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Derived induction and restriction theory
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Let G be a finite group. To any family F of subgroups of G, we associate a thick
˝–ideal F Nil of the category of G–spectra with the property that every G–spectrum
in F Nil (which we call F –nilpotent) can be reconstructed from its underlying H –
spectra as H varies over F. A similar result holds for calculating G–equivariant
homotopy classes of maps into such spectra via an appropriate homotopy limit spectral
sequence. In general, the condition E 2 F Nil implies strong collapse results for
this spectral sequence as well as its dual homotopy colimit spectral sequence. As
applications, we obtain Artin- and Brauer-type induction theorems for G–equivariant
E–homology and cohomology, and generalizations of Quillen’s Fp –isomorphism
theorem when E is a homotopy commutative G–ring spectrum.

We show that the subcategory F Nil contains many G–spectra of interest for relatively
small families F. These include G–equivariant real and complex K–theory as well
as the Borel-equivariant cohomology theories associated to complex-oriented ring
spectra, the Ln–local sphere, the classical bordism theories, connective real K–
theory and any of the standard variants of topological modular forms. In each of these
cases we identify the minimal family for which these results hold.
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1 Introduction

1.1 Motivation and overview

Let G be a finite group and R.G/ the Grothendieck ring of finite-dimensional complex
representations of G. One can ask if R.G/ is determined by the representation rings
R.H/ as H varies over some set C of subgroups of G. For example, every G–
representation V has an underlying, or restricted, H –representation ResGH V , and we
can ask if the product of the restriction maps

ResGC W R.G/!
Y
H2C

R.H/

is injective. By elementary character theory, this holds if C contains the cyclic subgroups
of G.

Alternatively, associated to every H –representation W is an induced G–representation
IndGH W and we can ask if the direct sum of the induction maps

IndGC W
M
H2C

R.H/!R.G/

is surjective. This holds if C contains the Brauer elementary subgroups of G, ie
subgroups of the form C �P, where P is a p–group and C is a cyclic group of order
prime to p ; see Serre [83, Section 10.5, Theorem 19].

In general, there are strong restrictions on elements in the image of the restriction
homomorphism: for example, an element fWH g 2

Q
H2CR.H/ can only be in the

image of ResGC if

(1) ResH2H1 WH2 DWH1 for every pair of subgroups H1;H2 2C such that H1�H2 ,
and

(2) for every pair of subgroups H1;H2 2 C and g 2 G such that gH1g�1 DH2 ,
WH2 is the image of WH1 under the isomorphism R.H1/

��!R.H2/ induced
by conjugating H1 by g .

In this paper, we consider only the case where C D F is a family of subgroups,
that is, a nonempty collection of subgroups closed under subconjugation.1 Then one
can consider the subset of the product

Q
H2F R.H/ consisting of those elements

1There is also a rich literature in the more general case where C is only closed under conjugation; see
Section 1.3 for some references.
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which satisfy conditions (1) and (2). This subset can be identified with a certain limit,
limOF .G/op R.H/, indexed over a subcategory OF .G/ of the orbit category of G, and
the restriction map naturally lifts to this limit.

We can apply a dual construction for the induction homomorphism to obtain maps
which factor through the induction and restriction maps above,

(1:1)
M

G=H2OF .G/

R.H/� colim
OF .G/

R.H/
IndGF��!R.G/

ResGF��! lim
OF .G/op

R.H/

,!
Y

G=H2OF .G/op

R.H/:

If F is a family of subgroups which contains the Brauer elementary subgroups, then
both IndGF and ResGF are isomorphisms.2 If instead we set F to be the generally
smaller family of cyclic subgroups, these maps are isomorphisms after inverting the
order of G. We can regard these two results as forms of the induction/restriction
theorems of Brauer and Artin, respectively [83, Chapters 9–10].

A formally analogous result occurs in the theory of group cohomology. Let A be a
ZŒG�–module which is p–power torsion. Then we can consider the group cohomology
H�.H IA/ for each subgroup H � G ; under restriction (and conjugation) of group
cohomology classes, we obtain a presheaf of abelian groups on O.G/. If F is a family
of subgroups of G which contains the p–subgroups, then the natural map

(1:2) H�.GIA/! lim ��
OF .G/op

H�.H IA/

is an isomorphism; this is a restatement of the classical Cartan–Eilenberg stable
elements formula [26, Chapter XII, Theorem 10.1]. Using transfer operations in
group cohomology, one also can obtain a colimit decomposition of H�.GIA/ in terms
of the cohomology of the p–subgroups of G.

The discussion above formally extends to the study of Mackey functors of G. A Mackey
functor M assigns an abelian group M.H/ to each subgroup H �G. These abelian
groups are related by induction, restriction, and conjugation maps satisfying certain
identities. In the theory of Mackey functors, one aims to find the smallest family F of
subgroups of G for a given M such that we can reconstruct M.G/ from M.H/ as
H varies over F as in Brauer’s theorem; see Dress [30]. Such a family is called the
defect base of M.

2In fact, these maps are isomorphisms if and only if F contains the Brauer elementary subgroups
[83, Section 11.3, Theorem 23].
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Recall that Mackey functors naturally occur as the homotopy groups of (genuine)
G–spectra. For example, R.G/ is the zeroth homotopy group of the G–fixed-point
spectrum of equivariant K–theory, R.G/Š �G0 KU . Given a G–spectrum M and a
subgroup H �G, we associate the G–spectra

G=HC ^M ' F.G=HC;M/I

we have �G0 .G=HC ^M/ Š �H0 M Š �G0 F.G=HC;M/. As G=H varies over the
orbit category of G, the covariant (resp. contravariant) functoriality of G=HC ^M
(resp. F.G=HC;M/) gives the induction (resp. restriction) maps in the Mackey functor
�
.�/
0 M.

By taking homotopy colimits and limits instead, we can obtain derived analogues of
the maps in (1.1) for a G–spectrum M,

(1:3) hocolim
OF .G/

G=HC ^M IndGF��!M
ResGF��! holim

OF .G/op
F.G=HC;M/:

Here the map IndGF is the homotopy colimit of the maps G=HC ^M !M obtained
from the projections G=HC! S0 by smashing with M. Similarly, the map ResGF is
the homotopy limit of the maps M ! F.G=HC;M/ obtained from the projections
G=HC! S0 by applying F. � ;M/.

Note that the homotopy colimit hocolimOF .G/G=HC is the suspension spectrum of
the classifying space EF of the family of subgroups F (see Section A.1); this is a
G–space whose nonequivariant homotopy type is contractible but whose equivariant
homotopy type is more subtle. Thus, the induction map IndGF in (1.3) is a type of
assembly map for M and the restriction map ResGF a type of coassembly map.

We can now ask when IndGF and ResGF are equivalences of G–spectra. Below we will
study a stronger condition on M, namely that it should be F –nilpotent. This will ensure
that not only are these maps equivalences, but also that the corresponding homotopy
colimit and limit spectral sequences collapse in a strong way: with a horizontal vanishing
line at some finite stage. On homotopy groups, this will imply an analogue of Artin’s
theorem (see Theorem B).

Now if M D R is a homotopy commutative G–ring spectrum, then the restriction
maps are maps of ring spectra such that the lift ResGF is a ring homomorphism, and we
get a corresponding map of graded commutative rings after applying �G� . For example,
if RDHFp is the G–spectrum representing mod-p Borel-equivariant cohomology,
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then we obtain a ring homomorphism

�G��HFp ŠH�.BGIFp/ ResGF��! lim
OF .G/op

H�.BH IFp/:

A celebrated result of Quillen [78, Theorem 7.1] states that this map is a uniform
Fp–isomorphism when F D E.p/ is the family of elementary abelian p–subgroups
of G, ie subgroups of the form C�np for some nonnegative integer n. Recall that a
ring map f W A! B is a uniform Fp–isomorphism if there are integers m > 0 and
n � 0 such that if x 2 kerf and y 2 B then xm D 0 and yp

n 2 Imf . We will
see that HFp is E.p/–nilpotent and that our collapse results for the homotopy limit
spectral sequence imply Quillen’s theorem as well as analogues for every homotopy
commutative F –nilpotent G–ring spectrum (see Theorem C).

1.2 Main results

Throughout this paper, G will denote a finite group and F a family of subgroups of G.
We will work with the homotopy theory of G–spectra. For our purposes, we will use
the stable presentable 1–category of G–spectra SpG equipped with its symmetric
monoidal smash product; see for instance Mathew, Naumann and Noel [73, Section 5]
for a brief account in this language.

In most of this paper, the language of1–categories is used lightly; if the reader prefers,
they can recast our work in the setting of model category descriptions of G–spectra
such as equivariant orthogonal spectra, as in Mandell and May [70] or Mandell [68].
In fact, the condition of F –nilpotence depends only on the homotopy category of
G–spectra. The main translation would be that all limits and colimits occurring in
this paper (in the 1–categorical sense) need to be replaced by homotopy limits and
colimits in the respective model category, so all constructions are appropriately derived.
However, one will still need a theory of 1–categories, as developed by Lurie [65; 67],
for descent applications such as [73, Theorem 6.42].

The focus of this paper is the following subcategory of G–spectra:

Definition 1.4 (see [73, Definition 6.36]) Let F Nil , the 1–category of F –nilpotent
G–spectra, be the smallest thick ˝–ideal in SpG containing fG=HCgH2F . In other
words, F Nil is the smallest full subcategory of SpG such that:

(1) For each subgroup H 2F, the suspension G–spectrum G=HC is F –nilpotent.

(2) For E;F 2 SpG and f 2 SpG.E; F /, let Cf denote the cofiber of f . If any
two of fE;F;Cf g are F –nilpotent, then all three of them are F –nilpotent.
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(3) If E 2 SpG is a retract of an F –nilpotent G–spectrum, then E is F –nilpotent.

(4) If E 2 SpG and F is F –nilpotent, then E ^F is F –nilpotent.

Let F1 and F2 be two families of subgroups of G and let F1 \F2 denote their
intersection. Then F Nil

1 \F Nil
2 D .F1 \F2/

Nil by [73, Proposition 6.39]. For any
G–spectrum M, there is thus a minimal family F such that M is F –nilpotent; we
will call this minimal family the derived defect base of M .

Remark 1.5 The terminology “derived defect base” in Definition 1.4 is motivated
by the result that G–spectra can be viewed as spectral Mackey functors as in Guillou
and May [50], Barwick [15], Barwick, Glasman and Shah [16] and Nardin [77]. In
particular, the notion of derived defect base is an extension of the notion of defect
base from ordinary Mackey functors (valued in abelian groups) to spectral ones. In
particular, it does not refer to the use of “derived” techniques such as derived functors
of inverse limits, which is a standard technique in this context, eg in the theory of
homology decompositions.

Although the above definition is simple, it is generally difficult to determine the derived
defect base directly. We will provide several alternative characterizations of F Nil

shortly. First we recall some notation.

For a real orthogonal representation V of G, let SV D V [f1g denote its one-point
compactification, considered as a pointed G–space with1 as basepoint. The inclusion
0 � V induces an equivariant map eV W S0 ! SV called the Euler class of V . We
consider in particular the case V D z�G , the reduced regular representation of G.

Theorem A (see Theorem 2.3 and Theorem 2.25) Let M 2 SpG. The following
three conditions on M are equivalent:

(1) The G–spectrum M is F –nilpotent.

(2) For each subgroup K …F, ez�K is a nilpotent endomorphism of the K–spectrum
ResGKM. In other words, there exists n � 0 such that the map enz�K ' enz�K is
null-homotopic after smashing with ResGKM.

(3) The map of G–spectra ResGF W M ! holimOF .G/op F.G=HC;M/ of (1.3) is an
equivalence and there is an integer n� 0 such that for every G–spectrum X, the
F –homotopy limit spectral sequence

E
s;t
2 D lims

OF .G/op
�Ht F.X;M/)�Gt�sF

�
X; holim

OF .G/op
F.G=HC;M/

�ŠM s�t
G .X/
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has a horizontal vanishing line of height n on the EnC1–page. In other words,
we have Ek;�nC1 D 0 for all k > n.

Theorem A is fundamental to this paper. Condition (2) is often easy to check in
practice, especially in the presence of Thom isomorphisms for representation spheres
(see Section 5 for some examples); these will lead to most of our examples of F –
nilpotence.

The equivalence between conditions (1) and (3) has several computational consequences
which we will now list.

Theorem B (see Theorem 3.17) Let M and X be G–spectra. Suppose that M is
F –nilpotent. Then each of the maps

colim
OF .G/

M �H .X/
IndGF��!M �G.X/

ResGF��! lim
OF .G/op

M �H .X/;

colim
OF .G/

MH� .X/
IndGF��!MG� .X/

ResGF��! lim
OF .G/op

MH� .X/

becomes an isomorphism after inverting jGj.

We next state our general analogue of Quillen’s Fp–isomorphism theorem.

Theorem C (see Theorem 3.20) Let R be a homotopy commutative G–ring spec-
trum and let X be a G–space. Suppose that R is F –nilpotent. Then the canonical
map

R�G.X/
ResGF��! lim

OF .G/op
R�H .X/

is a uniform N–isomorphism:3 there are positive integers m and n such that if x 2
ker ResGF and y 2 limOF .G/op R�H .X/ then xm D 0 and yn 2 Im ResGF . Moreover,
after localizing at a prime p , ResGF is a uniform Fp–isomorphism.

Both Theorems B and C are consequences of the horizontal vanishing line and a transfer
argument which implies that the elements in positive filtration degree in the hocolim
and holim spectral sequences are jGj–torsion.

3We believe this term was first coined by Hopkins [53, page 88].
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Corollary 1.6 (compare Proposition 3.23) Under the hypotheses of Theorem C, the
map of commutative rings ResGF W R0G.X/! limOF .G/op R0H .X/ induces a homeomor-
phism between the associated Zariski spaces4

Spec
�

lim
OF .G/op

R0H .X/
�! Spec.R0G.X//:

For M 2F Nil , the minimal integer n satisfying Theorem A(3) is called the F –exponent
of M. We include various characterizations of this numerical invariant below.

We also prove an analogue of Theorems B and C which involves an end rather than an
inverse limit over OF .G/

op . This recovers the original formulas of Quillen [78; 79]
and Hopkins, Kuhn and Ravenel [54], and is nontrivial even when F is the family of
all subgroups. For H �G and M a G–spectrum, recall that we write MH to denote
the H –fixed-point spectrum of M, ie the spectrum of equivariant maps G=HC!M.

Theorem D (see Theorem 3.29) Let R be a homotopy commutative G–ring spec-
trum and X a finite G–CW complex. Assume that R is F –nilpotent. Then the natural
map

�F W R�G.X/!
Z

OF .G/op
.RH /�.XH /

has the following two properties:

(1) �F ˝Z ZŒ1=jGj� is an isomorphism.

(2) The map �F is a uniform N–isomorphism and for any prime number p , .�F /.p/

is a uniform Fp–isomorphism.

In [78, Theorem 6.2], rather than assuming that X is a finite G–CW complex, Quillen
assumes more generally that X is compact. In addition, in the end diagram, Quillen
replaces XH with the discrete space �0.XH /; since Quillen works with mod-p
cohomology, this does not change (1) or (2) above.

We can identify the derived defect bases for many G–equivariant ring spectra of
interest. These are listed in Table 2, where we set the notation for the relevant families
of subgroups in Table 1. Many of these examples arise from nonequivariant ring spectra
by taking their associated Borel theories as in [73, Section 6.3]. There, as above, we are
letting M denote the Borel-equivariant G–spectrum associated to a spectrum M with

4Under additional finiteness hypotheses (see Theorem 3.25), there is a further identification:
colimOF .G/ Spec.R0

H
.X//Š Spec.limOF .G/op R0

H
.X// .
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Notation Definition of family

All all subgroups
P proper subgroups
T only the trivial subgroup
A abelian subgroups
A n abelian subgroups which can be generated by n elements

C D A 1 cyclic subgroups
E subgroups of the form C�np for some prime p and some n

F .K/ subgroups in F which are subconjugate to K �G
F subgroups H in F such that jH j D pn for some prime p and some n

F.p/ subgroups H in F such that jH j D pn for some n
F Œ1=n� subgroups H in F such that n−jH j
F1[F2 subgroups H in either F1 or F2

Table 1: Families of subgroups

a G–action. All of the examples in Table 2 come from spectra with trivial G–actions, in
which case this equivariant cohomology theory is defined so that, for a G–spectrum X,

M �G.X/DM �.EGC ^G X/:
In Table 2, note first that if R 2 SpG is F –nilpotent, then its Borel completion R is
automatically F –nilpotent (ie we only need to consider the p–groups in F, as p varies
over the primes dividing jGj). The notation respects localization in the following sense:
if R is F –nilpotent, then R.p/ (resp. RŒ1=n�) will automatically be F.p/DF .p/–
nilpotent (resp. F Œ1=n�–nilpotent). These results are immediate consequences of
Theorem 4.25 and allow one to determine derived defect bases for Borel-equivariant
G–spectra via arithmetic fracture square arguments.

Finally, we demonstrate a connection (displayed in Table 2) between the “chromatic
complexity” of a G–spectrum E and the complexity of its derived defect base. More
precisely, we show in Proposition 5.35 that if a spectrum E is Ln–local, then the Borel
spectrum E is A n

.p/
–nilpotent. This result relies on the “character theory” of Hopkins,

Kuhn and Ravenel [54] and the Hopkins–Ravenel smash product theorem.

1.3 Related work

There is a large body of work around questions of recovering equivariant cohomology
theories from suitable subgroups; we summarize some of it below.

Geometry & Topology, Volume 23 (2019)
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G–spectrum R Derived defect base Proof of claim

S; S ˝Q All Proposition 4.22
KR .G D C2/ T Proposition 2.14
MR .G D C2/ All Proposition 2.15

MU;MO All Proposition 2.15
HZ All Proposition 4.24
HQ T Proposition 4.24

KO; KU C Proposition 5.6
ko; ku C [ E Proposition 5.11

S All Theorem 4.25
S ˝Q T Theorem 4.25

MU A Theorem 5.14
HFp E.p/ Proposition 5.16

HZ E Proposition 5.24
ku E [C Corollary 5.33

BP hni E.p/[A n
.p/

Proposition 5.31
K.n/ T Proposition 5.30
T .n/ T Proposition 5.30
En A n

.p/
Proposition 5.25

LnS A n
.p/

Proposition 5.35
ko E [C Proposition 5.37

KO;KU C Proposition 5.37
Tmf ;TMF A 2 Proposition 5.39

tmf E [A 2 Proposition 5.40
MO E.2/ Corollary 5.17
MSO E.2/[A

�
1
2

�
Proposition 5.41

MSp
�
1
2

�
A
�
1
2

�
Corollary 5.43

MSpin E.2/[C.2/[A
�
1
2

�
Proposition 5.47

MO .n� 2/ A
�
1
2

�
Proposition 5.46

MUhni A Proposition 5.45

Table 2: Derived defect bases for some G–ring spectra

In this paper, we only consider families of subgroups. One can instead work more
generally with collections C of subgroups of a finite group G, which by definition are
only required to be closed under conjugation. The question of decomposing homology
and cohomology in terms of collections has been extensively studied, starting with
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Dwyer [33; 34]. Given a collection C, one defines the C–orbit category OC.G/

analogously and one has a map of G–spaces

(1:7) hocolim
G=H2OC.G/

G=H !�:

The collection C is said to be ample if the induced map on G–homotopy orbits induces
an equivalence after applying singular chains, ie

(1:8) hocolim
G=H2OC.G/

C�.BH IFp/! C�.BGIFp/I

note that when C is a family then both (1.7) and (1.8) are automatically equiva-
lences. For an ample collection C, we obtain colimit spectral sequences for the
homology of BG from (1.8), and C is said to be subgroup-sharp if it collapses
at E2 on the zero-line. In particular, in this case one obtains an exact description
of the homology (or cohomology) of G in terms of the homology of H 2 C, ie
lim��!G=H2OC.G/

H�.BH IFp/'H�.BGIFp/.
The collection of p–subgroups is subgroup-sharp, essentially by the Cartan–Eilenberg
stable elements formula (1.2). There are many examples of subgroup-sharp collections C
which are strictly contained in the collection of p–subgroups. These ideas originated
in Jackowski and McClure [60] and Dwyer [33; 34] and have since extended further
and improved; see Grodal and Smith [49] and Grodal [48].

Our setting differs from the theory of homology decompositions in the following ways:

(1) First, we work only with families (rather than collections) of subgroups. Thus,
there is no analogue of the condition of ampleness.

(2) In the setting of sharp homology decompositions, the colimit spectral sequences
(as in (1.8) or variants) collapses at E2 at the zero-line. Therefore, one obtains
precise decompositions of the homology or cohomology of BG. Sometimes one
also considers more general settings (see [48, Theorem 1.1 and Remark 3.11])
where one has a horizontal vanishing line at E2 .

In our setting, by contrast, the limit and colimit spectral sequences are often
very infinite at E2 (see Appendix B for an example), but are only required
to collapse at some finite stage. For this reason, at the level of equivariant
homology and cohomology, we do not obtain exact decompositions, but rather
N–isomorphisms. This is a fundamental feature of our setup.

(3) Finally, the theory of homology decompositions usually relates H�.BGIFp/
to the cohomology of various p–subgroups of G, thereby providing strong
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refinements of the Cartan–Eilenberg stable elements formula (1.2). By contrast,
our results apply when G is a p–group (in fact, for Borel-equivariant theories,
all questions can be reduced to ones involving p–groups thanks to Theorem 4.25
below).

In particular, we emphasize that many of the ideas that occur in this paper (such as
the use of the homotopy limit and colimit spectral sequences) are far from new in this
context. The main idea we use that is new here (although not in other contexts, such as
chromatic homotopy theory) is the theory of nilpotence (which we discuss at length in
the companion paper [73] in an axiomatic setting).

Many other authors have considered the setting of families of subgroups, and for more
general equivariant homology theories. In particular, results similar to Theorems B, C
and D have been established by various authors:

� Segal proves the analogue of Theorem C for G–equivariant K–theory for a general
compact Lie group when X is a point and F is the family of topologically cyclic
subgroups with finite Weyl groups [82, Proposition 3.5]. Segal also proves an analogue
of Brauer’s theorem in this setting [82, Proposition 3.11].

� The most celebrated form of Theorems C and D is [78, Theorem 6.2]. There,
Quillen proves this result in the case M D HFp , F D E.p/ , G is a compact Lie
group, and X is a G–CW complex of finite mod-p cohomological dimension. In the
case X D �, Quillen also proves this result in the case G is a compact Hausdorff
topological group with only finitely many conjugacy classes of elementary abelian
subgroups [79, Proposition 13.4], along with an extension to the case where G is
a discrete subgroup with a finite index subgroup H of finite mod-p cohomological
dimension [79, Theorem 14.1].

Quillen’s seminal work underlies all of the following research in this direction including
our own. This paper owes a tremendous debt to him.

� Bojanowska and Jackowski prove Theorem C in the case M DKU, F DC and X
is a finite G–CW complex. They also prove that the homotopy limit spectral sequence
has the desired abutment [19].

� Greenlees and Strickland prove a result similar to Theorem D and Corollary 1.6 in
the case that M DE, E is a complex-oriented ring spectrum with formal properties
similar to En , X is a finite G–CW complex and F D A n

.p/
[47, Theorem 3.5]. They

also obtain suitable extensions when G is a compact Lie group [47, Appendix C].
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� Hopkins, Kuhn and Ravenel prove Theorem B and the ZŒ1=jGj�–local part of
Theorem D in the case where M DE, E is a complex-oriented ring spectrum, F DA

and X is a finite G–CW complex [54, Theorem A and Remark 3.5].

� In [37] Fausk shows that [54, Theorem A] can be generalized in several ways if one
makes some additional assumptions. First, Fausk proves the analogue of Theorem B
when M DKU and G is a compact Lie group. Moreover, Fausk proves Theorem B
when M D En (or a closely related ring spectrum), G is a finite group, F D A n

.p/

and �G� M is torsion-free (eg when G is a good group in the sense of [54]). Fausk also
obtains generalized Brauer induction theorems in these contexts. Fausk’s results do not
require a finiteness assumption on X.

Organization

In Section 2, we will analyze the class F Nil of G–spectra and prove Theorem A. We
break this proof into two parts. In Section 2.1, we prove the equivalence of conditions
(1) and (2) of Theorem A (Theorem 2.3) as well as some immediate consequences. In
Section 2.3, we prove the equivalence of conditions (1) and (3) (Theorem 2.25).

In Section 3, we will analyze the homotopy colimit and homotopy limit spectral
sequences. This will lead to proofs of Theorems B and C and Corollary 1.6 in Section 3.3.
Along the way we will prove Theorem 3.25, which is the appropriate analogue of
Quillen’s stratification theorem [79, Theorem 8.10] in this context. In Section 3.4, we
will prove Theorem D, which will require some additional work.

In Section 4 we show that derived induction and restriction theory generalizes classical
induction and restriction theory and reduces to it exactly for F –nilpotent spectra of
exponent at most one. We show that one can use the calculation of the derived defect
base of a G–ring spectrum to put an upper bound on its defect base (Proposition 4.12).
As applications, we obtain a generalized hyperelementary induction theorem similar
to Brauer’s theorem (Theorem 4.16) and triangulated descent results in the sense of
Balmer (Proposition 4.19).

In the last two sections of the main body of the text, we prove all of the remaining
claims in Table 2. In Section 5, we show how the existence of Thom isomorphisms can
be used to show a G–ring spectrum is F –nilpotent. We then combine these results
with nonequivariant thick subcategory arguments to determine the derived defect bases
of the remaining examples.
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In the appendices we gather several auxiliary results for working with the F –homotopy
limit spectral sequences and work through a nontrivial example for equivariant topo-
logical K–theory.
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Conventions

Throughout this paper, G will denote a finite group and F a family of subgroups
of G. For two G–spectra X and Y we will let F.X; Y / 2 SpG denote the internal
function G–spectrum. Unless we believe it to be helpful to the reader, we will generally
suppress the functors †1 and ResGK from our notation.

A G–ring spectrum R will always be a G–spectrum equipped with a homotopy
associative and unital multiplication, ie an associative algebra in Ho.SpG/. We
will say that R is homotopy commutative if the multiplication is commutative in
Ho.SpG/. An R–module will be an object of Ho.SpG/ equipped with a left action
of R satisfying the standard associativity and unit conditions. We will use the adjective
structured when we want to talk about the 1–categorical or model categorical notion
of module.

2 The thick ˝–ideal F Nil

In this section we give the main characterizations of F –nilpotence and prove Theorem A.
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2.1 The characterization of F Nil in terms of Euler classes

In this subsection, we will prove the equivalence of conditions (1) and (2) from
Theorem A in Theorem 2.3 below. First, we will require some elementary properties
of representation spheres.

Definition 2.1 For a finite-dimensional orthogonal representation V of G, we let nV
denote V ˚n . We let S.V / denote the unit G–sphere of V and SV denote the pointed
G–space obtained as the one-point compactification of V , where we take the point
at 1 to be the basepoint. Finally, we let eV , the Euler class of V , denote the pointed
G–map

eV W S0! SV

induced by the inclusion 0! V .

We now recall the following standard results:

Proposition 2.2 Let V be a finite-dimensional orthogonal representation of G. Then:

(1) If V contains a trivial summand, then eV is G–equivariantly homotopic to the
trivial map.

(2) The G–space SV is the cofiber of the nontrivial map S.V /C! S0 .

(3) The G–space S.V / admits a finite G–CW structure constructed from cells of
the form

G=H �Sn�1!G=H �Dn;
where H is a subgroup such that V H ¤ f0g and n < dimV H. Compare
[29, Exercises II.1–II.1.10] and [59].

(4) For every n� 0, we have enV ' enV .

We now prove the main characterization of F –nilpotence (see Definition 1.4) in terms
of Euler classes.

Theorem 2.3 A G–spectrum M is F –nilpotent if and only if, for all subgroups
K�G with K…F, there exists an integer n such that the Euler class enz�K W S0!Snz�K
is null-homotopic after smashing with ResGKM.

Proof Let F Nil0�SpG denote the full subcategory spanned by the M 2SpG satisfying
the Euler class condition of the theorem. It is easy to see that F Nil0 is a thick ˝–ideal.
We need to show that F Nil DF Nil0 .
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For a subgroup H �G, let PH denote the family of proper subgroups of H. Observe
that M 2F Nil0 if and only if, for every H � G not in F, we have ResGH M 2 PNil0

H .
Moreover, one has a similar statement for F –nilpotence: by [73, Proposition 6.40],
M 2F Nil if and only if ResGH M 2 PNil

H for every subgroup H …F.

It thus suffices to consider the case where F D PG . In other words, we need to
show that the thick ˝–ideal generated by fG=HCgH<G is equal to PNil0

G . Observe
first that the Euler class ez�G becomes null-homotopic after smashing with G=HC
for any H < G. This follows because for any H < G, ResGH ez�G is null-homotopic
as the H –representation ResGH z�G contains a trivial summand. Here we use the
relationship between smashing with G=HC and restricting to H –spectra; compare
[13, Theorem 1.1] and [73, Theorem 5.32]. Therefore, we get G=HC 2 PNil0

G , so that
PNil
G � PNil0

G .

We now prove the opposite inclusion. Suppose M 2 PNil0
G . Then there exists n such

that idM ^ enz�G is null-homotopic, and the cofiber sequence

S.nz�G/C ^M !M
idM^enz�G�������!M ^Snz�G

shows that M is a retract of S.nz�G/C ^M. Since z�G has no nontrivial fixed points,
S.nz�G/C 2 PNil

G in view of the cell decomposition given in Proposition 2.2. Therefore,
S.nz�G/C ^M is PG –nilpotent, and thus its retract M is too.

Remark 2.4 If we regard ez�K as an element of the “RO.K/–graded homotopy
groups” [1, Section 6], �K? S, of the sphere spectrum, then after smashing ez�K with M
we obtain an element in �K? F.M;M/, the “RO.K/–graded homotopy groups” of the
endomorphism ring of M. This element can also be identified with the image of ez�K
under the unit map S ! F.M;M/.

Identifying ez�K with its image, we can now restate the null-homotopy condition of
Theorem 2.3 in either of the following equivalent ways:

(1) ez�K 2 �K? F.M;M/ is nilpotent, or

(2) F.M;M/Œe�1z�K �' � 2 SpK .

While M 2F Nil implies that MŒe�1z�K � is contractible for each K …F, the converse
does not hold. The contractibility of MŒe�1z�K � is equivalent to knowing that every
element x 2 �K? M is annihilated by some power, possibly depending on x , of ez�K .
The condition M 2F Nil tells us that there is a fixed power of ez�K which annihilates
all of �K? M.
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On the other hand, when M D R is a G–ring spectrum, the two conditions are
equivalent because the power of ez�K annihilating 1 2 �K� R annihilates all of �K� R .

Corollary 2.5 Suppose that R is a G–ring spectrum. Then the following are equiva-
lent:

(1) The G–spectrum R is F –nilpotent.

(2) For each subgroup H …F, the image of ez�H 2�H? S under the unit map S!R

is nilpotent.

2.2 The F –homotopy limits and colimits

We will now precisely define the homotopy colimits and limits mentioned in the
introduction in (1.3) and prove they are equivalences when M is F –nilpotent.

We denote the category of G–spaces by SG . As usual, let O.G/ � SG (the orbit
category) denote the full subcategory of SG spanned by the transitive G–sets. To a
family F we associate the full subcategory OF .G/� O.G/ spanned by the transitive
G–sets whose isotropy lies in F.

Let i W OF .G/! SG denote the inclusion. We associate to F a G–space EF WD
hocolimOF .G/ i . We also define a pointed G–space zEF as the homotopy cofiber of
the unique nontrivial map EFC!S0 . These G–spaces are determined up to canonical
equivalence by the following properties (see Section A.1 and [63, Definition II.2.10]):

(2:6) EFK '
�� if K 2F ;

∅ otherwise;
zEFK '

�� if K 2F ;

S0 otherwise.

For the family P of all proper subgroups of G, these spaces admit a particularly simple
construction.

Proposition 2.7 There are canonical equivalences

EP ' hocolim
n

S.nz�G/ and zEP ' hocolim
n

Snz�G ' SŒe�1z�G �:
Here the homotopy colimits are indexed over the maps induced by the inclusions
nz�G! .nC 1/z�G .

Proof We just need to check that the homotopy colimits have the correct fixed points.
Since fixed points commute with homotopy colimits, this follows from Proposition 2.2
and the following observation: z�KG is 0–dimensional if and only if K DG.
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We recall the significance of the objects EFC and zEF in the general theory; see
[73, Section 6.1]. Let LocF denote the localizing subcategory of SpG generated by the
fG=HCgH2F . It is equivalently the localizing tensor-ideal generated by the commu-
tative algebra object AF WD

Q
H2F F.G=HC; S/ 2 SpG ; which we call AF –torsion

objects in [73, Definition 3.1] as it extends ideas of [35] in the case of module cate-
gories. The inclusion LocF � SpG admits a right adjoint given by F –colocalization
[73, Construction 3.2]; the right adjoint is given explicitly by X 7! EFC ^ X. In
particular, X 2 LocF if and only if the natural map

EFC ^X !X

is an equivalence. We also have the subcategory of F –complete G–spectra, ie those G–
spectra complete with respect to the algebra object AF [73, Section 2]. The G–space
EF also controls the theory of F –completeness: a G–spectrum X is F –complete if
and only if the natural map

X ! F.EFC; X/
is an equivalence.

We consider finally (see [73, Section 3.2]) the subcategory SpG ŒF
�1� of those G–

spectra Y such that F.X; Y /'� for any X 2LocF . Then SpG ŒF
�1� is a localization

of SpG , and the localization is given by the functor X 7! zEF ^X. The localization
functor annihilates precisely the localizing subcategory LocF . Note that, by definition
[73, Definition 6.36], a G–spectrum is F –nilpotent if and only if it is AF –nilpotent.

Using the general theory of torsion, complete and nilpotent objects with respect to a
dualizable algebra object, we now record the following list of properties of F Nil :

Proposition 2.8 (1) If M is an F –nilpotent G–spectrum, then zEF ^M is con-
tractible, and thus the map M ^EFC!M is an equivalence. Similarly, the
map M ! F.EFC;M/ is an equivalence.

(2) If M is a G–ring spectrum with zEF ^M contractible, then M is F –nilpotent.

(3) Let X and M be G–spectra. If M is F –nilpotent, then so is F.X;M/.

(4) A G–spectrum M is F –nilpotent if and only if the endomorphism G–ring
spectrum F.M;M/ is F –nilpotent.

Proof As above, a G–spectrum M belongs to the localizing subcategory LocF

generated by the fG=HCgH2F if and only if M ^ zEF is contractible (or equivalently
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if M ^EFC'M ). If M is F –nilpotent, this is certainly the case. If M 2F Nil , then
M is also complete with respect to the algebra object AF so that the F –completion
map M ! F.EFC;M/ is an equivalence.

Conversely, if M is a G–ring spectrum, then the F�1–localization of M, ie zEF ^M,
vanishes if and only M is F –nilpotent by [73, Theorem 4.18].

We refer to [73, Corollary 4.14] for the (general) argument that F Nil is closed under
cotensors. If M 2 SpG and F.M;M/ 2F Nil , then M, as a module over F.M;M/,
also belongs to F Nil . This verifies the third and fourth claims.

We now construct the derived restriction and induction maps (1.3) in terms of the
space EF, as F –colocalization and completion, respectively.

Construction 2.9 We consider now the F –colocalization map EFC ^M ! M I
since EF D hocolimOF .G/G=HC and smash products commute with homotopy
colimits, we can write this map as

(2:10) IndGF W hocolim
OF .G/

.G=HC ^M/DEFC ^M !M:

Similarly, we can identify the F –completion map M ! F.EFC;M/ with the map

(2:11) ResGF W M ! holim
OF .G/op

F.G=HC;M/:

Proposition 2.12 If M is F –nilpotent, then the derived induction and restriction
maps (2.10) and (2.11) are equivalences.

Proof This now follows from Proposition 2.8.

We round out this subsection with a few basic examples of derived defect bases. We
remark also that this technique is essentially [52, Section 10].

Proposition 2.13 Let F D T be the trivial family of subgroups. Suppose R is a
Borel-equivariant G–ring spectrum. Then R is T –nilpotent if and only if the G–Tate
construction . zET ^R/G of R is contractible.

Proof We know that R is T –nilpotent if and only if zET ^R is contractible by
Proposition 2.8. Since this is a ring object, it is contractible if and only if its fixed-point
spectrum is contractible.

Geometry & Topology, Volume 23 (2019)



560 Akhil Mathew, Niko Naumann and Justin Noel

Proposition 2.14 The derived defect base of C2–equivariant KR–theory [7] is T ,
the trivial family.

Proof We need to show that KR is T DP –nilpotent. In view of [73, Theorem 6.41],
it suffices to show that the geometric fixed-point spectrum ˆC2KRD . zEP ^R/C2
is contractible. In this language the relevant calculation appears in [36, Theorem 5.2]
and in [51, Section 7.3]; however, the result follows from [7, Proposition 3.2 and
Lemma 3.7]. In fact, in the proof of [36, Theorem 5.2], it is observed that the cube of
the Euler class of the reduced regular representation of C2 vanishes in KR.

Let MO and MU denote the genuine G–equivariant real and complex cobordism
spectra of tom Dieck [28; 23]. When G D C2 , let MR denote the real G–equivariant
complex cobordism spectrum of Landweber [62].

Proposition 2.15 The derived defect base of any of MO, MU and MR is All , the
family of all subgroups of G.

Proof We need to show that there is no proper family F such that any of these
G–spectra is F –nilpotent. By Corollary 2.5, to prove this for a G–ring spectrum R ,
it suffices to show that

0¤ ��ˆGRŠ �G� zEP ^RŠ �G� RŒe�1z�G �:
In each of the stated cases this is known. The results for MO and MU are due to tom
Dieck and can be found in [27, Lemma 3.1] and [28, Lemma 2.2], respectively. For
MR this is [62, Corollary 3.4].

2.3 The class F Nil and the homotopy limit spectral sequence

Before proving the equivalence of conditions (1) and (3) of Theorem A in Theorem 2.25
below, we will give an alternative construction of EF and the F –homotopy limit
spectral sequence, following [44, Section 21].

First, we describe another model for EF. For a space Z , let d0W Z�C1!� denote
the standard augmented simplicial space which in degree n is the .nC1/–fold product
of Z .

When Z ¤∅, we can pick a point in Z to define a section s�1 of d0 . This section
defines an additional degeneracy in each degree, or equivalently a retraction diagram
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of simplicial spaces

(2:16) � s�1��!Z�C1 d0�! �
with a simplicial homotopy s�1d0 ' Id [38, Section III.5]. We will call an augmented
simplicial space admitting extra degeneracies split.

When Z is a G–space, it is necessary and sufficient for Z to have a G–fixed point
to split Z�C1 as a simplicial G–space. More generally, if ZH ¤ ∅ for H � G,
then ResGH .Z

�C1/' .ResGH Z/
�C1 is split as a simplicial H –space. This implies that

G=H �Z�C1 ' IndGH ResGH Z
�C1 is split as an augmented simplicial G–space.

Proposition 2.17 (see [44, page 119]) Let F be a family of subgroups of G and
consider the G–space X D`H2I G=H , where I �F contains a representative from
each conjugacy class of maximal subgroups in F.

Then there is an equivalence
jX�C1j 'EF :

Moreover, if H 2F then G=H �X�C1 is split.

Proof This follows easily from the observations above and the characterization of EF

from (2.6), since taking fixed points commutes with geometric realizations and products.
In particular, jX�C1jH is contractible when X has an H –fixed point and is empty
otherwise.

The geometric realization of a simplicial G–space, Z D jW�j, admits two standard
increasing filtrations by G–CW subcomplexes. The first is the filtration by dimension

F�1Z D∅� F0Z � � � � � F1Z DZ
and depends on a choice of G–CW structure on Z . The second arises from the skeletal
filtration on Z ,

F 0�1Z D∅� F 00Z � � � � � F 01Z DZ:
Here F 0nZ WD hocolim�op

�n
W� is the n–skeleton of Z and depends on the presentation

of Z as the geometric realization of a simplicial G–space.

Fixing a G–spectrum M and applying F.�C;M/ to these two filtrations, we obtain
two towers of G–spectra, fF.FnZC;M/gn�0 and fF.F 0nZC;M/gn�0 . In general, if
we apply �G� to a bounded below tower we obtain an exact couple and an associated

Geometry & Topology, Volume 23 (2019)



562 Akhil Mathew, Niko Naumann and Justin Noel

spectral sequence conditionally converging to the homotopy groups of the homotopy
inverse limit of the tower [18, Section 7].5

In the case of the first tower, we are using a G–CW filtration on Z which satisfies

FnZ=Fn�1Z '
W
i2InG=HiC ^Sn;

where In is the set of orbits of n–cells of Z . The E1–complex associated to the tower
fF.FnZ;M/gn�0 is

(2:18) E
s;t
1 D �Gt�sF.FsZ=Fs�1Z;M/Š

Y
i2Is

�
Hi
t M;

where the d1–differential is induced by the attaching maps. This yields the equivariant
analogue of the Atiyah–Hirzebruch spectral sequence whose E2–term is, by definition,
the Bredon cohomology of Z with coefficients in �.�/� M,

(2:19) H s
G.ZI�.�/t M/) �Gt�sF.ZC;M/:

If M is a G–ring spectrum, then (2.19) is a spectral sequence of algebras; see
[44, Appendix B].

For the second tower we obtain the equivariant analogue of the Bousfield–Kan spectral
sequence [20, Section 3],

(2:20) �s�Gt .F.W�CIM//) �Gt�sF.ZCIM/:

Here, the E2–term is the cohomology of the graded cosimplicial abelian group
�G� .F.W�C;M//. In Section 3 we will discuss the E2–terms of these two spectral
sequences further.

Proposition 2.21 Suppose that Z is the geometric realization of a simplicial G–space
W� and M is a G–spectrum. If Wn is discrete for each n, then the two spectral
sequences (2.19) and (2.20) are isomorphic from the E2–page on.

Proof To compare (2.19) and (2.20) we would like a map between the associated
towers. We do have an equivalence F1Z'F 01Z , but in general this equivalence need
not respect the filtrations. However, when W� is degreewise discrete, then for each n,
F 0nZ is n–dimensional and the skeletal filtration on Z is just the dimension filtration
for a different choice of G–CW structure on Z . In this case, we can find an equivalence

5More generally, one can apply �.�/? to obtain a Mackey functor-valued, RO.G/–graded spectral
sequence. This variant, although useful, will not be required for this paper.
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sW F1Z!F 01Z which respects the filtrations [75, Chapter I, Corollary 3.5] and hence
induces a map from the spectral sequence in (2.20) to the spectral sequence of (2.19).
Applying the same argument to an inverse equivalence t W F 01Z ! F1Z and to a
homotopy ts ' Id, we obtain a homotopy equivalence of E1–complexes and hence an
isomorphism at E2 .

We now turn our attention to EF D hocolimOF .G/ i for i W OF .G/� SG the inclusion.
We will model this homotopy colimit as the geometric realization of the standard
two-sided bar construction (see Section A.1 for further details),

(2:22) EF ' jB�.�;OF .G/; i/j:

Definition 2.23 Let M be a G–spectrum. The F –homotopy limit spectral sequence
associated to M is the homotopy spectral sequence associated to the tower

fF.sknEFC;M/gn�0;
where EF is equipped with the simplicial structure of (2.22).

Proposition 2.24 Let N be a G–spectrum. Then there is an isomorphism, from E2

on, between

(1) the F –homotopy limit spectral sequence

�s�Gt .F.B�.�;OF .G/; i/C; N //) �Gt�sF.EFC; N /
Š �Gt�s holim

OF .G/op
F.G=HC; N /

from Definition 2.23,

(2) the Bousfield–Kan spectral sequence

�s�Gt .F.X
�C1
C ; N //) �Gt�sF.EFC; N /Š �Gt�s holim

OF .G/op
F.G=HC; N /

associated to a simplicial presentation of EF from Proposition 2.17, and

(3) the equivariant Atiyah–Hirzebruch spectral sequence

H s
G.EF I�.�/t N/) �Gt�sF.EFC; N /Š �Gt�s holim

OF .G/op
F.G=HC; N /:

Moreover, when N D F.Y;M/ for two G–spectra Y and M such that M is F –
nilpotent, the above spectral sequences converge to M �G.Y /.

6

6As a consequence of Theorem 2.25(3) below, they actually converge strongly to their abutment.
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Proof When G is discrete, both X�C1 and B�.�;OF .G/; i/ are degreewise discrete.
So it follows from Proposition 2.21 that all three spectral sequences are forms of the
Atiyah–Hirzebruch spectral sequence for EF and hence isomorphic. The final claim
follows from Proposition 2.12 and the isomorphism �Gt�sF.YC;M/ŠM s�t

G .Y /.

To proceed, we will need to recall some results on towers of G–spectra from Section 3
of [71]. We denote by Tow.SpG/ D Fun..Z�0/op;SpG/ the 1–category of towers
in SpG. Inside this 1–category is Townil.SpG/� Tow.SpG/, the full subcategory of
nilpotent towers, ie those towers fXngn�0 such that for some N � 0 and all k � 0,
the map XNCk ! Xk is zero. We denote by Towfast.SpG/ � Tow.SpG/ the full
subcategory of quickly converging towers, ie those towers fXngn�0 such that the cofiber
of the canonical map of towers fholimXng ! fXngn�0 is contained in Townil.SpG/.
It follows from the definitions that Towfast.SpG/� Tow.SpG/ is a thick subcategory,
and that exact endofunctors of SpG preserve Towfast.SpG/.

We can now formulate the main result of this subsection, which in particular establishes
the equivalences between conditions (1) and (3) from Theorem A.

Theorem 2.25 The following three conditions on a G–spectrum M are equivalent:

(1) The G–spectrum M is F –nilpotent.

(2) The restriction map ResGF W M ! holimOF .G/op F.G=HC;M/' F.EFC;M/

is an equivalence and the associated tower fF.sknEFC;M/gn�0 converges
quickly.

(3) The map M ! F.EFC;M/ is an equivalence and there are integers m and
n � 2 such that for every G–spectrum Y , the F –homotopy limit spectral
sequence

E
s;t
2 DH s.EF I�.�/t F.Y;M//)M s�t

G .Y /

has a horizontal vanishing line of height m on the En–page. In other words,
E
s;�
k
D 0 for all s > m and k � n.

Proof The equivalence (2)()(3) is [71, Proposition 3.12] combined with the identi-
fication of the F –spectral sequence from Proposition 2.24.

We will now show (1)()(2). Let AF D
Q
H2F F.G=HC; S/, so that a G–spectrum

is F –nilpotent if and only if it is AF –nilpotent. Write EF D jX�C1j for X DF
H2F G=H. Then the tower fF.sknEFC;M g/ is the Tot tower of the AF –cobar

Geometry & Topology, Volume 23 (2019)



Derived induction and restriction theory 565

complex of M. This is a quickly converging tower with homotopy limit M if and
only if the AF –Adams tower [73, Construction 2.2] is nilpotent (note that the AF –
Adams tower is the cofiber of the map of towers fM g ! fF.sknEFC;M/g by
[73, Proposition 2.14]). Furthermore, that holds if and only if and M is AF –nilpotent
[73, Proposition 4.7].

Recall also that we can quantify nilpotence, leading to the notion of the F –exponent
of an F –nilpotent G–spectrum M, denoted expF .M/ [73, Definition 6.36]. Re-
call again that, associated to G and F, there is the commutative algebra AF WDQ
H2F F.G=HC; S/ in SpG. The fiber I of the canonical map S!AF is a nonunital

algebra, and the F –exponent of M 2F Nil is the minimum number n� 0 such that
.I^n! S/^M is zero. For Y 2 SpG, we will denote by E�;�� .Y / the F –homotopy
limit spectral sequence converging to M �G.Y /. We can then formulate the following
alternative descriptions of the F –exponent:

Proposition 2.26 For a nontrivial F –nilpotent spectrum M, the following integers
are equal:

� The F –exponent expF .M/.

� The minimal n such that the canonical map

M ' F.EFC;M/! F.skn�1EFC;M/

in SpG admits a retraction.

� The minimal n0 such that M is a retract of an F.ZC;M/ for an .n0�1/–
dimensional G–CW complex Z with isotropy in F.

� The minimum s � 0 such that Ek;�sC1.Y /D Ek;�1 .Y /D 0 for all Y 2 SpG and
k � s .

Proof This follows easily from results in [73]. Fix the G–space X WD`H2F G=H

and the associated simplicial G–space X�C1 which realizes to EF. One sees that the
identification AF ' F.XC; S/ generalizes to an identification of cosimplicial commu-
tative algebras in SpG, namely the cobar construction CB�.AF / (see [73, Section 2.1])
is equivalent to F.X�C1C ; S/. In view of this, the equality of the first two integers
follows from [73, Proposition 4.9]. To compare n0 and n we first note that by setting
Z D skn�1EF we see that n0 � n. The other inequality follows because F.ZC;M/,
for an .n0�1/–dimensional G–CW complex Z with isotropy in F and for any G–
spectrum M, has F –exponent � n0.
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Finally, we show n D s . Using CB�.AF / ' F.X�C1C ; S/ again, one sees that our
F –homotopy limit spectral sequence can be identified with the AF –based Adams
spectral sequence as in [40], and it is well known that the Adams filtration of a map
f W †��Y !M in M �G.Y / is exactly the maximum q such that f factors through
I^q^M!M. It follows that n�1 is (precisely) the maximum AF –Adams filtration of
any map into M, which implies that E�;k1 .Y /D0 for k�n and for any G–spectrum Y ;
moreover, n is minimal with respect to this property.

It remains to show that the F –spectral sequence degenerates at EnC1 , or equivalently
that diD0 for i�nC1. This is a very general assertion about these types of generalized
Adams spectral sequences. For simplicity of notation, we assume that Y D S0 . The
E
p;q
1 –page of the spectral sequence gives the homotopy groups �p.fib.Totq!Totq�1//

for the cosimplicial object M ˝CB�.AF /. By [73, Proposition 2.14], we have

fib.Totq! Totq�1/D cofib.I^qC1! I^q/^M D I^q=I^qC1 ^M:
If a class survives to EnC1 , then it can be lifted to

fib.TotqCn! Totq�1/D I^q=I^qCnC1 ^M;
by [73, Proposition 2.14] again. Consider now the diagram

I^q=I^qCnC1 ^M
 
��vv

// †I^qCnC1 ^M
�
��

I^q ^M // I^q=I^qC1 ^M @
// †I^qC1 ^M

We claim that, under the hypotheses, there exists a dotted arrow making the diagram
commute. Therefore, our class can be in fact lifted to fib.Tot! Totq�1/ and so is
a permanent cycle in the F –spectral sequence. To see this, we need to argue that
the composite @ ı is null-homotopic. However, this follows from the fact that the
diagram commutes and that � is null-homotopic by hypothesis on M.

The proof of Theorem A is now complete except for the identification of the E2–term
of the homotopy limit spectral sequence, and this will be completed in Section 3.1.

Remark 2.27 One can dualize [71, Section 3] since the notion of a stable1–category
is self-dual. We thus obtain inside Fun.Z�0;SpG/ the nilpotent and quickly converging
directed systems. The latter subcategory is thick and stable under exact endofunctors
of SpG. The exact couples associated to such directed systems once again define
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homological-type spectral sequences with horizontal vanishing lines. For example,
when M is F –nilpotent, fsknEFC^M gn�0 is a quickly converging directed system.
It follows that, for arbitrary X 2 SpG, the F –homotopy colimit spectral sequence

E2s;t DHG
s .EF I�.�/t F.X;M//Š colims

OF .G/

MH
t .X/)MG

tCs.X/

has a horizontal vanishing line at a finite page.

Coupling this with the analogous result for the homotopy limit spectral sequence forces
the generalized F –Tate spectral sequence of [44, Section 22] to collapse to zero at
some finite stage. Indeed, the positive-degree terms of this spectral sequence are a
quotient of the positive-degree terms in the F –homotopy limit spectral sequence while
the terms in degrees less than �1 are a subset of the positive degree terms in the
F –homotopy colimit spectral sequence (see (3.10)). Our vanishing results now imply
the collapse of the F –Tate spectral sequence at a finite stage. By Proposition 2.8 this
spectral sequence converges to 0.

3 Analysis of the spectral sequences

Let G be a finite group and F a family of subgroups. Let X D`H2F G=H be as in
Proposition 2.17. As observed in the previous section, the F –homotopy limit spectral
sequence can be viewed as the Bousfield–Kan spectral sequence [21, Chapter X]
associated to the cosimplicial G–spectrum F.X�C1C ;M/ or as an equivariant Atiyah–
Hirzebruch spectral sequence with E2–term

H�G.jX�C1jCI�.�/� M/ŠH�G.EFCI�.�/� M/:

In Section 3.1 we recall that this E2–term can be identified with the derived functors
lim�OF .G/op �

.�/� M.

There is also an F –homotopy colimit spectral sequence and the chain complexes
calculating the E2–terms of the F –homotopy colimit and limit spectral sequences
can be glued together to form the associated Amitsur–Dress–Tate cohomology groups
yH�F .�.�/� M/. In Section 3.2 we will review this construction and recall a few vanishing

results. These results play a critical role in the proofs of Theorems B and C and
Corollary 1.6 in Section 3.3. They will also be used in the proof of the generalized
hyperelementary induction theorem, Proposition 4.12, in Section 4. We conclude this
section with a form of Quillen’s stratification theorem (Theorem 3.25).
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3.1 Bredon (co)homology and derived functors

In this subsection we review some classical results about coefficient systems, and relate
the F –homotopy limit spectral sequence to Bredon cohomology. Let C be a small
category and ZC the category of contravariant functors from C to abelian groups; ZC

is an abelian category with kernels and cokernels calculated objectwise, which admits
enough projectives and injectives.

Now let Z denote the constant functor c 7! Z. Then we have

(3:1) ZC .Z;M/Š lim
C op

M; lim�
C op

.M/Š Ext�ZC .Z;M/;

ie we recover the derived functors of the inverse limit.

We now specialize to the primary case of interest for us.

Definition 3.2 (see [22, Section I.4]) The category of coefficient systems (on a finite
group G ) is the category ZO.G/ of contravariant functors from O.G/ to abelian
groups.

Examples 3.3 (1) Associated to any G–set X we obtain a coefficient system ZŒX�

defined by
ZŒX�W G=H 7! ZfHo SG.G=H;X/g Š ZŒXH �:

When X DG=H, ZŒX� is the projective functor ZfO.G/.�; G=H/g considered
above.

(2) Let X be a G–CW complex and for each n � 0 let Xn be the G–set of n–
cells in X. The attaching maps define a chain complex of coefficient systems
C�.X/ WD ZŒX��.

(3) Let ZŒF � denote the coefficient system

ZŒF �W G=K 7!H�.EFK IZ/DH0.EFK IZ/:
By (2.6), we see that ZŒF �.G=K/D Z, when K 2F, and is zero otherwise.

(4) A G–spectrum M defines a graded coefficient system �
.�/� M by

�
.�/� M W G=H 7! �G� F.G=HC;M/Š �H� M:

We now quote the following classical relationship between the Bredon cohomology
of EF and the higher limits of C over OF .G/

op . See also [48, Proposition 2.10] for
a treatment and many applications.
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Proposition 3.4 (see [88, Proposition 4.2] or [75, Chapter V, Proposition 4.8]) Let
C 2ZO.G/ be a coefficient system. Then there is an identification between the Bredon
cohomology H s

G.EF IC/ and the derived functors limsOF .G/op C.

Corollary 3.5 Fix a G–spectrum M. Let Es;t2 denote the E2–term of the F –
homotopy limit spectral sequence. Then there is a chain of isomorphisms

E
s;t
2 ŠH s

G.EF I�.�/t M/

Š Exts;tZO.G/
.ZŒF �; �.�/� M/

Š lims
OF .G/op

�Ht M

Š Exts;tZO.G/F
.Z; �.�/� M/:

In particular, the 0–line is limOF .G/op �H� M.

Proof The identification of the E2–term as the derived functors of the limit is due to
Bousfield and Kan [21, Chapter XI] and the remaining isomorphisms are consequences
of the above discussion.

The above results and identifications dualize; see [75, Chapter V, Section 4]. A G–
spectrum M defines a covariant functor �.�/� M from O.G/ to (graded) abelian groups
by

.�
.�/� M/.G=H/D �G� .G=HC ^M/Š �H� M:

Now the skeletal filtration on EF defines a homological Atiyah–Hirzebruch spectral
sequence with the E2–identifications [75, Chapter V, Proposition 4.8]

E2s;t ŠHG
s .EF I�.�/t M/Š TorZO.G/

s;t .ZŒF �; �.�/� M/Š TorZO.G/F
s;t .Z; �.�/� M/

Š colims
OF .G/

�Ht M ) �GtCs hocolim
OF .G/

G=HC ^M:

Here, for a G–space X, the Bredon homology HG� .X I�.�/t M/ (see [75, Chapter I,
Section 4]) is defined to be the homology of the chain complex

CG� .X I�.�/t M/ WD C�.X/˝ZO.G/ �
.�/
t M

formed from the tensor product of graded functors.
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3.2 Amitsur–Dress–Tate cohomology

Let C 2ZO.G/ and consider the Bredon cohomology H s
G.EF IC/D limsOF .G/op C

as in the previous subsection. In this subsection, we recall (see Proposition 3.11)
that when C comes from a Mackey functor on G (eg as the homotopy groups of
a G–spectrum), these groups are forced to be jGj–torsion for s > 0. This will be
fundamental for our computational applications of F –nilpotence. The property follows
essentially from a transfer argument (a generalization of the fact that for a finite group G,
the group cohomology H s.GIZ/ is jGj–torsion for s > 0) and appears, for instance,
as [60, Corollary 5.16].

In this subsection, we will review some of the theory of Amitsur–Dress–Tate cohomol-
ogy [44, Section 21], which we will use to prove these results. The rest of this paper
depends on the present section only through the jGj–torsion result from [60].

For notational simplicity, we will always assume that our Mackey functor is given to
us as the homotopy groups of a G–spectrum M.

Construction 3.6 We can splice together the E1–pages of the homological and coho-
mological spectral sequences from the previous section to define Amitsur–Dress–Tate
cohomology.

For this purpose let C�.EF I�.�/� M/ and C �.EF I�.�/� M/ denote the Bredon cellu-
lar chains and cochain complexes on EF with coefficients in �.�/� M. These complexes
have degree zero (co)homology given by colimOF .G/ �

H� M and limOF .G/op �H� M,
respectively, and we obtain a natural norm map (see (1.1))

(3:7) NW colim
OF .G/

�H� M ! lim
OF .G/op

�H� M:

As a result, we obtain a map of complexes

(3:8) C�.EF I�.�/� M/! C �.EF I�.�/� M/

determined by the condition that it induce (3.7) in �0 . We define the Amitsur–Dress–
Tate complex yC �.EF I�.�/� M/ to be the cofiber of the above map.

Definition 3.9 [44, Definition 21.1] The Amitsur–Dress–Tate cohomology groups
of F with coefficients in �.�/� M are defined by

yH�F .�.�/� M/ WDH�. yC �.EF I�.�/� M//:
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We immediately obtain the following identification of the Amitsur–Dress–Tate coho-
mology in terms of (3.7):

(3:10) yH s
F .�

.�/� M/Š

8̂̂̂<̂
ˆ̂:
H
s;�
G .EF I�.�/� M/ if s > 0;

HG�s�1;�.EF I�.�/� M/ if s < �1;
coker N if s D 0;
ker N if s D�1:

We will now record some basic properties of Amitsur–Dress–Tate cohomology.

Proposition 3.11 Suppose that R is a G–ring spectrum and M is an R–module;
then:

(1) The Amitsur–Dress–Tate cohomology groups yH�F .�.�/� R/ have an induced
graded �G� R–algebra structure and yH�F .�.�/� M/ is a graded module over
yH�F .�.�/� R/ such that the isomorphisms in (3.10) respect this structure.

(2) If xD IndGH y 2�G� R for some H 2F and y 2�H� R , then x � yH�F .�.�/� R/D0.

(3) The commutative ring yH 0
F .�

.�/
0 S/ is annihilated by jGj. We let n.F / be the

minimal positive integer which vanishes in yH 0
F .�

.�/
0 S/, so that n.F / j jGj.

(4) The number n.F / from (3) is the minimal positive integer n such that

n � yH�F .�.�/� M/D 0
for every R and M.

In particular, if i >0 then Hi .EF I�.�/� M/ and H i .EF I�.�/� M/ are n.F /–torsion.

Definition 3.12 For a finite group G and a family F of subgroups of G, the integer
n.F / in Proposition 3.11(3) is called the index of the family F (of subgroups of G ).

Proof of Proposition 3.11 The first claim is a graded form of [30, Proposition 2.3].
It follows that yH�F .�.�/� R/ is a module over

(3:13) yH 0
F .�

.�/� R/Š lim
OF .G/op

�
.�/� R= Im.IndGF /

D lim
OF .G/op

�
.�/� R

.� X
H2F

Im IndGH .�
H� R/

�
:

This immediately implies the second claim. The fourth claim is clear because every
yH�F .�.�/� M/ is a module over yH 0

F .�
.�/
0 S/, and the third claim will be addressed in

the lemma below.
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Family F n.F /

T 60
C.2/ 30
A.2/ 15

C.3/ D A.3/ 20
C.5/ D A.5/ 12

C 2
All D A D A 2 D E 6

P 1
All 1

Table 3: Indices of families of subgroups of A5

Recall that we have �G0 S 'A.G/, the Burnside ring of G. Jointly with (3.13) applied
to R D S and � D 0, this yields a description of the commutative ring yH 0

F .�
.�/
0 S/

in terms of the Burnside rings A.H/ for certain subgroups H � G, and shows that
claim (3) of Proposition 3.11 is equivalent to the following result:

Lemma 3.14 There is a minimal positive integer n.F / such that there exists x 2
Im IndGF � A.G/ and

y 2 ker
�
A.G/

ResGF��! lim
OF .G/op

A.�/�
such that n.F /D xCy . Furthermore, the integer n.F / divides the group order jGj.

Proof See [44, Proposition 21.3 and Corollary 21.4].

Remark 3.15 The existence proof of n.F / is constructive. In fact, computing n.F /
is a linear algebra problem involving the table of marks of G which can be calculated
by a computer algebra package such as GAP.

Examples 3.16 (1) When G D A5 we have calculated the indices of various
families in Table 3 using the table of marks in Table 4.

(2) A prime p divides n.P/ if and only if there is a nontrivial homomorphism
G!Cp or, equivalently, H 1.BGIFp/¤0 [44, Example 21.5(iii)]. In particular,
if G is perfect, then we have n.P/D 1.

3.3 Artin induction and N–isomorphism theorems

Proposition 3.11 immediately implies the following more precise form of Theorem B:
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ŒA5=e� ŒA5=C2� ŒA5=C3� ŒA5=C2�C2� ŒA5=C5� ŒA5=†3� ŒA5=D10� ŒA5=A4� ŒA5=A5�
e 60 30 20 15 12 10 6 5 1
C2 0 2 0 3 0 2 2 1 1
C3 0 0 2 0 0 1 0 2 1

C2�C2 0 0 0 3 0 0 0 1 1
C5 0 0 0 0 2 0 1 0 1
†3 0 0 0 0 0 1 0 0 1
D10 0 0 0 0 0 0 1 0 1
A4 0 0 0 0 0 0 0 1 1
A5 0 0 0 0 0 0 0 0 1

Table 4: Table of marks for A5

Theorem 3.17 Let M and X be G–spectra and F a family of subgroups such that
M is F –nilpotent. Then each of the maps

colim
OF .G/

M �H .X/
IndGF��!M �G.X/

ResGF��! lim
OF .G/op

M �H .X/;(3:18)

colim
OF .G/

MH� .X/
IndGF��!MG� .X/

ResGF��! lim
OF .G/op

MH� .X/(3:19)

is an isomorphism after inverting n.F /, the index of the family F.

Proof Since F Nil is closed under tensors and cotensors, it suffices to prove the
theorem in the case X D S0 . Since �.�/� M DM .�/� .S0/DM��

.�/.S
0/, we see that

(3.18) and (3.19) both reduce to statements about homotopy groups.

Set nD n.F /. Since M is F –nilpotent, the F –homotopy limit spectral sequence
converges strongly and has a horizontal vanishing line, say of height m at the N th

page. We will now analyze the composition of maps

ker ResGF ,! �G� M�E0;�1 ,!E
0;�
2 D lim

OF .G/op
�H� M;

where the composition of the latter two maps is ResGF . Now ker ResGF consists of those
elements in �G� M detected in positive filtration. The associated graded of this filtration
on �G� M is

L
s�0E

s;�1 . These groups are n–torsion for s > 0 by Proposition 3.11
and 0 for s > m. So if x is detected in Es;�2 for s > 0 then nx is zero modulo higher
filtration. Since the groups in filtration degree greater than m are zero we see that
nm � ker ResGF D 0. So ResGF is an injection after inverting n.
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Now suppose that x 2E0;�2 is not in the image of ResGF . Since the spectral sequence
converges strongly x must support a differential. Suppose that d2x D y ¤ 0. Since y
is in positive filtration, it is n–torsion and hence d2.nx/D ny D 0. So nx survives
to E3 . Inductively we see that nkx survives to the E2Ck –page. Using the horizontal
vanishing line we see that there must be a fixed k such that nkE0;�2 �E0;�1 D Im ResGF .
It follows that ResGF is an isomorphism after inverting n.

The claim for IndGF is easier and only requires that the map IndGF W EFC^M !M be
an equivalence, ie that M be F –torsion, rather than that M be actually F –nilpotent.
Since inverting n commutes with homotopy colimits and ordinary colimits, if we tensor
the F –homotopy colimit spectral sequence

colims
OF .G/

.�H� M/) �G� M

with ZŒn�1�, we obtain the homotopy colimit spectral sequence for MŒn�1�. This
spectral sequence collapses at E2 onto the zero line by Proposition 3.11 and the claim
for IndGF follows.

Theorem 3.20 Let R be an F –nilpotent G–ring spectrum and let X be a G–space.
Suppose further that for each H 2F, the graded ring R�H .X/ is graded-commutative.
Then the canonical map

ResGF W R�G.X/! lim
OF .G/op

R�H .X/

is a uniform N–isomorphism, ie there are positive integers K and L such that if
x 2 ker ResGF and y 2 limOF .G/op R�H .X/ then xK D 0 and yL 2 Im ResGF . Moreover,
after localizing at a prime p , ResGF is a uniform Fp–isomorphism.

Proof Suppose that x 2 ker ResGF . It follows from the strong convergence of the
F –homotopy limit spectral sequence

(3:21) E
s;�t
2 D lims

OF .G/op
RtH .X/)RtCsG .X/

that x is detected in positive filtration. This spectral sequence has a horizontal vanishing
line at the E1–page. More precisely, we know that for K D expF .R/, E

s;�1 D 0
when s �K . It follows that xK D 0.

Now suppose that y 2 limOF .G/op R�H .X/ is not in the image of ResGF . Convergence
of the F –homotopy limit spectral sequence implies that such an element must support
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a nontrivial differential, say dn.y/ D z ¤ 0. Since z is in positive filtration, it is
N D n.F /–torsion by Proposition 3.11. Replacing y with its square if necessary, we
can assume that y is in even degrees. Now, since R�H .X/ is a graded-commutative
ring functorially in H 2F, limOF .G/op R�H .X/ is a graded-commutative ring. It now
follows from the Leibniz rule that dn.yN /D NyN�1z D 0 and that yN survives to
the EnC1–page. We can now argue by induction and, since the spectral sequence
collapses at the EKC1–page, it follows that y2N

K�1

survives the spectral sequence for
every y 2 limOF .G/op R�H .X/. Setting LD 2NK�1 we see that ResGF is a uniform
N–isomorphism as described above.

To see that Z.p/˝ResGF is a uniform Fp–isomorphism, observe first that since the
kernel of ResGF is nilpotent, so is the kernel of Z.p/˝ResGF . Consider now the p–
localization of the F –homotopy limit spectral sequence in (3.21). Since the spectral
sequence collapses with a horizontal vanishing line at a finite stage, we can pass p–
localization through the spectral sequence and obtain a spectral sequence converging to
F.XC; R/.p/ . Since everything above the zero-line at E2 is now p–power torsion, it
follows that for any element x 2E0;t2 , we have that xp

k

is a permanent cycle for k� 0.
This shows that Z.p/˝ResGF has image containing all pk –powers for k� 0.

Remark 3.22 The horizontal vanishing line in fact implies ker.ResGF /
expF .R/ D 0.

We conclude this section with several applications of Theorem 3.20, including Theorem
3.25, a form of Quillen’s stratification theorem. First we will prove the following
two elementary propositions, which were known to Quillen, which demonstrate how
Theorem 3.20 implies Corollary 1.6.

Proposition 3.23 If f W A! B is an N–isomorphism of commutative rings, then
Spec.f / is a homeomorphism.

Proof We factor f as A!A=ker.f /!B . The first map induces a homeomorphism
on Spec by [9, Chapter 1, Exercise 21.iv] and the second one a closed continuous
surjection by [9, Chapter 1, Exercise 21.v and Chapter 5, Exercise 1]. It remains to
see that Spec.B/! Spec.A=ker.f // is injective. If p1; p2 �B are prime ideals with
the same contraction to A=ker.f /, and x 2 p1 is given, then for some n� 0 we have

xn 2 p1\ .A=ker.f //� p2;
hence x 2 p2 and p1 � p2 . By symmetry this gives p1 D p2 , as desired.
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Proposition 3.24 Suppose that f W A! B is a map of commutative rings such that

(1) f ˝Q is an isomorphism, and

(2) for every prime p , f ˝Z.p/ is an Fp–isomorphism.

Then the natural transformation of functors of rings

f �W Ring.B;�/! Ring.A;�/
is an isomorphism on algebraically closed fields. In other words, f is a V–isomorphism
[47, Definition A.3].

Proof The first condition implies that f � is an isomorphism after restricting to fields
of characteristic 0. For algebraically closed fields of characteristic p , since f ˝Z.p/
is an Fp–isomorphism by assumption and any Fp–isomorphism between two Fp–
algebras is a V–isomorphism by [79, Proposition B.8], we just need to verify that
reducing a Fp–isomorphism mod p induces a Fp–isomorphism.

In other words, we need to show that if f 0 D f ˝Z.p/ is an Fp–isomorphism then
so is xf D f ˝Z Fp . Suppose that xx 2 ker. xf /, which we lift to x 2 A.p/ . Now
f 0.x/ D pz for some z 2 B.p/ . Since f 0 is an Fp–isomorphism, there exists an
m� 0 and y 2 A.p/ such that zp

m D f 0.y/. Now set w D xpm �ppmy , so

f 0.w/D ppmzpm �ppmzpm D 0:
Since f 0 is an Fp –isomorphism, w is nilpotent; however, w reduces to xxpm , so xx is
nilpotent.

Now consider some xz0 2 B ˝ Fp and choose a lift z0 2 B.p/ . Since f 0 is an Fp–
isomorphism there is a nonnegative integer m0 and y02A.p/ such that f 0.y0/D .z0/pm0.
Reducing y0 mod p , we see that xf is an Fp–isomorphism.

We will now combine the above results with the work of Quillen to obtain the following
stratification result:

Theorem 3.25 Suppose that R is a homotopy commutative F –nilpotent ring spec-
trum. Suppose further that �G0 R is noetherian and for every H 2 F, �H0 R is finite
over �G0 R via ResGH . Then the canonical natural transformations of functors of rings

colim
OF .G/

Ring.�H0 R;�/! Ring. lim
OF .G/op

�H0 R;�/
ResGF

�

 ��� Ring.�G0 R;�/
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are isomorphisms when the input is an algebraically closed field. Similarly, the canoni-
cal maps between Zariski spaces

colim
OF .G/

Spec.�H0 R/! Spec
�

lim
OF .G/op

�H0 R
� ResGF

�

 ��� Spec.�G0 R/

are homeomorphisms.

Proof First, the map ResGF W �G0 R ! lim ��OF .G/op �
H
0 R becomes an isomorphism

after rationalizing (Theorem 3.17) and an Fp–isomorphism after localizing at p
(Theorem 3.20); in addition, it is an N–isomorphism. It follows that the map of Zariski
spectra Spec

�
lim ��OF .G/op �

H
0 R

� ! Spec.�G0 R/ is a homeomorphism (Proposition
3.23). Furthermore, for an algebraically closed field L we have an isomorphism
Ring.�G0 R;L/ ' Ring.lim ��OF .G/op �

H
0 R;L/ via Proposition 3.24. This shows that

both the natural transformations directed to the left are isomorphisms.

Next, the natural transformations directed to the right are isomorphisms by [78; 79].
Here we use the finiteness of each �H0 R as a �G0 R–module to guarantee that each
map Spec.�H0 R/ ! Spec.�G0 R/ is a closed map. Consider the category of finite
�G0 R–algebras. By [79, Corollary B.7], the Spec functor (to topological spaces)
carries finite limits of finite �G0 R–algebras to colimits of topological spaces. Therefore,
lim��!OF .G/

Spec.�H0 R/! Spec
�
lim ��OF .G/op �

H
0 R

�
is a homeomorphism, as desired.

Finally, by [79, Lemma 8.11], the map

colimOF .G/Ring.�H0 R;L/! Ring
�

lim ��
OF .G/op

�H0 R;L
�

is an isomorphism for each algebraically closed field L. Combining this with the
previous paragraph, the theorem follows.

Example 3.26 Suppose n.F /D 1. For instance, this occurs if G is a perfect group
and F DP is the family of all proper subgroups of G (Examples 3.16).

In this case, the idempotent eF belongs to the Burnside ring A.G/. We obtain a
decomposition of the symmetric monoidal 1–category SpG as

SpG ' C1 �C2;

where C1 consists of those G–spectra on which eF is the identity (equivalently, is a
self-equivalence), and C2 consists of those G–spectra on which eF is null (see [14]).
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We claim that C1 is equal to the subcategories of F –nilpotent, F –complete and
F –torsion G–spectra (which therefore all coincide). In particular, F –nilpotence is a
purely algebraic condition on the homotopy groups of a G–spectrum in this case.

We start by showing that every F –complete G–spectrum belongs to F Nil . In fact, this
follows from Theorem 2.25, since our assumptions imply that the associated F –spectral
sequence has a horizontal vanishing line at E2 . We now invoke [73, Proposition 4.21]
to obtain that the subcategories of F –nilpotent, F –complete and F –torsion objects
in SpG all coincide and that there is a splitting (of symmetric monoidal 1–categories)
of SpG ' C01 �C02 , where C01 consists of the F –nilpotent objects and C02 consists of
the F�1–local objects.

It remains to show that the two splittings of SpG coincide. To see this, observe that eF
restricts to 1 in A.H/ for H 2F. As a result, eF acts as the identity on fG=HCgH2F

and therefore on the localizing subcategory they generate. It follows that C1 contains
the F –torsion G–spectra, ie C1 � C01 . Conversely, if X 2 SpG is F�1–local, then
its restriction to SpH for H 2F is contractible; therefore the class eF 2 A.G/, as
a sum of classes induced from subgroups in F, acts by zero. Therefore, C2 � C02 . It
now follows that C1 D C01 and C2 D C02 , as desired.

3.4 The end formula

In this subsection, we will explain how to deduce from our methods rational and
Fp–isomorphism results as in [78; 79; 54; 47]. These results will require studying a
different homotopy limit spectral sequence and will require some additional machinery,
which we will review. The convergence properties of this new homotopy limit spectral
sequence will be more subtle even when considering the family of all subgroups; in
particular these results will require as input a finite G–CW complex (see Remark 3.30).

Let X be a G–space and let E be a G–spectrum. Then we have a bifunctor

T W O.G/�O.G/op! Ab�

(where Ab� denotes the category of graded abelian groups) given by the formula

(3:27) T .G=H;G=K/D .EK/�.XH /:
Here EK D HomSpG .G=KC; E/ denotes the K–fixed-point spectrum of E and XH

denotes the subspace of H –fixed points of X. Note that the EK (resp. XH ) are
nonequivariant spectra (resp. spaces) here.
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Fix a family of subgroups F of G. We can form the end
R

OF .G/op T of this bifunctor,
consisting precisely of those tuples of elements fxH 2 .EH /�.XH /gH2F which have
the following property: whenever we are given a map G=H ! G=H 0, the natural
images of xH and xH 0 in .EH /�.XH 0/ agree. Such classes naturally arise from the
following construction: Given a map of G–spectra XC!†�E and an H 2F, we
obtain a map of spectra XHC !†�EH. Altogether these define a natural comparison
map

(3:28) E�G.X/!
Z

OF .G/op
.EH /�.XH /:

The main result of this section is the following:

Theorem 3.29 Suppose X is a finite G–CW complex. Let E be an F –nilpotent
G–spectrum. Then (3.28) becomes an isomorphism after inverting jGj. In fact, the
kernel and cokernel of (3.28) are both annihilated by a power of jGj.
Suppose in addition that E is an A1–algebra in SpG which is homotopy commu-
tative. Then the map (3.28) is a uniform N–isomorphism and, for any prime p , its
p–localization is a uniform Fp–isomorphism.

Remark 3.30 Unlike Theorems 3.17 and 3.20, Theorem 3.29 can fail if X is not
assumed to have the equivariant homotopy type of a finite G–CW complex.

For instance, consider G D C2 and consider Borel-equivariant F2–cohomology, ie the
C2–spectrum HF2 . Take the C2–space X D EC2 and the family F D All . Since
XC2 D∅, the description of the end becomes�Z

G=H2O.C2/op
.HF2

H /�.XH /
�
ŠHF�2 .�/C2 D F2;

while .HF2/�C2.X/'HF�2 .BC2/' F2Œe� for jej D 1. Here the kernel of (3.28) is
not nilpotent.

As another example, let us take G D C2 , X D EC2 , F D All and E D KU, C2–
equivariant complex K–theory. So KU 0C2.X/Š KU0C2.�/Š KU0.BC2/Š Z˚Z2 ,
where Z2 is topologically generated by a nonnilpotent element. Since XC2 D∅, the
calculation of the end simplifies:�Z

G=H2O.C2/op
.KUH /0.XH /

�
Š eq

�
KU0.X/�

Y
C2

KU0.X/
�
Š KU0.�/Š Z:

Geometry & Topology, Volume 23 (2019)



580 Akhil Mathew, Niko Naumann and Justin Noel

We easily identify the comparison map in (3.28) as the augmentation map Z˚Z2!Z.
The kernel of this map is the Z2–summand, which is neither torsion nor nilpotent.

Remark 3.31 Quillen’s argument for Theorem 3.29 (for mod-p cohomology) in
[78, Theorem 6.2] is based on different techniques. Given a G–space X, the strategy
is to consider the homotopy orbits XhG as a space mapping to the strict orbits X=G
and the Leray spectral sequence (in sheaf cohomology) for this map. This shows that
(3.28) is an Fp–isomorphism for a family of subgroups containing the isotropy of X.
To get to the family of elementary abelian groups, Quillen uses an argument (which has
since become standard) involving the flag variety of a faithful representation, which
will also appear in a different form later in this paper.

By contrast, we will set up another spectral sequence for E�G.X/ and show that (3.28)
arises as an edge homomorphism, and then show that the spectral sequence collapses
with a horizontal vanishing line at a finite stage. Our approach follows the strategy of
[54, Sections 2–3], who consider the case where jGj is inverted.

Indeed, the ZŒ1=jGj�–local version of Theorem 3.29 for complex-oriented Borel-
equivariant theories appears in [54, Theorem 3.3]. For certain Borel-equivariant theories,
variants of the second assertion appear in [47].

We will require some preliminaries first. Recall that SG denotes the (ordinary) category
of G–spaces and S denotes the category of spaces.

Let F be a family of subgroups of G. For every G–space X with isotropy in F, we
consider the G–space M.X/ WDFH2F G=H �XH and the natural map M.X/!X

of G–spaces which on the summand G=H �XH !X induces the inclusion of spaces
XH !X.

We now observe that the construction X 7!M.X/ arises from an adjunction. We have
functors

LW
Y
H2F

S� SG WR:

Here the left adjoint L sends a family of spaces fYH gH2F to the G–spaceG
H2F

G=H �YH :

The right adjoint R sends a G–space X to the family of spaces fXH gH2F given
by taking fixed points. The composite is given by LR.X/ ' M.X/, and the map
M.X/!X is the counit.
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By general theory (compare the discussion in [32, Example 3.15]), for any X 2 SG , we
have an augmented simplicial diagram in SG (a form of the bar construction) obtained
by applying the unit and counits of the adjunction,

(3:32) � � � !!!M.M.X//�M.X/!X:

Furthermore, we have the following two standard properties of (3.32):

(1) The augmented simplicial diagram (3.32) admits a splitting after applying H –
fixed points for any subgroup H 2F (indeed, after applying the right adjoint R).

(2) If X belongs to the image of L, then (3.32) admits a splitting in SG .

Proposition 3.33 For any G–CW complex X 2 SG with isotropy in F, the aug-
mented simplicial diagram (3.32) gives a simplicial resolution of X in SG , ie the map
jM ı�C1.X/j !X is a weak equivalence.

Proof To see that (3.32) is a simplicial resolution in SG , it suffices to show that it
becomes a simplicial resolution after taking H –fixed points for each H � G. For
H 2F, taking H –fixed points turns (3.32) into a split augmented simplicial diagram
which is therefore a resolution. For H …F, taking H –fixed points gives ∅ on both
sides.

For the next result, we will need to use the notion of nilpotent augmented cosimplicial
diagrams in SpG . Given an augmented cosimplicial diagram X� in SpG , we say that
X� is nilpotent if X�1'Tot.X�/ (ie it is a limit diagram) and the associated Tot tower
is quickly converging [71, Section 3]. Nilpotent augmented cosimplicial diagrams form
a thick subcategory of all cosimplicial diagrams containing the split ones.

Proposition 3.34 For X a finite G–CW complex with isotropy in F and for any
G–spectrum E, the augmented cosimplicial diagram in SpG

(3:35) F.XC; E/! F.MXC; E/� F.MMXC; E/!!! � � �
is nilpotent.

Proof The construction (3.35) takes finite homotopy colimits in X to finite homotopy
limits of augmented cosimplicial diagrams. When X D G=H for H 2 F, (3.32) is
split (hence nilpotent), and therefore so is (3.35). Since every finite G–CW complex
with isotropy in F is a finite homotopy colimit of copies of G=H;H 2F, the result
now follows.
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Proposition 3.36 Let X be a finite G–CW complex with isotropy in F. Then the
induced augmented simplicial diagram †1CM ı�C1.X/Œ1=jGj� obtained by applying
†1C .�/Œ1=jGj� to (3.32) admits a splitting in the homotopy category Ho.SpG/ (ie the
associated chain complex is chain contractible).

Proof Recall that, if X and Y are finite G–CW complexes, we have the basic formula
(see [54, Lemma 3.6])

�0 HomSpG .†
1CX;†1C Y /Œ1=jGj�'

Y
H

�0 HomSp.†
1CXH ; †1C YH /Œ1=jGj�WH ;

where in the product, H ranges over a set of representatives for conjugacy classes of
subgroups of G with WH the associated Weyl group. We need to show that for any
finite G–CW complex Y , the augmented simplicial abelian group

�0 HomSpG .†
1C Y;†1CM ı�C1X/Œ1=jGj�

admits a chain contraction, functorially in Y . Using the formula above, and averaging
a chain homotopy over the Weyl groups, it suffices to see that for each H � G,
�0 HomSpec.†

1C YH ; .†1CM ı�C1X/H /Œ1=jGj� admits a chain contraction, functori-
ally in Y . It thus suffices to see that after taking H –fixed points for any H � G,
(3.32) admits a splitting; when H 2F we saw this above, and for H …F everything
is empty.

We now return to the main result of this section. We begin with an elementary remark.

Remark 3.37 Let M W Sop
G ! Ab be a functor which preserves finite coproducts.

Given a family F of subgroups of G, we say that M is F –approximable if M.X/!
lim ��G=H2OF .G/op M.X �G=H/ is an isomorphism. Equivalently, if S DFH2F G=H,
then

M.X/!M.X �S/�M.X �S �S/

is an equalizer diagram.

Let F W Sop ! Ab be a functor which preserves finite coproducts. For a subgroup
H �G, let FH W Sop

G ! Ab be the functor which sends X 2 SG to F.XH /. Then, for
any family F containing H, FH is F –approximable, as one sees from the above
equalizer diagram.
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Proof of Theorem 3.29 Let X be a finite G–CW complex. Suppose first that X has
isotropy in F (but E is arbitrary). Consider the augmented cosimplicial resolution
(3.32),

F.XC; E/' Tot
�
F.MXC; E/� F.MMXC; E/!!! � � �

�
;

which we saw is nilpotent in Proposition 3.34. If we take G–fixed points, we obtain
an associated Tot–spectral sequence for E�G.X/. Moreover, after inverting jGj the
augmented cosimplicial resolution admits a splitting (Proposition 3.36).

Unwinding the definitions, we find that the map M.X/!X of G–spaces induces the
map on E�G –cohomology considered above,

E�G.X/!
Y
H2F

.EH /�.XH /:

Furthermore, the lift of this map to a map E�G.X/!
R

OF .G/
.EH /�.XH / is exactly

the edge map of the Tot–spectral sequence.

We now argue similarly as in the proofs of Theorems 3.17 and 3.20. Since the tower is
nilpotent, we have a horizontal vanishing line at a finite stage [71, Proposition 3.12].
Furthermore, because the augmented cosimplicial diagram admits a splitting in the
homotopy category after inverting jGj, the E2–page of the spectral sequence satisfies
E
s;t
2 Œ1=jGj� D 0 for s > 0. We note that for each s , there must exist a uniform

power of jGj, say jGjN, such that jGjNEs;�2 D 0. If not, we could replace the G–
spectrum E by a product of suspensions of E in such a manner that would contradict
E
s;t
2 Œ1=jGj�D 0 for s > 0.

In view of the collapse of the spectral sequence at a finite stage and because the terms
E
s;t
2 are bounded jGj–power torsion for s > 0, it follows that the map E�G.X/!R

OF .G/op.E
H /�.XH / (the edge homomorphism) has kernel and cokernel annihilated

by a power of jGj, and that, in the presence of a suitable multiplicative structure on E,
the map is an N–isomorphism integrally and an Fp–isomorphism after localizing at a
prime p . This completes the proof when X is finite and has isotropy in F (and does
not use that E is F –nilpotent).

We now prove Theorem 3.29 for arbitrary finite X. For any G–space X, we define
TFE

�
G.X/ as the end on the right-hand side of (3.28), so that we have a natural map

E�G.X/! TFE
�
G.X/, which we need to prove is an isomorphism after inverting jGj

and an Fp–isomorphism after localizing at p .
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Consider the diagram

E�G.X/

�1

��

�1
// TFE

�
G.X/

�2

��

limOF .G/op E�G.X �G=H/
�2
// limOF .G/op TFE

�
G.X �G=H/

Here, in the inverse limits, G=H ranges over OF .G/
op .

We let W be the class of morphisms f W A! B of commutative rings such that kerf
and cokerf are annihilated by a power of jGj and such that for each prime number p ,
f.p/ is a uniform Fp–isomorphism. We note that this condition implies that f is a
uniform N–isomorphism. We need to show that �1 2W.

By considering each of the individual terms .EH /�.XH /, we see easily that �2 is
actually an isomorphism (Remark 3.37). Thus, it suffices to show that �2 ı�1 2W.
Moreover, �2 is a finite inverse limit of the maps E�G.X�G=H/!TFE

�
G.X�G=H/,

which belong to W, by the case of Theorem 3.29 that we have already proved. As W

is closed under finite limits by Lemma 3.38 below, it follows that �2 2W. Finally,
�1 2W by Theorems 3.17 and 3.20. Thus, �2 ı�1 and therefore �1 belong to W and
we are done.

We used the following elementary algebraic lemma:

Lemma 3.38 Fix a positive integer m. Consider the class W of morphisms f W A!B

of commutative rings which have the property that:

(1) The kernel and cokernel f are both annihilated by a power of m (in particular,
f ˝ZŒ1=m� is an isomorphism).

(2) For each prime number p , f.p/ is a uniform Fp–isomorphism.

Then W is closed under finite limits.

Proof The terminal isomorphism 0D 0 is evidently in W, so it suffices to show that
if we have fiber product diagrams of commutative rings

A

��

// A0

��

A1 // A01

B

��

// B0

��

B1 // B01

and a natural map of diagrams between them such that �0W A0! B0 , �1W A1! B1

and �01W A01! B01 belong to W, then �W A! B belongs to W. It follows easily

Geometry & Topology, Volume 23 (2019)



Derived induction and restriction theory 585

via a diagram chase that the kernel and cokernel of � are annihilated by a power of m,
so it suffices to show that for each p , �.p/ is a uniform Fp–isomorphism.

Without loss of generality, we can assume that we are already localized at p . It follows
easily that ker.�/ is nilpotent. Suppose given y 2 B , with images y0 , y1 and y01
in B0 , B1 and B01 , respectively. After replacing y by a suitable pth power (chosen
uniformly for all y ), we can assume that y0 and y1 belong to the image of �0 and �1 .
That is, there exist x0; x1 2 A0; A1 which map to y0 and y1 . However, x0 and x1
need not have the same image in A01 . Let xx0 and xx1 be the images in A01 . Then
z D xx0� xx1 is p–power torsion and nilpotent, both of uniform exponent, as it maps to
zero in B01 under �01 . It follows that

xxpn1 D .xx0C z/p
n D xxpn0

for n� 0, by the binomial theorem. In particular, xp
n

0 and xp
n

1 have equal images
in A01 , which implies that yp

n

belongs to the image of � , as desired. One sees that
n� 0 can be chosen uniformly.

If we are only interested in the underlying variety of E�G.X/, we can make a further
simplification. Consider the functor

KW O.G/�O.G/op! Ring; K.G=H;G=L/D .EL/�.�0XH /;
defined in a similar fashion as in (3.27). Given a family of subgroups F, we have a
similar natural map

(3:39) E0G.X/!
Z

OF .G/op
.EH /0.�0X

H /:

We can also study the properties of this map. This recovers [47, Theorem 2.4] for
complex-oriented theories. Taking E to be 2–periodic mod-p cohomology, we can
recover [78, Theorem 6.2], at least for finite G–CW complexes.

Corollary 3.40 Suppose that E is a homotopy commutative A1–algebra in SpG
and E is F –nilpotent. Suppose that �G0 E is a noetherian ring and for any H � G
and k 2 Z, �H

k
E is a finitely generated �G0 E–module. Then for any finite G–CW

complex X, (3.39) is a V–isomorphism in the sense of [47]. Moreover, the mapsZ OF .G/

Ring..EH /0.XH /; � /! Ring
�Z

OF .G/op
.EH /0.�0X

H /; �
�
 Ring.E0G.X/; � /

are isomorphisms when restricted to algebraically closed fields.
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Proof We observe that the edge maps

.EH /0.XH /! .EH /0.�0X
H /

in the associated Atiyah–Hirzebruch spectral sequences are V–isomorphisms because
each XH is a finite CW complex. Note that both sides are finitely generated �G0 E–
modules under our hypotheses, and the map is surjective with nilpotent kernel. Then
the result follows from Quillen’s work as in Theorem 3.25 in view of Theorem 3.29.

4 Defect bases and F –split spectra

4.1 Classical defect bases and F –split spectra

Classical induction theory centers around the notion of a defect base. To define this,
we will first need the following:

Proposition 4.1 (see [39, Lemma 3.11]) Let R.�/ be a Green functor for the
group G ; see [39; 89]. Then there is a unique minimal family F such that the
map

(4:2) IndGF W
M
H2F

R.H/!R.G/

is surjective.

Proof It suffices to show that if F1 and F2 are families such that IndGF1 and IndGF2
are surjective (equivalently, have image containing the unit), then the same holds
for F1 \ F2 . This is a straightforward exercise with the double coset formula
[39, Axiom G4, page 44].

Definition 4.3 (see [39, Section 3]) Let R.�/ be a Green functor for the group G.
The defect base of R is the minimal family F of subgroups of G such that the map
IndGF above (4.2) is surjective. The defect base of a G–ring spectrum R is the defect
base of the Green functor �.�/0 R .

To relate the notion of a defect base of a G–ring spectrum R , which only depends
on R through �.�/0 R , to the derived defect base, we have the following:

Proposition 4.4 Let R be a G–ring spectrum. For a family of subgroups F of G,
consider the sum of the induction maps IndGF W

L
H2F �

H
0 R ! �G0 R . Then the

following are equivalent:
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(1) The map IndGF is surjective.

(2) The product of the restriction mapsY
H2F

ResGH W R!
Y
H2F

F.G=HC; R/

splits in SpG.

(3) The G–spectrum R is F –nilpotent and yH�F .�.�/� R/D 0.

(4) The G–spectrum R is F –nilpotent and expF .R/� 1.

Proof First we will prove (1)D)(4). By assumption, there is for each H 2 F an
element mH 2 �H0 R such that

(4:5) 1D
X
H2F

IndGH mH 2 �G0 R:

The element mH 2�H0 R is represented by a G–map R!F.G=HC; R/ and IndGH mH
is obtained by postcomposing with the projection F.G=HC; R/' R^G=HC! R .
Assembling these together, we find that the composite map

R

Q
H mH�����!

Y
H2F

F.G=HC; R/!R

is homotopic to the identity. This retraction implies that R is F –nilpotent with
F –exponent � 1, proving (4).

The equivalence of (2) and (4) follows from Proposition 2.26 becauseY
H2F

F.G=HC; R/' F.sk0EFC; R/

with our preferred model for EF.

Now we will show (2)D)(3). By assumption, R is a retract of the product spectrumQ
H2F F.G=HC; R/, which is F –nilpotent. Since F Nil is closed under finite products

and retracts we see that R is F –nilpotent.

We will now show yH�F .�.�/� R/D0. Since the Amitsur–Dress–Tate cohomology groups
are bigraded modules over the algebra in bidegree .0; 0/, it suffices to prove this claim
when the bidegree is .0; 0/. Furthermore, since R is a retract of

Q
H2F F.G=HC; R/,

it suffices to show that for each H 2F, yH 0
F .�

.�/
0 F.G=HC; R//D 0, and by naturality

again it suffices to consider the case R D S0 . However, in �G0 F.G=HC; S0/, the
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unit is a norm from �H0 F.G=HC; S0/, so that it vanishes in the F –Tate cohomology,
which is therefore zero.

Next, we prove (3)D)(1). Since R is F –nilpotent, the F –homotopy limit spectral
sequence converges to �G� R . The vanishing of the Amitsur–Dress–Tate cohomology
groups implies that this spectral sequence collapses at E2 and the edge map induces
an isomorphism �G� RŠ limOF .G/op �H� R . Combining this with the identification of
zeroth cohomology group from (3.10), we obtain

yH 0
F .�

.�/
0 R/Š � lim

OF .G/op
�H0 R

�
=.Im IndGF /Š �G0 R=.Im IndGF /:

Since these groups are zero by assumption, IndGF is surjective.

Definition 4.6 We will say that a G–ring spectrum R is F –split if it satisfies any
of the equivalent characterizations of Proposition 4.4. More generally, we will say a
G–spectrum M is F –split if its endomorphism ring End.M/ is F –split.

Remark 4.7 It follows from the definitions that the defect base of a G–ring spectrum
R is the smallest family F such that R is F –split.

Remark 4.8 The F –split condition can be used to test for projectivity and flatness
(see [54, Remark 3.5.2]). For example, since KU is F –split for the family F of Brauer
elementary subgroups we know that for a G–spectrum X, KUG� .X/ is torsion-free if
and only if KUH� .X/ is torsion-free for each H 2F.

Proposition 4.9 Suppose that R is a G–ring spectrum such that �.�/0 R is isomorphic
to the complex representation ring functor. Then the defect base of R is the family F

of Brauer elementary subgroups of G, ie subgroups which are products of p–groups
with cyclic subgroups of order prime to p for some prime p .

Proof This purely algebraic claim about the representation ring Green functor is a
combination of Brauer’s theorem and its converse due to J Green [83, Section 11.3].

We now give two important cases in which the derived defect base and the defect
base automatically coincide. Recall that a G–spectrum M is connective if, for every
subgroup H of G, �Hi M D 0 if i < 0.

Proposition 4.10 Suppose that R is a connective G–ring spectrum and F is a family
of subgroups of G. Then R is F –nilpotent if and only if R is F –split. In particular,
the defect base and the derived defect base of R coincide.
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Proof Clearly any F –split spectrum is F –nilpotent. For the other direction, suppose
that R is F –nilpotent, so the F –homotopy colimit spectral sequence converges to
�G� EFC ^RŠ �G� R by Proposition 2.8. The connectivity assumption implies that
E20;0 is the only term contributing to �G0 R in this spectral sequence. Hence, we obtain
an isomorphism

�G0 RŠE20;0 ŠHG
0 .EFCI�.�/0 R/Š colim

OF .G/
�H0 R:

Since the E2–edge map is an isomorphism on �G0 , the E1–edge map IndGF is surjective
and hence R is F –split.

Proposition 4.11 Let R be a G–ring spectrum. If n.F / 2 �G0 R is a unit, then R is
F –nilpotent if and only if R is F –split. In particular, the defect base and the derived
defect base of R coincide.

Proof If R is F –split, then it is F –nilpotent by definition. On the other hand, if R
is F –nilpotent then, by Proposition 4.4(3), R is F –split if and only if the Amitsur–
Dress–Tate cohomology groups yH�F .�.�/� R/ vanish. Now, since n.F / 2 �G0 R acts
on these groups simultaneously by a unit and by zero by Proposition 3.11, we see that
they must be zero.

4.2 Brauer induction theorems

If we know the defect base of a G–ring spectrum we obtain an upper bound on the
derived defect base. We now include results that enable us to go the other direction: if
we know the derived defect base we obtain an upper bound on the defect base.

Proposition 4.12 Suppose that R is an F –nilpotent G–ring spectrum. Let F �F

be a family of subgroups satisfying the following condition: for each prime p , if
H �G fits into a short exact sequence

(4:13) e!N !H !H=N ! e;

where N 2F and H=N is a p–group, then H 2F. Then R is F –split.

Proof Since F �F and R is F –nilpotent, R is also F –nilpotent. By [31, Proposi-
tion 1.6] we can find an x 2 Im IndG

F
and y 2 ker ResGF such than xCy D 1 2 �G0 R .

Since y is nilpotent by Theorem 3.20, x must be a unit and IndG
F

must be surjective,
as desired.
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Remark 4.14 Any family F satisfying the assumption of Proposition 4.12 necessarily
contains all p–Sylow subgroups of G. So when R is a Borel-equivariant theory, the
bound on the defect base of R given by Proposition 4.12 will provide no information
(see Theorem 4.25 below).

When all of the subgroups in our given family F are abelian, and they often are, we
can more explicitly identify a family F satisfying the assumption of Proposition 4.12.

Proposition 4.15 Let F �A be a family of abelian subgroups of G. Then the set F

of subgroups of the form G0DH 0ÌP , where P 2All is a p–group for some prime p
and H 0 2F Œp�1� is a subgroup in F of order prime to p , is a family of subgroups
satisfying the assumption of Proposition 4.12.

Proof Consider the family F 0 of subgroups H �G that fit into a short exact sequence
as in (4.13) with N 2F and H=N a p–group (for some p ). We will show that any such
H belongs to F, so that F DF 0 . By Proposition 4.12, this will suffice for the result.

Note first that N DN1�N2 where N2 is a p–group and p−jN1j, since N is abelian
by assumption. Now N1 � N is a characteristic subgroup and is therefore normal
in H. Therefore, we obtain a new short exact sequence

e!N1!H !H=N1! e;

where N1 2F has order prime to p and H=N1 is a p–group. The Schur–Zassenhaus
theorem now implies that this extension splits. Consequently, H 2F, as desired.

4.3 Applications of F –split spectra

If a G–ring spectrum R is F –split and M is an R–module, then the Amitsur–Dress–
Tate cohomology groups of M vanish by Proposition 4.4. So under these hypotheses
the F –homotopy limit and colimit spectral sequences collapse at E2 onto the zero
line and we obtain the following integral form of Theorem 3.17:

Theorem 4.16 Let R be an F –split G–ring spectrum and let X be a G–spectrum.
Then, for each R–module M, each of the maps

colim
OF .G/

M �H .X/
IndGF��!M �G.X/

ResGF��! lim
OF .G/op

M �H .X/;(4:17)

colim
OF .G/

MH� .X/
IndGF��!MG� .X/

ResGF��! lim
OF .G/op

MH� .X/(4:18)

is an isomorphism.

Geometry & Topology, Volume 23 (2019)



Derived induction and restriction theory 591

We will now show how the F –split condition fits into Balmer’s theory of descent for
triangulated categories with a monoidal product which is exact in each variable [11].
For this we suppose that R is an E2 -G–ring spectrum so the 1–category Mod.R/
of structured R–modules is monoidal [67, Corollary 5.1.2.6]. Moreover, the monoidal
product commutes with homotopy colimits in each variable; in particular, tensor-
ing with a fixed module is an exact functor. It follows that the homotopy category
Ho.Mod.R// of R–modules is an idempotent-complete triangulated category with a
monoidal structure that is exact in each variable (see [69]).

Now given a family of subgroups F, let X D`H2F G=H and AD F.XC; R/. The
R–algebra structure on A defines a monad T on Ho.Mod.R//, where TM DA^RM.
The forgetful functor UT from T –algebras in Ho.ModR/ to the underlying category
Ho.ModR/ admits a right adjoint FT . This defines a comonad C D FTUT on the
category of T –algebras and we let DescR.F / denote the category of C –coalgebras
in T –algebras. The free algebra functor FT canonically lifts to a functor

QF W Ho.Mod.R//! DescR.F /

and we will say that R effectively descends along F if QF is an equivalence of
categories.

Proposition 4.19 Let R be an E2 -G–ring spectrum and F a family of subgroups.
Then the following are equivalent:

(1) R effectively descends along F.

(2) R is F –split.

Proof According to [11, Corollary 3.1], R effectively descends along F if and only
if A ^R .�/ is faithful. Moreover, this condition is equivalent to the unit R ! A

admitting a retraction in Ho.Mod.R//. Indeed, if we have a retraction then clearly the
functor is faithful; the other implication is [11, Proposition 2.12] but we also include
a more direct argument for the special case at hand: To see that R ! A admits a
retraction, we need to argue that the map hofib.R! A/!R is zero. We can check
this after smashing with A, and hence it suffices to see that AŠR^A!A^A admits
a retraction; such is furnished by the multiplication map.

Finally, since the unit map

R! A'
Y
H2F

F.G=HC; R/

Geometry & Topology, Volume 23 (2019)



592 Akhil Mathew, Niko Naumann and Justin Noel

is the product of the restriction maps, we see that R is F –split if and only if R
effectively descends along F.

Example 4.20 In Proposition 4.9 we saw that KU is split for the family of Brauer
elementary subgroups. When G D†3 , the family of Brauer elementary subgroups is
the family C of cyclic subgroups and the category O.†3/C has a very simple form. So,
in this case, one can more explicitly identify the target of the restriction isomorphism
in Theorem 4.16.

For this purpose we fix Sylow subgroups C2 and C3 of †3 and let W†3C3 Š Z=2

denote the Weyl group of the 3–Sylow subgroup. We leave it to the reader to show (eg
using Proposition A.6) that for any †3–spectrum X, KU �†3.X/ fits into the pullback
diagram

(4:21)

KU �†3.X/

Res
†3
C2

��

Res
†3
C3
// KU �C3.X/

Z=2

Res
C3
e

��

W �C2.X/
Res

C2
e

// KU �e .X/†3

Here,
W �C2.X/ WDKU �C2.X/\ .ResC2e /

�1.KU �e .X/
†3/:

4.4 Examples of F –split spectra; the Borel-equivariant sphere

We will now establish some more of the claims made in Table 2.

Proposition 4.22 Let T be a multiplicatively closed subset of Z n f0g. Then the
derived defect base of SŒT �1� is equal to its defect base, which is All , the family of
all subgroups.

Proof Since SŒT �1� is connective, the derived defect base of SŒT �1� is the same as
the defect base of �.�/0 SŒT �1�ŠA.�/ŒT �1� (Proposition 4.10). It suffices to show that
the family P of proper subgroups is not a defect base. The image of IndGP is generated
as a ZŒT �1�–module by those finite G–sets whose isotropy is a proper subgroup of G.
In particular, they have trivial G–fixed points. It follows that ŒG=G�2A.G/˝ZŒT �1�
is not in the image of IndGP and hence P is not a defect base.

Recall from Table 1 that for a family F, the subfamily F �F is defined to be the
subset of groups in F of prime-power order. Let F.0/ D T and, for each prime p ,
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let F.p/ � F denote the subfamily of F whose elements are p–groups. For any
multiplicative subset T of Z n f0g, we let F ŒT �1� denote the subset of groups in F

whose order is not invertible in ZŒT �1�.

Definition 4.23 The constant Green functor R.�/ associated to a ring R is defined
as follows:

� For each subgroup H of G, R.G=H/ is the ring R .

� The restriction and conjugation maps of R.�/ are all identities.

� For each chain of subgroup inclusions H <K <G, IndKH is multiplication by
jK=H j.

Proposition 4.24 Let R ¤ 0 be a ring and let T be the set of elements in Z which
are invertible in R . Then All ŒT �1� is the defect base of both HR and HR; All ŒT �1�
is also the derived defect base of HR.

Proof Since HR is connective, its derived defect base and its defect base are equal
(Proposition 4.10). The remaining claims follow from since �.�/0 HRŠ �.�/0 HRDR
is the constant Green functor at R . Indeed, the image of IndGF inside R.G=G/DR is
the principal ideal generated by gcd.fjG=H jgH2F /, so IndGF is surjective if and only
if this integer is a unit in R .

We now give a particularly deep example of the determination of the derived defect
base of a G–ring spectrum. We do not know if it is possible to carry this out without
the use of the Segal conjecture.

Theorem 4.25 The derived defect base of S is equal to its defect base All . More
generally, if T �Znf0g is a multiplicatively closed subset, then the derived defect base
of SŒT �1� is equal to its defect base All ŒT �1�. Consequently, if M is an SŒT �1�–
module, then M is All ŒT �1�–nilpotent.

Proof We first bound above the derived defect base of SŒT �1� as claimed. We will
prove the following two items:

(1) S is nilpotent (even split) for the family All .

(2) If G is a p–group for a prime number p invertible in ZŒT �1�, then SŒT �1� is
nilpotent (even split) for the family consisting of the trivial group.
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By [73, Proposition 6.40], to see that S is All ŒT �1�–nilpotent, it suffices to show that
if G is not a p–group for some p noninvertible in ZŒT �1�, then S is nilpotent for
the family of proper subgroups. So the two items above are certainly sufficient.

Recall that the category of dualizable structured modules over SŒT �1� embeds into
Fun.BG;Perf.SŒT �1�// (where the latter SŒT �1� belongs to the category of non-
equivariant spectra) by [73, Corollary 6.21].

We now treat the assertions above. We begin with the first. For each prime p dividing
the order of the group G, we let Gp �G denote a p–Sylow subgroup. We consider
the composite map

 pW S
IndGGp���! .G=Gp/C

ResGGp���! S;

which induces multiplication by jG=Gpj on the underlying spectrum. The orders of the
fjG=Gpjg generate the unit ideal in Z, so there is a linear combination

P
p j jGj np p

of the  p which is a self-equivalence � of S. We thus get a retraction diagram

S
†npIndGGp�������!

M
p

.G=Gp/C
��1ı†ResGGp���������! S;

which shows that S is nilpotent (even split) for the family All . For the second claim,
we observe that in this case the composite

SŒT �1� IndGe��!GCŒT �1�
ResGe��! SŒT �1�

is an equivalence.

Finally, we show that the families are minimal as claimed. In general, if a prime p
is not inverted in SŒT �1�, then S.p/ is an SŒT �1�–module. It thus suffices to show
that if G is a p–group, then S.p/ is not nilpotent for the family of proper subgroups.
In Proposition 4.26 below, we will show that S=p is not nilpotent for the family of
proper subgroups, which will prove the claim. The proof of Proposition 4.26 relies
on the Segal conjecture. Note also that the since the derived defect base of SŒT �1� is
All ŒT �1� and SŒT �1� is split for this family, that is also the defect base.

Proposition 4.26 Let p be a prime and X a nontrivial finite p–torsion spectrum.
Then the derived defect base of X is All .p/ .

Proof By assumption, X is an S.p/–module and hence All .p/–nilpotent, so we just
need to prove the minimality of this family. For this claim, it suffices to show that if G is
a p–group then ˆGX §�; in fact, we recall that if X 2 SpG is nilpotent for the family
of proper subgroups then ˆG.X/D 0 (see the discussion in [73, Definition 6.12]).
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Let i�W Sp! SpG denote the left-adjoint functor that sends the sphere to the G–sphere.
The class of spectra Y such that the canonical map i�Y ! Y is an equivalence of G–
spectra forms a thick subcategory C� Sp. Since G is a p–group, the Segal conjecture
proved by Carlsson [25] (in the equivalent form given in [76, Proposition B]) implies
S=p 2 C. That is, the Segal conjecture implies that the Borel-completion S is obtained
by an algebraic completion (at the augmentation ideal) of the G–sphere S ; when we
work mod p , the map S=p ! S=p is an equivalence as G is a p–group. Hence,
every finite p–torsion spectrum belongs to C. Since X is nontrivial and ˆGi�X 'X,
it follows that ˆGX 'ˆGi�X 'X § �.

5 Derived defect bases via orientations

In this final section, we give the main examples of derived defect bases. All of these
will rely on the use of orientations together with thick subcategory arguments, and a
reduction (following Quillen) to the family of abelian subgroups via consideration of
the variety of complete flags of a G–representation.

5.1 On G –spectra with Thom isomorphisms

We will now consider how our conditions on a homotopy commutative G–ring spectrum
simplify when the spectrum is oriented in the following sense (see [45, Definition 2.1,
Remark 2.2, Definition 3.7]):

Definition 5.1 Let R be a homotopy commutative G–ring spectrum and V an or-
thogonal representation of G. Then a Thom class for V with respect to R is a map of
G–spectra �V W SV�jV j!R such that its canonical extension to an R–module map

R^SV�jV j R^�V���!R^R ��!R

is an equivalence. If V is a representation of a subgroup H � G, then we say that
a Thom class for V with respect to R is a Thom class for V with respect to the
H –spectrum ResGH R .

Let I be a class of representations closed under finite direct sums, restriction and
conjugation (eg unitary, oriented, 8n–dimensional spin). We will say that R has
multiplicative Thom classes for I if, for each subgroup H �G, it has Thom classes for
every H –representation V in I and the Thom classes are multiplicative: �V˚W D
�V ��W .

Geometry & Topology, Volume 23 (2019)



596 Akhil Mathew, Niko Naumann and Justin Noel

In this case we define the oriented Euler class of V , �.V / 2 RjV jH .�/, to be the
composition

�.V /W S�jV j eV^S
�jV j

�������! SV�jV j �V�! ResGH R:

Remark 5.2 Thom classes often appear in another guise which we will now describe
(see [45, Remark 2.2]). Given an orthogonal H –vector bundle V on an H –space X
we have an associated Thom space T V . Suppose that we are given a family of
isomorphisms of R�H –modules

�V W R�H .†jV j.XC//!R�H .T V /

which are natural in X and H. In the case that X is a point, T V ' SV and we can
rewrite �V as an isomorphism

�H� RŠ �H� R^S jV j�V

of �H� R–modules. The unit in �H0 R corresponds to a map of H –spectra

�V W SV�jV j! ResGH R

which extends to an equivalence of ResGH R–modules

ResGH R^SV�jV j! ResGH R:

So we see that natural Thom isomorphisms give rise to such Thom classes.

In terms of the RO.G/–graded groups �G? R , the Euler classes are evidently related
to the oriented Euler classes by

�.V /D eV ��V :
Since the Euler classes are in the Hurewicz image of �G? S, they are necessarily central
and it follows that �.V n/ D �.V /n . Since �V is necessarily a unit in �G? R , we
immediately obtain the following:

Lemma 5.3 Suppose that R is a homotopy commutative G–ring spectrum with
multiplicative Thom classes for a class I of representations and V admits the structure
of an I–representation of G. Then, for each positive integer n, �.V /n is zero if and
only if enV is zero.

The following proposition will play a key role in proving the F –nilpotency of many
G–spectra:
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Proposition 5.4 Suppose that R is a homotopy commutative G–ring spectrum with
multiplicative Thom classes for either unoriented, oriented, unitary or 8n–dimensional
spin representations. Then the following are equivalent:

(1) The G–spectrum R is F –nilpotent.

(2) For every subgroup H �G with H …F, if

x 2 ker
�
�H� R!

Y
K<H

�K� R
�
;

then x is nilpotent.

Proof The implication (1)D)(2) is an easy consequence of Theorem 3.20, since for
H …F, ResGH R is nilpotent for the family of proper subgroups of H.

For the reverse implication, it suffices by Corollary 2.5 to show that for each H …F,
ez�H 2�H? R is nilpotent. This class restricts to zero on all proper subgroups of H by the
first part of Proposition 2.2, so if assumption (2) were stated in terms of RO.H/–graded
groups, we would already be done. Instead, we will use the Thom isomorphisms to
reduce to the integer grading: By Lemma 5.5 below there is an n such that nz�H has an
Euler class �.nz�H / 2 �H� R . This class is nilpotent by Lemma 5.3 and assumption (2).
Since the nilpotency of ez�H is equivalent to the nilpotency of �.nz�H / by Lemma 5.3,
the result follows.

Lemma 5.5 For any finite group G,

(1) 2z�G underlies a unitary and hence oriented representation, and

(2) 8z�G underlies a spin representation whose dimension is divisible by 8.

Proof The real representation underlying the complex reduced regular representation
of G is 2z�G , which proves the first claim.

Now 8z�G admits a spin structure if and only if the first two Stiefel–Whitney classes

w1.8z�G/; w2.8z�G/ 2H�.BGIF2/
vanish. By the Whitney sum formula, w1.8z�G/D2w1.4z�G/D0 and hence w2.8z�G/D
2w2.4z�G/D 0, as desired.

5.2 Equivariant topological K –theory

In this subsection, we recall that we denote by C the family of cyclic subgroups of a
group G.
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Proposition 5.6 The derived defect base of both the complex and real equivariant
K–theory spectra, KU and KO, is C.

Proof First we show that KO and KU are C –nilpotent. Since KU is a KO–
module, it suffices to prove this for KO. Now KO admits multiplicative Thom classes
for 8n–dimensional spin representations and is 8–periodic [8, Theorem 6.1], so by
Proposition 5.4, it suffices to show that any element x 2 �H0 KO D RO.H/ which
restricts to zero on all cyclic subgroups is zero. By elementary character theory, the
complexification of x in R.H/ is zero since it is zero on all cyclic subgroups. Now,
since the composite RO.H/! R.H/! RO.H/ of the complexification and the
forgetful map is multiplication by 2 and RO.H/ is torsion-free, x is necessarily zero.

To see that this is a minimal family it suffices to prove this for the KO–module KU.
Now KU admits multiplicative Thom classes for unitary representations and is 2–
periodic [8, Theorem 4.3]. So it suffices, by Proposition 5.4 again, to construct, for an
arbitrary cyclic group G, a nonnilpotent element x 2R.G/ which restricts to zero on
all proper subgroups. Since

R.H1 �H2/ŠR.H1/˝R.H2/;
if we can do this in the case G D Cpn is a cyclic p–group, then we can tensor the
classes together to obtain the desired element.

The character map R.Cpn/!
Q
g2Cpn C is a ring map and an injection into a re-

duced ring, so any nonzero element of R.Cpn/ is nonnilpotent. Now R.Cpn/ D
ZŒzn�=.z

pn

n � 1/ and x D zpn�1n � 1 is a nontrivial and hence nonnilpotent element
of R.Cpn/. Under the inclusion Cpn�1!Cpn of the unique maximal proper subgroup,
zn restricts to zn�1 2R.Cpn�1/ and we see that x restricts to zero on this subgroup.
It thus restricts to zero on all proper subgroups as desired.

Proposition 5.7 The derived defect base of both the Borel-equivariant K–theory
spectra KU and KO is C.

Proof First we will show that these spectra are C –nilpotent. Since the arguments
for the real and complex case are identical, we will just do the complex case. Since
KU is split [75, Chapter XVI, Section 2; 63, page 458], KU D F.EGC; i�KU/ '
F.EGC; KU /. It follows that KU is a KU –module and hence C –nilpotent by
Proposition 5.6. Since KU is also an S –module, it is C \ All D C –nilpotent by
Theorem 4.25.
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We will now prove that this is the minimal such family for KU . Since KU is a KO–
module this will establish the minimality claim for KO as well. Now, for each cyclic
p–group G, we will construct a nonnilpotent element x 2 �G0 KU which restricts to
zero on all proper subgroups. Since KU is complex-orientable, it has Thom classes for
unitary representations and the minimality claim will then follow from Proposition 5.4.

We have already constructed such an x in �G0 KU Š R.G/ in Proposition 5.6, so it
suffices to show that the natural ring map

i W �G0 KU ! �G0 KU

is an injection. By the Atiyah–Segal completion theorem [10], �G0 KU is yR.G/, the
completion of R.G/ at the ideal of virtual representations of dimension zero, and i is the
completion map. This map is an injection for all p–groups G by [6, Proposition 6.11],
so the claim follows. Note that the use of the Atiyah–Segal completion theorem to
bound below the derived defect base of KO parallels the use of the Segal conjecture in
Theorem 4.25.

Remark 5.8 One can also show that the derived defect bases of KU and KO (resp. KU
and KO) agree with an independent argument using Galois descent [73, Proposi-
tion 9.15].

There are at least two standard notions of “connective” equivariant K–theory. The
first is KU��0 which is the standard connective cover: it admits a canonical map
KU��0!KU such that �.�/i is an isomorphism when i � 0 and �.�/i KU��0 D 0
for i < 0. By Proposition 4.10 the derived defect base of KU��0 is its defect base and
this is the family of Brauer elementary subgroups of G by Proposition 4.9. The more
interesting variant is the following:

Definition 5.9 Let ku denote the equivariant connective7 K–theory spectrum con-
structed by Greenlees [41; 42]. This is defined by the following homotopy pullback
along the self-evident ring maps:

(5:10)

ku

��

// KU

��

ku // KU ' F.EGC; KU /

The real analogue, ko, is defined similarly.

7Which is not generally connective!
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Proposition 5.11 The derived defect base of ku and ko is C [ E .

Proof Since the arguments for ku and ko are essentially identical, we will prove
the claim for ku. We have already shown in Propositions 5.6 and 5.7 that the derived
defect bases of KU and KU are C and C , respectively. In Corollary 5.33 we will
show that the derived defect base of ku is C [ E . It follows that each of these spectra
is C [ E –nilpotent. Since the 1–category of C [ E –nilpotent G–spectra is closed
under homotopy pullbacks, ku is C [ E –nilpotent. The required results for KO, KO
and ko are proven in Propositions 5.6 and 5.37.

Since KU and ku are ku–algebras via the above maps, the minimality claim follows
from the minimality of the families for ku and KU.

Let G be a compact Lie group with an involution g 7! xg , ie a Real Lie group in Atiyah’s
terminology. Then one can form a split extension of groups (the semidirect product)

1!G! zG! C2! 1:

A zG–space is then a Real G–space in the sense of [10, Section 6]. There is an
equivariant cohomology theory KR�G on zG–spaces X such that, for a finite zG–CW
complex, KR0G.X/ is the Grothendieck group of Real G–vector bundles on X. In
[58, Chapter 14], the Thom isomorphism theorem is proved for Real G–vector bun-
dles on compact zG–spaces. We let KRG be a ring zG–spectrum representing this
cohomology theory.

We have the following generalization of Proposition 2.14:

Proposition 5.12 Suppose G (and therefore zG ) is finite. The derived defect base of
the zG–spectrum KRG is given by the family of cyclic subgroups of G.

Proof We will need the two following observations:

(1) Let X be a finite zG–CW complex on which G acts trivially, so that it arises from
a finite C2–CW complex. Then we have KR�G.X/DKR�.X/˝ZKR0G.�/.

(2) We have Res zGGKRG D KUG D KU.

By the second item, it suffices to show that KRG is nilpotent for the family of
subgroups of G. To show this, we first let � denote the real sign representation of C2 ,
regarded as a zG–representation. Then the first item together with the calculation used
in Proposition 2.14 shows that the Euler class S0! S3� becomes null-homotopic
after smashing with KRG . This means that KRG is a retract of S.3�/C^KRG and
is therefore nilpotent for the family of subgroups of G.
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Remark 5.13 We do not know of an extension of Proposition 2.15 along the lines of
Proposition 5.12 as of this time.

5.3 Complex-oriented Borel-equivariant theories

The following is fundamental to all of the following calculations of derived defect
bases of Borel-equivariant spectra:

Theorem 5.14 (see [54] and [73, Corollary 7.48]) The derived defect base of the
Borel-equivariant G–spectrum MU is A .

Proof We begin by showing that MU is A D All \ A –nilpotent. Since MU is
an S –module and the latter is All –nilpotent, it suffices to show that MU is A –
nilpotent. Since MU has Thom isomorphisms for unitary representations, it suffices
by Proposition 5.4 to show that any x in MU�.BG/ which restricts to zero on each
abelian subgroup is nilpotent.

The following nilpotence argument is standard (see [47, Section 4]) and dates back to
[78; 79]. Let F be the variety of complete flags associated to a faithful representation
of G. This is a compact G–manifold with abelian isotropy, so it admits the structure
of a finite G–CW complex, whose cells have abelian isotropy which we will now fix.
By [54, Proposition 2.6] we have an inclusion MU�.BG/! MU�.EG �G F /. So
it suffices to show that x is nilpotent in the target ring. Filtering F by its G–CW
structure, there is a multiplicative spectral sequence

E
s;t
2 DH s

G.F I�.�/�t MU/)MUtCs.EG�G F /
with the following properties:

(1) Any class y 2MU�.BG/ which restricts to zero in MU�.BA/ for each abelian
subgroup A belongs to the kernel of the edge homomorphism

MU�.EG�G F /!E
0;�
2 �E0;�1 :

This is a consequence of the following two facts:
(a) The flag variety F has abelian isotropy and hence E0;�1 is a product of

terms of the form MU�.EG�G G=A/ŠMU�.BA/.
(b) The E1–edge homomorphism is the product of the restriction homomor-

phisms induced by a coproduct of projections of the form G=A!G=G.

(2) E
s;�
2 D 0 for s > dimF by definition of the spectral sequence.
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Property (1) shows that x must be detected in positive filtration, while property (2)
shows that x is nilpotent.

In Proposition 5.35 below, we will show that for every prime p and integer n, the
MU–module En has A n

.p/
as its derived defect base. Since n and p are arbitrary, this

forces the minimality of the family for MU .

Remark 5.15 The argument with the flag variety above plays a key role in the
unipotence results of [73, Section 7]. A consequence of those results (combined
with Proposition 2.26 above) is that if G admits an n–dimensional faithful complex
representation then we obtain an explicit upper bound

expA .MU/� n.n� 1/C 1
on the A –exponent of G–equivariant MU .

5.4 Ordinary Borel-equivariant cohomology

We will now discuss the further reduction one can make when one is over the integers.

Proposition 5.16 (see [78; 79]) The derived defect base of HFp is E.p/ .

Proof We first prove that HFp is E.p/–nilpotent. Since HFp is an MU–module
and an S.p/–module, HFp is A \ All .p/ D A.p/–nilpotent by Theorem 5.14 and
Theorem 4.25. Moreover, HFp has Thom isomorphisms for oriented representations.
So, by Proposition 5.4, it suffices to show that if G D A is an abelian p–group and
x 2H�.BAIFp/ restricts to 0 on each elementary abelian subgroup then x is nilpotent.

The remainder of the argument follows from elementary group cohomology calculations:
If AD Cpi1 � � � ��Cpin , then there is a polynomial subalgebra RD FpŒx1; : : : ; xn��
H�.BAIFp/ whose generators are in degree 2 and such that for any x 2H�.BAIFp/,
xp 2R . Moreover, there is a maximal elementary abelian subgroup E of A such that
the composite

R!H�.BAIFp/ ResAE��!H�.BEIFp/
is an injection. It follows that if x restricts to zero on E then x is nilpotent.

To prove minimality of the family E.p/ , we suppose that G D E is an elementary
abelian group. To see that HFp is not P –nilpotent we will construct an element
z 2H�.BEIFp/ which restricts to zero on each proper subgroup of E and belongs
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to the polynomial subalgebra R of H�.BEIFp/ and hence is nonnilpotent. Let
y 2H 1.BCpIFp/D Fp be nonzero. For each nontrivial homomorphism �W E! Cp ,
we obtain a nontrivial element y� D ˇ��.y/ 2 R\H 2.BEIFp/. By construction,
y� restricts to zero on the maximal proper subgroup ker� of E. Since any proper
subgroup is contained in the kernel of such a map, the element

z D
Y

�2Gp.E;Cp/nf0g
y�

restricts to zero on any proper subgroup of E and is nonnilpotent, as desired, because
z 2R .

Corollary 5.17 The derived defect base of MO is E.2/ .

Proof Recall first that MO admits the structure of an HF2–module via the work of
Thom; see [81, Theorem IV.6.2]. It follows that MO is E.2/–nilpotent. Since HF2 is
a MO–algebra via the zeroth Postnikov section, the minimality claim follows from the
minimality claim for HF2 in Proposition 5.16.

Example 5.18 We now examine the E.2/–homotopy limit spectral sequence for HF2
when G DQ8 is the quaternion group of order 8. The edge homomorphism of this
spectral sequence was first analyzed by Quillen [78, Example 7.4] and provides an
example where this map is neither an injection nor a surjection, but is evidently an
F2–isomorphism. We will now calculate the rest of the spectral sequence and verify
Quillen’s result.

In this case, the only nontrivial elementary abelian subgroup is the center Z.Q8/DC2 .
Since this is normal with quotient C2 �C2 , by Lemma A.3 the E.2/–homotopy limit
spectral sequence (which is also the Lyndon–Hochschild–Serre spectral sequence) takes
the form

H s.B.C2 �C2/IH t .BC2IF2//)H tCs.BQ8IF2/:
Since the action of C2�C2 on the center is trivial, the local coefficient system is trivial.

Hence, the E2–page is isomorphic to F2Œe1; e2�˝ F2Œe3�, where e3 generates the
cohomology of the center and is in bidegree .0; 1/. Now e1 and e2 are both in
bidegree .1; 0/ and for degree reasons they are permanent cycles. Since the spectral
sequence does not have a horizontal vanishing line at the E2–page we know that the
last remaining indecomposable e3 , must support a differential. For degree reasons this
must be a d2 .
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Figure 1: The E3–page of the E.2/–homotopy limit spectral converging to H tCs.BQ8IF2/

To identify this differential we note that the E.2/–homotopy limit spectral sequence
is acted on by Aut.Q8/. This follows from the observation that the family E.2/

of elementary abelian 2–groups is invariant under automorphisms of Q8 , and all
resolutions in question can therefore be carried out respecting the Aut.Q8/–action.
Since Aut.Q8/ fixes the center and acts transitively on the nonzero elements of the
quotient group C2 � C2 [2, Lemma IV.6.9], we see that d2.e3/ must land in the
invariants

H 2.BC2 �C2IF2/Aut.Q8/ Š F2fe21 C e1e2C e22g:
This forces d2.e3/D e21 C e1e2C e22 .

The E3–page shown in Figure 1 does not yet have a horizontal vanishing line, so
there must be a further differential. By the same reasoning as above we see that Œe23 �
must support a differential and this must be a d3 which lands in the invariants of the
Aut.Q8/–action. This forces d3.Œe23 �/D e21e2C e1e22 . At this point there is no room
for further differentials and the spectral sequence collapses at E4 . There are no additive
or multiplicative extensions for degree reasons. So we obtain

H�.BQ8IF2/Š F2Œe1; e2; Œe
4
3 ��=.e

2
1 C e1e2C e22 ; e21e2C e1e22/

(see [2, Lemma IV.2.10]). Since there are elements of filtration 3 at E1 , we find that
expE.2/

.HF2/� 4.
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We can in fact show that this is an equality, equivalently, that there is a 3–dimensional
finite Q8–CW-complex X with isotropy in E.2/ such that HF2 splits off HF2 ^XC .
For this, we choose X D P .H/, the projective space of the 4–dimensional real
representation of Q8 afforded by quaternion multiplication on H Š R4 . The re-
quired splitting follows from the projective bundle theorem in mod-2 cohomology (see
[57, Section 17, Theorem 2.5]). In fact, this produces a map

(5:19)
W3
iD0†�iHF2!HF2 ^DXC;

classifying the generators of the free H�.BQ8IF2/–module �Q8� .HF2 ^DXC/'
H�Q8.X IF2/. Since the projective bundle formula implies that (5.19) is an equivalence
on H –fixed points for any H �Q8 , we get that (5.19) is an equivalence and we have
the desired splitting after dualizing.

Remark 5.20 In [78; 79], Quillen actually considers a smaller indexing category
than O.G/Ep . The objects of this category A are the elementary abelian subgroups of G
and the morphisms are the group homomorphisms A!B of the form cg W a 7! gag�1
for some g 2G.

To relate these two notions we construct a functor J W O.G/Ep!A sending G=A to A.
Given a G–map f W G=A1! G=A2 satisfying f .A1/D gA2 , we set J.f /D cg�1 .
Since the subgroups involved are abelian, this functor is well defined.

Now J is a cofinal functor and hence the induced map limAop F ! limO.G/
op
Ep
J �F

is an isomorphism for every contravariant functor F indexed on A. Now, for a G–
space X, the functor on O.G/

op
Ep

sending G=A to H�.EG�AX IFp/ extends over J,
so Quillen’s limit is isomorphic to the one considered here.

However, J is not homotopy cofinal; the higher limit terms are generally quite different.
For example, in the case G DQ8 just considered we have

lim�
Aop

H�.BAIF2/Š lim0
Aop

H�.BAIF2/ŠH�.BZ.Q8/IF2/Š F2Œe3�:

Since the higher limit functors vanish, we see that the homotopy limit spectral sequence
using Quillen’s indexing category will not converge to H�.BQ8IF2/.
Note also that the higher limit functors over the category A (and its generalization
for arbitrary collections of p–subgroups) have been extensively studied in relation to
the theory of centralizer sharp homology decompositions [33; 34; 60]; see [49] for an
account and many examples.
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Example 5.21 We will now calculate the F –exponent of Q8–equivariant HF2 for a
slightly larger family than E.2/ . Let f be one of the nontrivial classes in H 1.Q8IF2/
and let � be the pullback of the sign representation along f , so �.�/ D f . Now
f 3 D 0 by the calculation above, so HF2 is a retract of HF2 ^ S.3�/C . If we set
F to be the family of subgroups contained in the kernel of f , then we see that the
F –exponent of HF2 for G DQ8 is at most 3. Moreover, expF .HF2/� 3 because
f 2 ¤ 0 (see Remark 3.22), so we have in fact equality.

We now prove the integral version of the above result. We will frequently use the
following:

Lemma 5.22 Fix a finite group G. For a spectrum E, we let FE be the derived defect
base of E 2 SpG. If R is a ring spectrum, then FR D

S
p j jGjFRp D

S
p j jGjFR.p/ ,

where Rp (resp. R.p/ ) denotes the p–completion (resp. p–localization) of R .

Proof We give the argument for the completions; the argument for the localizations
is similar. Since Rp is an algebra over R , we have FR �

S
p FRp . To obtain the

opposite inclusion, we use the arithmetic square

(5:23)

R

��

//
Q
p j jGjRp

��

RŒ1=jGj� //
�Q

p j jGjRp
�
Œ1=jGj�

This induces a pullback square upon taking Borel-equivariant theories. The Borel-
equivariant forms of RŒ1=jGj� and

�Q
p j jGjRp

�
Œ1=jGj� have trivial derived defect base

since they are jGj�1–local (Theorem 4.25). As a result, we obtain FR�FQ
p j jGjRp

DS
p j jGjFRp , as desired.

Proposition 5.24 (see [24]) The derived defect base of HZ is E .

This result is essentially equivalent to [24, Theorem 2.1]. See also [12, Theorem 4.3]
for another equivalent statement stated in a language closer to ours.

Proof We first prove that HZ is E –nilpotent. By Lemma 5.22, it suffices to show
that HZp is E.p/–nilpotent. Since HZp is both an MU–module and an S.p/–module,
we already know that HZp is A .p/–nilpotent by Theorems 5.14 and 4.25. Moreover,
HZp has Thom isomorphisms for oriented representations. So, by Proposition 5.4 it
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suffices to show that if A is an abelian p–group and x 2H�.BAIZp/ restricts to 0
on each elementary abelian subgroup, then x is nilpotent.

Suppose we have such an x 2H�.BAIZp/. Note that jxj is necessarily greater than
zero and, by Proposition 5.16, the mod-p reduction of x is nilpotent. In other words, a
power of x is divisible by p . It follows that there exists k � 1 and z 2H�.BAIZp/
such that xk D jAjz . Since jAj �H�.BAIZp/D 0 for �> 0, we see that xk D 0, as
desired. Thus, HZ is E –nilpotent.

Finally, to see that the derived defect base is precisely E , we note that since HFp is an
HZ–module, the derived defect base of HZ must contain E.p/ by Proposition 5.16.
Varying p , we find that the derived defect base must contain E , and therefore is equal
to E s.

5.5 Ln–local Borel-equivariant theories

Using Hopkins–Kuhn–Ravenel character theory, we now determine the minimal family
for Borel-equivariant Morava E–theory and some related spectra.

Proposition 5.25 (see [47; 54]) Suppose that E is a complex-oriented homotopy
commutative ring spectrum with associated formal group G. Suppose further that:

� The coefficient ring ��E is a complete local ring with maximal ideal m.

� The graded residue field ��E=m has characteristic p > 0.

� The localization ��EŒp�1� is nonzero.

� The mod-m reduction of G has height n <1.

Then the derived defect base of E is A n
.p/

.

Proof First we show that E is A n
.p/

–nilpotent. Since E is complex-oriented and
p–local we already know E is A \All .p/ D A.p/–nilpotent. So, by Proposition 5.4
it suffices to show that if A is an abelian p–group and x 2E�.BA/ restricts to zero
on E�.BA0/ for any A0 � A of rank � n, then x is nilpotent.

The results of [54] show that, under the given hypotheses, there is a natural injection

(5:26) E�.BA/ ,! L.E�/˝E� E�.BA/Š HomSet.Gp.Znp; A/; L.E
�//

of E�.BA/ into a ring of generalized characters valued in some particular nontrivial
E�Œp�1�–algebra L.E�/. By assumption, x2E�.BA/ is trivial on all of the subgroups
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of A which appear as images of some homomorphisms Znp ! A. It follows that x
has trivial image in the character ring. Since E�.BA/ injects into the character ring,
x must be zero.

To see the minimality of this family, we will suppose that A is a product of n cyclic
p–groups and find a nonnilpotent element x 2 E�.BA/ which restricts to zero on
all proper subgroups As in [54, Theorem C], there is an Aut.Znp/–action on the
right-hand side of (5.26) such that p�1E�.BA/ is the Aut.Znp/–invariants. Let z 2
HomSet.Gp.Znp; A/; L.E

�// be the generalized character which sends each surjective
homomorphism Znp ! A to 1 2 L.E�/ and all other homomorphisms to zero. The
element z is Aut.Znp/–invariant and therefore belongs to p�1E�.BA/. Clearly z is
idempotent and restricts to zero on all proper subgroups. Since the map in (5.26) is an
isomorphism after inverting p , there is an x 2E�.BA/ and a natural number k such
that pkz D x . By construction, x is nonnilpotent and restricts to zero on all proper
subgroups.

The derived defect base shrinks if one quotients by an invariant ideal in �0E. For
each positive integer n, let yE.n/ denote the In–adically completed Johnson–Wilson
theory. This is a complex-oriented p–local cohomology theory whose coefficients
�� yE.n/ are obtained by completing ��E.n/ Š Z.p/Œv1; : : : ; vn; v

�1
n � at the ideal

In D .p; v1 : : : ; vn�1/ (here v0 D p conventionally).

Proposition 5.27 For 0 � k � n, let E D yE.n/ and E=Ik D E=.p; v1; : : : ; vk�1/.
The derived defect base of E=Ik is A n�k

.p/
.

Proof Using the vn–periodicity of E it suffices to study the nilpotence of elements
in degree 0. Let G be the formal group over �0.E=Ik/ associated to the complex-
oriented ring spectrum E=Ik . Note that this is the reduction modulo Ik of the formal
group associated to E. Let A be an abelian p–group and let A_ denote the Pontryagin
dual.

Recall that Spec..E=Ik/0.BA// is the formal scheme that classifies homomorphisms
A_!G . Since E0.BA/ is a finite free module over �0E, we have

.E=Ik/
0.BA/' �0.E=Ik/˝�0E E0.BA/:

By applying [47, Theorem 2.3] to E and then base-changing along �0E! �0.E=Ik/,
one has a morphism of schemesG

H�A
Level.H_;G/! Spec..E=Ik/

0.BA//;
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which induces an isomorphism on underlying reduced schemes. Here Level.H_;G/
is the closed subscheme of Spec..E=Ik/0.BH// classifying level structures H_!G

and the above map factors through the map induced by the restriction homomorphisms.
Moreover, Level.H_;G/ is empty if and only if rank.H/ > n� k .

It follows now that the map of schemes

(5:28)
G
H<A

Spec..E=Ik/
0.BH//! Spec..E=Ik/

0.BA//

is surjective on geometric points if and only if rank.A/ > n�k . If rank.A/ > n�k , it
follows that any element in .E=Ik/0.BA/ which restricts to zero on proper subgroups is
nilpotent. This proves that the derived defect base of E=Ik is at most A n�k

.p/
. Similarly,

the analysis of (5.28) combined with Theorem 3.25 shows that the derived defect base
can be no smaller.

Example 5.29 We show explicitly that the derived defect base of K.n/ is T . Since
T is the minimal family, we only need to show that these G–spectra are T –nilpotent.
Using Proposition 2.13, this can also be deduced from [46, Theorem 1.1] (ie the
vanishing of Tate spectra).

Since K.n/ is complex-orientable and p–local, we already know K.n/ is A\All .p/D
A.p/–nilpotent. Now, since K.n/ admits Thom isomorphisms for unitary representa-
tions, it suffices to show that if AD Cpi1 � � � � �Cpik is an arbitrary abelian p–group
and x 2 K.n/�.BA/ restricts to zero on the trivial subgroup, then x is nilpotent by
Proposition 5.4. By the Künneth isomorphism for Morava K–theory and the well-
known calculations of the complex-oriented cohomology of cyclic groups,

K.n/�.BA/ŠK.n/�˝FpŒx1; : : : ; xk�=.x
pi1n

1 ; : : : ; x
pikn

k
/

and the kernel of the restriction map ResAe W K.n/�.BA/! K.n/�.Be/ is the ideal
.x1; : : : ; xk/. This ideal is evidently nilpotent and hence so is x , proving the claim.

We can also obtain a variant for the telescopic replacement for K.n/.

Proposition 5.30 (see [61]) Let X be a finite complex of type n and let T .n/ be its
vn–periodic localization. Then the derived defect base of T .n/ is T .

Proof The spectrum T .n/ is a module over the vn–periodic localization of the
type n, A1–ring spectrum End.X/. So it suffices to consider the case T .n/ WD
End.X/Œv�1n �. Since this spectrum is obtained from an A1–ring by inverting a central
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element [80, Lemma 6.1.2] it is A1 [67, Section 7.2.4]. Now, by Proposition 2.13 it
suffices to show that the associated Tate object zET ^ T .n/ is contractible. This is
[61, Corollary 1.6].

5.6 Hybrids of Ln–local theories and H Z–algebras

We now include examples of Borel-equivariant theories where there are two contribu-
tions to the derived defect base: an Ln–local piece and an HZ–algebra piece.

Proposition 5.31 The derived defect base of BP hni is E.p/[A n
.p/

.

Proof Since both HFp and the completed Johnson–Wilson theory yE.n/ are BP hni–
modules, the minimality claim will follow from the minimality results for these module
spectra proven in Propositions 5.16 and 5.25.

To show that BP hni is E.p/[A n
.p/

–nilpotent, we argue by induction on n. The base
case nD 0 follows from Proposition 5.24. So suppose n > 0. Since BP hni has Thom
isomorphisms for unitary representations, by Proposition 5.4 it suffices to show that if
x 2 BP hni�.BG/ restricts to zero in BP hni�.BA/ for each A 2 E.p/[A n

.p/
, then x

is nilpotent.

First observe that x maps to a nilpotent class in .LnBP hni/�.BG/ by Proposition 5.35
below. So, by raising x to a power, we may assume that x is already zero in
.LnBP hni/�.BG/. Moreover, by the inductive assumption, and raising x to a suffi-
ciently high power, we may assume that x maps to zero under r in the long exact
sequence

� � � ! .BP hni/��jvnj.BG/ vn�! .BP hni/�.BG/ r�! .BP hn� 1i/�.BG/! � � � :
This means that x D vny for some y 2 .BP hni/�.BG/.
The Ln–localization map fits into the fiber sequence of BP hni–modules

�nBP hni ! BP hni ! LnBP hni:
Mapping BG into this sequence, we obtain another fiber sequence of BP hni–modules

F.BGC; �nBP hni/! F.BGC; BP hni/! F.BGC; LnBP hni/:
By the long exact sequence in homotopy, x lifts to .�nBP hni/�.BG/. Now, by
[43, Theorem 2.3, Section 3 and Theorem 6.1] we see that �nBP hni and hence
F.BGC; �nBP hni/ are bounded-above BP hni–modules. It follows that there is a
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power of vn such that

vrnx D 0 2 .�nBP hni/�.BG/; r � 0:

Examining the long exact sequence, we see that 0D vrnx 2 BP hni�.BG/. Moreover,
since x D vny ,

xrC1 D .vny/rC1 D vrnxyr D 0;
as desired.

The key properties of BP hni that are used above are that it is a ring spectrum with the
desired homotopy groups, that BP hni ! LnBP hni is an equivalence on connective
covers, and that it admits the standard cofiber sequence relating BP hni to BP hn� 1i.
As such, the argument is quite robust. We give another example of this argument below.

Proposition 5.32 Let R be a connective E1–ring. Suppose that

��.R/' �0.R/Œx1; : : : ; xn�;
where every xi 2 ��.R/ is in positive even degree. Consider the finite localization R0
of R away from .x1; : : : ; xn/ (see [43]). For a spectrum X, let FX denote the derived
defect base of X with respect to a finite group G. Then we have

FR D FR0 [FH�0R:

Proof Since R0 and H�0R are R–algebras, the inclusion FR � FR0 [ FH�0R is
evident.

Let G be a finite group such that R0 , H�0R 2 SpG are nilpotent for the family of
proper subgroups. It suffices to show that R is too. We will show that R=.x1; : : : ; xk/
is nilpotent for the family of proper subgroups by descending induction on k . When
kD n, this iterated cofiber is H�0R and the induction hypothesis holds by assumption.

Suppose now that R=.x1; : : : ; xkC1/ is nilpotent for the family of proper subgroups.
We want to prove the analogue with kC1 replaced by k . Note that each R=.x1; : : : ; xi /
admits an A1–algebra structure in R–modules by [5, Corollary 3.2]. Since ��.R/ is
concentrated in even degrees, R is complex-orientable. It therefore suffices to show
that if

u 2 .R=.x1; : : : ; xk//�.BG/
restricts to zero on proper subgroups, it is nilpotent. The inductive hypothesis shows
that a power uk of u is a multiple of xkC1 , so it suffices to show that some power
of u is annihilated by a power of xkC1 .
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Let �nR denote the fiber of R!R0, so that �nR has bounded-above homotopy groups
via the spectral sequence of [43, (3.2)]. We consider similarly the cofiber sequence

�nR=.x1; : : : ; xk/!R=.x1; : : : ; xk/!R0=.x1; : : : ; xk/;

where �nR=.x1; : : : ; xk/ has bounded-above homotopy groups. Replacing u by a
power of itself, we may assume that u maps to zero in .R0=.x1; : : : ; xk//�.BG/, so
that it lifts to the module .�nR=.x1; : : : ; xk//�.BG/. However, we see as before that
every element of this (as a bounded above object) is annihilated by a power of xkC1 .

Corollary 5.33 The derived defect base of ku is E [C.

Proof By Lemma 5.22, it suffices to check the derived defect base of ku is E.p/[C.p/

for each prime p dividing the group order. Now, since ku.p/ splits as a wedge of
suspensions of BP h1i and BP h1i is a ku.p/–module, the derived defect base of ku.p/
is the derived defect base of BP h1i. The claim now follows from Proposition 5.31.

Proposition 5.34 The derived defect base of k.n/ is E.p/ .

Proof This is deduced similarly from the derived defect bases of K.n/ and HFp . We
leave the details to the reader.

5.7 Thick subcategory arguments

We will now show how to apply thick subcategory arguments, eg the thick subcategory
theorem of Hopkins and Smith [55, Theorem 7], to extend the results of the previous
section to nonorientable Borel-equivariant theories such as tmf and LnS0 .

Proposition 5.35 The derived defect base of LnS0 is A n
.p/

.

Proof By the Hopkins–Ravenel smash product theorem, there exists k � 0 such that
LnS

0 is a retract of TotkE^�C1n , the kth stage of the En–cobar construction [80,
Section 8]. Since En is A n

.p/
–nilpotent (Proposition 5.25), for each positive integer k ,

the module spectrum E^kn is A n
.p/

–nilpotent. Taking finite homotopy limits, we see
that the Borel-equivariant theories TotkE^�C1n associated to the finite stages of the En–
cobar construction are A n

.p/
–nilpotent. Finally, since A

n;Nil
.p/

is closed under retracts,
we see that LnS0 is A n

.p/
–nilpotent. Conversely, since En is an LnS0–module, the

minimality claim follows from Proposition 5.25.
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Lemma 5.36 Suppose that p is a prime and X is a p–local finite spectrum of
type zero, ie H�.X IQ/ ¤ 0. Then X ^M is F –nilpotent if and only if M.p/ is
F –nilpotent.

Proof Note that the functor X 7! X preserves finite limits and colimits, so that
X ^M ' i�X ^M for a finite spectrum X. It thus follows that the thick subcategories
of SpG generated by X ^M and M.p/ are equal, so their derived defect bases are
equal.

Proposition 5.37 The derived defect base of KO is C, while the derived defect base
of ko is C [ E .

Proof Both of these statements are consequences of Wood’s theorem [72,Theorem 3.2],
which gives equivalences C�^KO' KU and C�^ ko' ku. Since H�.C�IQ/¤ 0,
we can apply Lemma 5.36, Proposition 5.6 and Corollary 5.33 to see that KO is C –
nilpotent and ko is C [ E –nilpotent. The minimality of these families follows from
the minimality results in Proposition 5.6 and Corollary 5.33 for their respective module
spectra KU and ku.

Definition 5.38 Let Otop be the Goerss–Hopkins–Miller sheaf of E1–ring spectra
on Mell , the compactified moduli stack of elliptic curves (see [17]). Let Mell �Mell

denote the locus parametrizing smooth elliptic curves.

� Let TMF WD �.MellIOtop/ denote the derived global sections of Otop over Mell .

� Let Tmf WD �.MellIOtop/ denote the derived global sections of Otop .

� Let tmf denote the connective cover of Tmf .

Note that by construction, we have a sequence

tmf ! Tmf ! TMF

of E1–ring maps, where the first map is the connective covering and the second map
is induced by the restriction map on structure sheaves.

Proposition 5.39 The family A 2 is the derived defect base of both Tmf and TMF .

Proof To show that the derived defect bases of Tmf and TMF must contain A 2 , it
suffices to show this is true for the Tmf –module TMF . We will do this by constructing,
for every prime p , a map Tmf ! yE of ring spectra such that the derived defect base
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of yE is A 2
.p/

. By varying p we see that the derived defect base of Tmf must contain
all of A 2 .

Fix a supersingular elliptic curve C over Fp (recall that the existence of such a
curve for every p is classical and follows from the Eichler–Deuring mass formula
[84, Exercise V.5.9]). It determines a geometric point xW Spec.Fp/!Mell . Choose
an affine étale neighborhood Spec.R/!Mell of x . Note that R is finitely generated
over Z (hence noetherian) and torsion-free. Let E denote the localization of Otop.R/

at the prime ideal corresponding to the point x . There is a canonical map of E1–rings
TMF!E. Furthermore, E is even periodic with trivial �1 , hence complex-orientable,
�0E is a local ring, and the corresponding formal group G on �0E ' OMell;x is the
base change of the formal group of the elliptic curve. In particular, the reduction of G

modulo the maximal ideal of �0E is the formal group of C, hence of height 2. It now
follows from Proposition 5.25 applied to the completion [66, Section 4] yE of E at the
maximal ideal that the derived defect base of yE is A 2

.p/
, as desired.

We will now prove that Tmf is A 2–nilpotent; the claim for TMF will then follow by
the module structure. By Lemma 5.22, it suffices to show Tmf .p/ is A 2

.p/
–nilpotent

for each prime p (dividing jGj). Since Tmf .p/ is L2–local [17], and hence an L2S0–
module, the result now follows from Proposition 5.35.

Proposition 5.40 The derived defect base of tmf is A 2[ E .

Proof For the minimality claim, we note that HZ is a tmf –module and hence the
derived defect base of tmf must contain E by Proposition 5.24. Since Tmf is also a
tmf –module, the derived defect base of tmf must also contain A 2 by Proposition 5.39.

To prove that tmf is A 2[E –nilpotent, we will use Lemma 5.22 and check this locally
at every prime:

(1) At the prime 2 we recall that there is a finite 2–local spectrum DA.1/ of type
zero such that DA.1/^ tmf .2/'BP h2i [72, Theorem 5.8]. It now follows from
Proposition 5.31 and Lemma 5.36 that tmf .2/ is E.2/[A 2

.2/
–nilpotent.

(2) A similar argument at the prime 3 applies using a finite 3–local complex F
of type zero such that F ^ tmf .3/ ' tmf 1.2/.3/ (see [72, Theorem 4.13]). One
now applies Proposition 5.32 to determine the derived defect base of tmf 1.2/.3/
(whose homotopy groups are polynomial on classes a2 and a4 in �4 and �8 )
and hence that of tmf .3/ . Note that the finite localization of tmf 1.2/.3/ away
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from the ideal .a2; a4/ is Tmf 1.2/.3/ because the compactified moduli stack
.Mell;1.2//.3/ is .SpecZ.3/Œa2; a4� nV.a2; a4//=Gm . This is in particular L2–
local by construction, so that the Borel-equivariant theory Tmf 1.2/.3/ is A 2–
nilpotent, as before.

(3) At p� 5, one applies Proposition 5.32 directly to tmf .p/ , which is now complex-
orientable and whose homotopy groups are Z.p/Œc4; c6�. Similarly, the finite
localization away from the ideal generated by .c4; c6/ is Tmf .p/ and is therefore
L2–local by construction. Therefore, one can conclude as before.

5.8 Additional bordism theories

Finally, we determine the derived defect bases for the Borel-equivariant forms of a few
additional bordism theories.

Proposition 5.41 The derived defect base of MSO is E.2/[A
�
1
2

�
.

Proof By Lemma 5.22, it suffices to show that the derived defect bases of MSO.2/
and MSO

�
1
2

�
are E.2/ and A

�
1
2

�
, respectively.

Using a result of Wall [87, Theorem 5], MSO.2/ admits an HZ.2/–module structure
[86, page 209] and hence MSO.2/ is E.2/–nilpotent by Proposition 5.24. This family
is minimal since HZ.2/ is an MSO.2/–algebra via the zeroth Postnikov section.

It is well known that the evident composite

(5:42) MSp!MU!MSO

of ring maps induces an isomorphism in Z
�
1
2

�
–homology. Since these spectra are

connective the composite in (5.42) is a homotopy equivalence after inverting 2. It
follows that the derived defect base of MU

�
1
2

�
is bounded above by the derived defect

base for MSp
�
1
2

�
and bounded below by the derived defect base for MSO

�
1
2

�
and that

all of these derived defect bases are equal. Now, by Theorems 4.25 and 5.14, each of
these derived defect bases is All

�
1
2

�\A D A
�
1
2

�
.

As shown in the course of the previous proof we have:

Corollary 5.43 The derived defect base of MSp
�
1
2

�
is A

�
1
2

�
.

In general, the map of ring spectra MSp!MU induced by forgetting structure and
Theorem 5.14 show that any defect base of MSp must contain A .
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We now consider the family of Borel equivariant bordism theories associated to MUhni
and MOhni for n� 0. These commutative ring spectra are constructed by applying the
generalized Thom construction to the n�1st connective covers of BU�Z and BO�Z,
respectively.

By construction, there are maps of ring spectra MUhni !MUhn� 1i and MOhni !
MOhn� 1i for n� 1. So the following proposition gives lower bounds on the derived
bases of the associated Borel equivariant theories:

Proposition 5.44 The derived defect base of MUh0i is A . The derived defect base of
MOh0i is E.2/ .

Proof Since MUh0i is complex-oriented, MUh0i is A –nilpotent. As an MU–module,
there is a well-known splitting MUh0i ' W

n2Z†
2nMU. So the derived defect base of

MUh0i must contain A as well.

The argument for MOh0i is deduced similarly from Corollary 5.17.

Proposition 5.45 For any n� 0 the derived defect base of MUhni is A .

Proof By Lemma 5.22 and Proposition 5.44, it suffices to show, for each prime p ,
MUhni.p/ is A.p/–nilpotent. Using the results of [56, Section 5] and the notation
therein, there is a map of ring spectra MBP.r; tq/!MUhni.p/ . So it suffices to show
MBP.r; tq/ is A.p/–nilpotent.

The ring spectrum MBP.r; tq/ has the property that there exists a finite type 0 com-
plex X and a splitting of MBP.r; tq/ ^ X into a wedge of suspensions of BP by
[56, Corollary 5.2]. We note that the existence of desired finite complexes follows from
the work of Smith [85, Theorem 1.5]; note that Smith’s construction produces finite
even complexes. The claim now follows from Lemma 5.36.

Proposition 5.46 For any n� 0, MOhni is A –nilpotent and the derived defect base
of MOhni�1

2

�
is A

�
1
2

�
for n� 2.

Proof Using the orientations MUhni !MOhni, we see the first claim is a corollary
of Proposition 5.45. For n� 2 the derived defect base of MOhni�1

2

�
contains that of

MSO
�
1
2

�DMOh2i. So the second claim follows from the first and Proposition 5.41.

We can obtain a sharp lower bound on the derived defect bases of MOhni for small n.
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Proposition 5.47 The derived defect base of MSpinDMOh4i is C.2/[E.2/[A
�
1
2

�
.

Proof By Lemma 5.22 and Proposition 5.46, it suffices to show that the derived defect
base of MSpin.2/ is C.2/[ E.2/ .

Now 2–locally MSpin additively splits as a wedge of ko.2/–modules [3] and ko.2/
is an MSpin.2/–module via the Atiyah–Bott–Shapiro orientation. It follows that the
derived defect base of MSpin.2/ is equal to the derived defect base of ko.2/ which is
C.2/[ E.2/ by Proposition 5.37 and Theorem 4.25.

Proposition 5.48 The derived defect base F of MString satisfies

A �F � A
�
1
2

�[ E.2/[A 2
.2/:

Proof The first containment is a special case of Proposition 5.46. The second contain-
ment follows from the String–orientation on tmf [4] and Proposition 5.40.

It is an open problem to determine if there is an analogue of the Anderson–Brown–
Peterson splitting of MSpin.2/ for MString.2/ . If MString.2/ split additively into a
wedge of tmf .2/–modules then our methods would show that the derived defect base
of MString is A

�
1
2

�[ E.2/[A 2
.2/

.

Appendix A A toolbox for calculations

Below we provide a few technical results for working with F –homotopy (co)limit
spectral sequences.

A.1 The classifying space EF

We will now verify some claims about the classifying space EF which were used in
the body of the paper.

Let i W OF .G/! SG be the inclusion of the full subcategory spanned by the transitive
G–sets with isotropy in F. We have defined EF to be hocolimOF .G/ i . We can
model this G–space by the standard two-sided bar construction [21, Section XII.5;
75, Chapter V, Section 2]:

(A:1) EF WD hocolim
OF .G/

i ' jB�.�;OF .G/; i/j;
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where B�.�;OF .G/; i/ is the simplicial G–space which in degree n isa
.G=H0;:::;G=Hn/2OF .G/�nC1

��OF .G/.G=Hn; G=Hn�1/�
� � � �OF .G/.G=H1; G=H0/� i.G=H0/:

The zeroth face map is the projection which sends OF .G/.G=Hn; G=Hn�1/ to a point
and is the identity on the other factors. Using the functoriality of i we obtain a map

OF .G/.G=H1; G=H0/� i.G=H0/! i.G=H1/:

The last face map is the product of this with map with the identity on the remaining
factors. The remaining face maps come from the composition in OF .G/ and the
degeneracies come from including identities into the hom–factors.

Proposition A.2 The G–space EF has the following properties:

(1) The fixed points of EF have the following homotopy types:

EFK '
�� if K 2F ;

∅ otherwise.

(2) Let SF � SG denote the full subcategory spanned by those G–spaces which
admit a G–CW structure with cells having isotropy only in F. Then EF is a
homotopically terminal object in SF.

(3) The G–space EF is determined up to equivalence by condition (1).

Proof We only give the proof of the first assertion; for the others, see for instance
[64, Section 1.2]. Let K � G be such that K … F. Since K–fixed points commute
with homotopy colimits, it follows easily that .EF /K D ∅. Suppose now K 2 F ;
then we have

hocolim
G=H2OF .G/

.G=H/K D hocolim
G=H2OF .G/

HomSG .G=K;G=H/' �

because the homotopy colimit of a corepresentable functor is contractible.

A.2 Cofinality results

The following cofinality results aid in the calculation of F –homotopy (co)limit spectral
sequences:
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Lemma A.3 Let N be a normal subgroup of G. If F is the family of all subgroups
of N then the inclusion i W BG=N op! OF .G/ is homotopy cofinal. In particular, the
derived functors of colimits and limits over OF .G/ for F the family of subgroups
contained in N are identified with group (co)homology for G=N.

Proof This is a special case of [73, Proposition 6.31].

Proposition A.4 Let p and q be two distinct primes and F1 (resp. F2 ) the family
of p–subgroups (resp. q–subgroups) of the finite group G. Then the commutative
square of categories

(A:5)

BG

��

// OF1.G/
op

��

OF2.G/
op // OF1[F2.G/

op

induces a pushout of simplicial sets upon applying the nerve functor.

Proof It suffices to prove the statement above for the opposite categories. That is, we
show

NOF1[F2.G/ŠNOF1.G/[NBGop NOF2.G/

is the pushout of the nerves. Note that the pushout simplicial set NOF1.G/[NBGop

NOF2.G/ is just a set-theoretic union in each degree.

So we need to show that any n–simplex in the nerve of OF1[F2.G/ lies entirely in the
nerve of OF1.G/ or entirely in the nerve of OF2.G/; and if the n–simplex lies in both,
then it must lie entirely in their intersection NBGop . When n is 0, the n–simplices of
a nerve correspond to the objects of the category and this claim is obvious. When n is
positive the n–simplices correspond to chains of morphisms of length n� 1.

Now suppose that Hp is a p–subgroup of G and Hq is a q–subgroup of G, then

OF1[F2.G/.G=Hp; G=Hq/¤∅ () Hp is subconjugate to Hq () Hp D e:

This argument is symmetric in p and q , so any chain of morphisms in OF1[F2.G/

is either in the image of OF1.G/ or in the image of OF2.G/ under the embeddings
in (A.5). If the chain of morphisms is in both categories, then it is a sequence of
endomorphisms of G=e , as desired.
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Proposition A.6 Let p and q be two distinct primes and F1 (resp. F2 ) the family
of p–subgroups (resp. q–subgroups) of the finite group G. Let C be a complete
1–category. Then , for any functor

F W OF1[F2.G/
op! C ;

the decomposition in Proposition A.4 induces a homotopy pullback diagram in C :

holimOF1[F2 .G/
op F

��

// holimOF1 .G/
op F jOF1 .G/

op

��

holimOF2 .G/
op F jOF2 .G/

op // holimBG F jBG

Proof Applying the nerve functor to the pushout diagram from Proposition A.4, we
obtain a pushout diagram of 1–categories where, since the inclusions are fully faithful,
each map is a monomorphism. The claim now follows from [65, Proposition 4.4.2.2],
after taking opposite 1–categories.

Appendix B A sample calculation in equivariant K –theory

In this section we analyze the C –homotopy limit spectral sequence converging to
�G� KU when GDC2�C2 is the Klein 4–group and C DP is the family of all cyclic
subgroups of G. Of course we know the target groups of this spectral sequence and
we will use this knowledge below. Nonetheless, this calculation does illustrate some
standard techniques for calculating derived functors and for evaluating differentials
in these spectral sequences. Moreover, this determines the “stable” portion of the
C –homotopy limit spectral sequence converging to the homotopy groups of the Picard
spectrum of the category of G–equivariant KU –modules (see [74]). We hope to return
to this topic later.

Even this most elementary case is still nontrivial. We will leave minor details to the
reader.

We first fix some notation for the various subgroups and quotient groups:

H1 D C2 � e < G; F1 DG=H1;
H2 D e�C2 <G; F2 DG=H2;
H3 D�.C2/ < G; F3 DG=H3:
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The quotient maps induce ring homomorphisms R.Fi /!R.G/ such that the induced
map

R.F1/˝R.F2/!R.G/

is an isomorphism. Let �i denote both the complex sign representation of Fi Š C2
and the representation of G obtained by pulling back along the quotient map.

The C –homotopy limit spectral sequence for KU takes the form

lims
O.G/

op
C

�
.�/
t KU ) �Gt�sKU

The abutment is

R.G/Œˇ˙1�D Zf1; �1; �2; �3 D �1�2gŒˇ˙1�;

where ˇ is the Bott periodicity generator in degree 2 and R.G/ is the complex repre-
sentation ring in degree 0. Since �.�/� KU is 2–periodic with respect to this generator,
the E2–page is 2–periodic as well.

The map sending a virtual representation to its virtual dimension defines a map R.�/!
Z of Green functors with kernel the augmentation ideal functor I.�/. Although this
map does not split as Mackey functors, it does split as coefficient systems. From this
splitting we obtain:

Proposition B.1 The E2–term of the C –homotopy limit spectral sequence has the
form

lim�
O.G/

op
C

�
.�/� KU Š lim�

O.G/
op
C

.Z/Œˇ˙�˚ lim�
O.G/

op
C

.I.�//Œˇ˙�:

To calculate these summands we will use the identification, for coefficient systems M,

lim�
OF .G/op

.M/Š Ext�ZO.G/F
.Z;M/

of Section 3.1. One could calculate this directly from the definition by taking a projective
resolution of Z in coefficient systems. We will instead use a less direct method that
can be applied to a wider class of problems.

We will perform the analogous calculation for various subfamilies F �C of subgroups,
starting with the trivial family and gradually working our way up. For such a family
let ZŒF � be the coefficient system obtained by restricting Z to OF .G/

op and then left
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Kan extending to a functor on O.G/
op
C . We then define the coefficient system ZŒ �F �

by the short exact sequence

0! ZŒF � i�! ZŒC � ��! ZŒ �F �! 0;

where i is the counit of the left Kan extension/restriction adjunction.

From this short exact sequence we obtain the long exact sequence of Ext–groups

(B:2) � � �ExtsZO.G/C
.ZŒF �;M/

i� �ExtsZO.G/C
.ZŒC �;M/

�� �ExtsZO.G/C
.ZŒ �F �;M/

@ � Exts�1ZO.G/C
.ZŒF �;M/ � � � :

Just as in the proof of Corollary 3.5 we have an adjunction isomorphism

ExtsZO.G/C
.ZŒF �;M/Š ExtsZO.G/F

.Z;M/:

We will use this isomorphism and the long exact sequence of (B.2) repeatedly to
calculate the E2–term in Proposition B.1 by gradually increasing the size of the family
under consideration.

B.1 The trivial family of subgroups

We begin by considering the trivial family of subgroups. In this case OF .G/
op is

the category with one object G=e and whose morphisms are the elements of G. The
composition law is obtained from the group multiplication and a projective resolution
of Z in ZO.G/F is just a projective resolution of the trivial module Z in ZŒG�–
modules. Under this identification the free module ZŒG� corresponds to the restriction
of the projective functor ZfO.G/.�; G=e/g to the trivial family. This leads easily to
the identification (when F D T D feg)

ExtsZO.G/F
.Z;M/ŠH s.GIM.G=e//:

In the case M D I, I.G=e/D 0 so these groups vanish. To simplify the notation we
will write I.H/ WD I.G=H/ below. When M DZ this is just the integral cohomology
of G, which we will denote by H�.GIZ/ throughout this section.

We will now recall the well-known calculation of H�.GIZ/ in order to fix notation
and to relate it to the cohomology of the subgroups Hi and the quotient groups Fi . We
will use the Bockstein spectral sequence from the cohomology with F2–coefficients.
Recall that H�.Fi IF2/ is a polynomial algebra on a generator xi in degree 1. This
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element supports a nontrivial Bockstein ˇxi D Sq1xi D x2i . By the Künneth theorem
the quotient maps induce an isomorphism

H�.F1IF2/˝H�.F2IF2/Š F2Œx1; x2�ŠH�.C2 �C2IF2/:
The Bockstein spectral sequence collapses at E2 . There is only simple 2–torsion and
no exotic multiplicative extensions:

H�.C2 �C2IZ/Š ZŒy1; y2; z�=.2y1; 2y2; 2z; z
2�y1y22 �y21y2/:

Here yi D ˇxi is in degree 2 and z D ˇ.x1x2/ is in degree 3.

B.2 The nearly trivial family of subgroups

We now consider the case F D fe;Hig. By the Yoneda lemma, we can identify a map
of coefficient systems

f W ZfOF .G/.�; G=H/g !M

with an element f 2M.G=H/. In particular, we obtain an augmentation map

"W ZfOF .G/.�; G=H/g ! Z

corresponding to the unit. Similarly, for every element in the Weyl group g 2
NGH=H D O.G/.G=H;G=H/ we obtain a map

gW ZfOF .G/.�; G=H/g ! ZfOF .G/.�; G=H/g:

Lemma B.3 Let Z denote the constant G D C2 �C2–Green functor at the integers
restricted to the family F D fe;Hig. Let g be a generator of the quotient group
Fi DNGHi Š C2 . Then the following sequence of functors is exact:

0! Z! ZfOF .G/.�; Fi /g eCg��! ZfOF .G/.�; Fi /g e�g��! ZfOF .G/.�; Fi /g
"�! Z! 0:

Before proceeding to the proof, we note that we can concatenate these exact sequences
together to obtain a projective resolution of Z. This immediately yields:

Corollary B.4 For the family F D fe;Hig, we have the identification

Ext�ZO.G/F
.Z;M/ŠH�.Fi IM.G=Hi //:

Proof of Lemma B.3 Although this is a special case of Lemma A.3, we include an
alternative, and perhaps more explicit, argument.
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Since kernels and cokernels in ZO.G/F are calculated objectwise, the exactness of
a sequence of natural transformations is equivalent to the exactness of the sequence
of maps obtained by evaluating at G=Hi D Fi and G=e . In both cases we obtain the
beginning of the standard 2–periodic ZŒFi �–resolution of the trivial module Z.

We will now calculate the terms in Corollary B.4 when M is either of the summands Z

or I.�/ of R.�/. From the discussion in Section B.1 we know that H�.Fi IZ/ Š
ZŒyi �=.2yi /. The action of Fi on I.Hi / D Zf1� x�ig is via the conjugation action
on Hi , which is trivial since G is abelian. Regarding H�.Fi I I.Hi // as a module
over H�.Fi ;Z/, we obtain

H�.Fi I I.Hi //Š ZŒyi �=.2yi /˝ .1� x�i /:
Here x�i is the sign representation of Hi , not Fi DG=Hi , so �j restricts to x�i if and
only if j is not i .

Note that the relations .1 � x�i /2 D 2.1 � x�i / and 2yi D 0 force all products of
positive-degree elements in H�.Fi I I.Hi // to vanish.

We will need to understand the behavior of the restriction map induced by the natural
transformation

i W ZŒfeg�! ZŒfe;Hig�
of coefficient systems. Topologically this corresponds to the nontrivial map EGC!
Efe;HigC 'EFiC of pointed G–spaces. Using the preferred models EGD jG�C1j
and EFi D jF �C1i j, we see that this map is induced by the quotient map G! Fi . It
follows that

i�W H�.Fi IZ/!H�.GIZ/
is induced by the quotient G! Fi . Of course,

i�W H�.Fi I I.Hi //!H�.GI I.e//D 0
is the zero map.

B.3 The family C DP

We can now assemble the above results to calculate the E2–term from Proposition B.1.
The sum of the counit maps

3M
iD1

ZŒfe;Hig�! Z
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is evidently surjective and yields the short exact sequence of coefficient systems

(B:5) 0! ZŒfeg�˚ZŒfeg� j�!
3M
iD1

ZŒfe;Hig�! ZD ZŒfe;H1;H2;H3g�! 0:

Here j is the inclusion of the kernel, which is adjoint to the linear map between trivial
ZŒG�–modules given by the matrix

j D
0@ 1 0

�1 1

0 �1

1A :
The short exact sequence in (B.5) induces the long exact sequence in Ext–groups

(B:6) � � � @ �
2M
iD1

H�.C2 �C2IZŒˇ˙�/ j� �
3M
iD1

H�.Fi IR.Hi /Œˇ˙�/

 H�C2�C2.EC I�.�/� KU/ @ � � � � :
Remark B.7 We can find G–spectra whose integral Bredon homology realizes the
short exact sequence of coefficient systems in (B.5). Moreover, we can lift the maps of
a coefficient systems to maps of G–spectra:

(B:8) †1C EG_†1C EG j�!W3
iD1†1CEC .Hi /!†1CEC :

Mapping this sequence into KU and taking the associated Atiyah–Hirzebruch spectral
sequences, one can see that the maps in (B.5) are morphisms between the E2–terms of
these spectral sequences.

Theorem B.9 The E2–term from Proposition B.1 can be explicitly identified as

lim�
O.G/

op
C

.�
.�/� KU/Š ZŒˇ˙�˝ .A˚B/;

where

(B:10) AD Im@D
2M
iD1
zH��1.C2 �C2IZ/=

�
Z=2f.yk1 ; 0/; .yk2 ; yk2 /; .0; yk3 /gk�1

�
and

(B:11) B D ker j � D Z˚
� 3M
iD1

H�.Fi I I.Hi //
�
:

Proof Plugging the calculations of the previous sections into the associated long exact
sequence from (B.2), we obtain an exact sequence

0! A! lim�
O.G/

op
C

R.�/! B! 0:
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In the zeroth cohomological degree all of the terms are in B , so we have to check this
sequence splits in positive degrees. In positive degrees the splitting of the coefficient
system R.�/Š Z˚ I.�/ splits this sequence.

Remark B.12 We will now perform some simple consistency checks. Note that all
of the positive filtration terms in this spectral sequence are 2–torsion, in accordance
with Proposition 3.11. One can independently verify the correctness of the 0–line by
analyzing the representation rings.

Finally we note that if we restrict to any proper subgroup of C2 �C2 , then for some i
and all positive k , yki is sent to zero as are all the terms divisible by the z classes.
The terms I.Hi / restrict to zero on all of the subgroups except Hi , in which case the
higher cohomology groups map to zero. It follows that all of the positive-degree terms
restrict to zero on any proper subgroup, as expected.

B.4 Analysis of the C –homotopy limit spectral sequence.

In this section we will complete this calculation and prove:

Theorem B.13 Let G D C2 �C2 . The C –homotopy limit spectral sequence

E
s;t
2 D lims

O.G/
op
C

.�
.�/
t KU/) �Gt�sKU ŠR.G/Œˇ˙�

collapses at E4 onto the zero line. Moreover, the E2–edge homomorphism

R.G/! lim
O.G/

op
C

R.C/

is injective with cokernel Z=2. A generator of the cokernel supports a nontrivial d3 .

We will break up the analysis of this spectral sequence using the splitting in Theorem B.9.
To analyze the A–summand in (B.10) we will first determine the behavior of the classical
Atiyah–Hirzebruch spectral sequence

(B:14) H s.GIZŒˇ˙�/Š ZŒy1; y2; z�=.2y1; 2y2; 2z; z
2�y21y2�y1y22/Œˇ˙�

) KUs�t .BG/Š �Gt�sF.EGCIKU/:

This spectral sequence arises from a multiplicative filtration on the ring spectrum
R WD F.EGC;KU/, which is compatible with the similarly defined filtration on the
free module

(B:15) †�1R_†�1R'†�1.R�R/'†�1F.EGC _EGC;KU/

' F.†.EGC _EGC/;KU/:
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Figure 2: The E3–page of the Atiyah–Hirzebruch spectral sequence converg-
ing to �Gt�sKU Š KUs�t .BG/ , where G D C2 �C2 .

We can now identify the spectral sequence converging to �Gt�sF.†.EGC_EGC/;KU/
as two shifted copies of the spectral sequence in (B.14). As discussed in Remark B.7,
the spectral sequence converging to �Gt�sF.†.EGC _ EGC/;KU/ maps to the C –
homotopy limit spectral sequence and by Theorem B.9 the image of this morphism
is the A–summand. Through this comparison we can determine the differentials
emanating from the A–summand from the differentials in (B.14).

Now, by [6, Proposition 2.4], the first differential in (B.14) is a d3 given by the
operation Sq3Z . This operation is defined to be the composition

Sq3ZW HZ
�˝Z=2����!HZ=2

Sq2�!†2HZ=2
ˇZ�!†3HZ:

Here ˇZ is the boundary map induced by the short exact sequence of coefficients

0! Z
�2�! Z! Z=2! 0:

Now, the mod-2 reduction of yki is x2ki and an easy inductive argument shows that, for
k odd, Sq2x2ki D x2kC2i and, for k even, Sq2x2ki D 0. Now, by our calculations from
Section B.1, ˇZ is zero on x2`i for ` positive. It follows that d3.yki /D Sq3Zy

k
i D 0.
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�6 �4 �2 0 2 4 6 t � s

0
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V2

V5ˇ

Figure 3: The E3–page of the C –homotopy limit spectral sequence converg-
ing to �Gt�sKU, where G D C2 � C2 . The A–terms from (B.10) and the
differentials emanating from them are tinted blue. The B –terms from (B.11)
and the differentials emanating from them are tinted red.

Similarly,

Sq3Zz D ˇZSq2.x21x2C x1x22/D ˇZ.x
4
1x2C x1x42/D y21y2Cy1y22 D z2;

so d3.z/ D z2 . Using the Leibniz rule, one generates all other differentials in this
spectral sequence. The E4–page is concentrated in even degrees, so the spectral
sequence of Figure 2 collapses at this stage.

Proof of Theorem B.13 Since the homotopy groups �.�/� KU are concentrated in
even degrees, the first possible differential in the C –homotopy limit spectral sequence
is a d3 . We will first calculate this differential on the A–summand from (B.10):

(B:16) @W ZŒˇ˙�˝AD
2M
iD1
zH��1.C2 �C2IZŒˇ˙�/!H�C2�C2.EC I�.�/� KU/:

Having determined the behavior of the spectral sequence in (B.14) we can now determine
the differentials emanating from the A–summand. We see that d3.z; 0/D .z2; 0/ and
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d3.0; z/D .0; z2/ and that these generate all d3 differentials emanating from the A–
term (see Figure 3). Moreover, all of the remaining classes from A are permanent cycles
from E4–onward, since they come from permanent cycles in the Atiyah–Hirzebruch
spectral sequence converging to KU �G.†.EGC _ EGC//.

Since the B –summand (B.11) is concentrated in even degrees, any possible d3 em-
anating from it must land in the A–summand. Let us now calculate the differen-
tials coming out of the zero line. An elementary analysis of the restriction maps
R.C2 �C2/!R.Hi / shows that the degree 0 part of the E2–edge homomorphism

R.C2 �C2/! lim
O.G/

op
C

R.�/Š Z˚
3M
iD1

Zf1� x�ig

sends the unit summand isomorphically to itself, while sending .1��i / to
P
j¤i .1�x�j /.

It follows that the restriction map is injective with cokernel Z=2 generated by �. We
can choose 1�x�i as a generator of � for any i . Since the spectral sequence converges
we know that all terms in positive filtration must die and that � must support a
differential, ie di .�/¤ 0 for some i � 3.

We will now show that d3.�/¤ 0. Examining the E2–term from Theorem B.9, we
see that

d3.�/ 2H 3
G.EC I�.�/2 KU/Š Z=2;

which is generated by

M D .y2; 0/ˇ � .y3; y3/ˇ � .0; y1/ˇ:
Now M 2 A is a permanent cycle. Since the positive filtration terms cannot survive
the spectral sequence, M must be hit by a differential emanating from the zero line. It
follows that

d3.�/D d3.1� x�i /DM
for each i .

The remaining terms in E0;�4 are the free abelian groups generated by

1; .1� x�1/C .1� x�3/; .1� x�2/C .1� x�3/ and 2.1� x�3/:
These are in the image of the restriction map and hence survive to the E1–page.

For the remaining terms we examine the Poincaré series for H�G.EC IR.�// (see
Figure 3 and Table 5). We can argue inductively on the filtration degree to see that
all of the A–terms which do not support a differential must be the target of a d3 and
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Term Mod-.2; ˇ�1/ Poincaré series

A t
�
2.1Ct3/
.1�t2/2 �

3t2

1�t2 � 2
�

B 1C 3

1�t2
d3� 1C t3

d3.z; 0/y
�
1y
�
2 t

�
t3.1Ct3/
.1�t2/2

�
d3.0; z/y

�
1y
�
2 t

�
t3.1Ct3/
.1�t2/2

�
d3..1� x�i /yi /y�i

t2.1Ct3/
1�t2

Table 5: Poincaré series calculations. The Poincaré series of a differential is
defined to be the series for the dimension of the image plus the dimension of
the vector space mapping injectively to the image.

that d3 is injective on the positive-degree terms in B . For example, one can see that
the 3–dimensional vector space V5ˇ in filtration degree 5 must be in the image of a
differential. Since the only possible differential out of the zero line is the d3 we just
calculated, we see that V5ˇ must be the image of a d3 coming from the 3–dimensional
vector space

V2 D F2f.1� x�i /yig1�i�3
in filtration degree 2. This pattern continues with d3–differentials yielding isomor-
phisms between the remaining pairs of 3–dimensional vector spaces.

It follows that the C –homotopy limit spectral sequence collapses at E4 onto the zero
line.
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