Recent Issues
Volume 29, 2 issues
Volume 29
Issue 2, 549–862
Issue 1, 1–548
Volume 28, 9 issues
Volume 28
Issue 9, 3973–4381
Issue 8, 3511–3972
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496
Volume 27, 9 issues
Volume 27
Issue 9, 3387–3831
Issue 8, 2937–3385
Issue 7, 2497–2936
Issue 6, 2049–2496
Issue 5, 1657–2048
Issue 4, 1273–1655
Issue 3, 823–1272
Issue 2, 417–821
Issue 1, 1–415
Volume 26, 8 issues
Volume 26
Issue 8, 3307–3833
Issue 7, 2855–3306
Issue 6, 2405–2853
Issue 5, 1907–2404
Issue 4, 1435–1905
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476
Volume 25, 7 issues
Volume 25
Issue 7, 3257–3753
Issue 6, 2713–3256
Issue 5, 2167–2711
Issue 4, 1631–2166
Issue 3, 1087–1630
Issue 2, 547–1085
Issue 1, 1–546
Volume 24, 7 issues
Volume 24
Issue 7, 3219–3748
Issue 6, 2675–3218
Issue 5, 2149–2674
Issue 4, 1615–2148
Issue 3, 1075–1614
Issue 2, 533–1073
Issue 1, 1–532
Volume 23, 7 issues
Volume 23
Issue 7, 3233–3749
Issue 6, 2701–3231
Issue 5, 2165–2700
Issue 4, 1621–2164
Issue 3, 1085–1619
Issue 2, 541–1084
Issue 1, 1–540
Volume 22, 7 issues
Volume 22
Issue 7, 3761–4380
Issue 6, 3145–3760
Issue 5, 2511–3144
Issue 4, 1893–2510
Issue 3, 1267–1891
Issue 2, 645–1266
Issue 1, 1–644
Volume 21, 6 issues
Volume 21
Issue 6, 3191–3810
Issue 5, 2557–3190
Issue 4, 1931–2555
Issue 3, 1285–1930
Issue 2, 647–1283
Issue 1, 1–645
Volume 20, 6 issues
Volume 20
Issue 6, 3057–3673
Issue 5, 2439–3056
Issue 4, 1807–2438
Issue 3, 1257–1806
Issue 2, 629–1255
Issue 1, 1–627
Volume 19, 6 issues
Volume 19
Issue 6, 3031–3656
Issue 5, 2407–3030
Issue 4, 1777–2406
Issue 3, 1155–1775
Issue 2, 525–1154
Issue 1, 1–523
Volume 18, 5 issues
Volume 18
Issue 5, 2487–3110
Issue 4, 1865–2486
Issue 3, 1245–1863
Issue 2, 617–1244
Issue 1, 1–616
Volume 17, 5 issues
Volume 17
Issue 5, 2513–3134
Issue 4, 1877–2512
Issue 3, 1253–1876
Issue 2, 621–1252
Issue 1, 1–620
Volume 16, 4 issues
Volume 16
Issue 4, 1881–2516
Issue 3, 1247–1880
Issue 2, 625–1246
Issue 1, 1–624
Volume 15, 4 issues
Volume 15
Issue 4, 1843–2457
Issue 3, 1225–1842
Issue 2, 609–1224
Issue 1, 1–607
Volume 14, 5 issues
Volume 14
Issue 5, 2497–3000
Issue 4, 1871–2496
Issue 3, 1243–1870
Issue 2, 627–1242
Issue 1, 1–626
Volume 13, 5 issues
Volume 13
Issue 5, 2427–3054
Issue 4, 1835–2425
Issue 3, 1229–1833
Issue 2, 623–1227
Issue 1, 1–621
Volume 12, 5 issues
Volume 12
Issue 5, 2517–2855
Issue 4, 1883–2515
Issue 3, 1265–1882
Issue 2, 639–1263
Issue 1, 1–637
Volume 11, 4 issues
Volume 11
Issue 4, 1855–2440
Issue 3, 1255–1854
Issue 2, 643–1254
Issue 1, 1–642
Volume 10, 4 issues
Volume 10
Issue 4, 1855–2504
Issue 3, 1239–1853
Issue 2, 619–1238
Issue 1, 1–617
Volume 9, 4 issues
Volume 9
Issue 4, 1775–2415
Issue 3, 1187–1774
Issue 2, 571–1185
Issue 1, 1–569
Volume 8, 3 issues
Volume 8
Issue 3, 1013–1499
Issue 2, 511–1012
Issue 1, 1–509
Volume 7, 2 issues
Volume 7
Issue 2, 569–1073
Issue 1, 1–568
Volume 6, 2 issues
Volume 6
Issue 2, 495–990
Issue 1, 1–494
Volume 5, 2 issues
Volume 5
Issue 2, 441–945
Issue 1, 1–440
Volume 4, 1 issue
Volume 3, 1 issue
Volume 2, 1 issue
Volume 1, 1 issue
1
K Altmann , J
Hausen , Polyhedral divisors
and algebraic torus actions , Math. Ann. 334 (2006) 557
MR2207875
2
K Altmann , N O
Ilten , L Petersen , H Süß , R Vollmert ,
The geometry of
𝕋 –varieties , from:
"Contributions to algebraic geometry" (editor P Pragacz), Eur.
Math. Soc. (2012) 17 MR2975658
3
M T Anderson ,
Convergence and
rigidity of manifolds under Ricci curvature bounds ,
Invent. Math. 102 (1990) 429 MR1074481
4
T Aubin , Réduction du cas
positif de l’équation de Monge–Ampère sur les variétés
kählériennes compactes à la démonstration d’une
inégalité , J. Funct. Anal. 57 (1984) 143 MR749521
5
S Bando , T
Mabuchi , Uniqueness of Einstein
Kähler metrics modulo connected group actions , from:
"Algebraic geometry" (editor T Oda), Adv. Stud. Pure Math. 10,
North-Holland (1987) 11 MR946233
6
R J Berman ,
K–polystability of
ℚ –Fano varieties admitting
Kähler–Einstein metrics , Invent. Math. 203 (2016) 973
MR3461370
7
R J Berman , S
Boucksom , P Eyssidieux , V Guedj , A
Zeriahi , Kähler–Einstein metrics and the Kähler–Ricci
flow on log Fano varieties , (2011) arXiv:1111.7158
8
R J Berman , D
Witt Nyström , Complex optimal transport and the
pluripotential theory of Kähler–Ricci solitons , preprint
(2014) arXiv:1401.8264
9
B Berndtsson , An
introduction to things ∂ , from: "Analytic and algebraic
geometry" (editors J McNeal, M Mustaţă), IAS/Park City Math.
Ser. 17, Amer. Math. Soc. (2010) 7 MR2743815
10
B Berndtsson ,
A
Brunn–Minkowski type inequality for Fano manifolds and some
uniqueness theorems in Kähler geometry , Invent. Math.
200 (2015) 149 MR3323577
11
C Böhm , Inhomogeneous Einstein
metrics on low-dimensional spheres and other low-dimensional
spaces , Invent. Math. 134 (1998) 145 MR1646591
12
C P Boyer , K
Galicki , New Einstein metrics
in dimension five , J. Differential Geom. 57 (2001) 443
MR1882664
13
C P Boyer , K
Galicki , New Einstein
metrics on 8#( S 2
× S 3 ) ,
Differential Geom. Appl. 19 (2003) 245 MR2002662
14
C P Boyer , K
Galicki , Sasakian geometry , Oxford Univ. Press
(2008) MR2382957
15
C P Boyer , K
Galicki , J Kollár , Einstein metrics
on spheres , Ann. of Math. 162 (2005) 557 MR2178969
16
C P Boyer , K
Galicki , J Kollár , E Thomas , Einstein
metrics on exotic spheres in dimensions 7 , 11 , and
15 , Experiment. Math. 14
(2005) 59 MR2146519
17
C P Boyer , M
Nakamaye , On Sasaki–Einstein
manifolds in dimension five , Geom. Dedicata 144 (2010)
141 MR2580423
18
W Bruns , J
Herzog , Cohen–Macaulay
rings , 39, Cambridge Univ. Press (1993) MR1251956
19
J Cheeger , T H
Colding , On the structure of
spaces with Ricci curvature bounded below, I , J.
Differential Geom. 46 (1997) 406 MR1484888
20
J Cheeger , T H
Colding , G Tian , On the singularities of
spaces with bounded Ricci curvature , Geom. Funct. Anal.
12 (2002) 873 MR1937830
21
X Chen , S
Donaldson , S Sun , Kähler–Einstein
metrics on Fano manifolds, I : Approximation of metrics with
cone singularities , J. Amer. Math. Soc. 28 (2015) 183
MR3264766
22
X Chen , S
Donaldson , S Sun , Kähler–Einstein
metrics on Fano manifolds, II : Limits with cone angle less
than 2 π , J. Amer. Math. Soc. 28 (2015) 199
MR3264767
23
X Chen , S
Donaldson , S Sun , Kähler–Einstein
metrics on Fano manifolds, III : Limits as cone angle
approaches 2 π and completion of the main proof , J.
Amer. Math. Soc. 28 (2015) 235 MR3264768
24
X Chen , B Wang ,
Space of Ricci flows, II , preprint (2014) arXiv:1405.6797
25
K Cho , A
Futaki , H Ono , Uniqueness and
examples of compact toric Sasaki–Einstein metrics ,
Comm. Math. Phys. 277 (2008) 439 MR2358291
26
C van Coevering ,
Monge–Ampère operators, energy functionals, and uniqueness
of Sasaki-extremal metrics , preprint (2015) arXiv:1511.09167
27
T H Colding ,
Ricci curvature
and volume convergence , Ann. of Math. 145 (1997) 477
MR1454700
28
T C Collins , G
Székelyhidi , K–semistability for
irregular Sasakian manifolds , J. Differential Geom. 109
(2018) 81 MR3798716
29
T C Collins , D
Xie , S T Yau , K stability and stability of
chiral ring , preprint (2016) arXiv:1606.09260
30
C B Croke ,
Some
isoperimetric inequalities and eigenvalue estimates ,
Ann. Sci. École Norm. Sup. 13 (1980) 419 MR608287
31
V Datar , G
Székelyhidi , Kähler–Einstein
metrics along the smooth continuity method , Geom.
Funct. Anal. 26 (2016) 975 MR3558304
32
J P Demailly ,
Estimations
L 2 pour l’opérateur ∂ d’un fibré
vectoriel holomorphe semi-positif au-dessus d’une variété
kählérienne complète , Ann. Sci. École Norm. Sup. 15
(1982) 457 MR690650
33
J P Demailly ,
Mesures de Monge–Ampère et caractérisation géométrique des
variétés algébriques affines , 19, Soc. Math. France (1985)
124 MR813252
34
J P Demailly ,
Complex analytic and differential geometry , book
project (2012)
35
J P Demailly ,
J Kollár , Semi-continuity
of complex singularity exponents and Kähler–Einstein metrics on
Fano orbifolds , Ann. Sci. École Norm. Sup. 34 (2001)
525 MR1852009
36
R Dervan , Uniform stability of
twisted constant scalar curvature Kähler metrics , Int.
Math. Res. Not. 2016 (2016) 4728 MR3564626
37
W Y Ding , G
Tian , Kähler–Einstein metrics
and the generalized Futaki invariant , Invent. Math. 110
(1992) 315 MR1185586
38
S K Donaldson ,
Scalar
curvature and stability of toric varieties , J.
Differential Geom. 62 (2002) 289 MR1988506
39
S K Donaldson ,
Stability,
birational transformations and the Kahler–Einstein
problem , from: "Surveys in differential geometry"
(editors H D Cao, S T Yau), Surv. Differ. Geom. 17,
International (2012) 203 MR3076062
40
S Donaldson , S
Sun , Gromov–Hausdorff
limits of Kähler manifolds and algebraic geometry , Acta
Math. 213 (2014) 63 MR3261011
41
S Donaldson , S
Sun , Gromov–Hausdorff limits of Kahler manifolds and
algebraic geometry, II , preprint (2015) arXiv:1507.05082
42
A El Kacimi-Alaoui ,
Opérateurs
transversalement elliptiques sur un feuilletage riemannien et
applications , Compositio Math. 73 (1990) 57 MR1042454
43
P Eyssidieux , V
Guedj , A Zeriahi , Singular
Kähler–Einstein metrics , J. Amer. Math. Soc. 22 (2009)
607 MR2505296
44
A Futaki , H
Ono , G Wang , Transverse Kähler
geometry of Sasaki manifolds and toric Sasaki–Einstein
manifolds , J. Differential Geom. 83 (2009) 585 MR2581358
45
J P Gauntlett ,
D Martelli , J Sparks , D Waldram ,
Sasaki–Einstein
metrics on S 2 × S 3 ,
Adv. Theor. Math. Phys. 8 (2004) 711 MR2141499
46
J P Gauntlett ,
D Martelli , J Sparks , S T Yau ,
Obstructions to the
existence of Sasaki–Einstein metrics , Comm. Math. Phys.
273 (2007) 803 MR2318866
47
A Ghigi , J
Kollár , Kähler–Einstein metrics on
orbifolds and Einstein metrics on spheres , Comment.
Math. Helv. 82 (2007) 877 MR2341843
48
D R Grayson ,
M E Stillman , Macaulay2, a software
system for research in algebraic geometry
49
P Guan , X
Zhang , A geodesic equation in the space of Sasakian
metrics , from: "Geometry and analysis, I" (editor L Ji),
Adv. Lect. Math. 17, International (2011) 303 MR2882427
50
R Hartshorne ,
Algebraic
geometry , 52, Springer (1977) MR0463157
51
L Hörmander ,
L 2
estimates and existence theorems for the ∂ operator , Acta Math. 113
(1965) 89 MR0179443
52
N Ilten , H
Süss , K–stability for Fano
manifolds with torus action of complexity 1 , Duke Math. J. 166 (2017) 177
MR3592691
53
W Jiang , Bergman kernel along
the Kähler–Ricci flow and Tian’s conjecture , J. Reine
Angew. Math. 717 (2016) 195 MR3530538
54
J M Johnson , J
Kollár , Kähler–Einstein metrics on
log del Pezzo surfaces in weighted projective 3 –spaces , Ann. Inst. Fourier (Grenoble)
51 (2001) 69 MR1821068
55
I R Klebanov ,
E Witten , Superconformal
field theory on threebranes at a Calabi–Yau
singularity , Nuclear Phys. B 536 (1999) 199 MR1666725
56
J Kollár , Einstein metrics on
five-dimensional Seifert bundles , J. Geom. Anal. 15
(2005) 445 MR2190241
57
J Kollár , Circle actions on
simply connected 5 –manifolds , Topology 45 (2006) 643
MR2218760
58
J Kollár , Einstein metrics on
connected sums of S 2
× S 3 , J. Differential Geom. 75 (2007)
259 MR2286822
59
J Kollár , Positive Sasakian
structures on 5 –manifolds ,
from: "Riemannian topology and geometric structures on
manifolds" (editors K Galicki, S R Simanca), Progr. Math.
271, Birkhäuser (2009) 93 MR2494170
60
A Laface , A
Liendo , J Moraga , On the topology of rational
T–varieties of complexity one , preprint (2015) arXiv:1503.06023
61
C Li , S Sun ,
Conical
Kähler–Einstein metrics revisited , Comm. Math. Phys.
331 (2014) 927 MR3248054
62
D Luna , Slices étales , from: "Sur
les groupes algébriques", Mém. Soc. Math. France 33, Soc. Math.
France (1973) 81 MR0342523
63
J Maldacena ,
The
large N limit of superconformal
field theories and supergravity , Adv. Theor. Math.
Phys. 2 (1998) 231 MR1633016
64
D Martelli , J
Sparks , S T Yau , The geometric dual
of a –maximisation for toric
Sasaki–Einstein manifolds , Comm. Math. Phys. 268 (2006)
39 MR2249795
65
D Martelli , J
Sparks , S T Yau , Sasaki–Einstein
manifolds and volume minimisation , Comm. Math. Phys.
280 (2008) 611 MR2399609
66
D H Phong , J
Song , J Sturm , Degeneration
of Kähler–Ricci solitons on Fano manifolds , Univ.
Iagel. Acta Math. (2015) 29 MR3438282
67
J Ross , R
Thomas , Weighted projective
embeddings, stability of orbifolds, and constant scalar
curvature Kähler metrics , J. Differential Geom. 88
(2011) 109 MR2819757
68
L Saper , L 2 –cohomology of Kähler varieties with
isolated singularities , J. Differential Geom. 36 (1992)
89 MR1168983
69
R Schoen , K
Uhlenbeck , A regularity theory
for harmonic maps , J. Differential Geom. 17 (1982) 307
MR664498
70
B Shiffman , S
Zelditch , Distribution of zeros
of random and quantum chaotic sections of positive line
bundles , Comm. Math. Phys. 200 (1999) 661 MR1675133
71
J Sparks , Sasaki–Einstein
manifolds , from: "Surveys in differential geometry, XVI
: Geometry of special holonomy and related topics" (editors
N C Leung, S T Yau), Surv. Differ. Geom. 16,
International (2011) 265 MR2893680
72
R P Stanley ,
Hilbert
functions of graded algebras , Advances in Math. 28
(1978) 57 MR0485835
73
G Székelyhidi ,
Greatest
lower bounds on the Ricci curvature of Fano manifolds ,
Compos. Math. 147 (2011) 319 MR2771134
74
G Székelyhidi , The
partial C 0 –estimate along the continuity
method , preprint (2013) arXiv:1310.8471
75
G Székelyhidi ,
Extremal Kähler metrics , from: "Proceedings of the
International Congress of Mathematicians" (editors S Y
Jang, Y R Kim, D W Lee, I Ye), Kyung Moon Sa (2014)
1017 MR3728650
76
G Székelyhidi ,
Filtrations and
test-configurations , Math. Ann. 362 (2015) 451 MR3343885
77
G Tian , On Calabi’s conjecture for
complex surfaces with positive first Chern class ,
Invent. Math. 101 (1990) 101 MR1055713
78
G Tian , Kähler–Einstein metrics
with positive scalar curvature , Invent. Math. 130
(1997) 1 MR1471884
79
D Witt Nyström ,
Test
configurations and Okounkov bodies , Compos. Math. 148
(2012) 1736 MR2999302
80
S T Yau ,
On the
Ricci curvature of a compact Kähler manifold and the complex
Monge–Ampère equation, I , Comm. Pure Appl. Math. 31
(1978) 339 MR480350
81
S T Yau ,
Survey on partial differential equations in differential
geometry , from: "Seminar on differential geometry"
(editor S T Yau), Ann. of Math. Stud. 102, Princeton Univ.
Press (1982) 3 MR645729
82
S T Yau , Open
problems in geometry , from: "Differential geometry: partial
differential equations on manifolds" (editor R Greene), Proc.
Sympos. Pure Math. 54, Amer. Math. Soc. (1993) 1 MR1216573
83
S S T Yau ,
Y Yu , Classification of
3 –dimensional isolated rational
hypersurface singularities with ℂ ∗ –action , Rocky Mountain J. Math.
35 (2005) 1795 MR2206037
84
L Yi , A
Bando–Mabuchi uniqueness theorem , preprint (2013) arXiv:1301.2847