Volume 23, issue 2 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 26
Issue 4, 1435–1905
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Lagrangian mean curvature flow of Whitney spheres

Andreas Savas-Halilaj and Knut Smoczyk

Geometry & Topology 23 (2019) 1057–1084
Bibliography
1 S J Altschuler, Singularities of the curve shrinking flow for space curves, J. Differential Geom. 34 (1991) 491 MR1131441
2 H Anciaux, Construction of Lagrangian self-similar solutions to the mean curvature flow in n, Geom. Dedicata 120 (2006) 37 MR2252892
3 S Angenent, On the formation of singularities in the curve shortening flow, J. Differential Geom. 33 (1991) 601 MR1100205
4 V Borrelli, B Y Chen, J M Morvan, Une caractérisation géométrique de la sphère de Whitney, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 1485 MR1366106
5 B Y Chen, Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tohoku Math. J. 49 (1997) 277 MR1447186
6 J Chen, W He, A note on singular time of mean curvature flow, Math. Z. 266 (2010) 921 MR2729297
7 C G Evans, J D Lotay, F Schulze, Remarks on the self-shrinking Clifford torus, preprint (2018) arXiv:1802.01423
8 K Groh, Singular behavior of equivariant Lagrangian mean curvature flow, PhD thesis, Leibniz Universität Hannover (2007)
9 K Groh, M Schwarz, K Smoczyk, K Zehmisch, Mean curvature flow of monotone Lagrangian submanifolds, Math. Z. 257 (2007) 295 MR2324804
10 R S Hamilton, Harnack estimate for the mean curvature flow, J. Differential Geom. 41 (1995) 215 MR1316556
11 D Joyce, Y I Lee, M P Tsui, Self-similar solutions and translating solitons for Lagrangian mean curvature flow, J. Differential Geom. 84 (2010) 127 MR2629511
12 F Martín, A Savas-Halilaj, K Smoczyk, On the topology of translating solitons of the mean curvature flow, Calc. Var. Partial Differential Equations 54 (2015) 2853 MR3412395
13 A Neves, Singularities of Lagrangian mean curvature flow : zero-Maslov class case, Invent. Math. 168 (2007) 449 MR2299559
14 A Neves, G Tian, Translating solutions to Lagrangian mean curvature flow, Trans. Amer. Math. Soc. 365 (2013) 5655 MR3091260
15 A Ros, F Urbano, Lagrangian submanifolds of n with conformal Maslov form and the Whitney sphere, J. Math. Soc. Japan 50 (1998) 203 MR1484619
16 K Smoczyk, Symmetric hypersurfaces in Riemannian manifolds contracting to Lie-groups by their mean curvature, Calc. Var. Partial Differential Equations 4 (1996) 155 MR1379198
17 K Smoczyk, Der Lagrangesche mittlere Krümmungsfluss, Habilitationsschrift, Universität Leipzig (2000)
18 K Smoczyk, Local non-collapsing of volume for the Lagrangian mean curvature flow, Calc. Var. Partial Differential Equations 58 (2019) MR3890797
19 T Tao, Poincaré’s legacies, pages from year two of a mathematical blog, II, Amer. Math. Soc. (2009) MR2541289
20 C Viana, A note on the evolution of the Whitney sphere along mean curvature flow, preprint (2018) arXiv:1802.02108
21 Y L Xin, Translating solitons of the mean curvature flow, Calc. Var. Partial Differential Equations 54 (2015) 1995 MR3396441