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On homology cobordism and local equivalence
between plumbed manifolds

IRVING DAI

MATTHEW STOFFREGEN

We establish a structural understanding of the involutive Heegaard Floer homology
for all linear combinations of almost-rational (AR) plumbed three-manifolds. We
use this to show that the Neumann–Siebenmann invariant is a homology cobordism
invariant for all linear combinations of AR plumbed homology spheres. As a corollary,
we prove that if Y is a linear combination of AR plumbed homology spheres with
�.Y / D 1 , then Y is not torsion in the homology cobordism group. A general
computation of the involutive Heegaard Floer correction terms for these spaces is also
included.

57R58; 57M27

1 Introduction and results

The aim of the present work is to investigate the involutive Heegaard Floer homology
of a certain class of plumbed three-manifolds, as a means for understanding their span
in the homology cobordism group. The application of Floer theory to the problem of
homology cobordism is well known and has an established history in the literature;
see eg Fintushel and Stern [7], Furuta [9], Frøyshov [8], Ozsváth and Szabó [20],
and Manolescu [15]. In this paper, we build on the setup of the first author and
Manolescu [6], which uses the involutive Floer package developed by Hendricks and
Manolescu [10] and Hendricks, Manolescu, and Zemke [11] to study the family of
almost-rational plumbed three-manifolds. (We refer to these as AR plumbed manifolds,
for short.) This family, which includes all Seifert fibered rational homology spheres
with base orbifold S2, is defined via placing certain combinatorial constraints on the
usual three-dimensional plumbing construction; see Section 2.2. In [6], the involutive
Floer homology of the class of AR plumbed manifolds was computed and a start was
made on understanding connected sums of such manifolds in a restricted range of cases.

Our main result (see Theorem 1.1) provides a structural understanding of the invo-
lutive Floer homology for all linear combinations of AR plumbed manifolds. We
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use this to derive a nontorsion result for all linear combinations Y of AR plumbed
homology spheres with Rokhlin invariant �.Y / D 1. We are also able to relate the
Neumann–Siebenmann invariant to the involutive Floer homology (in the case of linear
combinations of AR manifolds), and carry out a general computation of the involutive
Floer correction terms d and d for these spaces.

1.1 Overview and motivation

Historically, the homology cobordism group ‚3Z has occupied a central place in the de-
velopment of three- and four-manifold topology. Several gauge-theoretic invariants have
been used to derive results involving ‚3Z , including a proof that ‚3Z has a Z1 subgroup
(originally due to Furuta [9] and Fintushel and Stern [7]). In turn, the structure of ‚3Z
has turned out to be connected to several questions in classical topology, especially
concerning the triangulability of high-dimensional topological manifolds. Following
this program, Manolescu [15] disproved the triangulation conjecture by ruling out
2–torsion in ‚3Z with Rokhlin invariant one. This was established via the introduction
of a new gauge-theoretic invariant, called Pin.2/–equivariant Seiberg–Witten Floer
homology, along with a related suite of homology cobordism invariants ˛ , ˇ , and 
 .
(See also work of Lin [13].) Despite these advances, many problems involving the
structure of ‚3Z remain open. One particularly obvious question to ask is whether ‚3Z
contains any torsion. In light of Manolescu’s result, it is also natural to ask this in
the more restricted setting of having Rokhlin invariant one, in which case there is
no 2–torsion. For further results in this direction, see work of Saveliev [24] and of
Lin, Ruberman, and Saveliev [14].

Recently, work by the second author has involved understanding the Pin.2/–equivariant
Seiberg–Witten Floer homology of Seifert fibered spaces (see [26; 27]). These Floer
homologies have explicit algebraic models which make them amenable to compu-
tation; and, in addition, one can attempt to identify classical invariants such as the
Neumann–Siebenmann invariant (defined by Neumann [19] and Siebenmann [25]) for
such spaces in terms of their Floer homology (see Manolescu [15, Conjecture 4.1]).
Using the formulation of Pin.2/–equivariant monopole Floer homology by Lin [13],
many of these results can be extended to the class of AR plumbed manifolds by utilizing
combinatorial techniques inspired by the work of Némethi [18] on lattice homology.
(See work by the first author in [5].) Although this gives a good understanding
of the Pin.2/–homology of individual AR manifolds, a general description of the
Pin.2/–homology of connected sums is more difficult. See [27] for results in this
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direction. In the present paper, we will study the subgroups of ‚3Z generated by Seifert
spaces and AR plumbed manifolds; these will be denoted by ‚SF and ‚AR , respectively.

On the symplectic geometry side, Hendricks and Manolescu [10] defined a new three-
manifold invariant called involutive Heegaard Floer homology. This is a modification
of the usual Heegaard Floer homology of Ozsváth and Szabó, taking into account the
conjugation action � on the Heegaard Floer complex coming from interchanging the
˛– and ˇ–curves. More precisely, given a rational homology sphere Y equipped with
a self-conjugate spinc–structure s, one can associate to the pair .Y; s/ an algebraic
object called an �–complex, from which one constructs a well-defined three-manifold
invariant HFI�.Y; s/.1 (There are analogous constructions for the other three flavors of
Heegaard Floer homology.) This is a module over F ŒU;Q�=.Q2/, where F D Z=2Z

and the degrees of U and Q are �2 and �1, respectively. We also have the involutive
Floer correction terms d and d , which are the analogues of the d–invariant in Heegaard
Floer homology. These are homology cobordism invariants, but are not additive under
connected sum. See Section 2.1 for a review of involutive Floer homology.

Hendricks, Manolescu, and Zemke [11] constructed an abelian group IQ , consisting
of all possible �–complexes up to an algebraic equivalence relation called local equiva-
lence.2 This notion is modeled on the relation of homology cobordism, in the sense
that if two (integer) homology spheres are homology cobordant, then their �–complexes
are locally equivalent. The group operation on IQ is given by tensor product. If Y
is a rational homology sphere equipped with a self-conjugate spinc–structure s, then
taking the local equivalence class of the (grading-shifted) �–complex of .Y; s/ gives an
element of IQ , which we denote by h.Y; s/:

.Y; s/ 7! h.Y; s/ 2 IQ:

In [11] it was shown that h takes connected sums to tensor products, and hence that
restricting to the case of integer homology spheres yields a homomorphism

hW ‚3Z! IQ:

This is the analogue in the involutive Floer setting of the chain local equivalence
group CLE, defined by the second author in [26] for Pin.2/–homology. We can thus
attempt to study ‚3Z by understanding the structure of the group IQ and the image of

1Involutive Floer homology is defined for all three-manifolds Y , but in this paper we will only need
the case where Y is a rational homology sphere.

2In [11], only the case of integer homology spheres was considered, but the construction is essentially
the same. See Section 2.1.
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the map h. One should think of IQ as capturing all of the information contained in
the involutive Floer homology, from the point of view of homology cobordism. Note
that we can further restrict h to the subgroups ‚SF and ‚AR of ‚3Z . See Section 2.1
for a more precise discussion of local equivalence and the construction of IQ .

As in the Pin.2/ case, one can use the lattice homology construction of Ozsváth
and Szabó [21] and Némethi [18] to determine the involutive Heegaard Floer homology
of the class of AR manifolds. This was carried out by the first author and Manolescu
in [6]. In this paper, we use the algebraic model developed in [6] to complete the
analysis of h.‚SF/ and h.‚AR/. In addition to providing a structural understanding of
the involutive Floer homology for all linear combinations of AR manifolds, this will
allow us to derive some applications about the subgroups ‚SF and ‚AR .

1.2 Statement of results

Consider the Brieskorn homology spheres †.p; 2p�1; 2pC1/ for p�3 odd. In [27] it
was shown that these are linearly independent in ‚3Z by using the Manolescu correction
terms ˛ , ˇ , and 
 . An analogous argument was given in [6] using the involutive Floer
homology. For convenience, we reparametrize slightly and denote by Yi the local
equivalence class

Yi D h.†.2i C 1; 4i C 1; 4i C 3//

for i � 1.3 (Here, we suppress writing the spinc–structure, since in the case of an
integer homology sphere the spinc–structure is unique.) A schematic picture of the Yi is
given in Figure 1. Our main result is that these classes in fact form a basis for h.‚AR/:

Theorem 1.1 We have
h.‚SF/D h.‚AR/Š Z1:

An explicit basis may be given by (the image of) the Poincaré homology sphere, together
with (the images of) the Brieskorn homology spheres †.p; 2p� 1; 2pC 1/ for p � 3
odd.

There is nothing particularly special about the manifolds †.p; 2p�1; 2pC1/, except
that they happen to realize a convenient set of �–complexes. The inclusion of †.2; 3; 5/
should be thought of as accounting for the possibility of an overall grading shift. Indeed,
we have the following generalization of Theorem 1.1:

3This is a slight abuse of notation from eg [27; 6], where Yp is used to denote †.p; 2p� 1; 2pC 1/ .
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Figure 1: Schematic picture of the Yi . Here, Yi may be thought of as
a particular submodule of the (grading-shifted) Heegaard Floer homology
of †.2i C 1; 4i C 1; 4i C 3/ . See Section 4 for details.

Theorem 1.2 Let Y be a linear combination of almost-rational plumbed three-manifolds,
and let s be a self-conjugate spinc–structure on Y . Then h.Y; s/ is equal to a linear
combination of the Yi , up to a grading shift by some � 2Q:

h.Y; s/D

�X
i

ciYi

�
Œ��:

This expression is unique, in the sense that any such expansion for h.Y; s/ must have
the same ci and the same �. Moreover,

�D 2�.Y; s/;

where �.Y; s/ is the Neumann–Siebenmann invariant of .Y; s/. In addition, the
class h.Y; s/ can be represented (up to orientation reversal) by an individual almost-
rational plumbed manifold only if

(1) ci 2 f�1; 0; 1g for all i , and

(2) the nonzero coefficients ci alternate in sign.

More precisely, for each ci ¤ 0, we require in (2) that the next nonzero coefficient cj
(with j > i ) be given by cj D�ci .

If Y is to have the usual orientation, then the last nonzero coefficient must be C1;
for Y to have reversed orientation, the last nonzero coefficient must be �1.

Note that in order for h.Y; s/ to be zero in IQ , both the coefficients ci and the
grading shift � must be zero. In further sections, we will describe a convenient way
of thinking about �–complexes and explain how to explicitly decompose the �–complex
of a connected sum of AR manifolds as a linear combination of the Yi .
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Theorem 1.1 shows that the Neumann–Siebenmann invariant of .Y; s/ can be read off
from the local equivalence class of its involutive Floer homology, at least for linear com-
binations of AR manifolds. In particular, this implies that the Neumann–Siebenmann
invariant restricted to ‚AR is a homology cobordism invariant:

Corollary 1.3 The Neumann–Siebenmann invariant descends to a well-defined homo-
morphism �W ‚AR! Z.

Proof It is easy to check from the definitions that � changes sign under orientation
reversal and is additive under connected sum. The local equivalence class h.Y / is an
invariant of homology cobordism, so the claim follows from the uniqueness part of
Theorem 1.2.

This provides a partial proof of a conjecture by Neumann [19], which states that
the Neumann–Siebenmann invariant is a homology cobordism invariant in general.
Corollary 1.3 may be viewed as a strengthening of eg [26, Theorem 1.3; 5, Theorem 1.3;
6, Theorem 1.2].

Corollary 1.3 also implies that if Y is a linear combination of AR homology spheres
with �.Y / ¤ 0, then Y is not torsion in the homology cobordism group. We can
phrase this in terms of the Rokhlin invariant � instead, which has the advantage of
being defined for all three-manifolds:

Corollary 1.4 Let Y be homology cobordant to a linear combination of AR homology
spheres, so that ŒY � 2‚AR . If �.Y /D 1, then ŒY � is not torsion in ‚3Z .

Proof The Neumann–Siebenmann invariant reduces to the Rokhlin invariant mod 2.

More generally, if Y is a manifold as above for which h.Y / is nonzero, then Theorem 1.1
evidently implies that the cobordism class ŒY � cannot be torsion in ‚3Z . Corollar-
ies 1.3 and 1.4 can be thought of as stating that if the Rokhlin invariant (or the
Neumann–Siebenmann invariant) of a linear combination of AR manifolds is nontrivial,
then h.Y /¤ 0.

In another direction, we can also use the decomposition of Theorem 1.2 to carry out
a computation of the involutive Floer correction terms d and d . Consider a linear
combination in IQ of the form

.Ys1 CYs2 C � � �CYsm/� .Yt1 CYt2 C � � �CYtn/;
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where the Yi are the basis elements of Theorem 1.2. Without loss of generality,
we assume that the si are distinct from the ti , and that s1 � s2 � � � � � sm and
t1 � t2 � � � � � tn . Then we have:

Theorem 1.5 Let Y be a linear combination of almost-rational plumbed three-manifolds,
and let s be a self-conjugate spinc–structure on Y . Suppose that h.Y; s/ decomposes
as a linear combination

.Ys1 CYs2 C � � �CYsm/� .Yt1 CYt2 C � � �CYtn/

as above, shifted by some grading �. Define the quantities

Pi D 2

� iX
jD1

tj �

iX
jD1

sj

�
for 0� i �min.m; n/;

Qi D 2

� iX
jD1

tj �

iC1X
jD1

sj

�
for 0� i �min.m� 1; n/:

Note that P0 D 0 and Q0 D�2s1 . Then

d.Y; s/D d.Y; s/Cmax
˚
min.P0;Q0/;
min.P0; P1;Q1/;

:::

min.P0; P1; P2; : : : ; Pmin.m;n/;Qmin.m;n//
	
;

with the understanding that if min.m; n/Dm, the Qmin.m;n/ in the last line should be
deleted.

Note that if mD 0, then min.m; n/Dm, and the above expression reduces to

d.Y; s/D d.Y; s/Cmaxfmin.P0/g D d.Y; s/:

Similarly, if nD 0 (but m> 0), then the above expression reduces to

d.Y; s/D d.Y; s/Cmaxfmin.P0;Q0/g D d.Y; s/� 2s1:

Compare with [6, Corollary 1.4].

Since orientation reversal corresponds to negation in IQ , changing Y to �Y in-
terchanges the index sets fsig and ftig. Due to the fact that d.Y; s/ D �d.�Y; s/,
Theorem 1.5 can also be used to compute d.Y; s/. We will give some motivation for
the terms appearing in the actual formula when we give the proof in Section 5.
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Although the statement of Theorem 1.5 is rather cumbersome, it is still possible to use
it to derive some general facts about d and d . To this end, we have the following
asymptotic characterization of the involutive Floer correction terms:

Corollary 1.6 Let Y be a linear combination of almost-rational plumbed three-
manifolds, and let s be a self-conjugate spinc–structure on Y . Suppose that h.Y; s/ is
given by a linear combination

.Ys1 CYs2 C � � �CYsm/� .Yt1 CYt2 C � � �CYtn/

as in the statement of Theorem 1.5. Then the involutive Floer correction terms of
#k.Y; s/ for k sufficiently large are as follows. If t1 > s1 , then for k sufficiently large,
we have

d
�
#k.Y; s/

�
D k � d.Y; s/C 2t1 and d

�
#k.Y; s/

�
D k � d.Y; s/:

If s1 > t1 , then for k sufficiently large, we have

d
�
#k.Y; s/

�
D k � d.Y; s/ and d

�
#k.Y; s/

�
D k � d.Y; s/� 2s1:

We currently do not know whether a similar “stabilization” result holds more generally
for all rational homology spheres; if not, then Corollary 1.6 provides an interesting
obstruction to being a connected sum of AR plumbed manifolds. Theorem 1.5 and
Corollary 1.6 should be compared with other expressions derived for various Floer
correction terms in eg [27, Theorem 1.4; 6, Theorem 1.3; 6, Corollary 1.5]. It is
possible (although actually rather involved) to show that Theorem 1.5 reduces to
[6, Theorem 1.3] in the appropriate cases.

We also have the following realization result:

Corollary 1.7 Let d , d , and d be any triple of even integers such that d � d � d
and d , d , and d are not all equal to each other. In addition, let � be any integer. Then
there are infinitely many distinct classes in ‚SF with the invariants d , d , d , and �.

Given Theorem 1.1, Corollary 1.7 is not particularly surprising, although it does
establish that � is almost entirely independent from the involutive Floer correction terms.
Note that if d D d D d , then it is not hard to show the corresponding local equivalence
class must be trivial (up to grading shift); in our case, this also implies d D�2�.
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Organization of the paper In Section 2, we review the construction of involutive
Heegaard Floer homology and describe the setup of [6] concerning the involutive Floer
homology of AR plumbed manifolds. In Section 3, we establish the main technical
result needed to prove Theorems 1.1 and 1.2, which we do in Section 4. In Section 5,
we prove Theorem 1.5 on the involutive Floer correction terms d and d . Finally, in
Section 6, we give some examples and prove Corollaries 1.6 and 1.7.
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2 Preliminary notions

In this section, we give the necessary background required for the rest of the paper.
Much of the exposition here is taken from [6], but since familiarity with the relevant
constructions (and their notation) will be critical in future sections, we have included it
as a matter of convenience to the reader.

2.1 Involutive Heegaard Floer homology

We begin by reviewing the construction of involutive Heegaard Floer homology as
given in [10]. We restrict ourselves to the case where Y is a rational homology sphere
and s is a self-conjugate spinc–structure on Y . Let HD .H; J / be a Heegaard pair
for Y , consisting of a pointed Heegaard splitting H D .†;˛;ˇ; z/ of Y , together with
a family of almost-complex structures J on Symg.†/. Associated to H , we have
the Heegaard Floer complex CF�.H; s/, which is a Q–graded, free F ŒU �–module
generated by the intersection points T˛ \Tˇ in Symg.†/. There are also three other
variants of this complex, related bycCF D CF�=.U D 0/; CF1 D U�1CF�; and CFC D CF1=CF�:

We denote these (along with the original complex) by CFı for ı Db, 1, C, and �.
If H and H0 are two Heegaard pairs for Y with the same basepoint z , then by work of
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Juhász and Thurston [12], any sequence of Heegaard moves relating H and H0 defines
a homotopy equivalence

ˆ.H;H0/W CFı.H; s/! CFı.H0; s/:

This assignation is itself unique up to chain homotopy, in that any two sequences of
Heegaard moves define chain-homotopic maps ˆ; see also [10, Proposition 2.3]. This
justifies the use of the notation CFı.Y; s/, rather than CFı.H; s/. Taking the homology
of CFı.Y; s/ yields the Heegaard Floer homology HFı.Y; s/ constructed by Ozsváth
and Szabó in [23; 22].

Now consider the conjugate Heegaard pair HD .H; J /. This is defined by reversing
the orientation on † and interchanging the ˛ and ˇ curves to give the Heegaard
splitting

H D .�†;ˇ;˛; z/;

and taking the conjugate family J of almost-complex structures on Symg.�†/. The
points of T˛ \Tˇ are in obvious correspondence with the points of Tˇ \T˛ , and
J–holomorphic disks with boundary on .T˛;Tˇ / are in bijection with J–holomorphic
disks with boundary on .Tˇ ;T˛/. This yields a canonical isomorphism

�W CFı.H; s/! CFı.H; s/;

where here we have used the fact that sD s, since s is self-conjugate. Note that this is
not the map ˆ.H;H/ defined in the previous paragraph. Instead, defining

�Dˆ.H;H/ ı �;

we obtain a chain map from CFı.H; s/ to itself. In [10, Section 2.2] it is shown that �
is a homotopy involution and is independent (up to the notion of equivalence defined
later in this section) of the choice of H . The involutive Heegaard Floer complex is
then defined to be the mapping cone

(1) CFIı.Y; s/D
�
CFı.Y; s/ Q.1C�/����!Q �CFı.Y; s/Œ�1�

�
:

Here, Q is a formal variable marking the right-hand copy of CFı.Y; s/. Taking the
homology of CFIı.Y; s/ yields the involutive Heegaard Floer homology HFIı.Y; s/.
In [10, Proposition 2.8] it is shown that the quasi-isomorphism type of CFIı.Y; s/ is
an invariant of .Y; s/. In this paper, we will mainly deal with the minus version of the
involutive Floer complex, CFI� .

We formalize the algebra underlying CFI� by recalling [11, Section 8]:
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Definition 2.1 [11, Definition 8.1] An �–complex is a pair .C; �/, consisting of:

� A Q–graded, finitely generated, free chain complex C over the ring F ŒU �,
where deg.U /D�2. Moreover, we ask that there is some � 2Q such that the
complex C is supported in degrees differing from � by integers. We also require
that there is a relatively graded isomorphism

U�1H�.C /Š F ŒU; U�1�;

and that U�1H�.C / is supported in degrees differing from � by even integers.

� A grading-preserving chain homomorphism �W C ! C, such that �2 is chain
homotopic to the identity.

The set of �–complexes comes with a natural equivalence relation, as follows:

Definition 2.2 [11, Definition 8.3] Two �–complexes .C; �/ and .C 0; �0/ are called
equivalent if there exist chain homotopy equivalences

F W C ! C 0 and GW C 0! C

that are homotopy inverses to each other, and such that

F ı �' �0 ıF and G ı �0 ' � ıG;

where ' denotes F ŒU �–equivariant chain homotopy.

Given .Y; s/ as above, the pair .CF�.Y; s/; �/ is evidently an �–complex. Note that if Y
is an integer homology sphere, then CF�.Y; s/ is Z–graded, rather than Q–graded
(and we may take � D 0). It is shown in [10] that choosing different Heegaard pairs
for Y yields equivalent �–complexes in the sense of Definition 2.2. Hence we use the
notation .CF�.Y; s/; �/, rather than .CF�.H; s/; �/. Given an arbitrary �–complex, we
can of course take the homology of its mapping cone as in (1), which we refer to as the
involutive homology of .C; �/. In [10] it is shown that an equivalence of �–complexes
induces a quasi-isomorphism between their mapping cones.

The following important structural result about involutive Floer homology was proven
by Hendricks, Manolescu, and Zemke in [11]:

Theorem 2.3 [11, Theorem 1.1] Suppose Y1 and Y2 are rational homology spheres
equipped with self-conjugate spinc–structures s1 and s2 . Let �1 , �2 , and � de-
note the conjugation involutions on the Floer complexes CF�.Y1; s1/, CF�.Y2; s2/,
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and CF�.Y1 #Y2; s1 # s2/, respectively. Then, the equivalence class of the �–complex
.CF�.Y1 #Y2/; �/ is the same as that of�

CF�.Y1; s1/˝FŒU � CF�.Y2; s2/Œ�2�; �1˝ �2
�
;

where Œ�2� denotes a grading shift.

One can also consider a coarser equivalence relation on the set of �–complexes, as
discussed in [11, Section 8]:

Definition 2.4 [11, Definition 8.5] Two �–complexes .C; �/ and .C 0; �0/ are called
locally equivalent if there exist (grading-preserving) chain maps

F W C ! C 0 and GW C 0! C

such that
F ı �' �0 ıF and G ı �0 ' � ıG;

and F and G induce isomorphisms on homology after inverting the action of U.

We call a map F as above a local map from .C; �/ to .C 0; �0/, and similarly we refer
to G as a local map in the other direction. The relation of local equivalence is modeled
on that of homology cobordism, in that if Y1 and Y2 are homology cobordant, then
their respective �–complexes are locally equivalent. In [11, Section 8], it is shown that
the set of �–complexes up to local equivalence forms a group, with the group operation
being given by tensor product. We call this group the involutive Floer group and denote
it by IQ :

Definition 2.5 [11, Proposition 8.8] Let IQ be the set of �–complexes up to local
equivalence. This has a multiplication given by tensor product, which sends (the local
equivalence classes of) two �–complexes .C1; �1/ and .C2; �2/ to (the local equivalence
class of) their tensor product complex .C1˝C2; �1˝ �2/.

The identity element of IQ is given by the trivial complex consisting of a single F ŒU �–
tower starting in grading zero, together with the identity map on this complex. Inverses
in IQ are given by dualizing. There is an obvious subgroup of IQ generated by the
set of �–complexes which are Z–graded; we denote this by I. Clearly, IQ consists of
an infinite number of copies of I, one for each Œ� � 2Q=2Z. See [11, Section 8] for
further discussion, and also [26] for the construction of the analogous group CLE in
Pin.2/–homology. We will sometimes use additive notations for elements of IQ .
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Let h be the map sending a pair .Y; s/ to the local equivalence class of its (grading-
shifted) �–complex:

h.Y; s/D .CF�.Y; s/; �/Œ�2�:

In light of Theorem 2.3, restricting to the case of integer homology spheres, we obtain
a homomorphism

hW ‚3Z! I:

We can further restrict h to the subgroup of ‚3Z generated by Seifert fibered spaces
(respectively, AR plumbed homology spheres), which we denote by ‚SF (respectively,
‚AR ). As described in Section 1, in this paper we will use the algebraic setup of [6] to
complete the analysis of h.‚SF/ and h.‚AR/.

Finally, we review the definition of the involutive Floer correction terms d and d .
These are given by

d.Y; s/Dmax
˚
r j there exists x 2 HFI�r .Y; s/ such that U nx ¤ 0

and U nx … Im.Q/ for all n� 0
	
C 1;

d.Y; s/Dmax
˚
r j there exists x 2 HFI�r .Y; s/ such that U nx ¤ 0 for all n� 0

and Umx 2 Im.Q/ for some m� 0
	
C 2:

See [10, Lemma 2.9]. (The shifts by one and two in these definitions are chosen so that
d D d D d D 0 for Y D S3.) Like the Ozsváth–Szabó d–invariant, it is easily checked
that the involutive Floer correction terms are invariant under homology cobordism,
although it should be noted that they are not homomorphisms; see [10, Theorem 1.3].
More generally, we can define

d; d W IQ!Q

by taking the involutive homology of any �–complex and using a similar definition as
before. In this paper, we will use a slightly different convention than in [11, Section 8],
and subtract two from the above definitions of d and d when defining them on IQ .
This is to cancel out the grading shift in the definition of h, so that

(2) d.Y; s/D d.h.Y; s// and d.Y; s/D d.h.Y; s//:

Note that the conventions in [11, Section 8] are such that d.Y; s/D d.CF�.Y; s/; �/
and d.Y; s/D d.CF�.Y; s/; �/.
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2.2 Almost-rational plumbed manifolds

We now define the class of AR plumbed manifolds. The motivation behind these spaces
originally comes from the study of complex singularities (see eg [18]). However, from
the viewpoint of involutive Floer homology, it will be more convenient to think of AR
manifolds simply as a class of three-manifolds whose Floer homology always takes a
certain form; see Theorem 2.8. Thus the topological details of the construction will not
actually be of much consequence in the rest of the paper, but we include them here for
completeness.

Let G be a decorated graph, and denote the decoration of a vertex v in G by m.v/2Z.
Let L be the integer lattice spanned by the vertices of G. We define a bilinear pairing
on L by setting

hv;wi D

8<:
m.v/ if v D w;
1 if v and w are connected by an edge,
0 otherwise,

and extending linearly to L. We call this pairing the intersection form associated
to G. Denote the dual lattice of L by L0 D Hom.L;Z/, and define the canonical
characteristic element K 2 L0 by setting

K.v/D�m.v/� 2;

for all vertices v . If x is a vector in L, then we write x > 0 if all of the coefficients
of x are nonnegative and if x ¤ 0.

Now let Y D Y.G/ be the manifold defined by the usual three-dimensional plumbing
construction on G. This means that Y is the boundary of the oriented four-manifold
W DW.G/ obtained by attaching two-handles to B4 according to G. (Note that Y
is oriented as the boundary of W .) We further suppose that G is a tree and that its
intersection form is negative definite; this is equivalent to the claim that Y is a rational
homology sphere realized as the link of a normal surface singularity. Such a singularity
is called rational if its geometric genus is zero. According to a theorem of Artin
(see [1; 2]), this occurs if and only if

�
1
2
.K.x/Chx; xi/� 1;

for all x > 0 in L. A graph satisfying this property is called a rational plumbing graph.
See [16, Section 8] for further discussion.
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Definition 2.6 [16, Definition 8.1] Let G be a tree with negative definite intersection
form. We say that G is an almost-rational graph if there exists a vertex v of G such
that by replacing the decoration m.v/ with some other m0 �m.v/, we obtain a rational
plumbing graph G0. In this situation, we refer to Y D Y.G/ as an almost-rational
plumbed manifold.

The family of AR plumbed manifolds includes all Seifert fibered rational homology
spheres with base orbifold S2, and, more generally, all one-bad-vertex plumbed mani-
folds in the sense of Ozsváth and Szabó [21]. In the case that Y is also an (integer)
homology sphere, we will refer to Y as an AR plumbed homology sphere. Note that
the class of AR manifolds is not closed under connected sum or orientation reversal,
although in the latter case the Floer homology is still easy to understand via dualizing.
Usually, we will refer to a connected sum of AR manifolds (some with reversed
orientation) as a linear combination of AR manifolds.

Remark 2.7 All Seifert fibered rational homology spheres have base orbifold with
underlying space S2 or RP2. (Further, if they are integer homology spheres, this has to
be S2.) When the underlying space is RP2, then the Seifert fibered rational homology
sphere is an L–space by [3, Proposition 18]. In such cases, it is straightforward to show
that the involutive Heegaard Floer homology is determined by the ordinary Heegaard
Floer homology (and is uninteresting).

2.3 Graded roots and standard complexes

We now turn to a discussion of the involutive Floer homology of AR manifolds. For
those unfamiliar with the results of [6] and related papers, a brief outline of the ideas is
as follows. Let Y be an AR plumbed three-manifold and let s be a spinc–structure on Y .
Then it is a consequence of the isomorphism between lattice homology and Heegaard
Floer homology (see eg [21; 16; 18]) that the Heegaard Floer homology HF�.Y; s/
may be compactly expressed in the form of a combinatorial object called a graded root.
If s is self-conjugate, then the graded root R associated to .Y; s/ encodes not only
the Heegaard Floer homology, but also the homological action of �� on HF�.Y; s/
(see [6; 5]). One of the main results of [6] is that the �–complex .CF�.Y; s/; �/ can be
recovered from R together with this homological involution.

More precisely, associated to R we may define a chain complex C�.R/, called
the standard complex of R , together with an involution J0 on C�.R/ such that
.CF�.Y; s/; �/ and .C�.R/; J0/ are equivalent �–complexes. In general, of course, the
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homotopy type of CFI�.Y; s/ cannot be recovered from HF�.Y; s/, even with the
knowledge of �� . However, for AR manifolds the Heegaard Floer homology has certain
structural constraints (coming from lattice homology) which imply that in such cases
the equivalence class of .CF�.Y; s/; �/ is determined for purely algebraic reasons. The
standard complex .C�.R/; J0/ has the advantage of being a particularly simple model
for .CF�.Y; s/; �/, and has a pleasing geometric/combinatorial interpretation which
makes understanding and manipulating such complexes easier. (Indeed, the remainder
of [6] is devoted to using this geometric picture to perform computations of d and d
for connected sums of AR manifolds.) In this paper, we will similarly manipulate these
complexes to prove Theorems 1.1 and 1.2.

We now give the precise definition of a graded root. Let R be an infinite tree, and let
grW Vert.R/!Q be a grading function from the vertices of R to a coset of 2Z in Q.
We say that R (together with the grading function gr) is a graded root if the following
conditions are satisfied:

� gr.u/� gr.v/D˙2 for any edge .u; v/,

� gr.u/ <maxfgr.v/; gr.w/g for any edges .u; v/ and .u;w/ with v ¤ w ,

� gr is bounded above,

� gr�1.k/ is finite for any k 2Q, and

� #gr�1.k/D 1 for all k� 0 in the image of gr.

Note that this definition differs from the one given in [6, Section 2.3] by a factor of
two in the grading function. We think of the grading of a vertex v as corresponding to
its height, so that geometrically a graded root may be realized as an upwards-opening
tree with an infinite downwards stem, as pictured in Figure 2. See [17] for further
discussion.

Given a graded root R , we define a graded F ŒU �–module H�.R/ by giving H�.R/

one generator for each vertex v of R , located in the same grading as gr.v/. (These
are generators of H�.R/ over F .) We define the U–action by specifying

U � v D w if .v; w/ is an edge and gr.v/� gr.w/D 2:

Clearly, U has degree �2. Since R and H�.R/ evidently contain precisely the same
information, we will sometimes abuse notation and refer to them interchangeably. As
alluded to earlier, the following theorem is a consequence of the isomorphism between
lattice homology and Heegaard Floer homology:
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:::

v3 v4

v2 v5

v1 v6

˛3˛2 ˛4

˛1 ˛5

Figure 2: Graded root (with leaf and angle labels) for HF�.†.2; 7; 15// .
Uppermost vertices have Maslov grading �2; successive rows have grading
difference two. (Taken from [6].)

Theorem 2.8 [18, Theorem 5.2.2] Let Y be an almost-rational plumbed three-
manifold, and let s be a spinc–structure on Y . Then HF�.Y; s/ is isomorphic to H�.R/

(as a graded F ŒU �–module) for some graded root R .

See also [21, Theorem 1.2; 16, Theorem 8.3].

In our case, we will be considering graded roots which have an additional symmetry
corresponding to the homological action of �� on HF�.Y; s/. To this end, we define
a symmetric graded root to be a graded root R with an involution J satisfying the
following properties:

� gr.v/D gr.J v/ for any vertex v ,

� .v; w/ is an edge in R if and only if .J v; Jw/ is an edge in R , and

� for every k 2Q, there is at most one J–invariant vertex v with gr.v/D k .

See also [6, Definition 2.11]. Geometrically, a symmetric graded root is simply a
graded root which is symmetric under reflection about the obvious central vertical
axis. It is clear that the action of J on R may be viewed as an involution on H�.R/

commuting with the action of U. As described in the beginning of the section, if s is
self-conjugate, then HF�.Y; s/ is in fact isomorphic to a symmetric graded root R , and
this isomorphism takes the action of �� to the involution on R . See [6, Theorem 3.1]
and also [5, Lemma 2.5] for the corresponding statement in the monopole category.

Now suppose that R is a symmetric graded root. Following [6, Section 4], we construct
a free F ŒU �–complex whose homology is H�.R/, as follows. Let v1; v2; : : : ; vn be
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v3

:::

v4

:::

v2

:::

v5

:::

v1

:::

v6

:::

˛3

:::

˛2

:::

˛4

:::

˛1

:::

˛5

:::

Figure 3: Standard complex associated to the F ŒU �–module HF�.†.2; 7; 15// .
Solid lines represent the action of U ; dashed lines represent the action of @ .
(Taken from [6].)

the leaves of R , enumerated in left-to-right lexicographic order. We also enumerate
by ˛1; ˛2; : : : ; ˛n�1 the n� 1 upward-opening angles in left-to-right lexicographic
order. The appropriate labels for the case of HF�.†.2; 7; 15// are shown in Figure 2.
We denote by gr.vi / the grading of vertex vi and by gr.˛i / the grading of the vertex
supporting angle ˛i .

The generators (over F ŒU �) of our complex are given as follows. For each leaf vi , we
place a single generator in grading gr.vi /, which by abuse of notation we also denote
by vi . Note that vi is a generator of our complex over F ŒU �, so that as an abelian
group we are introducing an entire tower of generators F ŒU �vi . For each angle ˛i ,
we similarly place a single generator in grading gr.˛i /C 1, denoting this by ˛i . (The
gradings of these generators are motivated by the notion of a geometric complex, to
appear in Section 2.4.) We define our differential to be identically zero on the vi , and set

@˛i D U
.gr.vi /�gr.˛i //=2vi CU

.gr.viC1/�gr.˛i //=2viC1

on the ˛i , extending to the entire complex linearly and U–equivariantly. We call this
complex the standard complex of R and denote it by C�.R/. The standard complex
associated to the graded root given in Figure 2 is shown in Figure 3.

It is easily checked that the homology of C�.R/ is isomorphic to H�.R/; see
[6, Lemma 4.1]. There is an obvious involution J0 on C�.R/ given by sending
vi to vn�iC1 , ˛i to ˛n�i , and extending linearly and U–equivariantly. This induces
the involution on H�.R/ corresponding to the symmetry of R . Given a symmetric
chain complex .C; J0/ of this form, we define the absolute value of the index of a
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generator to be min.i; n� i C 1/ for leaf generators vi and min.i; n� i/ for angle
generators ˛i . Where no confusion is possible, we denote this by ji j.

As discussed in the beginning of the subsection, we now have:

Theorem 2.9 [6, Theorem 4.5] Let Y be an almost-rational plumbed three-manifold,
and let s be a self-conjugate spinc–structure on Y . Let R be the symmetric graded root
corresponding to HF�.Y; s/ afforded by the isomorphism between lattice homology
and Heegaard Floer homology. Then .CF�.Y; s/; �/ and .C�.R/; J0/ are equivalent
�–complexes.

We will often refer to a symmetric graded root R , its standard complex C�.R/, and its
associated �–complex .C�.R/; J0/ interchangeably.

2.4 Geometric complexes

Given Theorems 2.3 and 2.9, it is clear that to understand the image of ‚AR in I,
we must understand tensor products of complexes of the form C�.R/ and their duals.
To this end, we describe a simple geometric/combinatorial representation of C�.R/
which will be useful in later sections. For each generator vi of C�.R/, we draw a
single 0–cell as in Figure 4, placing these on a horizontal line from left-to-right in
the same order as they appear in C�.R/. For each generator ˛i of C�.R/, we then
draw a 1–cell connecting the two 0–cells corresponding to the terms in @˛i . We also
remember the gradings gr.vi / and gr.˛i / of the generators associated to each of these
cells. The generators of C�.R/ are thus identified with the cellular generators of this
(rather trivial) cell complex, tensored with F ŒU �. Under this correspondence, we see
that the differential on C�.R/ is the usual cellular differential, except twisted by powers
of U according to the gradings of the relevant generators:

(3) @.�e/D
X

�e�12 bdry.�e/

U .gr.�e�1/�gr.�e//=2�e�1:

Here, �e is an e–cell, and we sum over the .e�1/–cells appearing in the usual cellular
boundary of �e . We have written gr.�e/ to mean either gr.vi / or gr.˛i /, depending
on whether d is zero or one. The twisted differential should be thought of exactly as the
usual cellular differential, only multiplied by the necessary powers of U so as to be of
degree �1 with respect to the grading coming from C�.R/. We call this cell complex
(over F ŒU �) with its twisted differential (extended linearly and U–equivariantly) the
geometric realization of C�.R/. See Figure 4.
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:::

v1 v4

v2 v3

˛2

˛1 ˛3

gr.v1/D gr.v4/D 0

gr.v2/D gr.v3/D�2

gr.˛2/D�4

gr.˛1/D gr.˛3/D�6

v1 v2 v3 v4˛2˛1 ˛3

Figure 4: Geometric realization (right) of a graded root (left). The leaves
v1 and v4 in this example have grading zero. It is helpful to think of the
picture on the right as being obtained by projecting the graded root on the left
onto a horizontal line.

More generally, we can formalize the above discussion as follows. Let C be a cell
complex (in the usual sense), and let gr be a function from the cells of C to a coset of 2Z
in Q such that gr.�e/� gr.�e�1/ whenever �e�1 is in the cellular boundary of �e .
We give C ˝F ŒU � a grading by defining an e–cell �e to have grading gr.�e/C e ,
and declaring U to have degree �2.4 Then the twisted differential (3) is of degree �1
and turns C ˝F ŒU � into a chain complex. We call a complex defined in this way a
geometric complex and refer to the underlying cell complex C (with its usual cellular
differential) as the skeleton of such a complex. The preceding discussion states that
every standard complex has a geometric realization whose skeleton is homeomorphic to
a line. Note that the passage from a geometric complex to its skeleton may be obtained
by setting U D 1.

Remark 2.10 This is almost identical to the construction of lattice homology given
in [18, Definition 3.1.4]. See [18, Theorem 3.1.12] for a discussion of the relationship
between this construction and the sublevel set construction of eg [18, Definition 3.1.11;
6, Section 7].

If X and Y are two geometric complexes, then there is an obvious geometric complex
which realizes X ˝ Y , defined as follows. The skeleton of X ˝ Y is given by the
usual product of the skeleton of X and the skeleton of Y . We then define the grading
of an e–cell x �y by setting gr.x �y/D gr.x/C gr.y/. This construction evidently

4We use the term “grading” to refer to both the actual chain complex grading and the grading func-
tion gr. The former is given by grC e , while we reserve the notation gr for the latter.
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Figure 5: Skeleton of the tensor product of two roots (kD2). Points (0–cells)
represent generators x D x1˝ x2 where both x1 and x2 are leaf generators;
edges (1–cells) represent generators where precisely one of x1 and x2 is an
angle generator; squares (2–cells) represent generators where both of the xi
are angle generators. Note the symmetry about each coordinate axis.

extends to the product of any number of geometric complexes, so that if R1; : : : ; Rk
are a set of k symmetric graded roots, then C�.R1/˝ � � �˝C�.Rk/ has an obvious
geometric realization as a product k–dimensional rectangular cell complex. The action
of J0 D J0˝ � � �˝J0 on this complex corresponds to reflection through the center of
its skeleton. See Figure 5.

3 Local equivalence

We now turn to a discussion of local equivalence, beginning with the case of a single
graded root. Following [6, Section 6], we define a special class of symmetric graded
roots which we call monotone, as follows. Let .C; J0/ be a symmetric chain complex
as in Section 2.3, with 2n leaf generators and 2n� 1 angle generators. Thus the leaf
and angle generators of C occur in symmetric pairs, with the exception of the single
J0–invariant generator ˛n . If the inequalities

(1) gr.v1/ > gr.v2/ > � � �> gr.vn/,

(2) gr.˛1/ < gr.˛2/ < � � �< gr.˛n/, and

(3) gr.vn/� gr.˛n/

hold, then we say that the symmetric graded root M corresponding to the homology
of C is a monotone root of type n. To emphasize the 2n parameters gr.vi / and gr.˛i /,
we write

M DM.gr.v1/; gr.˛1/I : : : I gr.vn/; gr.˛n//:
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h2 > r2 h2 D r2

h1

h2

r2

r1

h1

h2 D r2

r1

Figure 6: Examples of (type-two) monotone roots M.h1; r1I h2; r2/ . Most
of the vertices in the diagram have not been drawn explicitly.

Examples of monotone roots are given in Figure 6. Note that if gr.vn/>gr.˛n/, then M
itself has 2n leaves, while if gr.vn/D gr.˛n/, we are in the slightly degenerate case
where on the level of homology vn and vnC1 are collapsed into a single J0–invariant
leaf. In the special case that a monotone root M DM.h1; r1/ has only two parameters,
we will sometimes refer to M as a projective root, following [26, Fact 5.6]. In this
case it will be convenient to define5

zı.M/D h1� r1:

The graded roots Yi of Figure 1 are projective, with zı.Yi /D 2i for all i � 1.

We will also be interested in a slightly more general class of symmetric graded roots,
defined as follows. If C is a complex as above for which the slightly modified conditions

(1) gr.v1/� gr.v2/� � � � � gr.vn/,

(2) gr.˛1/� gr.˛2/� � � � � gr.˛n/, and

(3) gr.vn/� gr.˛n/

hold, then we say that the homology M of C is a weakly monotone root of type n, and
we parametrize it similarly as above.

It should be noted that occasionally the parametrized complex C does not quite coincide
with the standard complex of M, at least as defined in Section 2.3. For example, if M
is a (strictly) monotone root for which gr.vn/ D gr.˛n/, then the standard complex
of M has 2n� 1 leaf generators, while C as defined above has 2n leaf generators.

5This convention differs from zı in [27] in that the present zı is twice that of [27].
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Similarly, if M DM.h1; r1I : : : I hn; rn/ is a weakly monotone root, then appending
any number of pairs .rn; rn/ to the end of the parameter list yields a larger complex
whose weakly monotone root

M DM.h1; r1I : : : I hn; rnI rn; rnI : : : I rn; rn/

is easily checked to be isomorphic to the original, but whose associated complex C has
more generators. However, it is easy to see that all of these complexes are homotopy
equivalent (via a J0–equivariant chain homotopy), and that they are in fact homotopic
to the usual standard complex of M. Hence when discussing chain complexes of
monotone roots, we will freely use either the parametrized complex C or the usual
standard complex, whichever is more convenient.

The importance of the class of monotone roots lies in the following pair of theorems
established in [6]:

Theorem 3.1 [6, Theorem 6.1] Every symmetric graded root is locally equivalent to
some (strictly) monotone root (which is in fact a subroot of the original).

Theorem 3.2 [6, Theorem 6.2] Two (strictly) monotone roots are locally equivalent
if and only if they have the same set of ordered parameters.

Here, we again abuse notation slightly and say that two symmetric graded roots are
locally equivalent if there is a local equivalence between their �–complexes. We will
similarly make reference to the tensor product of two graded roots to mean the tensor
product of their standard (or parametrized) complexes, and so on.

According to Theorems 3.1 and 3.2, monotone roots parametrize the local equivalence
classes of (positively oriented) AR manifolds in IQ . Indeed, if one is given two
graded roots, to see if they are locally equivalent it suffices to extract their monotone
subroots and determine if they are the same. (A straightforward algorithm for doing
this is given in [6, Section 6].) However, it turns out that there are nontrivial local
equivalences between tensor products of monotone roots which introduce unexpected
relations in IQ . The remainder of this section will be devoted to establishing some of
these equivalences.

We begin by describing a convenient way of defining maps between geometric com-
plexes. Let X and Y be two geometric complexes graded by the same coset of 2Z
in Q. Suppose that we have a cellular map f from the skeleton of X to the skeleton
of Y . Thus f takes each e–cell in the skeleton of X to a sum of e–cells in the skeleton
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of Y , and preserves the usual cellular differential.6 We wish to know if f can be
promoted to a true grading-preserving chain map between X and Y . Suppose that

f .x/D
X
i

yi ;

where x is an e–cell in the skeleton of X and the yi are distinct e–cells in the skeleton
of Y . Then there is an obvious choice of grading-preserving lift given by

(4) zf .x/D
X
i

U .gr.yi /�gr.x//=2yi ;

where now we think of x and the yi as actual generators in X and Y and the same
set of yi appears in the sum. In order for this to be well defined, we must check
that each e–cell yi appearing in f .x/ satisfies the inequality gr.yi /� gr.x/. If this
condition holds for every x in the skeleton of X, then f evidently lifts to a grading-
preserving map from X to Y , and it is easily verified that this preserves the twisted
differential (3). We formalize this in the following lemma:

Lemma 3.3 Let X be a geometric complex such that

(a) the skeleton of X is contractible, and

(b) there is an involution J0 on the skeleton of X respecting the usual cellular
differential.

Then .X; J0/ is an �–complex, where J0 is the induced map on X coming from the
involution on its skeleton. In sufficiently low gradings, the F ŒU �–homology of X is
generated by U –powers of Œx�, where Œx� is the (appropriately homogenized) generator
of the cellular homology of the skeleton of X.

Now suppose that X and Y are two such geometric complexes graded by the same coset
of 2Z in Q. Let f be a cellular map between their skeleta satisfying these conditions:

(a) (lifting condition) gr.yi /� gr.x/ holds whenever yi appears in f .x/,

(b) the map f is J0–equivariant, and

(c) the map f takes each 0–cell in the skeleton of X to the sum of an odd number
of 0–cells in the skeleton of Y .

Then the lift (4) of f is a local map from X to Y .

6Here, we abuse language slightly and refer to any chain map between the cellular chain complexes of
skeleta as a “cellular map”, in order to distinguish these from chain maps between F ŒU �–complexes. Thus,
e–cells are allowed to be taken to sums of e–cells and/or zero. In all of the examples considered in this
paper, these maps will have a clear topological interpretation (which somewhat justifies their terminology).
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0

y

x

0 y 0

0

x�y

0 0

0

x

M.0; xIy; y/ M.0; x�y/ M.0; x/

C D

x x x�y x

0 0

Figure 7: Monotone roots of Example 3.4 (above) and the geometric real-
izations of their standard complexes (below). Gradings of leaf and angle
generators are marked in both parts of the diagram.

Proof Given that the skeleton of X is contractible, it is straightforward to check
that the homology of X in sufficiently negative gradings (congruent to � mod 2) is
isomorphic to F , and is generated in these gradings by the sum of any odd number
of 0–cells (multiplied by appropriate powers of U ). As J0 obviously lifts to an
involution on X, this easily implies the first claim. For the second claim, the fact that f
is an isomorphism after inverting the action of U follows from the requirement that f
takes each 0–cell in X to an odd number of 0–cells in Y . See also [6, Lemma 7.1].

Example 3.4 We illustrate the use of Lemma 3.3 with the following example. Let
x and y be two (negative) even integers for which x < y < 0. We establish the local
equivalence

M.0; xIy; y/CM.0; x�y/DM.0; x/:

One can of course instead write M.0; xIy; y/DM.0; x/�M.0; x�y/; this expresses
the type-two root on the left as the tensor product of a type-one root and the dual of a
type-one root. The monotone roots in question are displayed in Figure 7, together with
their standard complexes.

We have also displayed the geometric realization of M.0; xIy; y/CM.0; x�y/ on
the left-hand side in Figure 8, together with the gradings of its cells. (Both 2–cells have
grading xC .x � y/D 2x � y .) Note that the middle vertical 1–cell in the diagram
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M.0; xIy; y/˝M.0; x�y/ M.0; x/

0 x y x 0

x�y x x�y

0 x y x 0

2x�y 2x�y

0 x 0

Figure 8: Geometric realizations of M.0; xIy; y/˝M.0; x � y/ (left)
and M.0; x/ (right)

corresponds to the tensor product of the J0–invariant 0–cell of M.0; xIy; y/ with the
J0–invariant 1–cell of M.0; x�y/ and thus has grading yC .x�y/D x . For brevity
we will refer to the skeleton of M.0; xIy; y/CM.0; x � y/ as A and the skeleton
of M.0; x/ as B .

We now describe a local map from M.0; xIy; y/CM.0; x�y/ to M.0; x/ by defining
a cellular map between their skeleta. We send the bottom-left, top-left, and top-middle
0–cells of A to the left-hand 0–cell in B . We similarly map the bottom-right, top-right,
and bottom-middle 0–cells of A to the right-hand 0–cell in B . Note that since y < 0,
this correspondence satisfies the lifting condition of Lemma 3.3. We now send the
three red 1–cells in A to the single 1–cell in B , and send all the other 1– and 2–cells
to zero. It is easily checked that this is a J0–equivariant cellular map (over Z=2Z).
Applying Lemma 3.3, we obtain the local map in question.

X

SX

Y

SY

X 0

S 0X

Y 0

S 0Y

Figure 9: Swap operation on two monotone roots X and Y . In this example,
mD 3 , nD 2 , and aD b D 1 .
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Defining a local map from M.0; x/ to M.0; xIy; y/CM.0; x � y/ is even simpler:
we send the left-hand 0–cell in B to the bottom-left 0–cell in A, and the right-hand
0–cell in B to the top-right 0–cell in A. We then send the single 1–cell in B to the
sum of the three red 1–cells in A. Applying Lemma 3.3, we obtain the desired local
equivalence.

We now proceed to the main theorem of the section. In order to formulate this, we will
need to set up a bit of extra notation. Let X and Y be two weakly monotone roots.
We say that two roots X 0 and Y 0 are obtained from X and Y via a swap operation
if they are related as in Figure 9. More precisely, suppose that X is a type-m root,
and fix any 1 � a � m. Consider the set of leaves in X whose indices are strictly
greater than a in absolute value. Let SX be the subgraph of X formed by taking the
union over the paths connecting these leaves to the vertex supporting the angle ˛a
in X. This subgraph is marked in blue in Figure 9. Letting Y be a type-n root and
1� b�n, we define SY similarly. We then form X 0 and Y 0 by cutting out SX and SY
from X and Y , respectively, and interchanging them. We say that X 0 and Y 0 are a
valid swapped pair if X 0 and Y 0 are still weakly monotone.

To see what this does to the parameters of X and Y , let

X DM.p1; s1I : : : Ipm; sm/ and Y DM.q1; t1I : : : I qn; tn/:

Fix any pair of integers 1 � a � m and 1 � b � n, and let � D sa � tb . Then the
swapped roots X 0 and Y 0 are defined by the parameters

X 0 DM.p1; s1I : : : Ipa; saI qbC1C�; tbC1C�I : : : I qnC�; tnC�/;

Y 0 DM.q1; t1I : : : I qb; tbIpaC1��; saC1��I : : : Ipm��; sm��/:

The condition that X 0 and Y 0 are a valid swapped pair is equivalent to the pair of
inequalities

(5) pa � qbC1C� and qb � paC1��;

since the other monotone inequalities are automatically satisfied. (For example,
sa � tbC1C�D saC .tbC1� tb/, and so on.) Note that we allow the swapping
operation even if one of the subgraphs is empty, which occurs if aDm or b D n. In
this case, the monotonicity condition for one of the swapped roots is then trivial.

We now have the main result of this section:
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X ˝Y X 0˝Y 0

Figure 10: Skeleta of X˝Y and X 0˝Y 0. On the left, the inner box represents
cells of the form xi �yj with ji j; jj j> 1; similarly for cells x0i �y

0
j on the

right.

Theorem 3.5 Let X and Y be two weakly monotone roots, and suppose X 0 and Y 0

are a valid swapped pair obtained from X and Y . Then X ˝ Y is locally equivalent
to X 0˝Y 0.

Proof Let X and Y be two weakly monotone roots as above, and assume that
X 0 and Y 0 are a valid swapped pair. In order to communicate the idea of the proof,
we will first establish the claim under the assumption that mD n and aD b D 1. The
general case will follow easily from this simpler one with some minor modifications.

For ease of notation, let the leaf and angle generators of X be denoted by vi and ˛i ,
respectively, and let the leaf and angle generators of Y be denoted by wi and ˇi .

X ˝Y A

Figure 11: Auxiliary complex A (right), locally equivalent to X ˝Y (left)
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Likewise, let the generators of X 0 be v0i and ˛0i, and let the generators of Y 0 be
w0i and ˇ0i. In case we need to refer to a generator of X or X 0 without specifying
whether it is a leaf or an angle generator, we will use the notation xi or x0i (and similarly
yi or y0i for Y or Y 0 ). Note that there is an obvious gr–preserving identification
between the unprimed and primed generators of index ji j D 1. For generators of
index ji j> 1, we think of x0i as corresponding to yi , except with shifted grading

gr.x0i /D gr.yi /C�:

Likewise, y0i may be identified with xi , except that7

gr.y0i /D gr.xi /��:

As in Example 3.4, we proceed by analyzing the skeleta of X˝Y and X 0˝Y 0. Because
m D n, these two skeleta are identical to each other, and are in fact just 2m � 2m
squares. Hence the subtlety will come from understanding the grading function gr
defined on each. We have displayed the skeleta of X ˝Y and X 0˝Y 0 in Figure 10,
together with some notational colorings, which we now explain.

Consider the skeleton of X ˝Y , displayed on the left in Figure 10. We divide this into
several parts, as follows. First, instead of explicitly drawing the 0–, 1–, and 2–cells
appearing in the center of the complex, we have drawn a 2.m� 1/� 2.m� 1/ square
box enveloping them. We refer to the collection of cells appearing inside this square as
the inner box. These are the cells coming from products of leaf generators and angle
generators internal to SX and SY ; that is, cells of the form

xi �yj with ji j; jj j> 1:

Also appearing in the picture are the four corners of the overall square, together with
the eight 1–cells and four 2–cells incident to them. These are cells of the form

xi �yj with ji j D jj j D 1:

We refer to the collection of these cells as the corner cells and have colored/shaded
them black in Figure 10. Next, there are the 0– and 1–cells which occur along the

7Here, we use the term “identification” rather loosely, as we have not (yet) made any claim about
constructing maps between the unprimed and primed complexes. As the leaf and angle generators of
various complexes are just 0– and 1–cells, we obviously have a tautological “identification” between any
two generators of the same dimension, although this may not preserve gr. However, given the geometric
nature of the swapping operation, it is clear that certain generators in the unprimed and primed complexes
should be naturally thought of as related to each other.
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faces of the overall square, but are not corner cells. These are of the form

vi �yj with ji j D 1 and jj j> 1 or xi �wj with ji j> 1 and jj j D 1:

We call these cells the side panels and color them purple. Finally, there are also the 1–
and 2–cells running between the inner box and the side panels. These are of the form

˛i �yj with ji j D 1 and jj j> 1 or xi � ǰ with ji j> 1 and jj j D 1:

We refer to these as the bridge cells. In Figure 10, we have colored/shaded the bridge
cells of the first kind blue and the second kind red. We define a similar decomposition
of X 0˝Y 0, displayed on the right in Figure 10, except that we switch the coloring of
the red and blue cells. (The reason for this change will become clear presently.)

Now let us compare the tensor products X ˝ Y and X 0 ˝ Y 0. First, observe that
because of the natural identification of unprimed and primed generators when ji j D 1,
the obvious bijection between the corner cells of X˝Y and the corner cells of X 0˝Y 0

preserves the grading function gr. Explicitly, one can check that in both cases, the
following gradings hold: all four 0–cells have grDp1Cq1 , the four horizontal 1–cells
have grD s1C q1 , the four vertical 1–cells have grD p1C t1 , and the four 2–cells
have grD s1C t1 .

Next, consider the inner boxes of the two complexes. For ji j; jj j> 1, we have

gr.x0i �y
0
j /D .gr.yi /C�/C .gr.xj /��/D gr.yi � xj /:

Hence the correspondence between the two inner boxes defined by sending x0i � y
0
j

to yi � xj for ji j; jj j > 1 preserves gr. We may think of this geometrically as
identifying the inner boxes via reflection across the diagonal. Note that since each
complex is symmetric about the vertical and horizontal axes, we can also effect a
gr–preserving correspondence by using a ninety-degree rotation in either the clockwise
or counterclockwise direction.

Finally, consider the bridge cells. For X ˝Y , we have already described the possible
forms that these can take. In X 0˝Y 0, the bridge cells are of the form

˛0i �y
0
j with ji j D 1 and jj j> 1 or x0i �ˇ

0
j with ji j> 1 and jj j D 1:

Gradings of cells of the first kind are given by

s1C gr.y0j /D s1C gr.xj /��D gr.xj /C t1
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for jj j> 1. These are precisely the same as the gradings of bridge cells of the second
kind in X ˝Y . Similarly, gradings of cells of the second kind in X 0˝Y 0 are given by

gr.x0i /C t1 D gr.yi /C�C t1 D s1C gr.yi /;

for ji j > 1, which are the same as the gradings of bridge cells of the first kind
in X ˝Y . Hence we see that, as in the inner-box case, we again have a gr–preserving
correspondence between the two sets of bridge cells, given by a ninety-degree rotation
in either direction. To represent this identification, we have interchanged the red and
blue colorings in X 0˝Y 0, so that the obvious bijection between the red (respectively,
blue) cells in X ˝Y and the red (respectively, blue) cells in X 0˝Y 0 given by either
rotation preserves gr.

These observations give some intuition for how to define a map between the skeleton
of X ˝Y and the skeleton of X 0˝Y 0. Roughly speaking, we map the corner cells to
each other via the obvious identity bijection, while using a ninety-degree rotation on the
inner box and bridge cells. There are several evident difficulties with this suggestion.
First, it is unclear how to extend this to an actual cellular map from one skeleton to the
other while still preserving the cellular differential. Second, we have not specified how
to define our map on the side panels. Indeed, one can check that the gradings of the
cells in the side panels do not work out to produce any such similar correspondence,
either by an identity bijection or a ninety-degree rotation. We thus proceed instead
by first constructing two auxiliary complexes which are locally equivalent to X ˝Y
and X 0 ˝ Y 0. As we will see, these auxiliary complexes will turn out to be more
amenable to the intuition we have built up over the last several paragraphs.

We begin by defining a geometric complex A which is locally equivalent to X ˝ Y .
The skeleton of A is displayed on the right in Figure 11. Like X ˝ Y , the skeleton
of A has a 2.m� 1/� 2.m� 1/ inner box, which we define to be exactly same as
that of X ˝Y . More precisely, we let the cells in the inner box of A be duplicates of
those in X ˝Y , and we set gr on the inner box of A to be the same as it is on X ˝Y .
Next, the skeleton of A contains a collection of red and blue 1– and 2–cells. These
are in obvious bijection with the red and blue bridge cells in X ˝Y , as indicated by
the correspondence in Figure 11. We define gr on these cells as being equal to gr of
their counterparts in X ˝Y . Finally, A contains a total of twelve black 0–, 1–, and
2–cells. We define gr on these cells as follows: the four 0–cells have grDp1Cq1 , the
two horizontal 1–cells have grD s1C q1 , the two vertical 1–cells have grD p1C t1 ,
and the four 2–cells have grD s1C t1 . These gradings should be compared with the
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X ˝Y AX ⊗ Y A

Figure 12: Schematic depiction of a map from X ˝ Y to A . Solid arrows
denote maps of 1–cells and dashed arrows denote maps of 2–cells. We have
only indicated the map on a single red 1–cell and 2–cell; the map on the other
red cells is defined similarly. Extension to the rest of X ˝Y (not displayed
in the figure) is achieved by repeatedly rotating the picture by ninety degrees.

gradings of the corner cells in X ˝Y . Note that A has an obvious involution given by
reflection in each coordinate.

This defines a geometric complex A which we claim is locally equivalent to X ˝Y .
We begin by constructing a local map from X˝Y to A by defining a map f between
their skeleta. We let f be given by the identity on the inner box, and define f on
the red and blue cells via the bijection indicated in Figure 12. Next, we send the four
corners of X ˝ Y to the four corners of A, and the four black 2–cells of X ˝ Y to
the four black 2–cells of A via the correspondence shown in Figure 12. It remains to
define f on the black 1–cells and the side panels.

Consider (for example) the uppermost face of X˝Y . We send all of the purple 0–cells
contained in this face to the nearest counterclockwise corner 0–cell, which in this case
is the top-left corner of A. We define f to be zero on all of the 1–cells contained in
this face, except for the right-hand black 1–cell, which we map to the uppermost face

X ˝Y A

Figure 13: Slanted red 1–cell in A mapped to the sum of 1–cells in X ˝Y
displayed on the left
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in A. One should think of f restricted to the top face of X ˝ Y as a map from the
interval to itself, fixing the endpoints, where everything to the left of the right-hand
black 1–cell is crushed to the left endpoint and the remaining 1–cell is “stretched out”
over the full interval. We define f similarly in a “counterclockwise” manner on the
other three sides of X ˝Y . It is straightforward to check that this map preserves the
cellular differential.

Note that f actually maps each cell of X ˝ Y either to a single cell of A or to
zero. Because of the way gr is defined on A, in the former case f actually preserves
gr everywhere except for possibly on the purple 0–cells. Now, the purple 0–cells
contained in the top face of X ˝Y have gradings

grD pi C q1 with 2� i �m:

Due to the monotonicity of X, these are all less than or equal to p1C q1 , which is the
grading of the top-left corner of A. A similar argument for the other purple 0–cells
using the monotonicity of Y shows that f satisfies the lifting condition of Lemma 3.3.
Since f is evidently J0–equivariant and maps each 0–cell of X ˝Y to exactly one
0–cell of A, applying Lemma 3.3 yields the desired local map.

We now construct a local map from A to X˝Y by defining a map g from the skeleton
of A to the skeleton of X ˝Y . We set g to be the inverse of f on the inner box, as
well as all black, red, and blue 2–cells. We define g on the corner 0–cells via the
obvious identity correspondence, and define g on the black 1–cells by sending each
face of A to the sum of 1–cells constituting the corresponding face in X ˝Y . Finally,
we define g on the red and blue 1–cells of A according to the prescription of Figure 13.
More precisely, we send a red or blue 1–cell in A to the corresponding red or blue
1–cell in X ˝Y , summed together with the chain of purple and black 1–cells running
from that 1–cell to the nearest counterclockwise corner 0–cell. With some care, one
can check that g preserves the cellular differential (over Z=2Z).

We now check that g satisfies the lifting condition of Lemma 3.3. Note, except in the
case of the black 1–cells and bridge 1–cells of A, that g maps each cell of A to a
single cell in X ˝Y of the same grading. We thus consider the black 1–cells first. As
described, g takes the uppermost face of A to the sum of 1–cells constituting the top
face of X ˝Y . The gradings of these latter 1–cells are given by

grD si C q1 with 1� i �m:
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A B

Figure 14: Geometric complexes A and B , locally equivalent to X ˝ Y
and X 0˝Y 0. Compare with Figure 10.

Due to the monotonicity of X, these are all greater than or equal to s1C q1 , which is
the grading of the top face of A. A similar computation using the monotonicity of Y
holds for the other three sides, verifying the lifting condition for the black 1–cells.

Now consider a red 1–cell in A, as in Figure 13. This has grading grD pi C t1 for
some fixed ji j> 1. Note that this is less than or equal to p2C t1 , by the monotonicity
of X. The corresponding red 1–cell in the image of g has exactly the same grading as
the original, while the remaining 1–cells in the image of g all lie in the uppermost face
of X ˝Y , and have gradings bounded below by s1C q1 (by the previous paragraph).
Thus, in this instance, to verify the monotonicity condition it suffices to establish the
inequality

p2C t1 � s1C q1:

X ˝Y A

corner wedge corner wedge

corner wedge corner wedge

corner wedge corner wedge

corner wedge corner wedge

Figure 15: The case where m� a D n� b . Auxiliary complex A (right),
locally equivalent to X ˝Y (left). We have avoided shading the 2–cells in
order to prevent clutter in the diagram.
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However, rearranging this yields the inequality q1 � p2 ��, which is precisely the
condition that Y 0 is weakly monotone, as in (5). A similar argument for the blue cells
using the fact that X 0 is weakly monotone proves that g satisfies the lifting condition
for all cells. Applying Lemma 3.3 then yields the desired local equivalence.

We have thus constructed a somewhat simpler geometric complex A which is locally
equivalent to X ˝Y . Note that (roughly speaking) A consists entirely of the corner
cells, inner box, and bridge cells of X ˝Y , with the side panels having “disappeared”.
We now construct a similar geometric complex B which is locally equivalent to X 0˝Y 0,
displayed on the right in Figure 14. This is defined in exactly the same way as A,
except with one important modification. Whereas before we mapped the purple 0–cells
in X˝Y to the nearest counterclockwise corner 0–cell, we now map the purple 0–cells
in X 0˝Y 0 to the nearest clockwise corner 0–cell. (We likewise reverse the chirality
of the various other maps needed to define the local equivalence.) This results in the
complex B shown in Figure 14. Again, the fact that B is locally equivalent to X 0˝Y 0

follows from the fact that X, Y , X 0, and Y 0 are all weakly monotone.

We now observe, however, that there is actually a gr–preserving isomorphism between
A and B . This is most easily described geometrically, as follows. We view the black
0– and 1–cells as constituting a fixed outer frame, and we think of the black 2–cells
together with the red and blue cells as being malleable strings/rubber sheets connecting
the frame to the inner box. To map A onto B , we rotate the inner box by ninety degrees
counterclockwise, while keeping the outer frame fixed. This “drags” the remaining cells
of A into bijection with the cells of B . Moreover, because of our discussion at the be-
ginning of the proof, this correspondence preserves gr. Similarly, to map B onto A, we
rotate the inner box clockwise by ninety degrees. This shows that A and B are actually
the same complex, and thus proves the theorem in the case that mD n and aD b D 1.

We now relax the conditions on m, n, a , and b by allowing these to vary. For the
moment, we will still assume that m�aDn�b . As before, we again divide X˝Y into
four types of cells. These have been color-coded and displayed on the left in Figure 15.
First, we consider cells of the form

xi �yj with ji j> a and jj j> b:

These constitute a 2.m�a/� 2.m�a/ box of cells, which we again think of as being
the inner box. Next, we have cells of the form

xi �yj with ji j � a and jj j � b;
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which generalize the corner cells from before. In Figure 15, we have avoided drawing
most of the corner cells, and have instead covered the majority of them with four
black corner wedges. Roughly speaking, these correspond to the corner 0–cells of
the previous case. We also have appropriate generalizations of the side panels and the
bridge cells. Cells in the side panels are now of the form

xi �yj with ji j< a and jj j> b; vi �yj with ji j D a and jj j> b;

xi �yj with ji j> a and jj j< b; or xi �wj with ji j> a and jj j D b:

Meanwhile, bridge cells are of the form

˛i �yj with ji j D a and jj j> b or xi � ǰ with ji j> a and jj j D b:

As before, it is easily checked that the corner cells of X˝Y and X 0˝Y 0 are identical,
while the inner boxes and bridge cells are related by a ninety-degree rotation.

We will not reformulate the entire argument here in the more general case. The idea
is, of course, to construct an auxiliary complex A which (roughly speaking) retains the
corner cells, inner box, and bridge cells of X ˝Y , while throwing out the side panels.
Such a complex is displayed on the right in Figure 15. The map from X ˝ Y to A
should again be thought of as taking (for example) the uppermost group of side panels
and crushing them directly left towards the top-left corner wedge. In contrast to the
previous case, there are now some purple 1–cells on which our map is nonzero, as well
as some new black and purple 2–cells that must be considered. However, the desired
maps on these cells are defined using the same intuition as before. We leave it to the
reader to complete the generalization of the proof.

Finally, we consider the case when m� a¤ n� b . This initially seems more difficult,
since if m� a ¤ n� b , then the obvious inner box is no longer square, and hence
cannot exhibit the desired rotational symmetry. However, if (without loss of generality)
m � a < n � b , then as discussed in the beginning of the section we may pad the
complex of X with redundant parameters, in order to create an equivalent complex
with a larger number of generators. More precisely, we append any number of copies
of .sm; sm/ to the end of our parameter list to obtain a graded root

zX DM.p1; s1I : : : Ipm; smI sm; smI : : : I sm; sm/;

which is isomorphic to X. Replacing our original complex with this “fattened” one
does not alter the homotopy class or change the parameters a and b of the swapping
operation. Hence we can always reduce to the case when m� aD n� b .
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M �M

h1 h2 h3 h4 h3 h2 h1 h1 h3 h4 h3 h1
r1 r2 r3 r3 r2 r1 r1 r3 r3 r1

Figure 16: Weakly monotone root (left) and its locally equivalent subroot (right).
Gradings of cells are marked in the skeleta. Here i D 2 .

4 The structure of ‚AR

In this section, we use the local equivalence of Theorem 3.5 to prove Theorems
1.1 and 1.2. These will follow from a structural result expressing any monotone root as
a linear combination of type-one roots and their duals. In order to establish this latter
theorem, we will need the following special case of Theorem 3.1. For completeness,
we give a sketch of the proof here in the language of geometric complexes:

Lemma 4.1 Let M DM.h1; r1I : : : I hn; rn/ be a weakly monotone root. If hi DhiC1
for some 1� i < n, then M is locally equivalent to the weakly monotone root�M DM.h1; r1I : : : I hi�1; ri�1I hiC1; riC1I : : : I hn; rn/
obtained by deleting the parameters .hi ; ri /.

Proof In Figure 16, we have displayed the two monotone roots in question, together
with their associated skeleta. As before, we apply Lemma 3.3. To define the map
from the left-hand to the right-hand side, we send the two 0–cells marked gr D hi
on the left to the two 0–cells marked gr D hiC1 on the right, and the two 1–cells
with grD ri on the left to zero. We map all the other 0– and 1–cells via the obvious
gr–preserving bijection. The map in the other direction is given by sending each of
the two 1–cells with grD ri�1 on the right (if any) to the appropriate sum of 1–cells
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on the left with grD ri�1 and grD ri , and again using the obvious bijection on the
remaining cells. See Figure 16.

With Lemma 4.1 in hand, we now prove the central result of this section:

Theorem 4.2 Let M DM.h1; r1I : : : I hn; rn/ be a monotone root. Then we have the
local equivalence

M D

� nX
iD1

M.hi ; ri /

�
�

� n�1X
iD1

M.hiC1; ri /

�
:

Proof We proceed by induction on n. If nD 1, then M is already a type-one root,
and there is nothing to prove. Otherwise, we have the local equivalence

M DM CM.h2; r1/�M.h2; r1/

trivially obtained by taking the tensor product of M with M.h2; r1/ and its dual. We
now apply Theorem 3.5 to X DM and Y DM.h2; r1/, with the swapping parameters
aD b D 1. This yields the valid swapped pair

X 0 DM.h1; r1/ and Y 0 DM.h2; r1I h2; r2I : : : I hn; rn/;

as displayed in Figure 17. Note that in this case the subgraph SY is empty. We thus
have the chain of local equivalences

M DM CM.h2; r1/�M.h2; r1/

DM.h1; r1/CM.h2; r1I h2; r2I : : : I hn; rn/�M.h2; r1/

DM.h1; r1/CM.h2; r2I : : : I hn; rn/�M.h2; r1/;

where in the last line we have applied Lemma 4.1 to obtain a monotone root of
type n� 1. This establishes the inductive step, completing the proof. See Figure 17.

Note that in view of Theorems 2.3 and 2.9, this immediately implies that the �–complex
of any connected sum of AR manifolds is locally equivalent to a linear combination of
type-one roots.

Now let MD fMigi�1 be a family of type-one roots such that

zı.Mi /D 2i

for all i � 1. If this holds, then we call M a good family of roots. If M is any good
family of roots, then it is clear that every (nontrivial) type-one root is equal to an
element of M up to a grading shift by some rational number. It follows that if Y is
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M.h1; r1I : : : I hn; rn/ M.h1; r1I : : : I hn; rn/ M.h2; r1/

M.h2; r1/

M.h1; r1/

M.h1; r1/

M.h2; r1I h2; r2I : : : I hn; rn/

M.h2; r1/

M.h2; r1/

M.h2; r2I : : : I hn; rn/

D

D

C

C

�

�

D C �

Figure 17: Proof of Theorem 4.2

any connected sum of AR manifolds, then h.Y / is equal to a linear combination of
type-one roots drawn from M, together with an overall grading shift:

(6) h.Y /D

�X
i

ciMi

�
Œ��:

It is not hard to alter the proof of [6, Theorem 1.7] to show this decomposition is unique:

Lemma 4.3 [6, Theorem 1.7] Let MD fMig be a good family of roots. If we have
a local equivalence �X

i

ciMi

�
Œ��D

�X
i

c0iMi

�
Œ�0�;

then the linear combinations of the Mi on either side are identical and �D�0.
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Proof After appropriately moving factors around, we obtain a local equivalence�X
i2I

aiMi

�
Œ��D

�X
j2J

ajMj

�
Œ�0�;

with all the ai and aj positive and I \ J D ∅. According to [6, Corollary 1.4], if
M D

P
i Mi is a sum of type-one roots (with the same orientation), then

d.M/� d.M/Dmax
i

zı.Mi /:

(Note that here d.M/D d.M/ by [6, Theorem 1.3].) Let I� (respectively, I�0 ) be
the graded root consisting of a single F ŒU �–tower starting in grading �� (respectively,
grading ��0 ). Then it is easily seen that applying a grading shift by � is equivalent
to tensoring with I� . Viewing I� and I�0 as degenerate type-one roots, applying
[6, Corollary 1.4] to both sides of the above local equivalence shows that in fact we
must have I D J D∅. This is only possible if the two original linear combinations are
the same. We then additionally see that I�D I�0 , showing that �D�0, as desired.

There are two obvious choices for good families of roots. Let X D fXig and Y D fYig
be given by

Xi DM.0;�2i/ and Yi DM.2i; 0/:

The family Y has the benefit that it is explicitly realized by the Brieskorn homology
spheres †.p; 2p � 1; 2p C 1/ for p � 3 odd. More precisely, it is a consequence
of [27, Theorem 1.8] that for such p ,

h.†.p; 2p� 1; 2pC 1//DM.p� 1; 0/;

as displayed in Figure 1. Hence as p varies, we obtain all of the elements of Y . This
immediately yields a proof of Theorem 1.1:

Proof of Theorem 1.1 Since h.†.2; 3; 5// D I2 , we can effect any even grading
shift with an appropriate multiple of h.†.2; 3; 5//. Noting that †.2; 3; 5/ and the
†.p; 2p � 1; 2p C 1/ are themselves Seifert fibered, the claim then follows from
Theorem 4.2 (together with Theorems 2.3 and 2.9) and Lemma 4.3.

We now make a more careful study of the grading shift in the decomposition (6). Fix
any good family of roots MDfMig, and let Y be a linear combination of AR plumbed
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manifolds equipped with a self-conjugate spinc–structure s. We define �M.Y; s/ 2Q

to be the grading shift associated to h.Y; s/ when using the family M in (6), so that

h.Y; s/D

�X
i

ciMi

�
Œ�M.Y; s/�:

In view of Lemma 4.3, �M.Y; s/ is well defined and descends to a homomorphism
from the subgroup of IQ spanned by (standard complexes of) graded roots to Q. More
precisely, the grading shift � of (6) clearly changes sign under orientation reversal and
is additive under connected sum. Moreover, by Lemma 4.3, �M.Y; s/ depends only
on the local equivalence class h.Y; s/.

Now let us consider the specific families X and Y . If M is a single monotone root,
then we may rearrange the decomposition of Theorem 4.2 to read

M D

� nX
iD1

M.0; ri � hi /Œ�hi �

�
�

� n�1X
iD1

M.0; ri � hiC1/Œ�hiC1�

�

D

� nX
iD1

M.0; ri � hi /�

n�1X
iD1

M.0; ri � hiC1/

�
Œ�h1�:

Hence in the case of a single monotone root, the overall grading shift for the family X
is given by �h1 . Meanwhile,

M D

� nX
iD1

M.hi � ri ; 0/Œ�ri �

�
�

� n�1X
iD1

M.hiC1� ri ; 0/Œ�ri �

�

D

� nX
iD1

M.hi � ri ; 0/�

n�1X
iD1

M.hiC1� ri ; 0/

�
Œ�rn�:

Thus, the overall grading shift if we use Y is given by �rn . We now quote the following
result from [6] (see also [26; 5]):

Theorem 4.4 [6, Section 8] Let Y be an AR plumbed three-manifold and let s

be a self-conjugate spinc–structure on Y . If M.h1; r1I : : : I hn; rn/ is the monotone
root parametrizing the local equivalence class of h.Y; s/, then h1 D d.Y; s/ and
rn D�2�.Y; s/.

It follows that if Y is a single AR plumbed three-manifold, then

�X .Y; s/D�d.Y; s/ and �Y.Y; s/D 2�.Y; s/:

Geometry & Topology, Volume 23 (2019)



906 Irving Dai and Matthew Stoffregen

Consider the former. Since we already know that the d–invariant is a homomorphism,
the fact that �X is also a homomorphism implies that �X .Y; s/D�d.Y; s/ for any
linear combination of AR plumbed manifolds. A similar argument for �Y yields a
proof of Theorem 1.2:

Proof of Theorem 1.2 We have already proven the existence and the uniqueness parts
of the decomposition. It thus remains to establish the equality �D�Y D 2�.Y; s/. It
is easily seen from the definitions that the Neumann–Siebenmann invariant changes
sign under orientation reversal and is additive under connected sum; that is,

�.�Y; s/D��.Y; s/ and �.Y1 #Y2; s1 # s2/D �.Y1; s1/C�.Y2; s2/:

Even though we do not a priori know that � is a homology cobordism invariant, we do
know that �Y is also additive under connected sum and changes sign under orientation
reversal. Hence the fact that �Y.Y; s/ coincides with 2�.Y; s/ for each individual AR
plumbed manifold establishes the equality in general for connected sums.8 The fact
that �Y depends only on the local equivalence class h.Y; s/ then implies the same
for �.Y; s/.

Finally, note that writing the decomposition of Theorem 4.2 in order of decreasing zı
yields an alternating sum in which the leading basis element appears with a coefficient
of C1. Since this expression is invariant under homology cobordism, this (together
with the fact that orientation reversal corresponds to multiplication by �1) establishes
the last part of Theorem 1.2.

5 Involutive Floer correction terms

We now turn to a computation of d and d for linear combinations of AR manifolds.
In [6] this was done for connected sums of AR manifolds with the same orientation,
but it turns out that allowing mixed orientations makes the calculation significantly
more difficult. Our main advantage here will be to observe that in light of Theorem 1.2,
it suffices to consider the case when all of the summands are of projective type. To
this end, we begin by defining a class of geometric complexes that will be useful for
describing products of type-one roots.

8If Y D Y1 # � � � # Yk is a linear combination of plumbed manifolds, then any self-conjugate spinc–
structure s on Y is of the form s D s1 # � � � # sk , where each si is a self-conjugate spinc–structure
on Yi .
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e1

e0 J0e0

J0e1

e2 D J0e2

gr.e0/D d

gr.e1/D d ��1

gr.e2/D d ��1��2

Figure 18: Spherical complex S.d; nI�1; : : : ; �n/ with nD 2

Let Bn be the standard n–dimensional unit ball, and let J0 be the usual involution
on Bn given by reflection through the origin. There is an obvious J0–equivariant
cellular decomposition of Bn which consists of exactly one symmetric pair of cells
in each dimension 0 through n� 1, and a single J0–invariant cell in dimension n.
We denote the cells lying in dimension i by ei and J0ei , with the understanding
that en D J0en . The cellular boundary operator is given by

@.ei /D @.J0ei /D ei�1CJ0ei�1;

with the convention that ei D J0ei D 0 for i < 0. See Figure 18.

Now let d 2Q and let .�1; �2; : : : ; �n/ be a sequence of nonnegative even integers.
We associate a geometric complex to these parameters as follows. The skeleton of our
complex is defined to be the above cellular decomposition of Bn. The function gr is
defined by setting

gr.e0/Dgr.J0e0/Dd and gr.ei /Dgr.J0ei /Dd�
� iX
jD1

�j

�
for 1� i�n:

Note that this means the differential on our complex is given by

@.ei /D @.J0ei /D U
�i=2.ei�1CJ0ei�1/:

We call such a complex a spherical complex and denote it by

S D S.d; nI�1; : : : ; �n/:

See Figure 18.

Remark 5.1 Spherical complexes also arise naturally in the setting of Pin.2/–equiv-
ariant Floer homology. In particular, a connected sum of (negatively oriented) Seifert
integer homology spheres

Pn
iD1†i , with zıi WD zı.†i /, is chain locally equivalent to
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the unreduced suspension of a certain free Pin.2/–space X, with a natural projection
map � W X ! @S.0; nI zı1; : : : ; zın/ whose fibers are determined by the zıi (compare
[27, Section 4]).

Lemma 5.2 Let M1; : : : ;Mn be a family of type-one roots parametrized by Mi D

.hi ; r i / for 1� i � n. Without loss of generality, suppose that

zı.M1/� zı.M2/� � � � � zı.Mn/:

Then we have the local equivalence

M1C � � �CMn D S.d; nI zı.M1/; : : : ; zı.Mn//;

where d D h1C � � �Chn.

Proof We proceed by induction on n. If nD 1, then the spherical complex in question
is the same as the standard complex defined in Section 2.3. To establish the inductive
step, it suffices to prove the local equivalence

M.h; r/CS.d; nI�1; : : : ; �n/D S.d C h; nC 1I h� r;�1; : : : ; �n/;

where without loss of generality we have assumed that h� r ��i for all �i . Denote
the cells of M.h; r/ by v , J0v , and ˛ D J0˛ . For convenience, we denote the cells
of the left-hand spherical complex by xi for 0� i � n, and the cells of the right-hand
spherical complex by yi for 0� i � nC1. Note that xnD J0xn and ynC1D J0ynC1 .

As usual, we apply Lemma 3.3. The skeleta of the product complex on the left and the
spherical complex on the right are displayed in Figure 19. To define a cellular map f

M.h; r/˝S.d; nI�1; : : : ; �n/ S.d C h; nC 1I h� r;�1; : : : ; �n/

f

g

Figure 19: Skeleta of the complexes considered in the proof of Lemma 5.2
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from the left- to the right-hand side, we send

f .v� x0/D f .v�J0x0/D y0;

f .v� xi /D f .v�J0xi /D 0 for 1� i � n;

f .˛� xi /D yiC1 for 0� i � n;

extending J0–equivariantly. It is easily checked that this preserves the cellular differ-
ential by computing (for example)

@f .˛� xi /D @yiC1 D yi CJ0yi

and

f @.˛� xi /D f
�
˛� .xi�1CJ0xi�1/C .vCJ0v/� xi

�
D yi CJ0yi :

To see that f satisfies the lifting condition, we check that f preserves gr wherever it
is nonzero:

gr.v� x0/D gr.v�J0x0/D hC d D gr.y0/

and

gr.˛� xi /D r C
�
d �

iX
jD1

�j

�
D .d C h/�

�
.h� r/C

iX
jD1

�j

�
D gr.yiC1/:

This gives the local map in one direction.

To define the map in the other direction, set

g.yi /D v� xi C˛�J0xi�1 for 0� i � n and g.ynC1/D ˛� xn;

again extending J0–equivariantly. Note that g.y0/ D v � x0 . We check that this
preserves the cellular differential (over Z=2Z) by computing

@g.yi /D @.v� xi C˛�J0xi�1/

D v� .xi�1CJ0xi�1/C .vCJ0v/�J0xi�1C˛� .xi�2CJ0xi�2/

D v� xi�1CJ0v�J0xi�1C˛� xi�2C˛�J0xi�2

and
g@.yi /D g.yi�1CJ0yi�1/

D v� xi�1C˛�J0xi�2CJ0v�J0xi�1C˛� xi�2

for 1� i � n. A similar computation holds for ynC1 , utilizing that J0xnD xn . To see
that g satisfies the lifting condition, consider the two summands v�xi and ˛�J0xi�1
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of g.yi /. The grading of the second term follows from the computation of the previous
paragraph and is equal to gr.yi /. The grading of the first term is given by

gr.v� xi /D hC d �
� iX
jD1

�j

�
:

This is greater than or equal to gr.yi /, since h�r��i for all �i . Applying Lemma 3.3
establishes the local equivalence and completes the proof. We leave it to the reader to
give geometric interpretations to f and g ; see Figure 19.

It follows from Lemma 5.2 that to understand linear combinations of type-one roots,
it is sufficient to consider the case of a single spherical complex, tensored with
the inverse of another spherical complex. Denote the inverse complex of S by
S_ D S.d; nI�1; : : : ; �n/

_. This may be explicitly described as follows. Dualizing
the skeleton of S yields a complex with 2nC 1 generators, which we denote by
e_i and J0e_i for 1� i � n (with the understanding that e_n D J0e

_
n ). The differential

on this complex is given by

@.e_n /D 0;

@.e_n�1/D @.J0e
_
n�1/D e

_
n ;

@.e_i /D @.J0e
_
i / D e

_
iC1CJ0e

_
iC1 for 0� i < n� 1:

We refer to this data as the skeleton of S_, even though technically we have not given
it an interpretation as a cellular complex in the usual sense. (See however Remark 5.3.)
An explicit computation (simply by taking the kernel and image of @) shows that the
homology of the skeleton is isomorphic to F and is generated by e_0 CJ0e

_
0 .

We define gr on the skeleton of S_ to be the negative of gr on S after dualizing, so that

gr.e_0 /D gr.J0e_0 /D�d and gr.e_i /D gr.J0e_i /D�d C
iX

jD1

�j :

We give the dual skeleton tensored with F ŒU � a grading by subtracting the cellular
dimension, so that e_i has grading gr.e_i /� i . For clarity, we refer to this quantity
(and similarly its counterpart gr.ei /C i in the nondualized case) as the chain complex
grading, in order to distinguish it from gr. As before, we declare U to be of degree �2.
Then the obvious prescription

@.�_i /D
X

�_
iC1
2 bdry.�_

i
/

U .gr.�_
iC1

/�gr.�_
i
//=2�_iC1
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J0e
_
0

J0e
_
1

e_2 D J0e
_
2

e_0

e_1

gr.e_0 /D�d

gr.e_1 /D�d C�1

gr.e_2 /D�d C�1C�2

Figure 20: Dual complex S_.d; nI�1; : : : ; �n/ with nD 2

has degree �1 and turns this into a graded chain complex, which is evidently the
inverse of S in the sense of [11, Section 8]. Explicitly, we have

@.e_n /D 0;

@.e_n�1/D @.J0e
_
n�1/D U

�n=2e_n ;

@.e_i /D @.J0e
_
i / D U

�iC1=2.e_iC1CJ0e
_
iC1/ for 0� i < n� 1:

Remark 5.3 It is possible to give the dual complex S_ a geometric interpretation
by using a relative cell complex, as in Figure 20. More precisely, we can give Bn a
J0–equivariant decomposition in such a way that the skeleton of S_ is identified with
the relative cellular complex .Bn; Sn�1/. (This is simply a manifestation of Poincaré
duality applied to the manifold-with-boundary Bn.) This picture can be used to gain
some geometric intuition for Lemmas 5.4 and 5.5. Note that the homology of the
skeleton in this case is still isomorphic to F , even though its generator Œx� no longer
has dimensional grading zero.

We are now in a position to carry out our computation of d and d . We will henceforth
suppress writing down powers of U, so that when we write a sum of generators †
(of the same dimension), we mean that each term of † is implicitly multiplied by
the appropriate power of U so that its (chain complex) grading is equal to that of the
lowest-grading generator in †. By gr.†/ we thus mean the minimum of gr over the
terms appearing in †. Similarly, when we write that two sums of generators are equal
to each other, we mean equality after multiplying one or both sides by a sufficiently
high power of U.

We proceed by explicitly understanding the mapping cone of S1˝S_2 . Recall from
Section 2.1 that if .C; �/ is an �–complex, then its mapping cone is given by

C�
Q.1C�/
����!Q �C�Œ�1�:
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Explicitly, this consists of the complex C Œ�1�˝F ŒQ�=.Q2/, together with the total
differential

@tot D @CQ � .1C �/;

where @ is the differential on C. Thus elements of C in the mapping cone which
are not decorated by a Q have grading one higher than their usual chain complex
grading in C, while multiplying by Q shifts grading by �1. Where confusion with
other gradings is possible, we will refer to this as the total grading or the mapping
cone grading. We also remind the reader of our convention from Section 2.1 regarding
the definition of d and d for �–complexes; these are shifted by two relative to their
usual definition. See (2).

Recall that in sufficiently low gradings, the involutive homology HFI� consists entirely
of two U–nontorsion towers, one of which is taken to the other via multiplication
by Q . We refer to these as the d– and d–towers depending on their mod 2 gradings
relative to � . (The d–tower is the tower in the image of Q .) It is easily checked that
an element x 2 HFI� satisfies the conditions in the definition of d or d if and only if
sufficiently high U –powers of x lie in the d– or d–tower, respectively. The following
lemma gives preferred representatives of these elements in CFI�.S1˝S_2 /.

For brevity, we now stop writing the product symbol � and the subscript on J0 .

Lemma 5.4 Let S1DS.d1; mIA1; : : : ; Am/ and S2DS.d2; nIB1; : : : ; Bn/. Denote
the generators of S1 by xi and the generators of S2 by yi . In sufficiently low gradings,
elements in the d–tower of HFI�.S1˝S_2 / may be represented by U–powers of

Q � x0.y
_
0 CJy

_
0 /:

Similarly, in sufficiently low gradings, elements in the d–tower may be represented
by U–powers of

x0.y
_
0 CJy

_
0 /CQ � x1.y

_
0 CJy

_
0 /:

Recall, in the latter equation, the convention that we implicitly homogenize by multi-
plying x0.y_0 CJy

_
0 / by an appropriate power of U.

Proof It is straightforward to check that @tot applied to both of the above expressions
is zero. To prove the lemma, consider the term x0.y

_
0 CJy

_
0 /, viewed as a cycle in

the usual homology of S1˝ S_2 . Note that this element generates the homology of
the skeleton of S1˝S_2 , which is F by the Künneth formula. By the same argument
as in Lemma 3.3, we then see that x0.y_0 CJy

_
0 / is U–nontorsion in H�.S1˝S_2 /.
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An easy argument using the mapping cone exact sequence (see [10, Proposition 4.6])
shows that the U –powers of Q � x0.y_0 CJy

_
0 / must then generate the d–tower. The

claim for x0.y_0 CJy
_
0 /CQ �x1.y

_
0 CJy

_
0 / follows from the fact that in sufficiently

low gradings, multiplication by Q is an isomorphism (on the level of homology) from
the d–tower onto the d–tower.

We now establish lower bounds for d.S1˝ S_2 / and d.S1˝ S_2 /. Our strategy for
doing this will be to exhibit explicit elements in the mapping cone of S1˝S_2 which
are homologous (after multiplying by sufficient powers of U ) to the generators of
Lemma 5.4. Since this means that these elements satisfy the relevant conditions in the
definitions of d and d , taking their (mapping cone) gradings lead to lower bounds
for d and d . As with Remark 5.3, it is possible to frame this argument in a more
geometric fashion, but since this will not be needed elsewhere in the paper, we take a
more direct route and simply present the algebraic details.

Lemma 5.5 Let S1DS.d1; mIA1; : : : ; Am/ and S2DS.d2; nIB1; : : : ; Bn/. Define

Pi D
iP

jD1

Bj �
iP

jD1

Aj for 0� i �min.m; n/;

Qi D
iP

jD1

Bj �
iC1P
jD1

Aj for 0� i �min.m� 1; n/;

Ri D
iP

jD1

Bj �
i�1P
jD1

Aj for 1� i �min.mC 1; n/:

Note that P0 D 0 and Q0 D�A1 . Then

d.S1˝S
_
2 /� d1� d2Cmax

˚
P0;min.R1;P1/;

min.R1;R2; P2/;
:::

min.R1;R2; : : : ; Rmin.mC1;n/; Pmin.mC1;n//
	
;

with the understanding that if min.mC 1; n/DmC 1, the Pmin.mC1;n/ in the last line
should be deleted. Similarly,

d.S1˝S
_
2 /� d1� d2Cmax

˚
min.P0;Q0/;
min.P0;P1;Q1/;

:::

min.P0;P1; P2; : : : ; Pmin.m;n/;Qmin.m;n//
	
;

with the understanding that if min.m; n/Dm, the Qmin.m;n/ in the last line should be
deleted.
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Proof By shifting gradings, it is clear that we may assume d1 D d2 D 0. For
convenience, define

†uk D

k�1X
iD0

.xi�1Jy
_
i CJxi�1y

_
i /

for 0� k �min.mC 1; n/, and

†lk D

k�1X
iD0

.xiJy
_
i CJxiy

_
i /

for 0 � k � min.m; n/. (Here we set x�1 D 0.) Note that the total grading of an
element xi1yi2 in the mapping cone of S1˝S_2 is given by

i1� i2C gr.xi1yi2/C 1D i1� i2�
i1X
jD1

Aj C

i2X
jD1

Bj C 1;

since the chain complex grading of xi1yi2 is i1� i2C gr.xi1yi2/. Similarly, the total
grading of Q � xi1yi2 is given by the above expression, minus one.

We begin with the desired lower bound for d . To do this, we define a sequence of
generators Uk for all 0 � k � min.mC 1; n/. There is some extra work in the case
k Dmin.mC 1; n/, so for the moment, let 0� k <min.mC 1; n/. Define

Uk D†
u
kC xk�1.y

_
k CJy

_
k /CQ � xk.y

_
k CJy

_
k /:

Note that U0 is the generator of the d–tower from Lemma 5.4. We claim that all the Uk
are homologous to each other, and thus to U0 . To see this, let 0�k <min.mC1; n/�1.
Then one can check that

UkCUkC1 D .xk�1Jy
_
k CJxk�1y

_
k /C xk�1.y

_
k CJy

_
k /C xk.y

_
kC1CJy

_
kC1/

CQ � xk.y
_
k CJy

_
k /CQ � xkC1.y

_
kC1CJy

_
kC1/

D .xk�1CJxk�1/y
_
k C xk.y

_
kC1CJy

_
kC1/CQ � xk.y

_
k CJy

_
k /

CQ � xkC1.y
_
kC1CJy

_
kC1/

D @tot.xky
_
k CQ � xkC1Jy

_
k /;

where in the first line we have canceled most of the terms in †u
kC1

against †u
k

. We
also define Uk in the special case that k Dmin.mC 1; n/, as follows. If n < mC 1,
then we define Un by replacing all instances of .y_

k
C Jy_

k
/ in the usual definition

of Uk with y_n , so that

Un D†
u
nC xn�1y

_
n CQ � xny

_
n :
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This is simply to reflect the fact that @y_n�1 is equal to y_n , rather than to y_n CJy
_
n .

It is easily checked that Un is still homologous to Un�1 via essentially the same chain
of equalities as above. If mC 1 < n, we instead define

UmC1 D UmC @tot.xmy
_
m/D†

u
mC1C xm.y

_
mC1CJy

_
mC1/;

where we have used the fact that JxmD xm . If mC1D n, then the .y_mC1CJy
_
mC1/

in the expression for UmC1 above should be replaced by y_mC1 . This defines Uk for
all 0� k �min.mC1; n/. The total gradings of the elements Uk in the mapping cone
are given by

total grading of Uk D
�

minfR1; : : : ; Rk; Pkg if k �m;
minfR1; : : : ; RmC1g if k DmC 1:

This establishes the desired lower bound for d .

We now turn to d . Let 0� k <min.m; n/. Define

Lk D†
l
kC xk.y

_
k CJy

_
k /CQ � xkC1.y

_
k CJy

_
k /:

Note L0 is the generator of the d–tower from Lemma 5.4. We claim that all the Lk are
homologous to each other, and thus to L0 . To see this, let 0� k <min.m; n/�1. Then

LkCLkC1 D .xkJy
_
k CJxky

_
k /C xk.y

_
k CJy

_
k /C xkC1.y

_
kC1CJy

_
kC1/

CQ � xkC1.y
_
k CJy

_
k /CQ � xkC2.y

_
kC1CJy

_
kC1/

D .xkCJxk/y
_
k C xkC1.y

_
kC1CJy

_
kC1/CQ � xkC1.y

_
k CJy

_
k /

CQ � xkC2.y
_
kC1CJy

_
kC1/

D @tot.xkC1y
_
k CQ � xkC2Jy

_
k /:

We also define Lk in the special case that k D min.m; n/. As before, if n < m, we
define Ln by replacing all instances of .y_

k
CJy_

k
/ with y_n :

Ln D†
l
nC xny

_
n CQ � xnC1y

_
n :

If m< n, we instead define

Lm D Lm�1C @tot.xmy
_
m�1/D†

l
mC xm.y

_
mCJy

_
m/;

where if mDn, we replace y_mCJy
_
m with y_m . The mapping cone gradings of the Lk

are given by

total grading of Lk D
�

minfP0; : : : ; Pk;QkgC 1 if k < m;
minfP0; : : : ; PmgC 1 if k Dm:

This establishes the desired lower bound for d and completes the proof.

Geometry & Topology, Volume 23 (2019)



916 Irving Dai and Matthew Stoffregen

We now use the lower bound for d derived in Lemma 5.5 to provide an upper bound
for d by interchanging the roles of S1 and S2 . More precisely, since

d.S1˝S
_
2 /D�d.S

_
1 ˝S2/;

we obtain an upper bound for d.S1˝S_2 / by exchanging the roles of S1 and S2 in the
lower bound for d.S1˝S_2 / and multiplying through by �1. Swapping Ai and Bi
sends Pi to �Pi , Ri to �Qi�1 , and interchanges m and n. Applying this to the
lower bound for d yields the expression

minfP0;max.Q0;P1/;max.Q0;Q1;P2/; : : : ;max.Q0; : : : ;Qmin.m�1;n/;Pmin.m;nC1//g;

with the understanding that if min.m; nC 1/D nC 1, the final Pmin.m;nC1/ should
be deleted. (Note that in the above expression, the Pi and Qi are still are as defined
in Lemma 5.5 for S1 ˝ S_2 , and not the analogous definitions for S_1 ˝ S2 .) We
claim that this upper bound for d.S1˝S_2 / coincides with the lower bound derived in
Lemma 5.4. This is a purely combinatorial lemma, which we prove below:

Lemma 5.6 Let Pi and Qi be as in Theorem 1.5. Define S to be the maximum of

min.P0;Q0/; min.P0; P1;Q1/; : : : ; min.P0; P1; P2; : : : ; Pmin.m;n/;Qmin.m;n//;

where if min.m; n/Dm, we delete the finalQmin.m;n/. Define T to be the minimum of

P0; max.Q0; P1/; max.Q0;Q1; P2/; : : : ; max.Q0; : : : ;Qmin.m�1;n/; Pmin.m;nC1//;

where if min.m; nC 1/D nC 1, we delete the final Pmin.m;nC1/ . Then T � S.

Proof We proceed by cases on the value of T . Let k be the least index for which T
is equal to the term

T Dmax.Q0; : : : ;Qk�1; Pk/;

where as usual the Pk in the above expression may be deleted if k Dmin.m; nC 1/.
(That is, we consider the first term in the expression for T which achieves the desired
minimum.) Suppose moreover that

T Dmax.Q0; : : : ;Qk�1; Pk/DQi

for some 0� i < k . We claim that then Qi < Pj for all j � i . Indeed, by minimality
of k , we have the strict inequality

Qi <max.Q0; : : : ;Qj�1; Pj /
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for all such j . Since we already know that Q0; : : : ;Qk�1 are bounded above by Qi ,
this implies the claim. In particular, we thus see that

min.P0; : : : ; Pi ;Qi /DQi :

Since this term appears in the above expression for S, we conclude that T DQi � S,
as desired. Note that i < k � m, so there is no problem with the possible deletion
of Qmin.m;n/ .

Now suppose instead that

T Dmax.Q0; : : : ;Qk�1; Pk/D Pk :

Note that implicitly this means k � n. We claim that Pk < Pj for all j < k . Indeed,
as before, we have

Pk <max.Q0; : : : ;Qj�1; Pj /

for all j < k , so the fact that Q0; : : : ;Qk�1 are bounded above by Pk implies the
claim. In addition, for all r > k , we have

Pk �max.Q0; : : : ;Qr�1; Pr/

and hence

Pk �max.Qk; : : : ;Qr�1; Pr/;

again by the fact that Q0; : : : ;Qk�1 are bounded above by Pk . (As usual, we delete Pr
from the above expression if r Dmin.m; nC1/D nC1.) There are now two subcases.
First, suppose that for all r > k , the above maximum is given by Pr . Then we have
that Pk �Pj for all possible values of j . Note that implicitly in this case Pmin.m;nC1/

is not deleted, so we know that m< nC 1. Hence min.m; n/Dm, and the final term
in the expression for S is given by

min.P0; P1; : : : ; Pm/D Pk :

This shows that T � S, as desired.

In the second subcase, let r > k be the least index such that

max.Qk; : : : ;Qr�1; Pr/DQs

for some k�s<r . (That is, we consider the first value of r >k for which the expression
max.Qk; : : : ;Qr�1; Pr/ is equal to some Qs , rather than Pr .) Then Pk � Pj for

Geometry & Topology, Volume 23 (2019)



918 Irving Dai and Matthew Stoffregen

all j < r , and also Pk �Qs . Thus

min.P0; : : : ; Ps;Qs/D Pk :

Since this term appears in the expression for S, we conclude that T �S. This completes
the proof.

Putting everything together, we thus obtain:

Proof of Theorem 1.5 According to Lemma 5.2, we need only calculate the d–
invariant of S.0;mI 2s1; : : : ; 2sm/˝S.0; nI 2t1; : : : ; 2tn/_. We obtain lower bounds
for d of the tensor product from Lemma 5.5, as well as an upper bound using duality
applied to the lower bound for d in the same lemma. Lemma 5.6 shows that the upper
and lower bounds are equal, giving the calculation of d as in Theorem 1.5.

For the purposes of distinguishing linear combinations of AR manifolds, Theorem 1.5
is of course overshadowed by the explicit decomposition afforded by Theorem 1.2.
However, since d and d are defined for all rational homology spheres, Theorem 1.5 can
be used to compare linear combinations of AR manifolds with other rational homology
spheres whose involutive Floer correction terms have been computed by different
methods.

6 Examples and applications

In this section, we give some examples and applications of Theorems 1.2 and 1.5. We
begin by illustrating the basis decomposition into Yi afforded by Theorem 1.2:

Example 6.1 Let Y D †.5; 8; 13/. The graded root associated to h.Y / can be
computed using the numerical semigroups algorithm of Can and Karakurt [4], and
the relevant monotone subroot can then be extracted by using the procedure described
in [6, Section 6]. We have drawn part of the graded root associated to h.Y / on the
left in Figure 21; the monotone subroot is displayed on the right. (The full graded
root corresponding to h.Y / has several other length-one branches occurring in lower
gradings which we have suppressed for brevity.) Applying Theorem 4.2, we see that

h.†.5; 8; 13//DM.4; 0I 2; 2/

DM.4; 0/CM.2; 2/�M.2; 0/

D .Y2�Y1/Œ�2�:
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h.†.5; 8; 13// M.4; 0I 2; 2/

:::
:::

4

2

0

�2

�4

Figure 21: Graded root and monotone subroot for h.†.5; 8; 13// . See also [26].

Example 6.2 Let Y D†.13; 21; 34/. We have drawn part of the graded root associated
to h.Y / on the left in Figure 22; the monotone subroot is displayed on the right. (The
full graded root is significantly more complicated, but we have displayed only the portion
which is relevant for computing the local equivalence class.) Applying Theorem 4.2,
we see that

h.†.13; 21; 34//DM.12; 0I 10; 2/

DM.12; 0/CM.10; 2/�M.10; 0/

D .Y6CY4�Y5/Œ�2�:

As evidenced by these examples, most “small” Brieskorn spheres have a fairly simple
decomposition into the Yi . Indeed, several familiar classes of Brieskorn spheres are

12

10

8

6

4

2

0

�2

:::
:::

h.†.13; 21; 34// M.12; 0I 10; 2/

Figure 22: Graded root and monotone subroot for h.†.13; 21; 34//
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actually of projective type, as discussed in [26]. However, it appears that arbitrarily
high complexity can be achieved by considering Brieskorn spheres with sufficiently
large parameters; for example, using parameters on the order of 100� 500, one can
construct examples that decompose into a linear combination of upwards of twenty
basis elements. (These, as well as Example 6.2, are due to Duncan McCoy.)

We now turn to the proof of Corollaries 1.6 and 1.7:

Proof of Corollary 1.6 Let h.Y; s/ be as in the statement of the corollary. Putting
#k.Y; s/ into the statement of Theorem 1.5, observe that for 0� i � k , we then have

Pi D 2i.t1� s1/;

and that for 0� i < k , we have

Qi D 2i.t1� s1/� 2s1:

Now assume t1 > s1 . Suppose k is large enough that

Qk�1 D 2.k� 1/.t1� s1/� 2s1 � 0:

Since P1; : : : ; Pk�1 are all also greater than zero, this means that we have

min.P0; P1; : : : ; Pk�1;Qk�1/D P0 D 0:

Every other term appearing inside the max in the expression for d is certainly bounded
above by zero, since P0 D 0. Hence d

�
#k.Y; s/

�
D k � d.Y; s/.

Now assume t1 < s1 . Suppose k is large enough that

Pk D 2k.t1� s1/� �2s1:

We claim that every term appearing inside the max in the expression for d is bounded
above by Q0 D �2s1 . To see this, observe that Qi �Q0 for all 0 � i < k . Since
every such term in the expression for d either contains such a Qi or contains Pk , this
implies the bound. Hence d

�
#k.Y; s/

�
D k � d.Y; s/� 2s1 . Considering �Y instead

of Y establishes the theorem for d .

Proof of Corollary 1.7 For simplicity, we first apply an overall grading shift so that
�D 0. It then suffices to exhibit distinct linear combinations of basis elements Yi with
the invariants d , d , and d . Let

d � d D 2M and d � d D 2N;
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with the understanding that M and N are not both zero. In order to give some intuition
for the proof, we begin by considering the ansatz

†D Ya �Yb �Yc �nY1;

for nonnegative integers a � b � c � 1 and nonnegative parameter n. Applying
Theorem 1.5, we have

d.†/D d.†/Cmax
˚
min.0;�2a/;min.0; 2.b� a//

	
D d.†/� 2.a� b/:

Computing d , we have

d.�†/D d.�†/Cmax
˚
min.0;�2b/;min.0; 2.a� b/; 2.a� b� c//

	
D d.�†/Cmin.0; 2.a� b� c//;

which shows that d.†/D d.†/Cmax.0; 2.�aC bC c//. Note that the differences
d.†/� d.†/ and d.†/� d.†/ are independent of n. The system

2.�aC bC c/D 2M;

2.a� b/D 2N

is solved by

c DM CN; b DM CN C k; aDM C 2N C k

for any k � 0. (Note that bC c � a .) Linear combinations † with these parameters
thus yield the desired differences d � d and d � d . Moreover, we have

d.†/D 2.a� b� c �n/D�2M � 2n:

Hence if d ��2M, then there is some fixed n� 0 for which the one-parameter family

†n;k D YMC2NCk �YMCNCk �YMCN �nY1

has the desired invariants for all k � 0. In the case that d > �2M, we construct the
slightly more complicated ansatz

†0n;k D YMC2NC1Ck �YMCNC1Ck �YMCNC1C 2Y1CnY1

with n� 0 and k � 0. Then

d.†0n;k/D�2M C 2C 2n:

Geometry & Topology, Volume 23 (2019)



922 Irving Dai and Matthew Stoffregen

Applying Theorem 1.5, we obtain

d.†0n;k/D d.†
0
n;k/Cmax

˚
min.0;�2.M C 2N C 1C k//;

min.0;�2N;�2N � 2/;min.0;�2N; 2M; 2M � 2/
	

D d.†0n;k/� 2N:

Similarly,

d.�†0n;k/D d.�†
0
n;k/Cmax

˚
min.0;�2.M CN C 1C k//;

min.0; 2N;�2M � 2/;min.0; 2N;�2M/
	

D d.�†0n;k/� 2M;

which shows that d.†0
n;k
/D d.†0

n;k
/C2M. Hence if d >�2M, then the appropriate

choice of n � 0 again yields a one-parameter family of examples with the desired
d , d , and d .
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