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Strand algebras and contact categories

DANIEL V MATHEWS

We demonstrate an isomorphism between the homology of the strand algebra of
bordered Floer homology, and the category algebra of the contact category introduced
by Honda. This isomorphism provides a direct correspondence between various
notions of Floer homology and arc diagrams, on the one hand, and contact geometry
and topology on the other. In particular, arc diagrams correspond to quadrangulated
surfaces, idempotents correspond to certain basic dividing sets, strand diagrams
correspond to contact structures, and multiplication of strand diagrams corresponds
to stacking of contact structures. The contact structures considered are cubulated, and
the cubes are shown to behave equivalently to local fragments of strand diagrams.
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1 Introduction

In this paper we prove an isomorphism providing a new link between 3—dimensional
contact topology and Heegaard Floer theory. These two subjects are well known to be
closely related: for instance, contact structures on 3—manifolds yield elements of Hee-
gaard Floer homology (Honda—Kazez—Mati¢ [17; 18] and Ozsvath—Szabé [33]), which
behave rather nicely (eg Honda—Kazez—Mati¢ [16]), and there is much other evidence of
deep connections (eg Cooper [7], Etnyre—Vela-Vick—Zarev [10] and Honda-Tian [19]).
More specifically, Zarev [38] showed that, in the context of bordered sutured Heegaard
Floer theory, the homology of the strand algebra has a description in terms of sutured
Floer homology of a thickened surface X x [0, 1]. We will show that the homology
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of this strand algebra can be interpreted directly in terms of contact structures on a
thickened surface X x [0, 1].

Theorem 1.1 Let Z be an arc diagram corresponding to a quadrangulated surface
(X, Q). Then there is an isomorphism of unital F,—algebras,

CA(Z, Q) = H(A(2)),

where CA(Z, Q) is the contact category algebra of (X, Q), A(Z) is the strand algebra
of Z, and H(A(Z)) is its homology.

We will define all these notions fully as we proceed, but attempt to give a rough idea
here first. The proof is direct and explicit, encapsulated in a local correspondence,
depicted in Figure 9, between fragments of strand diagrams, and dividing sets drawn
on cubes. It comes as part of a larger set of correspondences, summarised in Table 1,
translating between various notions of contact geometry, on the one hand, and notions
of strand algebras, on the other. The contact structures we consider are cubulated, and
this work suggests more generally that an approach to 3—dimensional contact topology
based on cubulation may be useful. (This notion of cubulation is far simpler than the
one which has been so fruitful in recent years in 3—manifold topology, eg in Agol [1],
Bergeron—Wise [3], Calegari [4] and Wise [36].)

An arc diagram Z consists of finitely many intervals, with certain points matched in
pairs. A quadrangulated surface (2, Q), roughly, consists of a compact surface X cut
into squares Q by properly embedded arcs with endpoints at prescribed vertices. We
will show that these are equivalent structures, so that for each Z there is a correspond-
ing (X, Q) and vice versa.

The contact-topology side of the isomorphism involves the contact category introduced
by Honda [13], which has been studied by the author [26] and a formal version of which
has been studied by Cooper [7]. A contact category C(X, F) is defined for any marked
surface (X, F) consisting of a compact oriented surface X with signed points on its
boundary. Roughly, objects of C(X, F') are dividing sets I on X, which describe
contact structures in a small product neighbourhood of ¥, and morphisms are contact
structures on X X [0, 1] which near £ x {0} and X x {1} are prescribed by source and
target objects I'g and I'; . Composition of morphisms stacks these contact structures
on top of each other. In [29] we discussed quadrangulations of marked surfaces, and
in [30] we showed such quadrangulations are equivalent to a graph-theoretic structure
which we called a tape graph. A quadrangulation naturally yields basic dividing sets,
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Strand algebras and contact categories 639

which take a standard form on each square of the quadrangulation. (Related notions
appear in work of Zarev [38] and Honda—Tian [19].) The dividing sets basic with
respect to a quadrangulation Q yield a subcategory C(X, Q) of C(X, F), and the
contact category algebra CA(X, Q) appearing in Theorem 1.1 is essentially its [Fp
category algebra.

On the Heegaard Floer side of the isomorphism, we have the differential graded
algebra A(Z) defined by Zarev [37] in developing the theory of bordered sutured Floer
homology. This theory is a generalisation of both the bordered Floer homology of
Lipshitz—Ozsvath-Thurston [24] and the sutured Floer homology of Juhdsz [20], which
in turn are generalisations of Heegaard Floer homology (Ozsvath—Szabé [31; 32; 34])
to 3—manifolds with boundary. A bordered sutured 3—manifold, roughly speaking, is a
3—manifold with boundary where some of the boundary is sutured. In bordered sutured
Floer theory, the boundary surface is described by an arc diagram Z, which can be
regarded as the boundary data of a 3—-manifold Heegaard decomposition. The strand
algebra A(Z) associated to Z generalises the algebra associated to a pointed matched
circle in bordered Floer homology [24], and is generated by certain strand diagrams
related to the arc diagram Z. Roughly, multiplication is defined by concatenating such
diagrams, and the differential resolves intersections in such diagrams.

In proving Theorem 1.1, we will show that there is a natural correspondence between no-
tions arising on both sides. We will show that idempotents of A(Z) correspond to basic
dividing sets on (X, ), which are also the elementary dividing sets of [38, Section 6.1].
We will show that matched-pair fragments of Z correspond to the squares of @, or
the cubes of the corresponding cubulation of ¥ x [0, 1]. We will show that strand
diagrams representing elements of H(.A(Z)) correspond to cubulated contact structures
on X x [0, 1], and that all contact structures in CA(X, Q) are of this form. And we
will show that concatenation of strand diagrams corresponds to stacking the contact
cubes of cubulated contact structures.

As discussed in [24], strand diagrams are designed to encode Reeb chords arising as
asymptotics of holomorphic curves near the boundary of a 3—-manifold in bordered
Floer homology. The multiplication and differential in the strand algebra are designed
so as to describe the behaviour of rigid holomorphic curves in a cylinder between Reeb
chords. It is perhaps surprising that the homology of this algebra should so precisely
encode something ostensibly quite different, such as contact structures. Recently,
Honda and Tian in [19] have found embeddings of contact categories of discs into a
homotopy category of bounded cochain complexes of finitely projective left modules
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over a ring isomorphic to the homology of a strand algebra, which indicates these
connections run deeper still.

Several results exist in the literature on the homology of the strand algebra. In [23],
Lipshitz, Ozsvéth and Thurston gave an explicit description of this homology, in the
case of a pointed matched circle. We rely upon a generalisation of this description in
proving Theorem 1.1. In [38], Zarev showed that H(A(Z)) is isomorphic to the direct
sum of the sutured Floer homology of ¥ x [0, 1], with various sets of sutures, ranging
over basic dividing sets on X x {0} and X x {1}. We write M (I, '1) to denote
3 x [0, 1] with sutures ['g and I'; drawn on X x {0} and X x {1} respectively (full
details are given in Definition 2.6). Combining Zarev’s isomorphism with Theorem 1.1,
we obtain the following.

Corollary 1.2 Let (2, Q) be a quadrangulated surface. Then there is an isomorphism
of unital F,—algebras

CA(Z.Q)= (P SFH(=M(To.I')).
I'o,I'1 basic
where the sum is taken over all pairs (I'g, I'1) of dividing sets basic with respect to Q .
In particular, SFH(—M (I'o, I'1)) has dimension equal to the number of isotopy classes
of tight contact structures on M(I'g, T'1).

As discussed by Zarev in [38], the multiplication on the right-hand side of the isomor-
phism is given by gluing maps on SFH. Moreover, Zarev asserts that the gluing map
agrees with contact cobordism maps of Honda—Kazez—Mati¢ [16], although the proof
has not yet appeared. So we expect the isomorphism of Corollary 1.2 in fact sends each
contact structure in CA(X, Q) to the corresponding contact invariant (in the sense of
Honda-Kazez—Mati¢ [17]) in SFH.

This paper is structured as follows. In Section 2 we develop the necessary contact
geometry, starting from background on convex surfaces and ending at a description of
the contact category algebra. In Section 3 we develop the strand algebra and describe
its homology, relying on work of Lipshitz—Ozsvath—Thurston and Zarev. In Section 4
we prove Theorem 1.1, describing the correspondence between the strand algebra and
the contact category. Finally in Section 5 we consider sutured Floer homology and
prove Corollary 1.2.

Acknowledgements 1 would like to thank Rumen Zarev for introducing me to this
topic. The author is supported by Australian Research Council grant DP160103085.
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2 Contact categories and quadrangulated surfaces

We begin by discussing the contact geometry on one side of the isomorphism of
Theorem 1.1.

2.1 Convex surfaces and dividing sets

Definition 2.1 A marked surface is a pair (X, F') consisting of an orientable compact
surface X, together with a finite set F C 90X of signed points, such that

(i) every component of ¥ has nonempty boundary,
(ii) every boundary component of ¥ contains points of F, and

(iii) around each boundary component of X, the points of F alternate in sign.

The boundary 90X is cut by F into arcs; we can orient these arcs positively and
negatively, in alternating fashion. Following [29], the positive arcs C4 and negative
arcs C_ are oriented so that C4 C +0X and dC4+ = —F as oriented manifolds.

A word on terminology: in [37] Zarev called such a (X, F) a “sutured surface”; in [29]
we called (X, F) a “sutured background”, and called a “sutured surface” such a surface
with further curves drawn on X. To avoid confusion, here we avoid “sutured surface”
and use “marked surface”.

Definition 2.2 A dividing set on a marked surface (X, F') is an oriented 1-manifold I’
properly embedded in ¥ such that dI' = F as oriented O—manifolds and such that I’
cuts ¥ into alternating positive and negative components, ¥\ I' = Ry Ul R_, where
R4 are oriented as £3, and )R+ = C4y UT and 0R—- =C_UT.

Thus I' cuts ¥ coherently into positive and negative components. We regard dividing
sets as equivalent if they are isotopic through dividing sets, and in practice we elide the
distinction between dividing sets and their equivalence classes.

A dividing set " on (X, F) determines a contact structure £ on X x [0, 1]. Letting X
denote the unit vector in the [0, 1] direction, this £r is invariant in the X direction,
and 0% x {-} is Legendrian. Here T’ is the set of points of each ¥ x {-} where X € &r.
Proceeding along a Legendrian boundary component C of X, the contact planes of &ép
rotate by m for each successive point of C N T, so that é&r makes —%|C N | full
twists along C, relative to S.

More generally, a convex surface ¥ in a contact 3—manifold (M, £) is an embedded
surface with a transverse contact vector field X. When ¥ has boundary, we require it
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to be Legendrian and for £ to have negative twisting along each boundary component
with respect to 3. A convex surface ¥ has a dividing set, which is the locus of points
where X € £. Every embedded surface in (M, §) is C°°—close to a convex surface.
The dividing set determines the germ of the contact structure near X, in an appropriate
sense. See [12] for details.

For us a sutured 3—manifold is a 3—manifold M with a dividing set I" drawn on its
boundarys; it can be regarded as a sutured 3—manifold in the sense of [11]. We regard I"
as a prescribed contact structure near dM. A contact structure on (M, I") is a contact
structure on M with this boundary condition.

A dividing set I on X is tight if the contact structure it determines near X is tight.
If ¥ is a sphere, I' is tight if and only if T" is connected; otherwise, I' is tight if and
only if it contains no contractible closed curves [14].

The quantity %|F | — x(X) turns out to be a useful measure of the complexity of a
marked surface (X, F); we call it the index of (X, F), denoted by I(X, F). The
index is additive on connected components, and /(X, F) > 0. A connected (X, F)
has 1(X, F) =0 if and only if it is a disc with two marked points or a bigon, and has
I(X2, F) =1 if and only if it is a square, ie a disc with four marked points.

If ¥ is convex in (M, §) with dividing set T, then the Euler class e(§) evaluates on
[X] € Hy(M) as y(R4+)— x(R-). The same applies when X has boundary and e(§)
is a relative Euler class. We therefore define the Euler class of a dividing set I to be
e(I') = y(R+) — x(R-) € Z. One can show that e¢(I") = I(X, F) mod 2. Moreover,
if T is tight then |e(T")| < I(X, F). This is essentially the Thurston—Bennequin
inequality; see eg [2; 9] and [29; 25] for an account in the present context.

A properly embedded curve in a convex surface X is Legendrian realisable if, by a
small isotopy of ¥ in an invariant neighbourhood, it can be made Legendrian [14]. The
Legendrian realisation principle says that a properly embedded curve ¢ is Legendrian
realisable if and only if it is transverse to I" and nonisolating in the sense that every
component of X\ (I" U ¢) has boundary intersecting I

2.2 Quadrangulations

A set of vertices V = V4 U V_ on a marked surface (X, F) consists of signed points
on 0%, with one vertex of Vi in each boundary arc C4 [29; 30]. Vertices are
uniquely determined up to isotopy in dX \ F. As we proceed around an oriented
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Figure 1: Neighbourhood of a dividing curve in a marked surface (X, F, V)

boundary component of ¥, we pass vertices and marked points in the cyclic order
Vi, F—, V_, F4+, .... Thus each arc of a dividing set on (X, F') runs from F_ to F,
V4 C R4 and V_ C R_. See Figure 1. Indeed, with X given, V' determines F, and
F determines V, up to an appropriate sense of isotopy. So we may regard the structures
(X,F), (2,V) and (X, F, V) as equivalent to each other, and interchangeable; we
refer to any and all of them as marked surfaces.

There is a natural type of arc along which to cut a marked surface (X, F, '), compatible
with decomposition of dividing sets [29].

Definition 2.3 A decomposing arc on a marked surface (X, V) is a properly embedded
arc in ¥ with one endpoint in V4 and one endpoint in V_.

Cutting (X, V') along a decomposing arc yields a surface X’; the vertices V naturally
provide a set of vertices V' on X/, so we have a marked surface (X’, V’). The decom-
posing arc is frivial if it cuts a bigon off (X, V): in this case it connects two adjacent
vertices by a boundary-parallel arc. Any connected marked surface (X, V') other than
a bigon or square has a nontrivial decomposing arc and thus we can successively
decompose along nontrivial arcs until we arrive at a collection of squares; hence the
following definition.

Definition 2.4 A quadrangulation Q of a marked surface (X, V') is a set of decom-
posing arcs which cut (X, V') into a set of squares.

See Figure 2 for an example. We denote a quadrangulated surface by (X, Q) or
(X, F, Q). In practice we may refer to a quadrangulation Q either by the set of
decomposing arcs, or by the complementary squares on . We regard quadrangulations
as equivalent if their decomposing arcs are isotopic and, as with dividing sets, elide the
distinction between them and their equivalence classes.
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+ - f~
G2

Figure 2: Two equivalent views of a quadrangulation of a punctured torus
with two vertices

The number of arcs and squares in a quadrangulation of (X, V) is determined by the
topology of X, and |V|: the number of arcs is %|V| —2x(X), and the number of
squares is the index /(X, V') [29, Proposition 4.2].

On a square there are precisely two tight dividing sets, which we call standard; see
Figure 3. One, which we call standard positive, has Euler class 1, while the other,
which we call standard negative, has Euler class —1.

A dividing set I' on a quadrangulated surface can always be made transverse to
the decomposing arcs of the quadrangulation; moreover each decomposing arc a
intersects I' an odd number of times. The situation is nicest when |[a N T'| = 1, for
then I' also yields a dividing set on the marked surface obtained by cutting along a,
without having to add any extra vertices.

Definition 2.5 Let (X, F, Q) be a quadrangulated surface. A dividing set on (X, F)
which restricts to a standard dividing set on each square of Q is called basic with
respect to Q.

When the quadrangulation is understood we will simply refer to I' as basic. (Their
contact invariants form a basis for SFH(XZ x S L'FxS 1); see [29; 30].) Thus there

- -
(] B

+ - + -

negative (e = —1) positive (e = 1)

Figure 3: Standard dividing sets on the square
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are 2/(2-F) pasic dividing sets on any quadrangulation of (X, F). The Euler class of
a basic I is given by the number of positive squares minus the number of negative
squares. Basic dividing sets are tight; indeed, they are nonconfining, meaning that
every component of ¥ \ I intersects dX. Indeed, any nonconfining dividing set on
a marked surface (X, F)) without bigon components is basic with respect to some
quadrangulation. See [29] for details.

In [30] we defined the notion of tape graph and discussed its relation to quadrangulations.
A tape graph is a finite graph with a total ordering of the half-edges incident to each
vertex. (A ribbon graph, by comparison, has a cyclic ordering at each vertex.) Like
a ribbon graph, a tape graph can naturally be thickened into an oriented surface with
boundary.

Given a quadrangulated surface (X, Q), draw the diagonal in each square connecting
the positive vertices. These vertices and diagonals form an embedded graph in ¥ called
the positive spine GJQr of the quadrangulation Q. The positive spine naturally has the
structure of a tape graph, since at each vertex the incident half-edges (of diagonals) are
ordered clockwise by the orientation on X. Indeed, ¥ is the thickening of G5, and X
deformation retracts onto GJQr [30, Lemma 4.2]. As we will see in Section 3.1, tape
graphs are closely related to arc diagrams.

2.3 Corners and rounding

It will be crucial in our constructions to smooth and sharpen a surface along a curve [14].
Let ¢ be a properly embedded Legendrian curve in a convex surface ¥ with dividing
set I'. Then by an isotopy of 3 we may “sharpen” ¥ along ¢ into a Legendrian corner.
The resulting surface is no longer smooth, but can be regarded (near c) as two smooth
convex surfaces meeting along a common Legendrian boundary c.

Conversely, if X is a convex surface with a 1-dimensional corner along a simple closed
Legendrian curve, then an isotopy makes ¥ into a smooth convex surface with ¢ an
embedded Legendrian curve. The effect of such a smoothing or sharpening isotopy on
the dividing set is shown in Figure 4. Thus, dividing sets inferleave along a corner.

We can therefore broaden our definitions of convex surface and dividing set to include
those obtained by sharpening along embedded Legendrian simple closed curves. We
can sharpen and round corners at will, with a well-defined effect on the dividing set.
We also broaden our definition of a sutured 3-manifold to include such corners. Euler
classes can still be evaluated, after rounding corners.
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Figure 4: Smoothing a corner, or conversely, sharpening along a Legendrian curve

Since a dividing set determines the germ of the contact structure near a surface, if we
have two convex surfaces S1, S» C M in the boundary of a contact 3—manifold (M, &)
whose dividing sets can be glued, then the contact structures can also be glued. If
S1 and S, have corners along their Legendrian boundaries, then they can be glued so
that the dividing sets connect smoothly across the corners, yielding a smooth dividing
set on the glued manifold.

2.4 Contact categories

We will be concerned with contact structures on product manifolds of the form
3 x [0, 1]. In the case where X is a disc, the contact geometry of such manifolds (and
some surprisingly deep related algebraic and combinatorial structures) was studied in
[26; 27; 28; 25].

For such a manifold, we will always describe its boundary as consisting of three parts:
the rop X x {1}, the bottom X x {0}, and the side 0% x [0, 1]. The [0, 1] direction is
called vertical: increasing and decreasing [0, 1] directions are up and down. We orient
3 x [0, 1] so that the induced boundary orientation agrees with X along ¥ x {1}, and
disagrees along X x {0}. There are corners along 0¥ x {0, 1}. We consider contact
structures on X x [0, 1] with prescribed dividing sets on the top and bottom, and a
vertical dividing set {-} x [0, 1] on the side. Because of the corners, it is natural to use
a marked surface (X, F, V'), with top and bottom dividing sets having boundary F,
and side dividing set having boundary V. This leads to the following definition.

Definition 2.6 Let [y and I'y be two dividing sets on the marked surface (X, F, V).
The sutured 3—-manifold M (T°y, I'y) is

M(To.T1) = (2 x[0,1]. (=Tp) x {0} UV x[0,1]UT; x {1}).
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Here V x |0, 1] is oriented: V4 x [0, 1] is oriented upwards, and V_ x [0, 1] downwards.
On X x {0}, the signs of R4 and R_ are interchanged by the orientation reversal. The
Euler class of the dividing set on M (I'g, I'1) is e(I'1) —e(I'g), so contact structures
exist on M(Ig, I'7) if and only if e(I'g) = e(I'y).

Such contact structures can be stacked as follows. Let I'g, I'; and I', be dividing sets
on (X, F), let &y be a contact structure on M(I'p, I'1), and let &; be a contact structure
on M(I'1,I';). Since the top dividing set of &y agrees with the bottom dividing set
of &1, we may glue these two faces together and obtain a contact structure on X x [0, 2],
which of course is homeomorphic to X x [0, 1]. Thus we obtain a contact structure
on M(T'g, I'2), which we say is obtained by stacking & on &.

The notion of a contact category was introduced by Honda [13] and has been discussed
in several papers [7; 19; 26; 28; 25]. We gave a rough idea of a contact category
in the introduction; we now make it precise. The only subtleties are that we keep
Euler classes separate (since the existence of a contact structure on M (I'g, I'1) implies
that e(I'g) = e(I'1)); and overtwisted contact structures, regarded as trivial (their
classification reduces to homotopy theory of plane fields [8]), are collapsed into “zero”
objects and morphisms. We refer to zero and overtwisted objects interchangeably;
similarly to zero and overtwisted morphisms.

Definition 2.7 Let (X, F) be a marked surface, and let e be an integer such that
e=1(X,F)mod?2 and |e| < I(Z, F). The contact category of (X, F) with Euler
class e, denoted by C.(X, F), consists of the following:

(i) The objects are equivalence classes of tight dividing sets I" on (X, F') such that
e(I") = e, together with a zero object *,.
(i) The morphisms are as follows:
(@) If T'op and I'; are tight objects, then the morphisms I'g — I'; are the
isotopy classes of tight contact structures on M(I'g, ['1), together with a
zero morphism O, T, .
(b) If X and Y are two objects, at least one of which is *., then there is a
single morphism from X to Y, the zero morphism Ox y: X — Y.

(iii) The identity morphisms are as follows:

(a) If T is a tight object, the identity 1r: I' — I' is the isotopy class of the
contact structure £&r on M(I", ') invariant in the [0, 1] direction.

(b) The identity 14 *¢ —> *¢ 1S Ox, x, .
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(iv) The composition of morphisms is as follows:
(a) The composition of two tight morphisms I'g o, I'y LN I'; is the isotopy
class of the contact structure on M(I"g, I'5) given by stacking & and &;, if

this contact structure is tight; otherwise it is O, r, -

(b) The composition of two morphisms X Sy &7 , where at least one of

J and g is a zero morphism, is Oy, z .

Definition 2.8 The contact category of a marked surface (X, F), denoted by C(X, F),
is the disjoint union of the C.(X, F).

Nonzero objects or morphisms are also referred to as tight. Following the standard
abuse, we obscure the distinction between contact structures and their equivalence
classes; hopefully no confusion will result.

Thus, the objects and morphisms are dividing sets and contact structures, but everything
overtwisted becomes zero. Indeed C(XZ, F') is the “quotient”, in an appropriate sense,
of an “unreduced” contact category containing all contact structures, by an overtwisted
subcategory; see [25].

Given a quadrangulation Q of (X, F, V), the basic dividing sets, being tight, form a
subset of the tight objects of C(X, F); we call them basic objects with respect to Q.

Definition 2.9 Let (X, F, Q) be a quadrangulated marked surface.

If e is an integer such that e = (X, F) mod 2 and |e| < I(X, F), the (basic) contact
category of (X, Q) of Euler class e, denoted by Co(X, Q), is the full subcategory
of C.(X, F) on the basic objects with respect to Q.

The (basic) contact category of (X, Q), denoted by C(X, Q), is the union of the
Ce(Z, Q).

Given a category C and a base ring R (commutative with 1), we may form an R-
algebra RC, called the category algebra, as follows. As an R—module, RC is free
with basis given by the morphisms of C. The product of two basis elements f and g
(morphisms) is then defined to be their composition in C, if it is well defined (ie f and g
are composable); otherwise the product is defined to be zero. Extending by linearity
we obtain an associative R—algebra.

For each object X of C, the identity morphism 1x is an idempotent in RC. For distinct
objects X and Y, we have 1xyly = 1y lxy = 0, so these idempotents are orthogonal.

Geometry & Topology, Volume 23 (2019)



Strand algebras and contact categories 649

If C has finitely many objects, then the sum of all identity morphisms is a multiplicative
identity element of RC. For two objects X and Y, the R—submodule 1y RC 1y has basis
the morphisms X — Y, and we have the decomposition RC = Py ycop(c) Ix RC1y -
If C =||,Ce is a disjoint union of subcategories then we obtain RC = @, RC,.
See [35] for details.

If C has some morphisms designated zero morphisms such that any composition of
morphisms involving a zero morphism is also a zero morphism, then the R—submodule
of RC generated by zero morphisms is a two-sided ideal, so we can take a quotient
of RC by this ideal. The zero morphisms in fact become 0 in the quotient algebra.

We will be interested in the case when R = [F,, the field with two elements, and
C isequal to C(X, Q) or Ce(X, Q). On the quadrangulated surface (X, Q) there are
only finitely many (indeed precisely 27 (Z.F)) basic dividing sets, hence C(X, Q) has
finitely many objects. And for any basic I'g and I'y, there are only finitely many isotopy
classes of tight contact structures on M (I'g, ['1): this follows from the decomposition
into cubes which we will discuss as we proceed, or see [5; 6] for general finiteness
results. In any case, C(X, Q) contains finitely many morphisms, so FoC(X, Q) is
finitely generated over F» and has a multiplicative identity. The overtwisted/zero
morphisms have the property that any composition involving a zero morphism is also
zero, so we make the following definition.

Definition 2.10 Let (X, F, Q) be a quadrangulated marked surface and e an integer
such that e = I(X, F) mod 2 and |e| < I(Z, F).

(1) The contact category algebra of (X, Q) of Euler class e, denoted by CA. (%, Q),
is the quotient of F»C. (X, Q) by the ideal generated by overtwisted morphisms.

(ii) The contact category algebra of (X, Q), denoted by CA(X, Q), is the quotient
of F,C(X, Q) by the ideal generated by overtwisted morphisms.

Alternatively, CA(X, Q) can be defined as the direct sum of the [Fp—algebras CA. (X, Q).

The contact category algebra CA(X, Q) is the algebra appearing in Theorem 1.1.

2.5 From quadrangulations to cubulations

Let (X, Q) be a quadrangulated surface, with decomposing arcs Aj,...,A; and
squares Q1,..., Q. Then X x [0, 1] is a union of cubes Q; x [0,1]. Each cube
Qi x [0, 1] has top and bottom boundary a square, and side boundary consisting of four
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Figure 5: A standard rounded cube (left). Top and bottom faces are
sharpened (centre). The right side face is sharpened (right).

square faces. Some of the side faces of cubes are part of the boundary of X x [0, 1];
others (namely the A; x [0, 1]) are glued in pairs. We refer to this decomposition into
cubes as the cubulation of ¥ x [0, 1] corresponding to the quadrangulation Q, and
denote it by Q x [0, 1]; we denote the cubulated 3—manifold by (X x [0, 1], Q x [0, 1])
or (X, Q) x[0,1]. Just as we can refer to the quadrangulation Q by its arcs A; or
squares Q;, we can refer to the corresponding cubulation Q x [0, 1] by its glued
faces A; x [0, 1] or cubes Q; x [0, 1]. Obviously there are many ways to glue cubes
together to obtain a 3—manifold, but for present purposes a cubulation refers only
toa (X, Q) x [0, 1] for some quadrangulation Q of X. For us, cubulations are just
thickened quadrangulations.

We will think of our cubes as having convex boundary, but we will need to round and
sharpen various corners. By default, when we refer to a cube, we actually mean a
rounded cube. If we Legendrian realise and then make a corner along the boundary
of one of the six faces, we say the cube has that face sharpened. We can sharpen any
single face, and we can simultaneously sharpen two opposite faces, such as the top and
bottom faces, but we will not sharpen any adjacent faces simultaneously.

A rounded cube is of course smooth and so it makes sense to speak of a smooth dividing
set on its boundary. On each square face then we may draw the curves of a standard
dividing set; joining these curves up across the rounded edges, we obtain a dividing
set on the rounded cube. We call a cube with such a dividing set a standard cube, or
a cube with a standard dividing set. If some faces of such a cube are sharpened, we
still refer to the cube as standard. Note that adjacent vertices (or what remains of them
after rounding) have opposite signs with respect to the dividing set.

When we sharpen a face of a standard cube, we always do so in such a way that the
top and bottom dividing sets appear standard. The effect is shown in Figure 5.
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A rounded standard cube has a dividing set on its boundary sphere, which may or
may not be connected, or equivalently, tight; we will investigate which standard cubes
are tight in Section 2.6. Figure 8 shows some possibilities. Since it is topologically
a 3-ball, a standard cube with tight dividing set has a unique isotopy class of tight
contact structure [9].

Definition 2.11 Let (X, Q) be a quadrangulated surface, so that (X, Q) x [0, 1] is a
cubulated 3—manifold. A cubulated contact structure on (X, Q) x [0, 1] is a contact
structure such that each cube Q; x [0, 1] has a standard dividing set.

Since the top face of a cube in a cubulated contact structure is a square with a standard
dividing set, the dividing set on X x {1} is basic with respect to Q; and since the
bottom faces are also standard squares, the dividing set on X x {0} is also basic with
respect to Q.

There is a technical issue with this definition, which should be mentioned. Each
Qi %0, 1] is a bona fide cube with twelve corner edges and eight corner vertices, but in
our scheme of rounding and sharpening faces of cubes we only allow sharpening along
simple closed curves. However, we can successively round corners as we decompose
3 x [0, 1], so that in the end every cube is rounded, and we can make sense of a
dividing set being standard. Precisely, we begin by rounding the corners d% x {0, 1}
of ¥ x [0, 1]. Then we can cut along a rounded Q; x [0, 1] and obtain a manifold with
two corners along the smooth curves given by the rounded boundary of Q; x [0, 1]. We
round these corners, and cut again. By rounding corners at each stage, we eventually
obtain rounded cubes. This process is illustrated in Figure 7.

As it turns out, all tight contact structures with basic dividing sets are cubulated.

Lemma 2.12 Let (X, Q) be a quadrangulated surface, let Ty and T'y be basic divid-
ing sets, and let £ be a tight contact structure on M(I'g, I'1). Then & is isotopic to
a cubulated contact structure on (X, Q) x [0, 1] where every cube has a tight contact
structure.

Proof As I'p and I'j are tight, each cube of Q x [0, 1] has a standard dividing set on
its top and bottom faces. Rounding the corners 9% x {0, 1} of M(I'g, I'1), the vertical
dividing set on the side boundary of M (T"g, I'1) naturally provides each unglued side
face with a standard dividing set, as illustrated in Figure 6.
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Figure 6: Rounding corners, the vertical dividing set on the side boundary
of M(T'p,I'1) becomes a standard unused dividing set on each side face.

Consider a decomposing arc A; so A x I is a glued face of the cubulation. After
rounding corners, d(A x I) intersects the dividing set on dM (I'g, I'1) in four points,
so can be Legendrian realised. Then A x I (suitably rounded), after a small isotopy,
can be made convex. The dividing set on (rounded) A x I has four endpoints and, as &
is tight, must consist of two arcs. After cutting along this surface and rounding edges,
as in Figure 7, we have standard dividing sets on the resulting side faces.

Proceeding in this way, we cut M(I'p, I'1) along rounded surfaces, close to A x 1, into
a collection of standard cubes. As £ is tight, each standard cube has a tight contact
structure. |

A priori, a cubulated contact structure might be overtwisted, even though all cubes
have tight contact structures. However, as we will see next, the tightness of each cube
implies the tightness of the entire contact structure.

We have seen how a cubulated (2, Q) x [0, 1] can be cut into standard cubes, as
illustrated in Figure 7, read from bottom to top. If we read it from top to bottom,
reversing the process, we have a recipe for gluing faces of standard cubes.

To glue two rounded standard cubes along a pair of faces, we sharpen those faces,
and then glue them together, identifying dividing sets, so as to obtain a manifold with
smooth boundary.

As illustrated at the top of Figure 7, two faces of rounded standard cubes can be glued
together if and only if the dividing sets on those faces appear to disagree! Effectively
they differ by a 90° rotation, but in the sharpening process the dividing sets are each
shifted 45°, so disagreement of dividing sets on a rounded cube implies agreement
once those faces are sharpened. If we are looking at rounded standard cubes, we say
two sides can be validly identified if their dividing sets precisely disagree in this way;
sharpening the faces and gluing, we call a valid identification of faces.
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Figure 7: Gluing side faces of cubes: rounded faces (top) are sharpened (middle)
and then identified (bottom). The face may be unused (left) or used (right).
Cutting reverses the process (bottom to top).

Given a collection of standard cubes, we may successively glue together their side
faces in pairs by valid identifications. We may thus obtain a cubulated 3—-manifold
(X, Q) x [0, 1]. If each standard cube has a contact structure, we obtain a cubulated
contact structure on (X, Q) x [0, 1] where the top and bottom dividing sets are basic
with respect to Q.

It turns out that if each cube is tight, then the result is tight, as we prove now.

Lemma 2.13 Let (X, Q) be a quadrangulated surface, and let £ be a cubulated
contact structure on (X, Q) x [0, 1], where each cube has a tight contact structure. Then
& is tight.

Proof Letting the dividing sets on X x {0, 1} be Ty and I'y, we see & is a contact
structure on M(I'g, I'1). As discussed above, we can cut M(Ip, I'1) into a collection
of standard tight cubes. We show that we can glue the cubes back together so that
the contact structure remains tight, by applying Honda’s theorem on gluing contact
structures [15]. The idea is that the glued faces are “too small” for any bypasses to
pass through them.
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Let us briefly recall Honda’s theorem (full details are in [15]; we also give a fuller
summary in [21]): Let (M, T") be an irreducible sutured 3—manifold (hence with a
contact structure in a neighbourhood of dM ), and S a properly embedded incom-
pressible surface in M with Legendrian boundary, all of whose boundary components
intersect I' nontrivially. A configuration on (M, T, S) is a pair (I's, &), where I's isa
set of curves on S, such that cutting M along S and edge-rounding as described above
yields a sutured manifold (M’,T"), and &’ is a contact structure on (M’, T'"). There is
a state transition between two configurations (I's, ) — (I'g.7’) if 1’ can be obtained
from 71 by removing a bypass from 7 on one copy of S, and attaching the bypass to
the other copy of S, and the effect of the bypass removal and attachment yields I'
on each copy of S. A configuration (I's, £’) is potentially tight if & is tight. The
configuration graph G(M, T, S) is the directed (in fact bidirected) graph with vertices
given by configurations on (M, I, §), and directed edges given by state transitions. A
connected component of G(M, I, S) is tight if every configuration in the component is
potentially tight. Let Go(M, I, S) be the subgraph of G (M, I, S) consisting of its tight
components. Honda’s theorem states that the connected components of Go(M, T, S)
are in bijection with tight contact structures on (M, T').

Now return to our situation of cubulated contact structures. Suppose we have a tight
contact manifold (M’, ), consisting of some tight standard cubes, with some faces
glued by valid identifications. We then glue two further side faces together, by a valid
identification, to obtain a contact manifold (M, n); we will show 7 is tight. Both
M and M’ have dividing sets on their boundary, and so we have compact oriented
irreducible sutured 3-manifolds which we denote by (M,T") and (M',T’). In M the
glued face forms an incompressible surface S with Legendrian boundary intersecting
the dividing set in four points. Moreover S has a dividing set I's which interleaves
with that on dM’, as shown in Figure 7; it consists of two arcs. The dividing set ['s
on S, together with the (isotopy class of) tight contact structure n” on M’, forms a
potentially tight configuration (I's, 1').

As the dividing set I's on S consists of two arcs, there are no nontrivial bypass
surgeries on it. Hence there are no nontrivial state transitions possible from (Ts, 1)
to other configurations. There are only trivial bypass operations, yielding isotopic
contact structures, and hence state transitions from (s, ) to itself. So (s, n) is
an isolated vertex in the configuration graph G(M, I', S), hence forms a component
of Go(M,T,S), and hence by the gluing theorem, the result n of gluing " along S
is tight.
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In other words, as we glue two cubes together by a valid identification, if we had a
tight contact structure beforehand, we still have one after gluing. Hence if each cube is
tight, the cubulated contact structure £ obtained on (X, Q) x [ is tight. a

Lemmas 2.12 and 2.13 are converses; together they immediately yield the following.

Proposition 2.14 Let (X, Q) be a quadrangulated surface, and let I'yg and T"; be
basic dividing sets. A contact structure on M (I'g, I'1) is tight if and only if it is isotopic
to a cubulated contact structure on (X, Q) X [0, 1] where every cube has a tight contact
structure. O

2.6 Tightness of cubes

We now ask when a standard cube has a tight contact structure. In other words, we ask
when the dividing set on a rounded standard cube is connected.

To this end we introduce some terminology and definitions for standard cubes in a
cubulation Q x [0, 1], where Q is a quadrangulation of a marked surface (X, V)
consisting of squares Q1,..., Q. See Figure 8 for illustrations of all this usage. The
terminology may seem bizarre, but is adapted to the isomorphism of Theorem 1.1.

First, we assign signs to the vertices of cubes. Even when the cubes are rounded, we
will still speak of vertices and think of them as points near the vertices of the bona fide
cube. Each arc of Q ends at a vertex of V, so each vertex of the cube Q x [0, 1] is of
the form v x {0} or v x {1} for some v € V. We assign to this vertex the sign of v.
Note these signs alternate around each Q; x {0} and Q; x {1}, but do not alternate
along vertical edges. We draw the positive vertices in green. (Note that these signs
agree with signs of complementary regions of dividing sets on the top boundary, but
disagree on the bottom.)

Second, we assign names to top and bottom dividing sets. A dividing set on the top or
bottom square of a cube is called on if it is a standard negative dividing set, and off if it
is a standard positive dividing set. The arc connecting the two positive vertices of the
square Q; is called the principal diagonal or positive diagonal. So there is a principal
diagonal on the top and bottom faces of the cube. The principal diagonal can be drawn
on a face without intersecting the dividing set if and only if the face is on. When a face
is on, we draw the corresponding diagonal and fill in the vertices connected by it; when
a face is off, we leave the diagonal out and leave the vertices hollow.
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Figure 8: Contact cubes; rounding not shown. Top, left to right: all side faces
unused; all side faces used; bottom face off, top face on, all sides unused;
front and right sides used, other sides unused, top and bottom off. Bottom, left
to right: top off, bottom on, so principal diagonals intersect the top dividing
set but not the bottom; all sides unused, top on, bottom off; the face after v
and the face before w are used, other faces unused, top and bottom both on.

Third, we make some definitions for side faces. Swinging a principal diagonal from a
positive vertex v clockwise 45°, it hits an edge e of the square; we say this edge is
after v, and the side face e x [0, 1] is also after v. Similarly, the edge and side face
anticlockwise of v are called before v. Each side face can then be uniquely described
as being before or after one of the two positive vertices of Q. The standard dividing
set on a side face is called unused if it spirals clockwise, as viewed from above, as it
goes from top to bottom; otherwise it is called used. We will often draw side faces as
shaded when they are used, and clear if not.

Although these definitions assume the cube is rounded, so that the dividing set is smooth
and standard on each face, they apply also when faces are sharpened. When we sharpen
a side face, an unused dividing set becomes vertical, while a used dividing set becomes
horizontal, as shown in Figure 7. Thus, two side faces can be validly identified if and
only if they are both used or both unused.

A vertical dividing set on all sides of a cube with sharpened top and bottom corre-
sponds, after rounding, to having all side faces unused. More generally, rounding
the corners of M(I'g, ') yields a dividing set in which every unglued side face of a
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Figure 9: The various tight cubes, and corresponding strand diagrams
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cube (ie each side face around the boundary of ¥ x [0, 1]) has unused dividing set, as
shown in Figure 6.

It is not difficult to run through the various cases and come up with a complete list of
which standard cubes have a connected dividing set and hence a tight contact structure.

Lemma 2.15 A standard cube has a tight contact structure if and only if it is one of
the cases depicted in Figure 9. a

In Figure 9, to declutter the diagram we have not indicated signs of vertices explicitly,
but the positive vertices are drawn in green. The two positive vertices of the square
are labelled v and w, and there is a symmetry of the square, preserving its product
structure and signs of vertices, which rotates 180° about a vertical axis, exchanging
v and w. Where two dividing sets are related by such a symmetry, we have only drawn
one of them. Thus, if the vertices are labelled, we may have to rotate the cube before
finding it in Figure 9.

We can enumerate the various tight cubes in words too:

(i) All four side faces are unused; top and bottom are both on or both off.
(ii) One side face f is used:
(a) f is after a positive vertex; bottom on, top off.

(b) f is before a positive vertex; bottom off, top on.

(iii)) Two adjacent side faces are used:
(a) Used faces are before and after distinct positive vertices; top, bottom both
on.

(b) Used faces are before and after the same positive vertex; top, bottom both
off.

(iv) Three side faces are used:
(a) The unused side is after a positive vertex; bottom off, top on.

(b) The unused side is before a positive vertex; bottom on, top off.

(v) All four side faces are used: top and bottom are both on or both off.

2.7 Classification of tight contact structures

Let (X, Q) be a quadrangulated surface and let I'g and I'; be basic dividing sets.
We have seen (Proposition 2.14) that the tight contact structures on M(T'g, I'1) are
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precisely the cubulated contact structures on (X, Q) x [0, 1] with all cubes tight, ie
satisfying the conditions of Lemma 2.15 and appearing in Figure 9.

On each cube of the cubulation, the top and bottom dividing sets are prescribed
by I'p and I';. Each side face which is not glued to another appears in the side
boundary of M(I'g, I'1) and hence is unused.

So the only way in which such contact structures may differ is by whether glued side
faces are used or unused. The glued side faces are precisely those of the form 4 x [0, 1],
where A is a decomposing arc of Q. If we choose, for each decomposing arc 4,
whether it is used or unused, then we have specified a dividing set on each face of
each cube. These dividing sets may or may not be tight, but the choices of used and
unused decomposing arcs which make all cubes tight yield tight contact structures
on M(T'g,I'1), and all tight contact structures on M (I'g, I'1) are of this form.

To obtain a complete classification of contact structures in terms of a cubulation, it
remains to check that distinct choices of used and unused glued faces yield distinct
(ie nonisotopic) contact structures.

Lemma 2.16 Let &y and &, be two cubulated contact structures on (X, Q) x [0, 1]
such that the face Ax|0, 1] is unused in &y and used in ;. Then & is not isotopic to &1 .

Proof The two dividing sets obtained on A x I are the two distinct ways of matching
four boundary points on a disc. So when we calculate the relative Euler class e(&p)
on [A x I], it differs from that of e(£1), and hence the contact structures cannot be
isotopic. |

We now immediately obtain the following proposition.

Proposition 2.17 The isotopy classes of tight contact structures on M (g, I"1) are
in bijective correspondence with labellings of decomposing arcs of Q as “used” or
“unused”, so that each cube satisfies the conditions of Lemma 2.15. O

2.8 Stacking cubulated contact structures

In the contact category, as we know, morphisms correspond to stacking contact structures
on X x [0, 1] on top of each other. We now investigate the stacking of cubulated contact
structures.

To this end let (X, Q) be a quadrangulated surface, let I'g, I'; and I'; be basic dividing
sets, let & be a tight contact structure on M(I'g,I'1), and let & be a tight contact
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structure on M (I"1, I'2). Stacking &; on &p yields a contact structure £ on M (g, 2).
Let A be the set of decomposing arcs of Q. By Proposition 2.17, &q is defined by the
subset of used arcs of A4; let this set be Up C A. Similarly, let U; € A be the set of
used arcs in &;. We can then describe £ as follows.

Proposition 2.18 (i) If Uy N Uy # & then & is overtwisted.

(i) If UpNU, = @ then & is a cubulated contact structure with used arcs Uy U Uj .
In this case, £ is tight if and only if there is a tight cubulated contact structure
with used arcs Uy U Uj .

Note that if Up N U; = &, then £ may or may not be tight. The final statement in
the second part is necessary because £ being cubulated is just a statement about its
dividing sets; we additionally assert that £ is tight, if it is possible to be so.

DR DR

Figure 10: Stacking two used side faces on top of each other yields an
overtwisted contact structure (top). A used face on top of an unused face
yields a used face (bottom).
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Proof Let A be a decomposing arc of Q. We first consider decomposing &y along
A x [0, 1]. Rounding the corners of M(I'p,I'1) as in Figure 6 and cutting along a
rounded convex A x [0, 1] with Legendrian boundary, as in Figure 7, we obtain a
horizontal or vertical dividing set on A x [0, 1], accordingly as A is used or not in &.
We can do the same for &;.

If A is used in both & and &1, then we obtain horizontal dividing sets on A x [ in
both contact structures. These two dividing sets stack together to give a convex surface
in £ with a contractible loop: see Figure 10 (top). Thus & is overtwisted.

If A is used in one of & or &€ but not the other, then we obtain a horizontal dividing set
on Ax|0, 1] in one contact structure, and a vertical dividing set in the other. These piece
together to give a horizontal dividing set on A x I in &: see Figure 10 (bottom). By a
similar argument, if A is used in neither & nor &7, then the face A x I is unused in £&.

If Up N U; is nonempty, then there is some arc A used in both &y and &, so £ is
overtwisted.

Suppose now that Uy NU; = &. Then we obtain a cubulation of £ by stacking together
the cubes of & and &;. The used faces of & are precisely those in which are used
in & or &1, ie Up U U;. Moreover, when we stack a tight cube Cy from &; on top of
a corresponding cube Cp from £p to obtain a cube C of &, we glue two tight 3-balls
together along a square face containing a standard dividing set. If the cube C has
(after rounding edges) a connected dividing set on its boundary, then it has a tight
contact structure. This can be seen from Honda’s gluing theorem [15] as in the proof
of Lemma 2.13; again, no bypass can be passed through the square with a standard
dividing set. By Proposition 2.14, £ is tight if and only if every cube is tight.

So & is cubulated with used arcs Up U U;, and moreover, £ is tight if and only if each
cube has a connected dividing set. This occurs if and only if there is a tight cubulated
contact structure with used arcs Uy U U; . O

3 The strand algebra and its homology

3.1 Arc diagrams and tape graphs

We now turn to the Heegaard Floer side of the story, and discuss the strand algebra. We
mostly follow Zarev’s exposition in [37], but also refer to work of Lipshitz—Ozsvath—
Thurston [24; 23], and refine and introduce some terminology for our purposes.
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e

surgery q surgery surgery
_ _

Figure 11: Oriented surgery. The surgery on the left yields a closed loop, so
this is not an arc diagram. Two examples of arc diagrams (centre and right).

Definition 3.1 An arc diagram is a triple Z = (Z,a, M), where

1) Z =(Z1,2Z>,...,7Z)) is a sequence of oriented line segments,
(i) a = (ay,as,...,as;) is a sequence of distinct points of Z in order along Z ,

(iii) M is a 2-to-1 function @ — {1,2,...,k}.

We require that after performing oriented surgery on Z at each O—sphere M ~1(i), the
resulting 1-manifold should consist of arcs; no circles are allowed.

The points of a are called places. The function M matches the points of M in k
matched pairs which we also call twins. We reserve the letter k for the number
of matched pairs. Oriented surgery preserves the orientation of the 1-manifold;
see Figure 11. We draw arc diagrams by drawing the segments Z; vertically, oriented
upwards; the matched pairs are indicated by arcs between them. If we permute the
sequence of line segments Z;, reorder the a; and adjust the matching M accordingly,
we obtain an equivalent arc diagram.

An arc diagram is equivalent to a tape graph. Recall from Section 2.2 (and [30]) that a
tape graph is a finite graph with a total ordering of the half-edges incident to each vertex.
From an arc diagram, we may collapse each line segment Z; to a vertex, and regard

4 — as —y
as
3 3 —
— as
2 2 —4¢ a
2
1 1 —¢ ai

Figure 12: Equivalence of tape graphs and arc diagrams (left). Strand diagram
with three strands, five places and one inversion (centre). Strand diagram with
three strands, (3, 1) places and one inversion (right).
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matched pairs as connecting pairs of vertices by edges. The orientation on each line
segment provides a total ordering on the half-edges incident to each vertex. Conversely,
from a tape graph we may “blow up” each vertex as in [30, Section 4.2] into an oriented
line segment, with incident half-edges ordered along it, as in Figure 12 (left).

3.2 Algebra of strands

Let k > 0 and n > 1 be integers. An (unconstrained) strand map with k strands
on n places is a triple u = (S, T, ¢), where S, T < {1,2,...,n}, |S|=|T| =k, and
¢: S — T is a nondecreasing bijection.

We can draw a strand diagram (or Reeb chord description) of w as follows. Label n
points in order on an oriented interval Z as {ai,das,...,a,}. The diagram is drawn
in Z x [0, 1] and consists of an arc with nonnegative slope (since ¢ is nondecreasing)
from (i,0) to (¢(i), 1), for each i € S. If each of these k arcs, or strands, is drawn
transversely, and they meet efficiently without triple crossings, then the number of
crossings in the diagram is the number of inversions of ¢, ie the number of pairs (i, j)
such that i < j and ¢ (i) > ¢(j). The set of inversions of u is denoted by Inv(u) and
its cardinality by inv(u). We say w begins at S and ends at T, or goes from S to T';
we indicate S and T in a strand diagram by drawing the corresponding points a;
filled-in. The points a; break Z into consecutive subintervals which we call the
steps of Z; we always draw the a; in the interior of Z so that there are interior
steps [a;i,ai+1] and exterior steps at the ends of the interval. An interior step is used
if some strand’s vertical coordinate passes through the step, ie [a;,a;+1] is used if
there is some j € § with j <i and ¢(j) > i + 1; otherwise we say it is unused. We
indicate a used step [a;, a;j+1] by shading [a;,a;+1]x [0, 1] darker in a strand diagram.
See Figure 12 (centre). In practice we use strand diagrams and maps interchangeably.

The (unconstrained) strand algebra with k strands and n places A(n, k) is an Fp—
algebra, generated freely as an Fo—module by the strand maps with k strands on n
places. The product of two strand maps is their composition, if it is defined and has
no “excess inversions”, otherwise it is zero. More precisely, let u = (S, T, ¢) and
v=(U,V,¥). If T =U and inv(y o) =inv(¢p) +inv(¥), then p-v = (S, V, ¥ 0¢);
otherwise w-v =0. The product can be obtained by concatenating strand diagrams from
left to right, but if strands do not match, or two strands intersect twice, the result is zero.

The strand diagrams consisting entirely of horizontal strands are the strand maps of
the form 1(S) = (S, S, 1s), where S C {1,...,n}. Each I(S) is a left and right
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idempotent of A(n, k); the Fo—submodule /(S) - A(n, k) - I(T) has basis the strand
diagrams going from S to 7.

The algebra A(n, k) has a differential d which roughly “resolves crossings” in strand
diagrams. Each crossing/inversion may be resolved in a unique way to obtain another
strand diagram with less inversions. Then du is the sum of all strand diagrams obtained
from p by resolving a crossing such that the number of inversions decreases by
exactly 1. If x has no crossings then du = 0. This differential satisfies 9> = 0 and
the Leibniz rule [24].

The (unconstrained) strand algebra with k strands and (ny,...,n;) places is the
[F,—algebra given by

Ani,ng,...onsk) = €D A k) ®---® Alng, ky),

k1,....k;
where the direct sum is over integers ki,...,k; > 0 such that ky +--- 4+ k; = k.
We consider n1,...,n; places lying on separate intervals Zj,...,Z;. As an [Fp—
module, A(ny,...,n;; k) is generated by (unconstrained) strand maps with k strands

and (n1,...,n;) places, which are strand maps u = (S, 7, ¢) with k strands and
ni+---+n; places such that i and ¢ (i) lie on the same interval for each i € S. A strand
diagram of such a strand map can naturally be drawn as in Figure 12 (right). Notions of
inversion, multiplication, used steps, and the differential carry over to A(ny,...,n;;k)
immediately.

3.3 Algebra associated to an arc diagram

We now define an algebra associated to an arc diagram Z = (Z,a, M), where
Z =(Z1,...,7Z;) and a = (ay,...,as;). Roughly, Z constrains the arc diagrams
discussed above for the intervals Z; : strands cannot start or end at both points of a
pair matched by M; and they must be “symmetric” with respect to matched pairs, in a
certain sense. The places of a, ordered along Z, can be regarded as the places of a
strand map; let there be n; places on Z;, so ny +---+n; = 2k. The algebra A(2)
is related to the algebras A(ny,...,n;; -).

Given aset s C {1,...,k} of size i, there are 2! subsets S of a which are sections
of s, ie such that M restricts to a bijection S — s: the set s can be regarded a subset of
the arcs of Z joining matched points, and each S corresponds to choosing an endpoint
of each arc. Throughout, we will use lower case letters to refer to subsets of {1,...,k},
and upper case to refer to their sections. Each S C a defines an idempotent 7(5)
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of A(ni,...,n;;i), consisting of horizontal strands at S. Adding these up over all 2/
sections S of s, we obtain another idempotent /(s) of A(ny,...,n;;i), “symmetrised”
with respect to the matching; and then adding up all these over the subsets s C{1,...,k}
of size i, we obtain an idempotent /;:

Is)=" >  IS) and L= > Is).

S a section of s sC{1,....,k}
Is|=i

The I(s) and the I; are orthogonal: I(s)I(t) = I(s) if s =, and is otherwise zero;
and [;1; = I;,if i = j, and is otherwise zero. The ring Z(Z,1) of Z—constrained
i—strand idempotents is the Fp—subalgebra of A(|Z1],...,|Z;|;i) generated by I(s),
over all i—element sets s C {1,...,k}.

We say a strand map begins at s C {1,...,k} if it begins at a section of s, and ends
att C{l,...,k} if it ends at a section of ¢; similarly we say that it goes from s to t.
A Z—constrained strand map is a strand map on (ny,...,n;) places which begins at
some s and ends at some ¢. In other words, a strand map is Z—constrained if it begins
and ends at subsets of @ which contain no matched pairs, ie on which M is injective.
See Figure 13.

As an Fy—module, I(s)-A(ny,...,n;;i)-1(t) is freely generated by diagrams of i
strands on (n1,...,n;) places which begin at s and end at 7. Similarly, there is a basis
of I; - A(ny,...,n;;i)- I; given by i—strand Z—constrained diagrams. Thus ; ul; is
equal to u or 0, accordingly as w is i—strand Z—constrained or not.

We also require that horizontal strands be “symmetrised” with respect to matched pairs.
To this end, suppose u = (A, B, ¢) is an unconstrained strand map on (n1,...,n;)
places, where ¢ is strictly increasing (ie has no horizontal strands), and consider adding
horizontal strands to ¢ at some places U, so as to obtain a strand map of i strands.
Such U are subsets of {1,...,2k} disjoint from A and B, of size i —|A| =i —|B].
Adjoining horizontal strands to ¢ at U results in a strand map (AU U, BUU, ¢y ),
where ¢y |4 = ¢ and ¢y |y = 1y . Then we can define a sum over such U,

ai(n) =ai(A,B.¢)=> (AUU.BUU,¢y) € A(ny.....nj:i).
U
Thus, a;(w) is the sum of all possible i—strand diagrams on (ny,...,n;) places
obtained from p by adding horizontal strands. “Constraining” by multiplying by /;
on left and right means that /; - a; (1) - I; is the sum of all possible Z—constrained
i—strand diagrams obtained from p by adding horizontal strands. Constraining further
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f t

Figure 13: A strand diagram which is not constrained by Z, as it begins at
two matched points (left). A Z—constrained strand diagram (right).

by multiplying, we see that /(s)a;(u)I(¢) is then the sum of such diagrams which
begin at s and end at 7. This leads to the following definition.

Definition 3.2 The i—strand algebra A(Z,1) of the arc diagram Z is the Fo—subalgebra
of A(ny,...,ny;i) generated by Z(Z,1) and the elements /;-a; (i)-I;, over all strictly
increasing strand maps p with at most i strands on (ny,...,n;) places.

The strand algebra of the arc diagram Z is the direct sum
k
A2) =P Acz.i).
i=0

As an Fy-module, A(Z,i) is generated by elements of the form I(s)a;(u)l(z),
where p is as in the definition above and s, € {1,...,k}. Suppose that v is a
Z—constrained i—strand diagram appearing in /(s)a; (1)1 (¢), ie obtained from u by
adding horizontal strands so as to begin at s and end at 7 ; suppose further that v has a
horizontal strand at p. Then no strand begins or ends at its twin p’, so removing the
horizontal strand at p and replacing it with a horizontal strand at p’ results in another
diagram appearing in /(s)a; (i) I(¢). Indeed, 1(s)a; ()1 (t) consists precisely of the
diagrams obtained from v by replacing horizontal strands in this way. If @ has i — j
increasing strands, then v has j horizontal strands, and 7(s)-a; (i) - I(¢) is the sum of

f f

Figure 14: A symmetrised Z—constrained strand diagram (right)
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the 2/ diagrams obtained by replacements of horizontal strands. We draw a diagram
of I(s)a;(u)I(t) by drawing the j pairs of horizontal strands dotted; we refer to this
as a symmetrised Z—constrained strand diagram. See Figure 14.

As an Fo—module, A(Z,i) has basis the symmetrised Z—constrained i—strand dia-
grams; and A(Z) has basis all symmetrised Z—constrained strand diagrams. Multipli-
cation is obtained by concatenating diagrams, the differential resolves crossings, and
we can speak of used and unused steps, as before.

3.4 Gradings on the strand algebra

The strand algebra A(Z,i) has some rather involved gradings. We only need some of
these notions; see [24; 23; 37] for details.

Fix an arc diagram Z = (Z,a, M), where Z = (Z1,...,Z;) and a = (ay,...,az;).
A Z—constrained strand map has, for our purposes, two gradings: a homological or
spin-c grading, valued in H{(Z ,a); and a Maslov grading in %Z. We will follow [37],
which is slightly different from [24].

Let u= (S, T, ¢) be a Z—constrained strand map. Then for each a € S, both @ and ¢ (a)
are places in a, in the same interval Z;, with a < ¢(a), so there is a subinterval
la,¢(a)] C Z;, giving a homology class in H{(Z, a). The homological grading of 11,
denoted by [u], is given by the sum of these intervals [a, ¢ (a)].

The group H{(Z,a) has basis the interior steps of Z. The number of times a step
occurs in an element « of Hy(Z,a) is called its multiplicity. The steps with nonzero
multiplicity form the support of o, denoted by supp «. For a place a; € a, the multi-
plicity of o at a; is the average of the multiplicity of « on the steps immediately before
and after a; (so lies in %Z) Extending linearly, we obtain the multiplicity of « at any
linear combination of points of a, giving a linear map, m: Ho(a) x H{(Z ,a) — %Z.

The homological grading [u] of the Z—constrained strand map w is a nonnegative
integer combination of interior steps; its support consists of the used steps. Since
horizontal strands contribute zero to the homological grading, symmetrised constrained
strand maps have a well-defined homological grading. Moreover, homological grading
is preserved by the differential, so H(A(Z)) splits over homological gradings.

The Maslov grading of a Z—constrained strand map u = (S, T, ¢) is

t(p) = inv(g) —m(S, [u]) € ;2.
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One can check that the Maslov grading is preserved when we replace a horizontal
strand at a point by a horizontal strand at its twin, so the Maslov grading is well
defined for symmetrised Z—constrained strand diagrams. The full grading of u is given
by (¢(u), [4]) and these pairs form a grading group Gr(Z), which is %Z x Hi(Z ,a)
with a certain nonabelian operation. With this grading, A(Z) is a differential graded
algebra [37, Proposition 2.14].

The differential reduces the Maslov grading of a strand diagram by 1. If we specify the
homological grading [u] and the beginning S of a Z—constrained strand diagram u,
then m(S, [u]) is fixed, so that ¢(u) = inv(¢) — constant.

3.5 The homology of the strand algebra

In [23, Theorem 9], Lipshitz, Ozsvéth and Thurston gave a description of the homology
of A(Z,1i) for a pointed matched circle Z. In order to generalise this description to
general arc diagrams, we consider the relationship between the strand algebras of arc
diagrams and pointed matched circles.

For our purposes, a pointed matched circle is an arc diagram with one line segment,
ie Z =(2).

Let Z = (Z,a, M) be an arc diagram, where Z = (Z1,...,Z;), |Zj| = nj, and

a=(ai,....dxy).

By gluing the intervals of Z; of Z together, we can obtain a single interval with
places along it, matched in pairs; however this might not be a pointed matched circle,
because of the surgery condition in the definition of an arc diagram. But by adding
some additional intervals if necessary, with places matched in pairs, and gluing these
together with the Z; in an appropriate fashion, one may obtain a pointed matched
circle Z = ((Z2),a, M ) which contains Z as a subdiagram. Specifically, Z is obtained
from Z by splitting the interval Z at various steps, and then removing some of the
intervals, together with their matched pairs of places. Each of the intervals Z; can be
regarded as a subinterval of Z.

Now A(Z,i) is a summand of A(§ ,1) (as an F,—module or chain complex) which can
be defined purely in terms of homological grading and idempotents. A Z—constrained
strand diagram of i strands can be regarded as a strand diagram, also of i strands,
constrained by Z. And a Z—constrained i-strand diagram can be regarded as a
Z—constrained i—strand diagram if and only if its homological grading is supported
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on the subintervals Z; of Z, and the strands begin and end at places on the Z;.
Symmetrising by taking I(s)a; (i) (¢) for s and ¢ corresponding to places on the Z;,
we then see that symmetrised Z—constrained i —strand diagrams from s to ¢ correspond
precisely to symmetrised Z—constrained i—strand diagrams from s to 7.

Letting A(Z,i; h) denote the summand of A(Z, i) (as an [Fp—module or chain complex)
with homological grading %, and noting that the differential preserves homological
grading and beginning and ending idempotents, we thus have

() AZ.D)=EP IAEZ.i:h) (). H(AZ.i)=EP I()H(AZ.i:h) 1),
h,s,t h,s,t

where both direct sums are over & supported on the Z;, and s and ¢ corresponding to
places on the Z; .

Now as Z is a pointed matched circle, H (A(Z7 ,1)) is described by the theorem of
Lipshitz—Ozsvath—Thurston; so we obtain H(A(Z,i)) as the summand described
above. We now state this theorem, adapted to our context.

Theorem 3.3 [23, Theorem 9] Let Z = (Z,a, M) be an arc diagram, let s,t C
{1,...,k},andlethe H\(Z,a). The summand of I(s)-H(A(Z))-1(t) of homological
degree h is nonzero if and only if the following conditions hold:

(i) The multiplicity of h on each step of Z is 0 or 1.

(ii) Ifv,w € a are matched by M, v € Int(supp(h)), and w ¢ Int(supp(h)), then
M@)é¢snt.

(iii) There exists a symmetrised Z—constrained strand diagram from s to t with
homological grading h without crossings.

Moreover, if h, s and t satisty the conditions above, then the homological-degree h
summand of I(s)-H(A(Z))-1(¢) is 1-dimensional, represented by any symmetrised Z—
constrained strand diagram from s to t with homological grading h without crossings.

Proof Because of the decomposition in (1), it suffices to check the equivalence of
our conditions with those of [23] for the appropriate homological gradings (ie those
supported on the Z;), for the algebra of the pointed matched circle Z.

Suppose the homological-degree / summand of I(s) - H(A(Z)) - I(¢) is nonzero;
so there exists at least one [ € %Z such that the (/, h)—graded summand is nonzero.
Then [23] states that (i) and (ii) hold. Moreover [23] asserts that when the (/, #)-graded
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summand is nonzero, it is 1-dimensional, represented by any crossingless diagram
of that grading. Hence there exists a symmetrised Z—constrained strand diagram
from s to ¢ with homological grading /& without crossings, so (iii) holds.

The theorem in [23] also says that for the degree (, #) summand of 1(s)-H (A(ZA’ )-1(t)
to be nonzero, the Maslov degree must be minimal among symmetrised Z—constrained
strand diagrams from s to ¢ with homological grading /. As mentioned in Section 3.4,
once &, s and ¢ are fixed, the Maslov grading is given by the number of crossings,
minus a constant, and so the minimal Maslov degree is precisely the one with zero
crossings. Thus there is precisely one Maslov grading / such that the (/, ) graded
summand is nonzero. Hence the h—graded summand of I(s)- H (A(2))-1(1) is 1-
dimensional, represented by any crossingless symmetrised Z—constrained diagram
from s to ¢ with homological grading /.

Now suppose #, s and ¢ satisfy the conditions above. By (iii) there exists a symmetrised
Z-constrained strand diagram p from s to ¢ with homological grading /& and no cross-
ings. Let i have Maslov grading /. We show that 4, s, ¢ and [ satisfy conditions 1-4
of [23, Theorem 9]; conditions 2 and 3 are satisfied immediately by our conditions
(i) and (ii). The existence of u implies that /s is compatible with I(s) and I(¢), in
the sense of [23, Definition 3.7], so condition 1 is satisfied. Again, with &, s and ¢
fixed, the Maslov grading is the number of crossings minus a constant; so since [
has no crossings, / is minimal among all symmetrised Z-constrained strand diagrams
from s to ¢ with homological grading /. Thus condition 4 holds. By [23, Theorem 9]
the degree (/, h) summand of I(s)- H (A(é)) - I(¢) is then nonzero, hence so is the
homological-degree # summand. O

3.6 Local description of homology

We can now give a “local” description of H(A(Z)). The idea is that if h € H1(Z ,a)
and s,f C {l1,...,k} satisfy conditions (i)—(iii) of Theorem 3.3, then we can say what
a symmetrised Z—constrained strand diagram must look like “locally” near a pair of
matched points.

More precisely, suppose %, s and ¢ satisfy conditions (i)—(iii) of Theorem 3.3, and
let v, w € a be two matched points, so M(v) = M(w). We consider the fragment of Z
at v, w and their adjacent steps.

As h has multiplicity 0 or 1 on each step, it is specified by its set of used steps, or
support; A can be regarded as a collection of oriented subintervals of Z. For any
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interval I, we write 971 for its positive boundary (ie maximum), and 9~/ for its
negative boundary (ie minimum); hence in homology 8/ = 971 — 9~ 1. Each point
of a thus lies in exactly one of 9~ (supp /), 07 (supp h), Int(supp /), or a \ (supp k).

Condition (iii) tells us that, if a place v € a has the property that the step immediately
before v is not used by #, but the step immediately before v is, then M(v) € s. In
other words, these conditions on /4 imply that some strand must begin at v. Similarly,
if the step before p is used by /, but the step after v is not, then M(v) €¢.

In general, M (v) satisfies exactly one of M(v) esNt, M(v) es\t, M(v)€t\s,or
M(v) ¢ sUt. We call the data of whether v, w € 3+ (supp ), 9~ (supp &), Int(supp h),
or a \ (supp &), and whether M(v) e sN¢t, s\t,ort\s or M(v) ¢ sU ¢, the data
of h, s and t near v and w.

Considering the various possibilities, the fragment of Z at the two places v and w and
the four adjacent steps, must fall into precisely one of the following cases, which are
also illustrated in Figure 9. We compute the data of 4, s and ¢ near v and w in each
case. Since the places v and w are on an equal footing, our classification is up to a
possible relabelling of v and w. The cases are:

(i) No steps are used. In this case any strand appearing must be horizontal, hence
symmetrised (dotted).
(a) There are (necessarily symmetrised horizontal) strands at v and w. Then
v,wea\(supph) and M(v) esNt.
(b) No strand begins or ends at v or w. Then v, w € a \ (supp h) and M(v) ¢
sUt.

(i) One step is used; say it is adjacent to v.
(a) The step after v is used, so a strand begins at v. Then v € 0~ (supp /) and
M) es\t.
(b) The step before v is used, so a strand ends at v. Then v € 9% (supp /) and
M@) et\s.

(iii)) Two steps are used. In this case the steps before v and w cannot both be used, for
then a strand must end at v and another strand must end at w, contradicting the
Z—constrained property. Similarly, the steps after v and w cannot both be used.

(a) The steps used are before and after distinct places, say after v and before
w, so a strand begins at v and a strand ends at w. Then v € 0~ (supp ),
w € dT (supph), and M(v) esNt.
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(b) The steps used are before and after a single place, say v. Then v € Int(supp /)
but w ¢ Int(supp /1), so by condition (ii) of Theorem 3.3, M(v) ¢ sN¢. Any
strand at w would have to be horizontal, contradicting this condition; and a
strand begins at v if and only if a strand ends at v, again contradicting this
condition; hence no strand can begin or end at v or w. So v € Int(supp %),
wea\ (supph), and M(v) ¢ sUt.

(iv) Three steps are used; say the unused step is adjacent to v.

(a) The unused step is after v. Then a strand must end at v; the Z—constrained
condition then implies no strand ends at w; and so no strand can begin at w
either. Thus v € 97 (supp h), w € Int(supp ) and M(v) €1\ s.

(b) The unused step is before v. Then a strand must begin at v; Z—constraint
then implies no strand begins at w; then no strand ends at w either. Thus
v eI (supph), w € Int(supph) and M(v) € s \t.

(v) All four steps are used. Then a strand begins at v if and only if a strand ends
at v; and similarly for w. So M(v) lies in neither or both of s and ¢.

(a) No strand begins or ends at v or w. So v, w € Int(supp #) and M(v) ¢ sUt.

(b) If M(v) lies in both s and ¢, there are two possibilities: either a strand
begins at v, a strand ends at v, and no strand begins or ends at w; or a
strand begins at w, a strand ends at w, and no strand begins or ends at v.
Either way, v, w € Int(supp /) and M(v) e sN¢.

(This classification into cases parallels the classification in Section 2.6.)

In other words, in a symmetrised Z—constrained strand diagram which is nonzero
in H(A(Z2)), near every pair of matched places the diagram must look like one of
the cases in Figure 9 (up to a possible relabelling of v and w). We also observe that,
conversely, if a strand diagram (a priori unconstrained) looks near every pair of matched
places like one of these cases, then it is Z—constrained, symmetrised, and satisfies the
conditions of Theorem 3.3, hence is nonzero in H(A(Z)).

If a diagram exists which is nonzero in H(A(Z)), goes from s to ¢, and has homological
grading /, then the diagram is completely determined near each pair of matched places
v and w by the data of &, s and ¢ near v and w — except in the very final case where
both v, w € Int(supp ) and M(v) € s N ¢. There are then two possibilities, which
are shown at the bottom right of Figure 9. However, in homology these two diagrams
are equal, because of the equation shown in Figure 15. (Although this only shows
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(o) () (o (5

Figure 15: The two possible choices of strand diagrams are equal in homology.

the strand diagram near v and w, if we have larger strand diagrams which are equal
elsewhere, have no further crossings, and are as shown near v and w, then the equation
still holds.)

Thus, if we know /, s and ¢, then there is at most one corresponding generator
of H(A(Z)), and it is given locally by Figure 9. We summarise this discussion by the
following proposition.

Proposition 3.4 Let Z be an arc diagram, let s and t be two subsets of {1,...,k},
and let h € H1(Z,a). The h—graded summand of I(s)- H(A(Z))- I(t) is nonzero if
and only if the data of h, s and t near every pair of points v, w € a matched by M are
as in one of the cases in Figure 9 (up to a possible relabelling of v and w ). In this case
the h—graded summand of I(s)- H(A(Z)) - 1(t) is 1-dimensional, generated by the
corresponding diagram in Figure 9, which is unique in homology. |

3.7 Multiplication in homology

As A(Z2) is a differential graded algebra, multiplication is well defined in H(A(Z)).
Suppose that we have two generators of H(A(Z)) represented by symmetrised Z—
constrained strand diagrams po and ;. Suppose u; goes from s; to #; and has
homological grading %;, having support on used steps. If #y9 # 51 then popq = 0; so
assume fg = s1. Then wopy goes from sg to #; and has homological grading hg + /.
We describe the homology class of pou; in H(A(Z)) in the following proposition.

Proposition 3.5 (1) If wo and w1 have a common used step, then [y iS zero in
homology.

(ii) If po and 1 have no common used step, and the (ho + h1)—graded summand
of I1(so)- H(A(Z))-1(t1) is nonzero, then oy represents the generator of this
summand.

Proof First, if ;1o and w1 have a common used step, then (hg—+ /1) has multiplicity 2
on this step, so by Theorem 3.3 the (ho+h1)-graded summand of H(A(Z)) is zero.
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Second, if the (ho—+h1)—graded summand of 1(so)- H(A(Z))-1(¢1) is zero, then pouq
must be zero in homology. Thus we can assume g and @; have no common used
step, and that the (ho+h1)—graded summand of /(sg) - H(A(Z))- I(¢1) is nonzero;
we show that pou; generates this summand.

Since o and p; are nonzero in homology, by Proposition 3.4, the local data of
ho, So, to =51 and hy, s1, t1 near every pair of matched places v and w must be
one of the cases shown in Figure 9. Moreover, the local data of (hg 4+ h1), So, 1 near
v and w also appears in the figure, since the corresponding summand is nonzero.

Now if po and w; do not concatenate along some v and w then (after possibly
relabelling v and w), po must have a nonhorizontal strand ending at v, and pt1 must
have a nonhorizontal strand beginning at w. Since /¢ and A have no step in common
then the step before v is used in /g but not /71, and the step after w is used in /;
but not hg. If the step after v were used in 27 then w; would have to have a strand
beginning at v, but it already has one starting at w; so this step is not used in &;. A
similar argument shows that the step before w is not used in hg. If the step before w
is used in /1 then we have w € Int(supp 21) and v € a \ (supp /1), so (by reference
to Figure 9) M(v) ¢ s; Uty; but M(v) € s1 as u has a strand beginning at w. This
is a contradiction, so the step before w is not used in /1. A similar argument shows
the step after v is not used in /g. Thus &g is supported only on the step before v,
and hence M(v) ¢ s¢. Similarly, /&1 is supported only on the step after w, and hence
M (v) ¢ t1. Thus (ho + hy) is supported on the steps before v and after w, so wou1
must have a strand beginning at w and a strand ending at v, and yet M(v) ¢ so Uy,
yielding a contradiction. We conclude that (¢ and @ must in fact concatenate along
each v and w. As ugu is obtained by such concatenation and has the starting places
of o and the ending places of 11, it is a symmetrised Z—constrained strand diagram.

Because popq is a symmetrised Z—constrained strand diagram, and the local data of
(ho + h1), so, t1 near every matched pair v and w appears in Figure 9, its homology
class is nonzero and generates the (ho+h1)—-summand of I(sg)- H(A(Z))-I(¢1). O

4 The correspondence
Having seen several similarities between cubulated contact structures and arc and

strand diagrams, we now make the correspondence precise, establishing a “dictionary”
between contact structures and strand diagrams as shown in Table 1.
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Contact geometry

Heegaard Floer

Quadrangulated surface (X, Q)
Positive vertex of (X,V)
Square of Q
Positive vertex v of square

Pair of positive vertices (v, w) of square

Index (X, Q) =# squares of Q
=+# cubes of cubulation (X, Q) x[0,1]

Side faces of cubes

Boundary edges of (X, V),
faces on side boundary of (X, Q) x [0, 1]

Decomposing arcs of Q,
glued side faces of cubes

Side faces of cube before, after vertex

Arc diagram Z=(Z,a, M)
Interval Z; € Z
Element of {1,...,k}, arcin Z
Place vea
Matched places M (v) = M (w), endpoints of arc

k =# matched pairs
= %|a| = %# places

Steps of Z

Exterior steps of Z

Interior steps of Z

Steps before, after place

Basic dividing set "
Bottom squares which are on/negative
Top squares which are on/negative
Euler class e(I') = 1(X,V) —2i

Subset s C{1,...,k}, idempotent I(s)
Beginning s C{1,...,k}, left idempotent /(s)
Ending  C{1,...,k}, right idempotent /(z)

Sizes of beginning, ending sets i =|s|=|¢|

Used faces

Data of top/bottom faces on/off,
side faces before/after v and w used/unused

Data satisfies Lemma 2.15 or Figure 9

Given 'y and I';, choice of used faces
so each cube appears in Figure 9

Used steps = supph

Data of used/unused steps (or A),
s and ¢ near v and w

Data satisfies Proposition 3.4 or Figure 9

Given s and ¢, choice of used steps
so each matched pair appears in Figure 9

All cubes tight, Symmetrised Z—constrained strand diagram
tight contact structure on M (g, T'1) which is nonzero in homology
CA(%.0) H(A(2))

Summand 1p, - CA(Z, Q) - 1r,
Summand CA. (X2, Q)

Relative Euler class e(§)

Summand /(s)- H(A(Z))-1(¢)
Summand H(A(Z,i))

Homological/spin-c grading

Stacking cubes

Stack two used faces (= overtwisted)

Multiplication in H(A(Z))

Multiply diagrams
with common used step (=0)

Bypass

Strand

Table 1: Dictionary between contact geometry and Heegaard Floer notions
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4.1 From arc diagrams to quadrangulated surfaces and back

Let (2, Q) be a quadrangulated surface. As discussed in Section 2.2, drawing the
positive diagonal in each square yields the positive spine GE, which is a tape graph,
and onto which X retracts; the half-edges of GE incident at a vertex are totally ordered
clockwise around the vertex. And as discussed in Section 3.1, a tape graph is equivalent
to an arc diagram by “blowing up” the vertices into line segments.

Conversely, from an arc diagram Z = (Z, a, M), we may collapse the line segments into
vertices and obtain a tape graph Gz; then, with incident half-edges oriented clockwise
around each vertex, we may thicken this tape graph into an oriented surface — indeed,
into a quadrangulated surface. In [30, Proposition 4.5] we gave a precise condition for
when an oriented tape graph is the spine of a quadrangulated surface. Translated into
the present context, the condition is that oriented surgery on Z at each M ~!(i) results
in a 1-manifold consisting of arcs, with no closed loops. (Each boundary component of
the thickening contains a vertex of the graph, along with its adjacent barrier half-sides,
in the language of [30].) This condition is part of the definition of an arc diagram.
Thus, as discussed in [30], we naturally obtain a quadrangulated surface by thickening
each edge of Gz into the diagonal of a square, and gluing together sides of squares
corresponding to adjacent half-edges. See Figure 16.

Thus, from (X, Q) we obtain Z by retracting onto the positive spine, and then blowing
up vertices into segments. From Z we obtain (X, Q) by collapsing segments into
vertices and then thickening each edge into a square.

It is clear that these two processes are inverses of each other, and so there is a bijective
correspondence between quadrangulated surfaces (X, Q) and arc diagrams Z, under
which positive vertices of (X, V) correspond to intervals of Z, squares of Q (or
cubes of the cubulation) correspond to arcs of Z or elements of {1,...,k}, a positive
vertex of a particular square corresponds to a place in a, and the two positive vertices
of a square correspond to two matched places v and w with M(v) = M(w). The
number of squares /(X, V) in Q (or cubes in the cubulation) is equal to the number
k= %|a| of arcs or matched pairs. Moreover, the edges in (X, Q) (or side faces of
cubes) correspond to the steps of Z: decomposing arcs of Q (or glued side faces)
correspond to interior steps of Z, and boundary edges of (X, Q) (or unglued side
faces of cubes, those on the side boundary of X x [0, 1]) correspond to exterior steps
of Z . The faces of a cube before and after a vertex v correspond to the steps before
and after the corresponding place in a.
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G- @

Figure 16: From arc diagram to quadrangulated surface. Green and red
vertices are positive and negative.

We note that a version of this construction appears in [37, Section 2.1], which constructs
a surface from an arc diagram Z = (Z, A, M) by thickening each segment Z; into a
rectangle Z; x [0, 1], and thickening the 1-handles so they are also rectangles, attached
at M~1(i) x {0}. Our construction is an equivalent thickening.

Since the squares of (X, Q) correspond to the elements of {1, ..., k}, we may associate
to each subset s C {1, ..., k} the basic dividing set I" where the squares corresponding
to s are on (have standard negative dividing set), and other squares are off (have positive
dividing set). This dividing set is equivalent to the elementary dividing sets associated
to s in [38, Section 6.1]. If |s| =i, then e(I") =k —2i = I(2, V) —2i. This gives
a bijective correspondence between subsets of {1,...,k}, and basic dividing sets on
(X, Q). If I'g and I'; are basic dividing sets corresponding to subsets s, € {1,...,k},
then in M (I, I'1), the cubes have bottom faces corresponding to s and top faces
corresponding to .

4.2 From contact structures to strand diagrams and back

Let (2, Q) be a quadrangulated surface corresponding to an arc diagram Z = (Z,A, M),
and let I'g and I'; be basic dividing sets corresponding to s,¢ € {1,...,k}. Let £ be
a tight contact structure on M (g, I'1), which is cubulated by (X, Q) x [0, 1]. From
Proposition 2.17, & corresponds to a labelling of each decomposing arc of O as used
or unused, so that the dividing set on each face of each cube is determined. Each cube
satisfies the conditions of Lemma 2.15 and thus is one of the cases depicted in Figure 9.

To (the isotopy class of) £ we now associate a generator of H(A(Z)) (ie a homology
class of symmetrised Z—constrained strand diagram) as follows. We declare that the
strand diagram goes from s to ¢ and, since the decomposing arcs of Q correspond to
the interior steps of Z, we declare the used interior steps to be those corresponding to
the used decomposing arcs. These determine a homology class & € H1(Z, a) supported
on the used steps, each with multiplicity 1.
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A cube of the cubulation corresponds to an element of {1,...,k}, and hence to a
matched pair of places. The positive vertices v and w on the cube correspond to the
two places, which we also call v, w € a. The bottom face is on or off accordingly as
M (v) = M(w) lies in s or not; the top face is on or off accordingly as M (v) = M(w)
lies in ¢ or not; and the side faces before and after v and w are used or not accordingly
as the steps before and after v and w are used or not. Thus the data of I'g and I'y
and the used faces of the cube determine the data of 4, s and ¢ near v and w, and
vice versa. We observe that a set of cube data appears in Figure 9 if and only if
the corresponding data of /&, s and ¢ near v and w also appears; indeed, they are
written next to each other in the figure. Thus the data of /, s and ¢ near each matched
pair v and w appears in Figure 9, and by Proposition 3.4 the h—graded summand of
1(s)- H(A(Z)) - I1(¢) is 1-dimensional, generated by the unique homology class of
diagram given locally near each pair of marked points by Figure 9. We associate to £
this homology class of symmetrised Z—constrained strand diagram.

Conversely, to a generator of H(A(Z)), represented by a symmetrised Z—constrained
strand diagram @, we can associate an (isotopy class of) tight contact structure £.
Let u go from s to ¢ and have homological grading . We take £ on M(I'y,T'y),
where g and I'; correspond to s and ¢, such that the used faces of £ correspond
to the used steps of w. Since u is nonzero in H(A(Z)), near every pair of matched
places v and w the data of %, s and ¢ is one of the cases depicted in Figure 9; hence
for each cube, the cube data of & also appears in Figure 9, and hence each cube is tight.
So we associate to u the (isotopy class of) tight contact structure £ constructed from
these tight cubes.

The correspondence between tight contact structures and generators of homology is
clearly bijective. We simply pass back and forth between the local description of a
contact structure near a cube, and the local description of a strand diagram near a
pair of matched points, using Figure 9. Thus we have an F,—module isomorphism
CA(Z, Q)= H(A(Z2)).

A contact structure on M(T'p, I'1) corresponds to a generator from s to ¢, and so this
isomorphism restricts to the isomorphisms of summands

Ir,-CA(E. Q) Ir, 2 I(s)- H(A(2)) - 1(1).

And a contact structure with Euler class e corresponds to a generator where |s| = |f| =i
and e = k — 2i, so the isomorphism restricts to the isomorphisms of summands

CA.(Z, Q) = H(A(Z,1)).
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An h—graded summand of H(A(Z)) corresponds to those contact structures with used
faces given by the support of 4, and hence to a specified relative Euler class summand
of CA(X, 0).

4.3 Multiplication: the name of the game

We now show that the F,—module isomorphism CA(X, Q) — H(Z) preserves multi-
plication. So let I'g, I'; and I'; be three basic dividing sets corresponding to subsets
50,51,82 C{1,...,k}, let & be a tight contact structure on M (I'p, I'1) corresponding
to a generator of 1(sg) - H(A(Z)) - I(s1), represented by a strand diagram ¢, and
let & be a tight contact structure on M(I'y, [2) corresponding to a generator of
I1(s1)- H(A(Z))-I(s2), represented by a strand diagram ;. Let & have used faces U;
and let u; have homological grading A; .

We have seen that the used faces U; of each &; correspond to the used steps of
each u;. If & and &; have a common used face, then o and @; have a common
used step. In this case stacking &y and &; yields an overtwisted contact structure, by
Proposition 2.18(i), so £p€1 = 0 in CA(X, Q); and correspondingly, (o1 is zero in
homology, by Proposition 3.5(i). We can now assume the used faces U; of the &; are
disjoint, and the used steps of the w; are disjoint.

In this case, by Proposition 2.18(ii), the contact structure £y&; is the cubulated contact
structure on M (I'g, I'2) with used faces given by Uy U U; . This contact structure is
tight if and only if each cube is one of the cases depicted in Figure 9. Similarly, by
Proposition 3.5(ii), pop1 is nonzero in homology if and only if the (ho+h;)—graded
summand of 1(sg) - H(A(Z)) - I(s2) is nonzero, and by Proposition 3.4 this occurs
if and only if the data of hg + A1, sg, s2 near each matched pair v and w is one of
the cases depicted in Figure 9. Thus &y is tight if and only if o is nonzero in
homology, and in this case, since the dividing sets I'g and I’y of &y&; correspond
to the beginning and end s¢ and s, of o1, and the used faces Uy U U; of &€y
correspond to the used steps of po/1, the contact structure £9&€1 maps to the homology
class of pou1 under the module isomorphism CA(X, Q) = H(A(Z2)).

We have now proved Theorem 1.1. In fact we have also established the isomorphisms
of Fp—submodule summands

CAe(S, Q) = H(A(Z.i)) and 1Ip,-CA(S, Q) Ir, = I(so)- H(A(Z))- I(s1),

where ¢ = I(X,V) —2i and I'g and I'; are basic dividing sets corresponding
to so,51 €{1,....k}.
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We remark that the strands of a strand diagram can be interpreted as bypass additions,
which are compatible with the quadrangulation in an appropriate sense. Alternatively,
if we draw the principal diagonals in faces which are on, then the upward movement of
a strand diagram corresponds to a clockwise rotation of such a diagonal about one of
its endpoints. The ordering of the points on an arc diagram also provide an interesting
refinement of the notion of partial orders on objects of a contact category, as discussed
in [26; 25], reminiscent of the clock theorem of formal knot theory [22].

5 Relation to sutured Floer homology

We finally prove Corollary 1.2, giving the dimension of the sutured Floer homology
related to the sutured manifold corresponding to our construction. As usual, let Z be
an arc diagram corresponding to a quadrangulated surface (X, Q).

The corollary essentially now follows immediately from Theorem 6.4 of [38], giving
an algebra isomorphism
H(A(Z)= @5 SFH(=M(To.T1)).
To,I"; basic

(We have translated Zarev’s notation into our own: the (F x [0, 1], 7 s) of [38,
Section 6] has sutures I'; x {0} and T'y x {1}, with a negative twist along the side
boundary, opposite to the behaviour of a vertical dividing set. Reversing the orientation
on F, but noton [0, 1], produces a sutured manifold — F x [0, 1] with sutures —I'7 x {0}
and —I'y x {1}, with a positive twist on the side boundary. These sutures do behave
like a vertical dividing set and we denote this sutured manifold by —M((T'7,Ty).)

Moreover, if s and ¢ are subsets of {1,...,k} corresponding to basic dividing sets I'g
and I';, Zarev shows that the isomorphism above restricts to summands as

1(s)- H(A(Z)) - 1(t) = SFH(—M(Ts, T;)).

Proof of Corollary 1.2 Combining Theorem 1.1 and Zarev’s isomorphism, we have
CA(Z.Q)= (P SFH(=M(o.I),
I'o,T"1 basic
Ir,-CA(X, Q) - 1r, = SFH(—M (Is, T'y)).
The summand 1 - CA(X, Q) - I, of the contact category algebra, as an [F,—module,

has basis given by the isotopy classes contact structures on M (I's, I';). Hence it has
dimension equal to the number of isotopy classes of contact structures on M (I'y, I';). O
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