Volume 23, issue 3 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 2, 549–862
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Sasaki–Einstein metrics and K–stability

Tristan C Collins and Gábor Székelyhidi

Geometry & Topology 23 (2019) 1339–1413
Bibliography
1 K Altmann, J Hausen, Polyhedral divisors and algebraic torus actions, Math. Ann. 334 (2006) 557 MR2207875
2 K Altmann, N O Ilten, L Petersen, H Süß, R Vollmert, The geometry of 𝕋–varieties, from: "Contributions to algebraic geometry" (editor P Pragacz), Eur. Math. Soc. (2012) 17 MR2975658
3 M T Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math. 102 (1990) 429 MR1074481
4 T Aubin, Réduction du cas positif de l’équation de Monge–Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité, J. Funct. Anal. 57 (1984) 143 MR749521
5 S Bando, T Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, from: "Algebraic geometry" (editor T Oda), Adv. Stud. Pure Math. 10, North-Holland (1987) 11 MR946233
6 R J Berman, K–polystability of –Fano varieties admitting Kähler–Einstein metrics, Invent. Math. 203 (2016) 973 MR3461370
7 R J Berman, S Boucksom, P Eyssidieux, V Guedj, A Zeriahi, Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties, (2011) arXiv:1111.7158
8 R J Berman, D Witt Nyström, Complex optimal transport and the pluripotential theory of Kähler–Ricci solitons, preprint (2014) arXiv:1401.8264
9 B Berndtsson, An introduction to things , from: "Analytic and algebraic geometry" (editors J McNeal, M Mustaţă), IAS/Park City Math. Ser. 17, Amer. Math. Soc. (2010) 7 MR2743815
10 B Berndtsson, A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Invent. Math. 200 (2015) 149 MR3323577
11 C Böhm, Inhomogeneous Einstein metrics on low-dimensional spheres and other low-dimensional spaces, Invent. Math. 134 (1998) 145 MR1646591
12 C P Boyer, K Galicki, New Einstein metrics in dimension five, J. Differential Geom. 57 (2001) 443 MR1882664
13 C P Boyer, K Galicki, New Einstein metrics on 8#(S2 × S3), Differential Geom. Appl. 19 (2003) 245 MR2002662
14 C P Boyer, K Galicki, Sasakian geometry, Oxford Univ. Press (2008) MR2382957
15 C P Boyer, K Galicki, J Kollár, Einstein metrics on spheres, Ann. of Math. 162 (2005) 557 MR2178969
16 C P Boyer, K Galicki, J Kollár, E Thomas, Einstein metrics on exotic spheres in dimensions 7, 11, and 15, Experiment. Math. 14 (2005) 59 MR2146519
17 C P Boyer, M Nakamaye, On Sasaki–Einstein manifolds in dimension five, Geom. Dedicata 144 (2010) 141 MR2580423
18 W Bruns, J Herzog, Cohen–Macaulay rings, 39, Cambridge Univ. Press (1993) MR1251956
19 J Cheeger, T H Colding, On the structure of spaces with Ricci curvature bounded below, I, J. Differential Geom. 46 (1997) 406 MR1484888
20 J Cheeger, T H Colding, G Tian, On the singularities of spaces with bounded Ricci curvature, Geom. Funct. Anal. 12 (2002) 873 MR1937830
21 X Chen, S Donaldson, S Sun, Kähler–Einstein metrics on Fano manifolds, I : Approximation of metrics with cone singularities, J. Amer. Math. Soc. 28 (2015) 183 MR3264766
22 X Chen, S Donaldson, S Sun, Kähler–Einstein metrics on Fano manifolds, II : Limits with cone angle less than 2π, J. Amer. Math. Soc. 28 (2015) 199 MR3264767
23 X Chen, S Donaldson, S Sun, Kähler–Einstein metrics on Fano manifolds, III : Limits as cone angle approaches 2π and completion of the main proof, J. Amer. Math. Soc. 28 (2015) 235 MR3264768
24 X Chen, B Wang, Space of Ricci flows, II, preprint (2014) arXiv:1405.6797
25 K Cho, A Futaki, H Ono, Uniqueness and examples of compact toric Sasaki–Einstein metrics, Comm. Math. Phys. 277 (2008) 439 MR2358291
26 C van Coevering, Monge–Ampère operators, energy functionals, and uniqueness of Sasaki-extremal metrics, preprint (2015) arXiv:1511.09167
27 T H Colding, Ricci curvature and volume convergence, Ann. of Math. 145 (1997) 477 MR1454700
28 T C Collins, G Székelyhidi, K–semistability for irregular Sasakian manifolds, J. Differential Geom. 109 (2018) 81 MR3798716
29 T C Collins, D Xie, S T Yau, K stability and stability of chiral ring, preprint (2016) arXiv:1606.09260
30 C B Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. École Norm. Sup. 13 (1980) 419 MR608287
31 V Datar, G Székelyhidi, Kähler–Einstein metrics along the smooth continuity method, Geom. Funct. Anal. 26 (2016) 975 MR3558304
32 J P Demailly, Estimations L2 pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. 15 (1982) 457 MR690650
33 J P Demailly, Mesures de Monge–Ampère et caractérisation géométrique des variétés algébriques affines, 19, Soc. Math. France (1985) 124 MR813252
34 J P Demailly, Complex analytic and differential geometry, book project (2012)
35 J P Demailly, J Kollár, Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. 34 (2001) 525 MR1852009
36 R Dervan, Uniform stability of twisted constant scalar curvature Kähler metrics, Int. Math. Res. Not. 2016 (2016) 4728 MR3564626
37 W Y Ding, G Tian, Kähler–Einstein metrics and the generalized Futaki invariant, Invent. Math. 110 (1992) 315 MR1185586
38 S K Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002) 289 MR1988506
39 S K Donaldson, Stability, birational transformations and the Kahler–Einstein problem, from: "Surveys in differential geometry" (editors H D Cao, S T Yau), Surv. Differ. Geom. 17, International (2012) 203 MR3076062
40 S Donaldson, S Sun, Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry, Acta Math. 213 (2014) 63 MR3261011
41 S Donaldson, S Sun, Gromov–Hausdorff limits of Kahler manifolds and algebraic geometry, II, preprint (2015) arXiv:1507.05082
42 A El Kacimi-Alaoui, Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications, Compositio Math. 73 (1990) 57 MR1042454
43 P Eyssidieux, V Guedj, A Zeriahi, Singular Kähler–Einstein metrics, J. Amer. Math. Soc. 22 (2009) 607 MR2505296
44 A Futaki, H Ono, G Wang, Transverse Kähler geometry of Sasaki manifolds and toric Sasaki–Einstein manifolds, J. Differential Geom. 83 (2009) 585 MR2581358
45 J P Gauntlett, D Martelli, J Sparks, D Waldram, Sasaki–Einstein metrics on S2×S3, Adv. Theor. Math. Phys. 8 (2004) 711 MR2141499
46 J P Gauntlett, D Martelli, J Sparks, S T Yau, Obstructions to the existence of Sasaki–Einstein metrics, Comm. Math. Phys. 273 (2007) 803 MR2318866
47 A Ghigi, J Kollár, Kähler–Einstein metrics on orbifolds and Einstein metrics on spheres, Comment. Math. Helv. 82 (2007) 877 MR2341843
48 D R Grayson, M E Stillman, Macaulay2, a software system for research in algebraic geometry
49 P Guan, X Zhang, A geodesic equation in the space of Sasakian metrics, from: "Geometry and analysis, I" (editor L Ji), Adv. Lect. Math. 17, International (2011) 303 MR2882427
50 R Hartshorne, Algebraic geometry, 52, Springer (1977) MR0463157
51 L Hörmander, L2 estimates and existence theorems for the  operator, Acta Math. 113 (1965) 89 MR0179443
52 N Ilten, H Süss, K–stability for Fano manifolds with torus action of complexity 1, Duke Math. J. 166 (2017) 177 MR3592691
53 W Jiang, Bergman kernel along the Kähler–Ricci flow and Tian’s conjecture, J. Reine Angew. Math. 717 (2016) 195 MR3530538
54 J M Johnson, J Kollár, Kähler–Einstein metrics on log del Pezzo surfaces in weighted projective 3–spaces, Ann. Inst. Fourier (Grenoble) 51 (2001) 69 MR1821068
55 I R Klebanov, E Witten, Superconformal field theory on threebranes at a Calabi–Yau singularity, Nuclear Phys. B 536 (1999) 199 MR1666725
56 J Kollár, Einstein metrics on five-dimensional Seifert bundles, J. Geom. Anal. 15 (2005) 445 MR2190241
57 J Kollár, Circle actions on simply connected 5–manifolds, Topology 45 (2006) 643 MR2218760
58 J Kollár, Einstein metrics on connected sums of S2 × S3, J. Differential Geom. 75 (2007) 259 MR2286822
59 J Kollár, Positive Sasakian structures on 5–manifolds, from: "Riemannian topology and geometric structures on manifolds" (editors K Galicki, S R Simanca), Progr. Math. 271, Birkhäuser (2009) 93 MR2494170
60 A Laface, A Liendo, J Moraga, On the topology of rational T–varieties of complexity one, preprint (2015) arXiv:1503.06023
61 C Li, S Sun, Conical Kähler–Einstein metrics revisited, Comm. Math. Phys. 331 (2014) 927 MR3248054
62 D Luna, Slices étales, from: "Sur les groupes algébriques", Mém. Soc. Math. France 33, Soc. Math. France (1973) 81 MR0342523
63 J Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 MR1633016
64 D Martelli, J Sparks, S T Yau, The geometric dual of a–maximisation for toric Sasaki–Einstein manifolds, Comm. Math. Phys. 268 (2006) 39 MR2249795
65 D Martelli, J Sparks, S T Yau, Sasaki–Einstein manifolds and volume minimisation, Comm. Math. Phys. 280 (2008) 611 MR2399609
66 D H Phong, J Song, J Sturm, Degeneration of Kähler–Ricci solitons on Fano manifolds, Univ. Iagel. Acta Math. (2015) 29 MR3438282
67 J Ross, R Thomas, Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Kähler metrics, J. Differential Geom. 88 (2011) 109 MR2819757
68 L Saper, L2–cohomology of Kähler varieties with isolated singularities, J. Differential Geom. 36 (1992) 89 MR1168983
69 R Schoen, K Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geom. 17 (1982) 307 MR664498
70 B Shiffman, S Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys. 200 (1999) 661 MR1675133
71 J Sparks, Sasaki–Einstein manifolds, from: "Surveys in differential geometry, XVI : Geometry of special holonomy and related topics" (editors N C Leung, S T Yau), Surv. Differ. Geom. 16, International (2011) 265 MR2893680
72 R P Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978) 57 MR0485835
73 G Székelyhidi, Greatest lower bounds on the Ricci curvature of Fano manifolds, Compos. Math. 147 (2011) 319 MR2771134
74 G Székelyhidi, The partial C0–estimate along the continuity method, preprint (2013) arXiv:1310.8471
75 G Székelyhidi, Extremal Kähler metrics, from: "Proceedings of the International Congress of Mathematicians" (editors S Y Jang, Y R Kim, D W Lee, I Ye), Kyung Moon Sa (2014) 1017 MR3728650
76 G Székelyhidi, Filtrations and test-configurations, Math. Ann. 362 (2015) 451 MR3343885
77 G Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990) 101 MR1055713
78 G Tian, Kähler–Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997) 1 MR1471884
79 D Witt Nyström, Test configurations and Okounkov bodies, Compos. Math. 148 (2012) 1736 MR2999302
80 S T Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I, Comm. Pure Appl. Math. 31 (1978) 339 MR480350
81 S T Yau, Survey on partial differential equations in differential geometry, from: "Seminar on differential geometry" (editor S T Yau), Ann. of Math. Stud. 102, Princeton Univ. Press (1982) 3 MR645729
82 S T Yau, Open problems in geometry, from: "Differential geometry: partial differential equations on manifolds" (editor R Greene), Proc. Sympos. Pure Math. 54, Amer. Math. Soc. (1993) 1 MR1216573
83 S S T Yau, Y Yu, Classification of 3–dimensional isolated rational hypersurface singularities with –action, Rocky Mountain J. Math. 35 (2005) 1795 MR2206037
84 L Yi, A Bando–Mabuchi uniqueness theorem, preprint (2013) arXiv:1301.2847