather involved. The sketch of
the argument is as follows:

(1) If L
x� 1

2w does not intersect any line segment lel er , then for any exceptional
bundle E with character below L

x� 1
2w , by Proposition 1.30, Ms

� .w/ is empty
for � below LwE . Hence, Ms

� .w/ is empty for � below L
x� 1

2w .

(2) By the same argument as for the last wall and Lemma 3.4, Ms
� .w/ is nonempty

for � on L
x� 1

2w . This leads to the contradiction.

Thanks to this result, we can introduce the following definition, which will be related
to the last wall.

Definition 3.9 Let w be a character not inside ConeLP ; see Definition 1.6. We define
the exceptional bundle Ew associated to w to be the unique one such that REw

contains w . Similarly we have the definition of E
(rhs)
w according to LE .

Remark 3.10 (torsion case) In the case that ch0.w/D 0 and ch1.w/ > 0, we have
that Ew is the unique exceptional bundle such that

slope of Le.�3/el <
ch2

ch1
.w/ < slope of Leer :

The bundle E
(rhs)
w is not defined in the torsion case.

Now we can state the location of the last wall.

Definition 3.11 Let w be a character (not necessarily primitive) not inside ConeLP (it
may be on the boundary but not at the origin, see Definition 1.6) and let E DEw be
its associated exceptional vector bundle. We define the last wall Llast

w of w according
to three different cases:

(1) If w is above LeCe.�3/C , then Llast
w WDLwe .

(2) If w is below LeCe.�3/C , then Llast
w WDLwe.�3/ .

(3) If w is on LeCe.�3/C , then Llast
w WDLeCe.�3/C .

The last wall L
right-last
w on the right-hand side of the vertical wall is defined similarly

by using E(rhs) . The torsion character does not have E(rhs) or Lright-last .
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Figure 9: Three different cases of the last wall

In Figure 9, Fi shows case (i ) in the definition above for i D 1; 2; 3.

The following lemma shows that for stability conditions below the wall Llast
w (Lright-last

w ),
there is no stable object with character w .

Lemma 3.12 Let w be a character in K.P2/ not inside ConeLP , and � a geometric
stability condition in x�<0 below Llast

w or L
right-last
w . Then Ms

� .w/ and Ms
� .�w/ are

both empty.

Proof We prove the lemma in the case for Llast
w . The L

right-last
w case can be proved

similarly. We may assume ch0.w/� 0, since otherwise Ms
� .w/ is empty when � is to

the left of the vertical wall Lw˙ . When w falls under case (1) or (3) in Definition 3.11,
the statement follows from Proposition 1.30 directly.

When w falls under case (2) in Definition 3.11, we have �.w;Ew.�3// < 0. For any
� –stable F with character w , the vector space Hom.F;Ew.�3/Œt �/ may be nonzero
only when 0 � t � 3. Since F is in Coh#s� , we have Hom.Ew;H�1.F // D 0. By
Serre duality,

hom.F;Ew.�3/Œ3�/D hom.Ew;F Œ�1�/D hom.Ew;H�1.F //D 0:
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On the other hand, when � is below Llast
w and inside x�<0 , it follows from Corollary 1.22

that Ew.�3/Œ1� is � –stable. By Lemma 1.20, �� .Ew.�3/Œ1�/ < �� .F /. Thus,
Hom.F;Ew.�3/Œ1�/D 0. This contradicts the inequality �.w;Ew.�3// < 0.

The existence of stable objects before the last wall is more complicated. This was
first proved by Coskun, Huizenga and Woolf. The authors wrote down the generic
slope-stable coherent sheaves built by exceptional bundles and showed that these objects
do not get destabilized before the last wall. Our approach is closer to the idea of Bayer
and Macrì for K3 surfaces. We aim to show that for each wall-crossing before the last
wall, new stable objects (extended by two objects) are generated on both sides, hence
the moduli space is nonempty. We benefit from this approach since similar techniques
can be applied in the criterion for actual walls.

Lemma 3.13 Let w be a character in K.P2/ with ch0.w/ > 0 and which is not
inside ConeLP . Let � be a geometric stability condition. Assume that the wall Lw� is
between the vertical wall Lw˙ and

�
Llast
w for w in case (1) or (2) of Definition 3.11,

LwEw.�3/ for w in case (3) of Definition 3.11.

Let v 2K.P2/ be a character on Lw� such that ch0.v/� 0 and ch1.v/
ch0.v/

> ch1.w/
ch0.w/

. Then
the wall Lv� is between Lv˙ and Llast

v .

Proof By the definition of RE and the assumptions on Lw� , the slope of Lw� is less
than the slope of Lewer

w
. Now ch1

ch0
.v/ > ch1

ch0
.w/ and ch0.v/� 0, so v is to the right

of w in the
˚
1; ch1

ch0
; ch2

ch0

	
–plane. Therefore, either v is in REw , or ch1

ch0
.Ev/<

ch1

ch0
.Ew/;

and LvEw is either Llast
v or between Llast

v and Lv˙ .

When w falls under case (1) of Definition 3.11, Ew is below Lvw� ; therefore Lvw�

is between the wall LvEw and Lv˙ , and the conclusion follows.

When w falls under case (2) or (3) of Definition 3.11, v is in REw of case (3) in
Definition 3.11 or Ev has slope less than Ew . In either case, LvEw.�3/ is either Llast

v

or between Llast
v and Lv˙ . Since Ew.�3/ is below Lvw� , it follows that Lvw� is

between the wall LvEw.�3/ and Lv˙ , hence between the wall Llast
v and Lv˙ .

Theorem 3.14 Let w be a character in K.P2/ not inside the Le Potier cone ConeLP ,
and let � be a geometric stability condition in x�<0 between Llast

w and L
right-last
w . When

� is not on the vertical wall Lw˙ , either Ms
� .w/ or Ms

� .�w/ is nonempty.
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Figure 10: Lv� is between Lv˙ and Llast
v

The rough idea of the proof is given at the beginning of this section. However, several
different cases may happen, so the idea cannot work directly. When one of the destabi-
lizing characters is proportional to an exceptional character, condition (1) in Lemma 3.4
fails and we need other ways to show �.w0; w�w0/ < 0. The most complicated case
is when w0 is of higher rank and L

right-last
w�w0 is Lww0 (Case 3.II.2 in the proof). In this

case, Mss
� ..w

0�w/Œ1�/ may not contain any stable objects. To deal with that, we adjust
w0�w to another character zw on Lww0 so that zw is of positive rank and L

right-last
zw is

not Lww0 . The details of the argument are as follows.

Proof Assume the proposition does not hold. Among all the characters w not inside
the Le Potier cone and such that Ms

� 0.w/ and Ms
� 0.�w/ are both empty for some � 0

in x�<0 between Llast
w and L

right-last
w , we may choose w with the minimum discrimi-

nant �. We may assume that ch0.w/� 0. When � 0 is to the left of Lw˙ , the stable
locus Ms

�s;q
.w/ contains Gieseker–Mumford stable objects for q� s2

2
and s< ch1.w/

ch0.w/
.

By Theorem 1.8, Ms
�s;q

.w/ is not empty. There is a “last wall” L�w prior to Llast
w such

that Ms
�C.w/ is nonempty, on the wall all objects in Mss

� .w/ are strictly semistable,
and M ss

��.w/ is empty. There are three main cases to treat, according to the number of
exceptional characters on L�w .

Case 1 (there is no exceptional character on L�w ) Let F be a �C–stable object
of character w . Then F is destabilized by a � –stable object G with zv.G/D w0 on

Geometry & Topology, Volume 23 (2019)



Birational models of moduli spaces of coherent sheaves on the projective plane 405

the line segment l�w . Also, Mss
� .w�w0/ is not empty since it contains F=G . Since

there is no exceptional character on L�w , the wall L�w is not Llast
w�w0 or L

right-last
w�w0 . By

Corollary 1.33, w�w0 is not inside ConeLP . By Lemma 3.12, L�w is between Llast
w�w0

and L
right-last
w�w0 . Corollary 3.10 in [8] implies �.w0/ < �.w/. By induction on � and

the fact that L�.w�w0/ is not the vertical wall, we can assume that Ms
� .w �w0/ is

nonempty.

We check that the pair w0 and w�w0 satisfies the conditions (1)–(3) in Lemma 3.4:

(1) Note that Ms
� .w � w0/ and Ms

� .w
0/ are nonempty; w0 and w � w0 are not

exceptional. By Corollary 1.33, both w0 and w�w0 are not inside ConeLP .

(2) We have that w0Ca.w�w0/ is outside the cone ��0 for any a� 0. Since Lw�

intersects x�<0 , it follows that w0� a.w�w0/ belongs to x�<0 for some a> 0. Now

�.w0� a.w�w0//D�.w0/C�.w�w0/� 2a�.w0; w�w0/ < 0

implies �.w0; w�w0/� 0.

(3) When w is not right-orthogonal to Ew , it follows from Lemma 3.3 that the ch1

ch0
–

length of LwEw \CLP is greater than 3. Hence, the ch1

ch0
–length of Lw�\CLP is greater

than 3. When w is right-orthogonal to Ew , note that w0 is not in the triangle area
TRwewe

C
w

, otherwise Ew0DEw and Lw0� is to the left of Lw0Ew , by Proposition 1.30
Ms
� .w

0/ is empty, and there is no � –stable object G to destabilize F . Now since the
ch1

ch0
–length of LwEw \CLP is greater than 3, the ch1

ch0
–length of Lw� \CLP is greater

than 3.

Now by Lemma 3.4, we have �.w0; w�w0/< 0. For � –stable objects F 0 and F 00 with
characters w0 and w�w0 respectively, and for i¤0; 1; 2, we have Hom.F 0;F 00Œi �/D0

since F 0 and F 00 are in the same heart and in addition by Serre duality. These imply
Hom.F 0;F 00Œ1�/ ¤ 0. Now by Lemma 3.1, the nontrivial extension of F 0 by F 00 is
��–stable, therefore Ms

��.w/ is nonempty, which contradicts the assumption on L�w

at the beginning.

Case 2 (there are more than two exceptional characters on L�w ) This can only
happen when Lw� is the line �.E;�/D 0 for exceptional bundle E DEw . In this
case, w belongs to case (3) in Definition 3.11, and L�w is Llast

w .

Case 3 (there are one or two exceptional characters on L�w ) Similar to Case 1,
we consider the character w0 . We first prove the “lower-rank wall” case, ie the case
ch0.w

0/� ch0.w/. In this case, since ��C.w/ < ��C.w�w0/, the character w�w0
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satisfies the conditions of Lemma 3.13, therefore Ms
� .w�w0/ is nonempty by induction

on �. We only need to show �.w0; w�w0/< 0 so that by the same argument of the last
paragraph in Case 1, Ms

��.w/ is nonempty. If w0 is not proportional to any exceptional
character, then the proof for Case 1 works, and the pair w0 and w�w0 still satisfies
the conditions of Lemma 3.4. If w0 is proportional to an exceptional character E , then
since LE.w�w0/ is not Llast

.w�w0/ , we get �.E; w�w0/<0. Therefore, �.E; w�E/<0

and Ms
��.E; w �E/ is nonempty. This completes the argument for the lower-rank

case.

Now we may assume ch0.w
0/ > ch0.w/ and let w00 D w0 �w ; then ch0.w

00/ > 0.
On the

˚
1; ch1

ch0
; ch2

ch0

	
–plane, w0 and w00 are in different components of Lw� \ x��0 .

If Ms
� .w

00Œ1�/ is nonempty, then the argument for the lower-rank case still works
and implies that Ms

��.w/ is nonempty. On the other hand, by induction on � and
Propositions 2.15 and 2.18, the semistable locus Mss

� .w
00Œ1�/ is nonempty. So the only

remaining case to consider is that Lw� is the right last wall L
right-last
w00 for w00 .

Case 3.I (w00 is proportional to an exceptional character E , ie w00 D azv.E/) Since
E is to the left of Ew , we have �.w;E/ > 0, which implies

�.w0;E/ > �.w00;E/D a�.E;E/D a:

By Corollary 1.22, both G and EŒ1� are � –stable in the same heart, which implies
Hom.G;E/D Hom.G; .EŒ1�/Œ�1�/D 0. Therefore,

ext1.G;EŒ1�/D hom.G;EŒ2�/� �.w0;E/ > a:

By Corollary 3.2, there exists a ��–stable object extended by G and E˚aŒ1�.

Case 3.II (w00 is not proportional to any exceptional character) As L
right-last
w00 DLw00� ,

and there are at most two exceptional characters on Lw00� by assumption, w00 does
not belong to case (3) in Definition 3.11, and either E

(rhs)
w00 or E

(rhs)
w00 .3/ is on the line

segment lww00 .

Case 3.II.1 (w00 belongs to (right side) case (2) in Definition 3.11, and zv.E(rhs)
w00 .3//

is on lww00 ) The character w can be written as

azv.E(rhs)
w00 .3//� bw00

for some positive numbers a and b . Since �.E(rhs)
w00 .3/; w

00/ < 0, we have

�.E
(rhs)
w00 .3/; w/ > 0:
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This implies ch1

ch0
.E

(rs)
w00.3// � ch1

ch0
.Ew/. As E

(rhs)
w00 .3/ is above Llast

w , it must be Ew .
On the other hand, �.Ew; w/D �.E(rhs)

w00 .3/; w/ > 0, so w is covered by case (1) in
Definition 3.11. The wall LwEww00 is just the last wall Llast

w of w .

Case 3.II.2 (w00 belongs to (right side) case (1) in Definition 3.11, and ED zv.E(rhs)
w00 /

is on lww00 ) By Definition 3.11, �.w00;E/ > 0. If we consider the character zw WD
w00��.w00;E/zv.E/, we have �. zw;E/D 0; therefore zw is on the line Ler .e.3/l / .

The character w must be above LEE.3/ , otherwise LwE is the last wall Llast
w . The

intersection LwE \Ler .e.3/l / is outside the cone x�<0 and on a different side to w in
the

˚
1; ch1

ch0
; ch2

ch0

	
–plane. As w00 , E and zw are on the same component of LwE\ x��0 ,

we have that ch0. zw/ is greater than 0. The character wC zwDw0��.w00;E/zv.E/ is
on the line segment lww0 .

x�0

x� 1
2

e.3/�

e�

�
e.3/l

�
�

er

Ler e.3/l

�zw

�
w�

w0

�
w00

ch1
ch0O

ch2
ch0

Figure 11: Definition of zw

When w0 is not proportional to any exceptional character, wC zw is outside ConeLP

and on the same component of LwE \ x��0 as w . The line segment l zw.wCzw/ inter-
sects x�<0 , so �. zw;wC zw/< 0. This implies �. zw/<�.w/ and �.wC zw/ < �.w/.
As Ms

� .w
0/ is nonempty, by Lemma 3.13 and induction on � it follows Ms

� .wC zw/
is nonempty. �. zw;E/ D 0 implies L zwE is not the last wall L

right-last
zw for zw . By

induction on �, we have that Ms
� .� zw/ is nonempty. The character pair wC zw and

� zw satisfy the conditions in Lemma 3.4, hence �.wC zw; zwŒ1�/ < 0. By Lemma 3.1,
Ms
��.w/ is nonempty.
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When w0 is zv.E0/ for an exceptional bundle E0 , then since E0 is to the right of E.3/,
we have �.E;E0/ > 0. Hence,

�.wC zw;E0/D �.E0��.w00;E/zv.E/;E0/D 1��.w00;E/�.E;E0/� 0:

This implies the characters wC zw and zv.E0/ are on two different sides of Le0Ce0l .
Therefore, wC zw is not inside ConeLP . The rest of the argument is the same as the
case when w0 is not proportional to an exceptional character.

We have so far finished the argument for the case that � is on the left side of Lw˙ .
When � is on the right side of Lw˙ , the statement follows from the symmetric property
(ch0.w/ > 0)

Ms
� .w/'Ms

� 0.w
0Œ1�/; F 7!RHom.F;O/Œ1�;

where � 0 is with parameter .�s� ; q� / and w0 D .ch0.w/;�ch1.w/; ch2.w//.

3.3 The criterion for actual walls

In this section we give a numerical criterion for actual walls of a given Chern character.
In the

˚
1; ch1

ch0
; ch2

ch0

	
–plane, the actual wall for w is the potential wall Lw� where

new stable objects are produced on both sides and curves are contracted on at least
one side. When � is to the left of the vertical wall Lw˙ , one can always choose a
destabilizing factor v with positive rank and smaller slope. As �.v/ is less than �.w/,
there are finitely many candidates v . By checking the positions of v and v �w on
the

˚
1; ch1

ch0
; ch2

ch0

	
–plane, which are purely numerical data, Theorem 3.16 determines

whether Lw� is an actual wall induced by this pair. The idea of the proof is very
similar to that of the last wall: We first show there are stable objects on the wall with
characters v and w� v by Theorem 3.14. We then argue that the Ext1 of the stable
objects is nonzero by Lemma 3.4, and finally claim that curves must be contracted
from the �C–side wall-crossing.

To state the criterion for actual walls, we first need to introduce the following definition.

Definition 3.15 For a Chern character w with ch0.w/� 0 and an exceptional charac-
ter e , we define the triangle TRwe to be the triangle region bounded by lines Lwe ,
Lel eC and LeCer in the

˚
1; ch1

ch0
; ch2

ch0

	
–plane. See Figure 12.

Now we can state the main theorem on actual walls. The regions TRwE will be used
to detect the nonemptiness of moduli spaces of stable objects of any “subcharacter”, as
will be explained in the proof of the theorem.
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Figure 12: Definition of TRwE

Theorem 3.16 Let w 2 K.P2/ be a Chern character outside the Le Potier cone with
ch0.w/ � 0. For any stability condition �s;q in x�<0 between the wall Llast

w and the
vertical ray LwC , the wall L�w is an actual wall for w if and only if there exists a
Chern character v 2 K.P2/ on the line segment l�w such that

� ch0.v/ > 0 and ch1.v/
ch0.v/

< ch1.w/
ch0.w/

;

� the characters v and w�v are either proportional to exceptional characters or not
inside the Le Potier cone and both of them are not in TRwE for any exceptional
bundle E .

Remark 3.17 (1) For given characters w and v , one only needs to check whether
v or w� v are in TRwE for at most two particular exceptional bundles. Suppose the
intersection points L�w \ x� 1

2
fall between the segment between er

i and el
i for some

exceptional character e1 and e2 . Then one only needs to check the triangles TRwEi
.

(2) By the term “in TRwE ”, strictly speaking, we mean “in the closure of TRwE but
not on the line LeCel when E is not to the right of Ew (or not on the line LeCer

when E is to the left of Ew )”.

Proof The first step is to translate the second condition as nonemptiness of moduli
spaces of stable objects of the characters v and v�w .
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Lemma 3.18 When v (or w� v ) is not inside the Le Potier cone , the condition

“v (or w� v ) is not in TRwE for any exceptional E”

is equivalent to

“Ms
� .v/ (or Ms

� .w� v/) is nonempty for � in x�<0 on the line Lwv ”.

Proof The( direction is easy to check: Suppose v is in TRwE for some E . Then E

must be Ew or to the right of Ew . This implies l�w intersects leCer . The character v
is in RE and belongs to case (1) in Definition 3.11. By Proposition 1.30, Ms

� .v/ is
empty. The w� v part is proved in a similar way.

For the ) direction, let f1 and f2 be the intersection points of the line Lvw and the
parabola x� 1

2
. Suppose that f1 has larger ch1

ch0
, and f1 lies on the segment between el

and er for some exceptional bundle E by Theorem 4.1 in [15]. Since v is below Leer ,
it follows that Ev is either E or to the left of E .

Three different cases may happen:

(1) If v is above LeCel , then Ev DE . Since v is not in TRwE , it follows that v
is above LEw . This implies that E is below Lvw , and Lv� is between Llast

v

and Lv˙ .

(2) If E ¤Ew and v is not above LeCel , then w is below the line Le.�3/el and
E.�3/ is below Lwv . Hence, Lv� is between LvE.�3/ and Lv˙ .

(3) If E D Ew and v is not above the line Lel eC , then by Remark 3.17, v is
above Llast

w DLE.�3/w . Now w is below Llast
v DLE.�3/v , therefore Lwv� is

between Llast
v and Lv˙ .

In any case, Lv� is between Llast
v and Lv˙ . It follows from Theorem 3.14 that Ms

� .v/

is nonempty for any � 2Lv� \ x��0 .

Write u for w � v . When ch0.u/ � 0, it follows from Lemma 3.13 and a similar
argument as for v that Mss

� .u/ is nonempty for any � 2Lvw\ x��0 . If ch0.u/ < 0, let
E be the exceptional bundle such that f2 lies on the segment of x� 1

2
between x D el

and x D er . By a similar argument as for v , when u is above LeCel , then Luw is
between L

right-last
u DLuE and Li˙ . When u is not above LeCel , then Luw is between

LuE.3/ and Lu˙ . By Theorem 3.14, Mss
� .u/ is nonempty for any � 2Lvw\ x��0 .
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The second step is to prove the “only if” direction of the statement, which follows
from Lemma 3.18 in the first step. If L�w is an actual wall, an object F with
character w is destabilized by a stable object with character v such that ch0.v/ > 0

and ch1

ch0
.v/ < ch1

ch0
.w/. By Corollary 1.33, v is exceptional or outside ConeLP . By

the previous discussion, since Ms
� .v/ is not empty, v is not in any TRwE . For the

character w � v , since Mss
� .w � v/ is nonempty we only need to consider the case

when all semistable objects are strictly semistable. Since we may assume that v�w
is not proportional to any exceptional character and Mss

� .w � v/ is nonempty, by
Propositions 2.15 and 2.18 and Theorem 3.14 Ms

� .w� v/D∅ if and only if Lw� is
L

right-last
w�v or Llast

w�v . The second case is not possible by Lemma 3.13. We may assume
ch0.v/ > ch0.w/. Now v�w belongs to case (1) in Definition 3.11, since otherwise
v�w is not in TR

E
.rhs/
v�ww and Ms

� .w� v/ is not empty. Write E
.rhs/
v�w as E , and let

v0 WD v��.v�w;E/ � e:
Then w�v0Dw�vC�.v�w;E/ �e . Since �.w�v0;E/D 0, the character w�v0 is
the intersection point of Lw� and LeCer and is not in TRwE . By the same argument
as in Case 3.II.2 of the proof of Theorem 3.14, we have inequalities ch0.v

0/ > 0 and
ch1

ch0
.v0/ < ch1

ch0
.w/, and Ms

� .v
0/ is nonempty. Therefore, the pair v0 and w�v0 satisfies

the requirements in the statement.

The last step is to prove the “if” direction in the statement. Similar to the proof for
the last wall, objects with characters v and uD w� v do not always have nontrivial
extensions. We need to build Chern characters u0 and v0 on the line Lvw so that

� w D v0Cu0 ;
� Ms

� .v
0/ and Ms

� .u
0/ are nonempty for � 2Lvw \ x�<0 ;

� Ms
�C.v

0;u0/!Mss
� .w/ contracts curves.

Four cases may happen for u and v :

(i) (v and u are not proportional to any exceptional characters; in other words, they are
not inside ConeLP ) Since they are not in the triangles TRwE , it follows that Ms

� .v/

and Ms
� .u/ are nonempty. The characters v and u satisfy the conditions in Lemma 3.4

due to the same argument as for Case 1 in the proof of Theorem 3.14. This implies
�.v;u/ < 0. By the first property of Lemma 2.17 and the same computation as in
Proposition 2.18, �.u; v/��.v;u/� �3. Therefore, by Lemma 2.9, for any � –stable
objects F and G in Ms

� .v/ and Ms
� .u/, we have ext1.G;F / � 3. By Lemma 3.1,

Ms
�C.F;G/!Mss

� .w/ contracts curves.
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(ii) (v is proportional to the character e of some exceptional bundle E , but u is not
proportional to any exceptional characters) Write v D ne for some integer n � 1.
When ch0.w/� ch0.e/, the character u0D uC.n�1/e is to the right of w . Therefore
u0 is not in TRwE and Ms

� .u
0/ is nonempty. Now v0 D w � u0 D e and Ms

� .e/ is
nonempty.

In the case ch0.e/ > ch0.w/, we have

ch1.u/

ch0.u/
D ch1.w�ne/

ch0.w�ne/
>

ch1.w�e/

ch0.w�e/
D ch1.u

0/
ch0.u0/

:

Now u is outside ConeLP and on a different component of Lw� \ x�>0 than that of w ,
so u0 is also outside ConeLP and not in any TRwE . We may still let v0 be e .

Lew is not the last wall Llast
w , so �.e; w/� 0. We have �.e;u0/� �1. By the same

argument as in (i), we have ext1.G;E/� 3 for any object G in Ms
� .u
0/. Therefore,

Ms
�C.E;G/!Mss

� .w/ contracts curves.

(iii) (u is proportional to the character e of some exceptional bundle E , but v is not
proportional to any exceptional characters) As u is not on the line segment l�w , it
has negative ch0 . Suppose uD�ne ; we may let v0DwC e and u0D�e in a similar
way as in (ii). The same argument on the slope of v and v0 shows v0 is outside any
triangle TRwE . As Lwe is not the last wall Llast

w , we have �.w; e/ � 0. Therefore
�.v0;u0/ � �1. By the same argument as in (i), we have ext1.E;F / � 3 for any
object F in Ms

� .v
0/. Therefore, Ms

�C.E;G/!Mss
� .w/ contracts curves.

(iv) (u and v are proportional to the characters e1 and e2 of exceptional bundles E1

and E2 , respectively) Write uD�n1e1 and v D n2e2 . Since Lvw is not Llast
w , we

have �.e2; w/� 0. Therefore,

n2 � n1�.e2; e1/D n1ext2.E2;E1/D n1 hom.E1;E2.�3// < n1 hom.E1;E2/:

As a consequence, we see that

dimMs
��.E

˚n1

1
Œ1�;E

˚n2

2
/D dim Krhom.E1;E2/.n1; n2/

D n1n2 hom.E1;E2/� n2
1� n2

2C 1� 2:

Here Krhom.E1;E2/.n1; n2/ is the Kronecker model, ie the representation space

Hom.Cn2 ;Cn1/˚ hom.E1;E2/

quotiented by the natural group action of GL.n1/�GL.n2/=C
� .

In all cases, Lvw is an actual wall for w .
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Now the following corollary follows easily:

Corollary 3.19 (lower-rank walls) Let w be a character with ch0.w/� 0. For any
character v with 0< ch0.v/� ch0.w/, suppose that v is between the wall Llast

w and
the vertical ray LwC , outside the Le Potier cone ConeLP , and not in TRwE for any
exceptional bundle E . Then Lvw is an actual wall.

4 Applications: the ample cone and the movable cone

In this section, we work out several applications of our criterion on actual walls. We
compute the boundary of the movable cone in Section 4.1 and the boundary of the
nef cone in Section 4.2. In Section 4.3, we compute all the actual walls of the moduli
space of stable sheaves of character .4; 0;�15/, as an example of how to apply the
machinery of this paper in a concrete situation.

4.1 Movable cone

Let w 2 K.P2/ be a character with ch0.w/ � 0 not inside ConeLP . It was revealed
in [15] that when � is in the “last” chamber above Llast

w , the birational model Ms
� .w/

has Picard number 1 if and only if w is right-orthogonal to Ew . In other words,
the movable cone boundary on the primary side is not the same as the effective cone
boundary if and only if �.Ew; w/D 0. In this section, we determine the boundary of
the movable cone in this case.

Let .E˛;E
 ;Eˇ/ be a triple of exceptional bundles corresponding to dyadic numbers
p�1
2n , p

2n and pC1
2n , respectively. The following property is well-known; the reader is

referred to [20].

Lemma 4.1 For the triple .E˛;E
 ;Eˇ/, we have

�.E˛;E
 /D hom.E˛;E
 /D 3 ch0.Eˇ/;

�.E
 ;Eˇ/D hom.E
 ;Eˇ/D 3 ch0.E˛/;

hom.E˛;E
 / � hom.E
 ;Eˇ/� hom.E˛;Eˇ/D 3 ch0.E
 /;

hom.Eˇ.�3/;E˛/ � hom.E˛;E
 /� hom.Eˇ.�3/;E
 /D 3 ch0.E˛/:

For any exceptional E. t
2q /

such that p�1
2n < t

2q <
p
2n , we have ch0.E. t

2q /
/ < ch0.E
 /.

The following observation is from the proof for Theorem 3.14. It will be used in the
next theorem.
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Lemma 4.2 Let w 2 K.P2/ be a Chern character not inside ConeLP . Let e be an
exceptional character such that, in the

˚
1; ch1

ch0
; ch2

ch0

	
–plane, w is in the area between

two parallel lines Lee.3/ and Ler eC . Then we have jch0.w/j> ch0.E/.

Let w be a primitive character outside ConeLP with ch0.w/�0. Assume that w is right-
orthogonal to the exceptional bundle Ew DE
 , and consider the triple .E˛;E
 ;Eˇ/
corresponding to dyadic numbers p�1

2n , p
2n and pC1

2n . The character w can be uniquely
written as n2e˛ � n1eˇ�3 for positive numbers n1 and n2 .

Theorem 4.3 Adopting notation as above, we may define a character P based on two
different cases:

(i) P WD e
 � .3 ch0.Eˇ/� n2/e˛ if 1� n2 < 3 ch0.Eˇ/,

(ii) P WD e
 if n2 � 3 ch0.Eˇ/.

On the wall LPw , a divisor of Ms
LPwC

.w/ is contracted.

Proof In order to apply Theorem 3.16, we first show that in case (i), P is not inside
ConeLP , and is outside TRwE for any exceptional bundle E . Now �.eˇ;P /D 0, so
P is on the line Le

C
ˇ

el
ˇ

. By Lemma 4.1,

�.P;P /D1C .3 ch0.Eˇ/� n2/
2� .3 ch0.Eˇ/� n2/�.E˛;E
 /

D1� n2.3 ch0.Eˇ/� n2/� 0:

Since P is on the line Le
C
ˇ

el
ˇ

, it is not inside ConeLP and is outside TRwE for any
exceptional bundle E .

We next show that w � P is outside TRwE for any exceptional bundle E . By
Lemma 3.13, we only need to treat the case when ch0.w�P / < 0. We are going to
prove that for any exceptional bundle E to the left of E
 .�3/, if E is above LPw ,
then �.P �w;E/� 0. This will imply that w�P is not in TRwE .

In case (i), we first treat the case of the exceptional bundle E to the left of e˛.�3/.
Note that

P �w D n1eˇ.�3/� .3 ch0.Eˇ/ � e˛ � e
 /;

so by Lemma 4.1 and Serre duality,

�.3 ch0.Eˇ/e˛ � e
 ; e˛.�3//D 3 ch0.Eˇ/� hom.e˛; e
 /D 0:
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Since �.eˇ.�3/; e˛.�3// is also 0, the point P �w is on the line Le˛.�3/Ce˛.�3/r .
Note that ch0.w/� 0, and we have n2 ch0.e˛/� n1 ch0.eˇ/. Hence

n1 � ch0.e˛/

ch0.eˇ/
� n2 < 3 ch0.e˛/:

By the equations in Lemma 4.1,

�.P �w;P �w/D n2
1C 1� n1�.eˇ.�3/; 3 ch0.Eˇ/ � e˛ � e
 /

D n2
1C 1� 3 ch0.e˛/ � n1 < 0:

Combining with the result that P �w is on the line Le˛.�3/Ce˛.�3/r , we know that
P � w is not above the curve CLP , and for any exceptional bundle E to the left
of e˛.�3/, we have

�.P �w;E/� 0:

Now we treat the case of the exceptional character e between e˛.�3/ and e
 . The
line segment l.P�w/P is above the line L.P�w/e
 , therefore it is above the line
segment le˛.�3/r e
 . Since le˛.�3/r e
 is above any exceptional characters between the
vertical rays Le˛.�3/˙ and Le
˙ , the character P �w is not in the triangle TRwE

for any such exceptional bundle E .

In case (ii), the character P �w can be rewritten as

P �w D e
 �w D n1eˇ�3� .n2� 3 ch0.Eˇ//e˛ � .3 ch0.Eˇ/ � e˛ � e
 /

D .n2� 3 ch0.Eˇ//
�ch0.E˛/

ch0.Eˇ/
eˇ�3� e˛

�

C
�
n1� n2

ch0.E˛/

ch0.Eˇ/
C 3 ch0.E˛/

�
eˇ�3� .3 ch0.Eˇ/e˛ � e
 /:

Note that the character ch0.E˛/
ch0.Eˇ/

eˇ�3�e˛ in the first term is proportional to e
 .�3/�e


by a positive scalar, and the coefficient n2� 3 ch0.Eˇ/ is nonnegative. We denote the
remaining terms by

v0 WD
�
n1� n2

ch0.E˛/

ch0.Eˇ/
C 3 ch0.E˛/

�
eˇ�3� .3 ch0.Eˇ/e˛ � e
 /:

By Lemma 4.1 and the assumption, ch0.v
0/D ch0.P �w/ > 0. In particular,

n1� n2
ch0.E˛/

ch0.Eˇ/
C 3 ch0.E˛/ > 0:
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Since ch0.w/ > 0, we have the inequality

n1� n2
ch0.E˛/

ch0.Eˇ/
C 3 ch0.E˛/ < 3 ch0.E˛/:

By a similar computation as in case (i),

�.v0; v0/ <
�
n1� n2

ch0.E˛/

ch0.Eˇ/
C 3 ch0.E˛/

�2
C 1

�
�
n1� n2

ch0.E˛/

ch0.Eˇ/
C 3 ch0.E˛/

�
�.eˇ�3; 3 ch0.Eˇ/e˛ � e
 /

< .3 ch0.E˛//
��

n1� n2
ch0.E˛/

ch0.Eˇ/
C 3 ch0.E˛/

�
� 3 ch0.E˛/

�
C 1

< 0:

Note that v0 is on the line Le˛.�3/Ce˛.�3/r , and v0 is not above CLP . Since v0 is
to the left of Eˇ.�3/, after moving along the direction e
 .�3/� e
 we have that
v0C a.e
 .�3/� e
 / is still not above CLP or Le˛.�3/Ce˛.�3/r . Therefore, P �w is
not above those two curves. It is not in TRwE for any E to the left of E˛.�3/.

For any exceptional e between Le˛.�3/˙ and Le
 .�3/˙ , by the assumption we have
ch0.P �w/ � ch0.e
 / < ch0.e/. By Lemma 4.2, P �w is not in the area between
LeCer and Lee.3/ . Since w is above Lee.3/ , it follows that P �w is not in TRwE

for any exceptional E between Le˛.�3/˙ and Le
 .�3/˙ .

The line segment l.P�w/P is above the character e
 .�3/, hence it is above the line
segment le
 .�3/r e
 . Since le
 .�3/r e
 is above any exceptional character between the
vertical rays Le˛.�3/˙ and Le
˙ , the character P �w is not in the triangle TRwE

for any such exceptional bundle E .

This finishes the proof of the claim that w�P is outside TRwE for any exceptional
bundle E . By Theorem 3.16, we know that LPw is an actual wall.

The last step is to show that a divisor of Ms
LPwC.w/ is contracted at LPw . By

Proposition 2.15 and Theorem 3.14, for � 2LPw we have

dimMs
�C.w�P /D 1��.P �w;P �w/;

dimMs
�C.P /D 1��.P;P /:

By the previous argument, they are both nonnegative.
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By Lemmas 2.9 and 3.1,

dimMs
�C.w�P;P /D dimMs

�C.w�P /C dimMs
�C.P /C ext1.w�P;P /� 1

D 1��.w�P; w�P /��.P;P /��.w�P;P /

D 1��.w;w/C�.P; w�P /

D dimMs
�C.w/C�.P; w�P /:

So it suffices to show that �.P; w�P /D�1. This is clear in case (ii):

�.P; w�P /D �.e
 ; w� e
 /D��.e
 ; e
 /D�1:

In case (i),

�.P; w�P /D��.P;P /C�.P; w/
D��.P;P /��..3 ch0.Eˇ/� n2/e˛; w/

D��.P;P /� .3 ch0.Eˇ/� n2/ � n2�.e˛; e˛/

C .3 ch0.Eˇ/� n2/ � n1�.e˛; eˇ�3/

D��.e
 ; e
 /� .3 ch0.Eˇ/� n2/
2

C .3 ch0.Eˇ/� n2/
�
�.e˛; e
 /C�.e
 ; e˛/

�� .3 ch0.Eˇ/� n2/n2

D�1� .3 ch0.Eˇ/� n2/
2C .3 ch0.Eˇ/� n2/ � 3 ch0.Eˇ/

� .3 ch0.Eˇ/� n2/n2

D�1:

4.2 Nef cone

In this section, we study the boundary of the nef cone of the moduli space Mss
GM.w/.

Due to Theorem 2.24, this is the first actual wall to the left of the vertical wall Lw˙ .
We assume that the character w is primitive, ch0.w/ > 0 and ch1.w/

ch0.w/
2 .�1; 0�. The

following lemma gives a first bound for the boundary of the nef cone.

Lemma 4.4 Suppose x�.w/� 2. Then LO.�1/w is an actual wall for w .

Proof By Corollary 3.19 and Theorem 3.14, we need to show that w is below the line
LO.�1/O.�1/r .

The point O.�1/r is the intersection of x� 1
2

and LOO.�1/ , so in the
˚
1; ch1

ch0
; ch2

ch0

	
–

plane, its coordinates are
�
1; ch1

ch0
; ch2

ch0

�D �1; 1
2
.1�
p

5/; 1
4
.1�
p

5/
�
:
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Let P be the intersection point of LO.�1/O.�1/r and LO˙ . The function x� on
the line segment lO.�1/P reaches its maximum at P D �

1; 0;�1
2
.1 C p5/

�
, and

x�P D 1
2
.1Cp5/ < 2. Therefore, w is below the line LO.�1/O.�1/r .

When ch1

ch0
.w/ 2 .k�1; k� for some integer k and x�.w/� 2, by the lemma LO.k�1/w

is an actual wall.

Lemma 4.5 Suppose that x�.w/ � 10. Then the first lower-rank wall Lvw with
ch0.v/� ch0.w/ is given by the character v satisfying the following two conditions:

� ch1

ch0
.v/ is the greatest rational number less than ch1

ch0
.w/ with ch0.v/� ch0.w/.

� Given the first condition, if ch1.v/ is even (resp. odd), then ch2.v/ is the greatest
integer (resp. 2 ch2.v/ is the greatest odd integer) such that the point v is either
an exceptional character or not inside ConeLP .

Proof We may assume that �1 < ch1

ch0
.w/ � 0. Note that the slopes of Lel eC and

Ler eC for any exceptional object with ch1

ch0
.e/ in Œ�1; 0� are at least �5

2
.

We first show that there is no actual wall with lower rank between Lvw and Lw˙ .
Suppose that there is a character v0 with ch0.v

0/� ch0.w/ and ch1

ch0
.v0/ < ch1

ch0
.w/, such

that Lv0w is an actual wall between Lvw and Lw˙ . By the previous lemma, we may
assume that ch1

ch0
.v0/� �1. Since v0 is either an exceptional character or below CLP ,

by the assumptions on v we have

ch2.v/

ch0.v/
� ch2.v

0/
ch0.v0/

� � 1

ch0.v/
C 5

2

� ch1.v
0/

ch0.v0/
� ch1.v/

ch0.v/

�
� 1

ch0.v0/2
:

The coefficient 5
2

of the second term is with respect to the minimum slope of the
Le Potier curve. The last term is for the case that v0 is exceptional:

ch2.e/

ch0.e/
� ch2.e

C/
ch0.eC/

D 1

ch0.e/2
:

This inequality holds as otherwise v� .0; 0; 1/ will be below CLP with smaller ch2.v/.

Write d� WD � ch1

ch0
.v0/C ch1

ch0
.v/ for simplicity. Then

1

ch0.v/ ch0.v0/
� d� � 1:
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Since Lv0w is between Lvw and Lw˙ , in other words, v is below lv0w , we have the
inequality

ch2

ch0
.v0/� ch2

ch0
.w/�

�ch2

ch0
.v0/� ch2

ch0
.v/
� ch1

ch0
.w/� ch1

ch0
.v0/

d�

�
�

1

ch0.v/
C 1

ch0.v0/2
C 5

2
d�

��
1C 1

d�

�ch1

ch0
.w/� ch1

ch0
.v/
��

� 1C1C 5

2
C 1

d�

�ch1

ch0
.w/� ch1

ch0
.v/
��

1

ch0.v/
C 1

ch0.v0/2
C 5

2
d�

�

� 9

2
C 1

ch0.w/

�
1

d�

�
1

ch0.v/
C 1

ch0.v0/
�
C 5

2

�

� 9

2
C1C1C 5

2
D 9:

Therefore,

x�w D ch2

ch0
.w/C 1

2

�ch2

ch0
.w/

�2
� �ch2

ch0
.w/C 1

2

�ch2

ch0
.v0/

�2

D�ch2

ch0
.w/C ch2

ch0
.v0/C x�v0 < 9C 1D 10;

which contradicts our assumption.

We next show that Lvw is an actual wall. By Corollary 3.19, it suffices to prove that v
is not in TRwE for any exceptional bundle E such that �1 � ch1

ch0
.E/ � 0. Suppose

that v is in TRwE for such an exceptional bundle E . Now x�w � 10, so the slope
of LwE is less than �9. The ch1

ch0
–width of TRwE is less than

length of leeC

9� 5
2

<
1

6 ch0.E/2
:

Hence if v is in TRwE , then

1

ch0.E/ ch0.v/
� ch1.v/

ch0.v/
� ch1.E/

ch0.E/
<

1

6 ch0.E/2
:

In this way, ch0.w/� ch0.v/ > 6 ch0.E/. In particular, ch0.E/� ch0.w/. Note that
LwE becomes a lower-rank wall between Lwv and Lw˙ . By Corollary 3.19, LwE

is an actual wall. But this is not possible by the argument in the first part. Therefore, v
is not in TRwE for any exceptional bundle E .

Now we can describe the boundary of the nef cone.
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Theorem 4.6 Let w be a primitive character with ch0.w/ > 0 and x�w � 10. The
first actual wall for Ms

GM.w/ is given by Lvw , where v is the character defined in
Lemma 4.5.

Proof We may assume that ch1.w/
ch0.w/

2 .�1; 0�, and by Lemma 4.5, we only need to
show that any higher-rank actual wall is not between Lvw and Lw˙ . Let v0 be a
character satisfying the properties in Theorem 3.16 with ch0.v

0/ D ch0.w/C r for
some positive integer r .

The slope of Lvw is less than

x�w � 1
ch1

ch0
.w/� ch1

ch0
.v/

< �9 ch0.w/:

So the left intersection point of Lvw \ x�0 has ch1

ch0
–coordinate less than �9 ch0.w/

(the slope of x�0 at that point is less than �9 ch0.w/. Since v0�w is to the left of this
point, we get the inequality

ch1

ch0
.v0�w/ < �9 ch0.w/;

hence

r <
1

9
� ch1.w/� ch1.v

0/
ch0.w/

:

By Section 4.2, we have ch1

ch0
.v0/ > �1, so

ch1.v
0/ > �ch0.w/� r:

Therefore,

r <
1

9
� ch1.w/C ch0.w/C r

ch0.w/
� 1

9
� ch0.w/C r

ch0.w/
� 1

9
C r

9
:

This leads to a contradiction since r < 1 and cannot be a positive integer.

4.3 A concrete example

In this section, we apply the criterion for actual walls and compute the stable base
locus/actual walls on the primitive side for the moduli space of stable objects of character
w D .ch0; ch1; ch2/D .4; 0;�15/.

We first compute the last wall of w . The equation of L
x� 1

2w is given by

ch2

ch0
C
p

35

2

ch1

ch0
C 15

4
D 0:
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The ch1

ch0
–coordinates of the intersection points L

x� 1
2w \ x� 1

2
are �

p
35
2
˙ 3

2
. The larger

one is approximately �1:458 and the intersection point falls in the segment between
el and er , for the exceptional bundle E.�3

2
/ , which is the cotangent bundle �.

By the Hirzebruch–Riemann–Roch formula in the proof for Lemma 2.17,

�.�;w/D ���2;�3; 3
2

�
; .4; 0;�15/

�D�30C 6C 18C 8D 2> 0:

Therefore, w is above the line Lel eC , and belongs to case (1) in Definition 3.11. The
last wall of w is given by L�w with equation

ch2

ch0
C 3

ch1

ch0
C 15

4
D 0:

We now compute all the lower-rank walls. By Corollary 3.19, we only need determine
all characters v 2K.P2/ such that

� 0< ch0.v/� ch0.w/D 4 and ch1

ch0
.v/ < ch1

ch0
.w/D 0;

� v is between Lw˙ and Llast
w ;

� v is exceptional or not inside ConeLP ;

� v is not in TRwE for any exceptional character E .

If ch0.v/ is 1, then ch1.v/ can only be �1, and v is either
�
1;�1; 1

2

�
or

�
1;�1;�1

2

�
:

If ch0.v/ is 2, then ch1.v/ can be �1 or �2, and v is one of
�
2;�1;�1

2

�
;

�
2;�1;�3

2

�
;

�
2;�1;�5

2

�
;

�
2;�1;�7

2

�
; .2;�2;�1/:

When ch0.v/ is 3, then ch1.v/ can be �1, �2, �3 or �4, and v is one of

�
�
3;�1; �2n�1

2

�
for nD 1; : : : ; 7,

� .3;�2;�n/ for nD 1; : : : ; 5,

�
�
3;�3;�3

2

�
, .3;�4; 1/.

When ch0.v/ is 4, we have �5� ch1.v/� �1, and v is one of

�
�
4;�1; �2n�1

2

�
for nD 2; : : : ; 11,

� .4;�2;�n/ for nD 2; : : : ; 8,

�
�
4;�3; �2n�1

2

�
for nD 1; : : : ; 5,

� .4;�4;�2/,
�
4;�5; 1

2

�
.

The nef boundary of Ms
GM.w/ is the wall L

w.4;�1;� 5
2
/ .
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We now compute the characters that are contained in TRwE for some exceptional E .
By Lemma 4.2, we only need consider the exceptional bundles O.�1/ and �.1/. The
equations for the three edges of TRwO.�1/ are

ch2

ch0
� 1

2

ch1

ch0
D 0;

ch2

ch0
C 5

2

ch1

ch0
C 3D 0;

ch2

ch0
C 17

4

ch1

ch0
C 15

4
D 0:

By a direct computation, the characters .3;�2; 3/,
�
4;�3;�5

2

�
and

�
4;�3;�7

2

�
are

in TRwO.�1/ . The equations for the three edges of TRw�.1/ are

ch2

ch0
� ch1

ch0
D 0;

ch2

ch0
C 2

ch1

ch0
C 3

2
D 0;

ch2

ch0
C 7

ch1

ch0
C 15

4
D 0:

The coordinates of the vertices are
�
1;�1

2
;�1

2

�
,
�
1;� 9

20
;�3

5

�
and

�
1;�15

32
;�15

32

�
.

Since ch1

ch0
.v/ is not in

��1
2
;� 9

20

�
for any v , there is no v in TRw�.1/ .

To find the higher-rank walls, we first compute a bound for ch0.v/.

Llast
w \ x��0 D

n�
1;�3C

q
3
2
; 1

2

�
�3C

q
3
2

�2�
;
�
1;�3�

q
3
2
; 1

2

�
�3�

q
3
2

�2�o
:

Let v 2K.P2/ be a character such that

� ch0.v/ > ch0.w/D 4 and ch1

ch0
.v/ < ch1

ch0
.w/D 0;

� v is between Lw˙ and Llast
w ;

� v and v�w are exceptional or not inside ConeLP ;

� v and v�w are not in TRwE for any exceptional character E .

Since v and v�w are on different components of Lvw\ x��0 , we have the inequalities

ch1

ch0
.v/� �3C

q
3
2
;

ch1

ch0
.v�u/� �3�

q
3
2
:

Therefore,

(4-1)
�
�3C

q
3
2

�
ch0.v/� ch1.v/�

�
�3�

q
3
2

�
.ch0.v/� 4/:

We get a bound ch0.v/� 2C 2
p

6< 7. When ch0.v/ is 6, by (4-1) we have

ch1.v/� �2
�
�3�

q
3
2

�
< �8:

Therefore, ch1

ch0
.v/� �9D ch1

ch0
.Ew/, which is not possible.

When ch0.v/ is 5, by (4-1), ch1.v/ can be �5, �6 or �7 and v is one of the characters
�
5;�5;�7

2

�
; .5;�6; 0/;

�
5;�7; 5

2

�
:
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These characters v and w � v are not contained in TRwE for any exceptional E .
Combining Theorems 2.24 and 3.16, we may draw the stable base locus decomposition
walls in the divisor cone of Ms

GM.w/ as shown in Figure 13.

�

�

Eff

�

Nef

�

� �
�
�
�

�
�
�
�
�
�
�

�
�
�
�

�

���������

�
�
�

�
�

�
�

w B

ch1
ch0O

H

O

ch2
ch0

Figure 13: The stable base locus decomposition of the effective cone of Ms
GM.4; 0;�15/

Appendix Correspondence between wall-crossing and MMP

In this appendix, we sketch a different proof of Theorem B. As we are using existing
results in the literature, we only outline the main idea and necessary changes. For
the readers who are mainly interested in the correspondence between MMP and wall-
crossing, rather than the criterion on actual walls, we believe that this proof will be
conceptually easier to follow.

We start with a sketch of a different proof of Theorem 2.19, combining several existing
results.

Theorem A.1 Let w be a primitive character such that ch0.w/ > 0. For a generic
geometric stability condition � D �s;q with s < ch1

ch0
.w/ not on any actual wall of w ,

the moduli space Mss
� .w/ is irreducible and smooth.
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Proof The smoothness is proved in general for Poisson surfaces in [25]. Note that
this proof does not make use of exceptional collections, instead it is based on a rather
elementary geometric observation due to Bayer.

The irreducibility can be proved using a standard argument due to Mukai. Here we
refer to Proposition A.7 in [4] and Theorem 4.1 in [22] for details. Although these
papers were for K3 surfaces, the methods apply to any Poisson surfaces, as long as
the moduli of stable objects has a projective, smooth component. The only necessary
change is to the formula at the bottom of page 608 of [22]. The correct formula is
explicitly given in Remark 2 of [30], and the rest of the argument goes through.

It was shown in Theorem 1.1 of [9] that the wall-crossing induces a directed MMP of
the moduli space. Note that the technical condition on generic points of exceptional
loci being sheaves is used in Lemma 5.1 of [9] to ensure that in the case of a small
contraction, the birational change on the other side is also a small contraction. This
holds in general as a consequence of Proposition 2.18, so this technical condition can be
removed. Also, as the moduli space is smooth and irreducible, we do not need to take
the normalization of the major component as in Theorem 1.1 of [9]. This concludes
the correspondence.

We close by emphasizing that the results in Section 2 cannot be replaced by the argument
in this appendix. There are mainly two reasons for this. First, as we have seen, in
order to remove some technical conditions, we still need the estimate on ext groups in
Section 2.4, and the result here is weaker than Theorem B. The approach in Section 2
provides a more detailed structure of the wall-crossing, and relates it to variation of GIT.
Second, many results in Section 2 are used in Section 3 in an essential way to prove
the criterion on actual walls. In fact, such a criterion makes the wall-crossing process
computable, and is crucial to most applications of this theory.
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