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The geometry of maximal components of the
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We describe the space of maximal components of the character variety of surface
group representations into PSp.4;R/ and Sp.4;R/ .

For every real rank 2 Lie group of Hermitian type, we construct a mapping class
group invariant complex structure on the maximal components. For the groups
PSp.4;R/ and Sp.4;R/ , we give a mapping class group invariant parametrization of
each maximal component as an explicit holomorphic fiber bundle over Teichmüller
space. Special attention is put on the connected components which are singular: we
give a precise local description of the singularities and their geometric interpretation.
We also describe the quotient of the maximal components of PSp.4;R/ and Sp.4;R/
by the action of the mapping class group as a holomorphic submersion over the
moduli space of curves.

These results are proven in two steps: first we use Higgs bundles to give a nonmapping
class group equivariant parametrization, then we prove an analog of Labourie’s
conjecture for maximal PSp.4;R/–representations.
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1 Introduction

Let � be the fundamental group of a closed orientable surface S of genus g � 2 and
let G be a connected real semisimple algebraic Lie group. Our main object of interest
is the character variety X .�;G/ of representations of � into G. It can be seen as the
set of reductive representations HomC.�;G/ up to conjugation:

X .�;G/D HomC.�;G/=G:

The mapping class group MCG.S/D DiffC.S/=Diff0.S/ acts naturally on X .�;G/.

Character varieties and their mapping class group symmetry are the main objects of
study in higher Teichmüller theory (see for example Burger, Iozzi and Wienhard [7]
and Goldman [19]). They also play an important role in other areas of geometry and
theoretical physics.

The natural geometric structures on X .�;G/ are the ones preserved by the action of
the mapping class group. For instance, the Goldman symplectic form defines a natural
symplectic structure on X .�;G/. When G is a complex group, the complex structure
on G gives X .�;G/ a natural complex structure. However, when G is a real Lie group,
there is no obvious natural complex structure on X .�;G/.

There is however a classical subspace of X .�;PSL.2;R// which does admit a natural
complex structure. This is the set of discrete and faithful representations or Fuchsian rep-
resentations Fuch.�/; it is a union of two connected components of X .�;PSL.2;R//.
The uniformization theorem defines a mapping class group equivariant diffeomorphism
between Fuch.�/ and a disjoint union of two copies of Teichmüller space Teich.S/.
The complex structure on Teichmüller space then induces a natural complex structure
on Fuch.�/. In fact, the Goldman symplectic form on Fuch.�/ is the Kähler form
given by the Weil–Peterson metric. Moreover, MCG.S/ acts properly discontinuously
on Teich.S/ and the quotient is the Riemann moduli space of curves.

It is important to note that the presence of a natural complex structure on Fuch.�/

comes from the uniformization theorem and the work of Teichmüller on the moduli
of Riemann surfaces (see A’Campo-Neuen, A’Campo, Ji and Papadopoulos [1]). This
is a deep result of complex geometry, and there is no elementary way to describe this
natural complex structure directly from the definition of X .�;PSL.2;R//.

The goal of higher Teichmüller theory is to generalize these classical features to the
character varieties of higher-rank Lie groups. The space of Hitchin representations
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into a split real Lie group and the space of maximal representations into a Lie group of
Hermitian type both define particularly interesting components of the character variety.
The group PSL.2;R/ is both split and of Hermitian type, and the spaces of Hitchin and
maximal representations into PSL.2;R/ agree and are exactly the subspace Fuch.�/.
Hence, for PSL.2;R/, Hitchin representations and maximal representations are in
one-to-one correspondence with Teich.S/.

In general, both Hitchin representations and maximal representations have many in-
teresting geometric and dynamical properties, most notably that they are Anosov
representations; see Labourie [32] and Burger, Iozzi, Labourie and Wienhard [5].
Consequently, both Hitchin representations and maximal representations define con-
nected components of discrete and faithful representations which are holonomies of
geometric structures on closed manifolds — see Guichard [25] — and carry a properly
discontinuous action of the mapping class group; see Labourie [34] and Wienhard [50].

While many of the interesting features of Teichmüller theory generalize to these higher-
rank Lie groups, the analog of the complex geometry of Teichmüller space has not yet
been developed. Indeed, it is not clear that a natural complex structure exists on these
generalizations of Teichmüller space. There are some results in this direction. Namely,
Loftin [37] and Labourie [33] independently constructed a natural complex structure
on the PSL.3;R/–Hitchin component. More recently, Labourie [35] constructed a
natural complex structure on the Hitchin component for all real split Lie groups of
rank two (namely PSL.3;R/, PSp.4;R/ and G2 ). This was done by constructing a
mapping class group equivariant diffeomorphism between Hit.G/ and a holomorphic
vector bundle over Teich.S/.

In this paper, we construct a natural complex structure on the space of maximal
representations into any rank two real Lie group G of Hermitian type.

Theorem 1 Let � be the fundamental group of a closed orientable surface of genus
g � 2 and let G be a real rank two semisimple Lie group of Hermitian type. The space
of conjugacy classes of maximal representations of � into G has a mapping class group
invariant complex structure.

Remark 1.1 It is natural to ask whether the Goldman symplectic form is compatible
with this complex structure, as it would then define a mapping class group invariant
Kähler metric on the space of maximal representations.
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Remark 1.2 The Lie group PSp.4;R/ and its coverings are the only simple rank two
groups which are both split and of Hermitian type. The Hitchin component is only
one connected component of the many connected components of the set of maximal
PSp.4;R/–representations (see (1-1)). For the PSp.4;R/–Hitchin component, the
above theorem was proved by Labourie in [35]. We note that unlike the Hitchin
component, the connected components of maximal representations are neither smooth
nor contractible in general.

For the groups PSp.4;R/ and Sp.4;R/ we will give a parametrization of each con-
nected component of the space of maximal representations as an explicit holomorphic
fiber bundle over Teich.S/. These parametrizations allow us to describe the complex
structure from Theorem 1 more explicitly, and determine the global topology of these
spaces and their homotopy type.

Special attention is placed on components which contain singularities. To understand
the singularities, we will describe the local topology around every singular point, and
we will show how the type of the singularity is related with the Zariski closure of the
associated representation. We also describe the quotient of the maximal components of
PSp.4;R/ and Sp.4;R/ by the action of the mapping class group as a holomorphic
submersion over the moduli space of curves.

Remark 1.3 Many aspects of the components of maximal representations into Sp.4;R/

were studied by Bradlow, García-Prada and Gothen [4] using Higgs bundles and by
Guichard and Wienhard [24] using representation theory techniques. In this paper, we
both extend these results to the group PSp.4;R/ and provide a more detailed analysis
of the components, giving a finer description of the space and its structure.

1.1 Maximal PSp.4; R/–representations

The group PSp.4;R/ is a real rank two Lie group of Hermitian type. The (disconnected)
subspace of maximal representations of the PSp.4;R/–character variety will be denoted
by Xmax.�;PSp.4;R//.

The space Xmax.�;PSp.4;R// has 2.22g � 1/C 4g� 3 connected components; see
Bradlow, García-Prada and Gothen [3]. More precisely, it was shown that there is a
bijective correspondence between the connected components of Xmax.�;PSp.4;R//

and the set
f0; 1; : : : ; 4g� 4g t .H 1.S;Z2/ n f0g/�H

2.S;Z2/:
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For each d 2 f0; : : : ; 4g� 4g and each .sw1; sw2/ 2 .H 1.S;Z2/ n f0g/�H 2.S;Z2/,
denote the associated connected components of Xmax.�;PSp.4;R// by

(1-1) Xmax
0;d .�;PSp.4;R// and Xmax;sw2

sw1 .�;PSp.4;R//:

The connected components Xmax
0;d

.�;PSp.4;R// for d 2 .0; 4g� 4� are the easiest to
parametrize since they are smooth.

Theorem 2 Let � be the fundamental group of a closed oriented surface S of genus
g � 2. For each integer d 2 .0; 4g � 4�, there is a mapping class group equivariant
diffeomorphism between Xmax

0;d
.�;PSp.4;R// and a holomorphic fiber bundle

� W Yd ! Teich.S/:

Here, for each Riemann surface † 2 Teich.S/, the fiber ��1.†/ is a rank d C 3g� 3
vector bundle over the .4g�4�d/th symmetric product of †. The mapping class group
acts on Yd by pullback by the action on Teich.S/.

As a direct corollary we have the following:

Corollary 3 Let � be the fundamental group of a closed surface S of genus g � 2.
For each integer d 2 .0; 4g � 4�, the connected component Xmax

0;d
.�;PSp.4;R// is

smooth and deformation retracts onto the .4g�4�d/th symmetric product of S.

Note that when d D 4g � 4, the above theorem says that X0;4g�4.�;PSp.4;R//

is diffeomorphic to a rank 7g � 7 vector bundle over Teich.S/. In this case, the
component Xmax

0;4g�4.�;PSp.4;R// is the PSp.4;R/–Hitchin component and the fiber
bundle F4g�4 is the vector bundle of holomorphic quartic differentials on Teich.S/. In
particular, Theorem 2 recovers Labourie’s mapping class group invariant parametriza-
tion of the Hit.PSp.4;R// from [35].

Remark 1.4 Notably, the connected components Xmax
0;d

.�;PSp.4;R// behave very
differently for d D 4g�4 and d 2 .0; 4g�4/. In particular, they are contractible if and
only if d D 4g� 4. Moreover, for d 2 .0; 4g� 4/ we show that every representation
� 2 Xmax

0;d
.�;PSp.4;R// is Zariski dense. This generalizes similar results of [4; 24] for

certain components of maximal Sp.4;R/–representations (see Sections 4 and 5).

The connected component Xmax
0;0 .�;PSp.4;R// is the most singular, and thus the hardest

to parametrize. We describe it here briefly. For each Riemann surface † 2 Teich.S/,
let Pic0.†/ denote the abelian variety of degree zero line bundles on †. Denote the
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tautological holomorphic line bundle over CP3g�4 by OCP3g�4.�1/, and let U3g�3
denote the quotient of the total space of the direct sum of 3g�3 copies of OCPn�1.�1/

by the equivalence relation that collapses the zero section to a point. Note that U3g�3
is a singular space.

Theorem 4 Let � be the fundamental group of a closed oriented surface S of genus
g � 2. There is a mapping class group equivariant homeomorphism between the
component Xmax

0;0 .�;PSp.4;R// and a holomorphic fiber bundle

� W Y0! Teich.S/:

Here, for each † 2 Teich.S/, ��1.†/ is a Z2 quotient of a holomorphic fiber bundle
A! Pic0.†/ with fiber U3g�3 and Z2 acts by pullback to A of the inversion map
L 7! L�1 on Pic0.†/. The mapping class group acts on Y0 by pullback by the action
on Teich.S/.

In Lemma 4.24, we show that the space U3g�3 is contractible; thus, we have:

Corollary 5 The connected component Xmax
0;0 .�;PSp.4;R// deformation retracts to

the quotient of .S1/2g by the inversion map x 7! x�1 . In particular, its rational
cohomology is

H j
�
Xmax
0;0 .�;PSp.4;R//;Q

�
Š

�
H j ..S1/2g ;Q/ if j is even,
0 otherwise.

Recall that a nonzero cohomology class sw1 2H 1.S;Z2/ is equivalent to the data of
a connected double covering � W Ssw1 ! S. For each Riemann surface † 2 Teich.S/,
denote the pullback of the complex structure to Ssw1 by †sw1 . If � denotes the covering
involution on †sw1 , consider the space

Prym.†sw1/D fL 2 Pic0.†sw1/ j �
�LD L�1g:

The space Prym.†sw1/ has two isomorphic connected components Prym0.†sw1/ and
Prym1.†sw1/. The connected component of the identity Prym0.†sw1/ is an abelian
variety of complex dimension g� 1, called the Prym variety of the covering.

Theorem 6 Let � be the fundamental group of a closed oriented surface S of genus
g � 2. For each .sw1; sw2/ 2H 1.S;Z2/ n f0g �H 2.S;Z2/, there is a mapping class
group equivariant homeomorphism between the component Xmax;sw2

sw1 .�;PSp.4;R//

and a holomorphic fiber bundle

� W Ysw2
sw1 ! Teich.S/:
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Here, for each † 2 Teich.S/, ��1.†/ is a Z2 quotient of an explicit holomorphic
bundle over Prymsw2.†sw1/. The mapping class group acts on Ysw2

sw1 by pullback by
the action on Teich.S/.

The spaces Xmax;sw2
sw1 .�;PSp.4;R// are singular, but the singularities consist only

of Z2– and Z2˚Z2–orbifold points. The space H0=Z2 also has an orbifold structure.
The homeomorphism above is an orbifold isomorphism; in particular, it is smooth away
from the singular set.

Corollary 7 Each space Xmax;sw2
sw1 .�;PSp.4;R// deformation retracts onto the quo-

tient of .S1/2g�2 by inversion. In particular, its rational cohomology is

H j .Xmax;sw2
sw1 .�;PSp.4;R//;Q/Š

�
H j ..S1/2g�2;Q/ if j is even,
0 otherwise.

Remark 1.5 In Theorems 5.8, 5.10 and 5.12 of Section 5.2, we also find analogous
descriptions for the components of the character variety Xmax.�; Sp.4;R//. While
every component is a covering of a component of the character variety of PSp.4;R/,
the order of this cover depends on the topological invariants of the component.

1.2 Higgs bundles and Labourie’s conjecture

For a real semisimple Lie group G, a G–Higgs bundle consists of a certain holomorphic
bundle on a Riemann surface † together with a section of an associated bundle. The
remarkable theorem of Hitchin [28] for SL.2;C/ and Simpson [47] for G complex
semisimple is that the moduli space M.†;G/ of polystable G–Higgs bundles on † is
homeomorphic to the character variety X .�;G/. This correspondence, usually called
the nonabelian Hodge correspondence, also holds for real reductive groups G; see
García-Prada, Gothen and Mundet i Riera [15].

The moduli space of G–Higgs bundles has more structure than the character variety.
For example, there is a Hamiltonian circle action on M.†;G/, and, when M.†;G/ is
smooth, the associated moment map is a perfect Morse–Bott function. Thus, Higgs
bundles provide useful tools to study the topology of the character variety. When
M.†;G/ is not smooth, the moment map only provides enough structure to determine
bounds on the connected components of the moduli space.

In special cases, one can explicitly parametrize a connected component of the Higgs
bundle moduli space. The only previous examples of this are for the connected compo-
nents of M.†;PSL.2;R// with nonzero Euler class [28] and the Hitchin component
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of M.†;G/ when G is a real split Lie group [29]. More precisely, Hitchin [29] proved
that, for each Riemann surface †2Teich.S/, the Hitchin component Hit.G/�X .�;G/
is homeomorphic to the vector space

(1-2) Hit.G/Š

rk.G/M
jD1

H 0.†;KmjC1/;

where K is the canonical bundle of †, m1D 1 and the integers fmj g are the exponents
of G.

Remark 1.6 The nonzero Euler class components of X .�;PSL.2;R// and the Hitchin
component are smooth. In Section 4, we will explicitly parametrize the connected
components of maximal PSp.4;R/–Higgs bundle moduli space as the product of the
fiber from Theorems 2, 4 and 6 with the vector space H 0.†;K2/ of holomorphic
quadratic differentials. These parametrizations are the first description of a singular
connected component of the Higgs bundle moduli space.

One drawback of the nonabelian Hodge correspondence is that it requires fixing a
Riemann surface † 2 Teich.S/ and thus breaks the mapping class group symmetry
of X .�;G/. In particular, the mapping class group does not act on the parametrization
of the Hitchin component from (1-2). To obtain a mapping class group invariant
parametrization of the Hitchin component, Labourie suggested the following method
of associating a preferred Riemann surface to each � 2 Hit.G/:

For each � 2 X .�;G/ one can define an energy function

(1-3) E�W Teich.S/!R

by defining E�.†/ to be the energy of a �–equivariant harmonic map from the universal
cover of † to the symmetric space of G. The existence of such harmonic maps
is guaranteed by Corlette’s theorem [11]. The critical points of E� are given by
those harmonic maps which are weakly conformal, or, equivalently, whose image is a
branched minimal immersion; see Schoen and Yau [46] and Sacks and Uhlenbeck [43].
In [34], Labourie showed that, for each Anosov representation � 2 X .�;G/, the energy
function E� is smooth and proper and thus admits a critical point. He then conjectured
that for Hitchin representations, the critical point was unique.

Conjecture 8 [34] Let � be the fundamental group of a closed oriented surface S
of genus at least two and let G be a semisimple split real Lie group. If � 2 X .�;G/ is a
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Hitchin representation, then there is a unique Riemann surface structure † 2 Teich.S/

which is a critical point of the energy function E� from (1-3).

For a Hitchin representation � , a Riemann surface † 2 Teich.S/ is a critical point of
the energy function E� if and only the tuple .q2; qm2C1; : : : ; qmrkGC1/ of holomorphic
differentials associated to � via (1-2) has q2 D 0. Thus, a consequence of Labourie’s
conjecture would be that there is a mapping class group equivariant diffeomorphism
between Hit.G/ and the vector bundle

� W V! Teich.S/ with ��1.†/D
rk.G/M
jD2

H 0.K
mj
X /:

Since V is naturally a holomorphic vector bundle, a positive answer to Labourie’s
conjecture would provide the Hitchin component with a mapping class group invariant
complex structure. For this reason, Labourie’s conjecture is arguably among the most
important conjectures in the field of higher Teichmüller theory.

Labourie’s conjecture has been proven when the rank of G is two. This was done
independently by Loftin [37] and Labourie [33] for GDPSL.3;R/ and by Labourie [35]
in the general case. Little is known when rk.G/ > 2.

To go from our Higgs bundle parametrization of the components of maximal PSp.4;R/–
representations to a mapping class group invariant parametrization, we prove an analog
of Labourie’s conjecture for maximal representations.

Theorem 9 Let � be the fundamental group of a closed oriented surface with genus
at least two. If � 2 Xmax.�;PSp.4;R// is a maximal representation, then there is a
unique critical point of the energy function E� from (1-3).

Remark 1.7 For d 2 .0; 4g � 4�, the above theorem was proven for the connected
components Xmax

0;d
by the second author in [9] by generalizing Labourie’s techniques

for the Hitchin component. The proof of Theorem 9 is also along these lines. In more
recent work and using completely different methods, the second author with Tholozan
and Toulisse [10] extended Theorem 9 to maximal representations into any real rank
two Lie group of Hermitian type.

We conjecture that the extension of Labourie’s conjecture to all maximal representations
holds.
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Conjecture 10 Let � be the fundamental group of a closed oriented surface S of
genus at least two and let G be a real Lie group of Hermitian type. If � 2 X .�;G/ is a
maximal representation, then there is a unique Riemann surface structure † 2 Teich.S/

which is a critical point of the energy function E� from (1-3).

Now, putting our Higgs bundle parametrization of Xmax.�;PSp.4;R// from Remark 1.6
together with Theorem 9 we obtain a homeomorphism between each component of
Xmax.�;PSp.4;R// and the fibrations over Teichmüller space from Theorems 2, 4
and 6. At this point it is neither clear that these homeomorphisms are equivariant with
respect to the mapping class group action nor clear that the fibrations are holomorphic.
To solve these issues, we construct a universal Higgs bundle moduli space.

Theorem 11 Given an algebraic Lie group of Hermitian type G, there is a complex
analytic space Mmax.U ;G/ with a holomorphic map � WMmax.U ;G/!Teich.S/ such
that

(1) for every † 2 Teich.S/, ��1.†/ is biholomorphic to Mmax.†;G/,

(2) � is a trivial smooth fiber bundle,

(3) the pullback operation on Higgs bundles gives a natural action of MCG.S/ on
Mmax.U ;G/ by holomorphic maps that lifts the action on Teich.S/.

Remark 1.8 The proof of Theorem 11 relies on Simpson’s construction of the moduli
space of Higgs bundles over Riemann surfaces over schemes of finite type over C .
More specifically, we will use Corollary 6.7 of Simpson [49]. We note that Teich.S/

is not a scheme of finite type over C .

Theorem 9 defines a map

(1-4) ‰W Xmax.�;PSp.4;R//!Mmax.U ;PSp.4;R//; � 7! .†�; E;ˆ/;

where †� 2 Teich.S/ is the unique critical point of E� and .E;ˆ/ is the Higgs
bundle associated to � on the Riemann surface †� . The natural complex structure on
Xmax.�;PSp.4;R// is given by the following corollary:

Corollary 12 The map ‰ is equivariant with respect to the mapping class group action
and its image is a complex analytic subspace of Mmax.U ;PSp.4;R//.
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Remark 1.9 Let G be a real semisimple Lie group of Hermitian type. A positive
answer to Conjecture 10 would define a map analogous to (1-4)

‰W Xmax.�;G/!Mmax.U ;G/; � 7! .E;ˆ;†�/:

In this case also the map ‰ is equivariant with respect to the mapping class group and
its image is a complex analytic subspace. This would give a natural complex structure
on Xmax.�;G/. In particular, the extension of Theorem 9 to all rank two Hermitian
Lie groups of [10] implies Theorem 1.

Organization of the paper

In Section 2, we introduce character varieties, Higgs bundles and some Lie theory for
the groups PSp.4;R/ and Sp.4;R/. In Section 3, we describe holomorphic orthogonal
bundles, with special attention to the description of the moduli space of holomorphic
O.2;C/–bundles. This is a necessary tool which we will use repeatedly. In Section 4,
Higgs bundles over a fixed Riemann surface † are used to describe the topology
of Xmax.�;PSp.4;R//; special attention is placed on the singular components. In
Section 5, we prove analogous results for Xmax.�; Sp.4;R//. In Section 6, we prove
Labourie’s conjecture concerning uniqueness of minimal surfaces. In Section 7, the
universal Higgs bundle moduli space is constructed and in Section 8 we will put
everything together and describe the action of MCG.S/ on Xmax.�;PSp.4;R// and
Xmax.�; Sp.4;R//.
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2 Character varieties and Higgs bundles

In this section we recall general facts about character varieties and Higgs bundles.
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2.1 Character varieties

Let � be the fundamental group of an orientable closed surface S with genus g � 2
and let G be a connected real semisimple algebraic Lie group. Denote the fundamental
group of S by � . The set of representations of � into G is defined to be the set of
group homomorphisms Hom.�;G/. Since G is algebraic and � is finitely generated,
Hom.�;G/ can be given the structure of an algebraic variety. A representation � 2
Hom.�;G/ is called reductive if the Zariski closure of �.�/ is a reductive subgroup
of G. Denote the space of reductive representations by HomC.�;G/.

Definition 2.1 The G–character variety X .�;G/ is the quotient space X .�;G/ D
HomC.�;G/=G, where G acts by conjugation.

The G–character variety X .�;G/ is a real semialgebraic set of dimension .2g�2/ dim G

[17] which carries a natural action of the mapping class group of S,

MCG.S/D DiffC.S/=Diff0.S/:

An element � 2MCG.S/ acts on X .�;G/ by precomposition: � � �D � ı�� ,

�
��
�! �

�
�! G:

Example 2.2 The set of Fuchsian representations Fuch.�/ � X .�;PSL.2;R// is
defined to be the subset of conjugacy classes of faithful representations with discrete
image. The space Fuch.�/ consists of two isomorphic connected components of
X .�;PSL.2;R// [18]. Each of these components is in one-to-one correspondence with
the Teichmüller space Teich.S/ of isotopy classes of Riemann surface structures on
the surface S. Furthermore, the mapping class group acts properly discontinuously on
Fuch.�/.

When G is a split real group of adjoint type, such as PSL.n;R/ or PSp.2n;R/, the
unique (up to conjugation) irreducible representation �W PSL.2;R/! G defines a map

�W X .�;PSL.2;R//! X .�;G/;

and allows one to try to deform Fuchsian representations into X .�;G/. The space of
Hitchin representations Hit.G/� X .�;G/ is defined to be the union of the connected
components containing �.Fuch.�//. A connected component of Hit.G/ is called a
Hitchin component.
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For each Riemann surface structure † on S, Hitchin parametrized each Hitchin com-
ponent by a vector space of holomorphic differentials [29]:

(2-1) Hit.G/Š

rk.G/M
jD1

H 0.†;KmjC1/;

where m1 D 1 and fmj g are the so-called exponents of G. For G D PSp.4;R/,
m1 D 1 and m2 D 3. The mapping class group MCG.S/ acts properly discontin-
uously on Hit.G/ [34]. Note however that MCG.S/ does not act naturally on the
parametrization (2-1) because of the choice of complex structure.

Associated to a representation �W � ! G there is a flat principal G–bundle zS �� G

on S. In fact, there is a homeomorphism

X .�;G/Š freductive flat G–bundles on Sg=isomorphism:

We will usually blur the distinction between � 2 X .�;G/ and the corresponding
isomorphism class of the flat G–bundle zS �� G.

2.2 Higgs bundles

As above, let G be a connected real semisimple algebraic Lie group and H be a maximal
compact subgroup. Fix a Cartan involution � W g ! g with Cartan decomposition
g D h˚m; the complexified splitting gC D hC ˚mC is AdHC –invariant. We will
mostly deal with simple Lie groups G.

Let † be a compact Riemann surface of genus g � 2 with canonical bundle K .

Definition 2.3 A G–Higgs bundle on † is a pair .PHC ; '/ where PHC is a holomor-
phic principal HC –bundle on † and ' is a holomorphic .1; 0/–form valued in the
associated bundle with fiber mC , ie ' 2 H 0.†;PHC ŒmC�˝K/. The section ' is
called the Higgs field.

Two Higgs bundles .P; '/ and .P 0; '0/ are isomorphic if there exists an isomorphism
of the underlying smooth bundles f W PHC!P 0HC

such that f �P 0DP and f �'0D' .
We will usually think of the underlying smooth bundle PHC as being fixed and define
the gauge group G.PHC / as the group of smooth bundle automorphisms.
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Example 2.4 For GD GL.n;C/, we have hD u.n/, mD iu.n/ and HC D GL.n;C/.
Thus a GL.n;C/–Higgs bundle is a holomorphic principal GL.n;C/–bundle P!†

and a holomorphic section ' of the adjoint bundle of P twisted by K . Using the
standard representation of GL.n;C/ on Cn , the data of a GL.n;C/–Higgs bundle can
be equivalently described by a pair .E ; ˆ/ where E D .E; x@E / is a rank n holomorphic
vector bundle on † and ˆ 2H 0.†;End.E/˝K/ is a holomorphic endomorphism
of E twisted by K . Similarly, an SL.n;C/–Higgs bundle is a pair .E ; ˆ/ where E is a
rank n holomorphic vector bundle with trivial determinant and ˆ 2H 0.End.E/˝K/
is a traceless K–twisted endomorphism.

Definition 2.5 A GL.n;C/–Higgs bundle .E ; ˆ/ is called stable if for all ˆ–invariant
subbundles F�E we have deg.F/=rk.F/<deg.E/=rk.E/. An SL.n;C/–Higgs bundle
.E ; ˆ/ is

� stable if all ˆ–invariant subbundles F � E satisfy deg.F/ < 0,

� polystable if .E ; ˆ/D
L
.Ej ; ĵ /, where each .Ej ; ĵ / is a stable GL.nj ;C/–

Higgs bundle with deg.Ej /D 0 for all j .

We will also need the notion of stability for SO.n;C/–Higgs bundles to simplify some
proofs in Section 4. Let Q be a nondegenerate symmetric bilinear form of Cn and
define the group

SO.n;C/D fA 2 SL.n;C/ j ATQADQg:

Using the standard representation of SO.n;C/, a smooth principal bundle SO.n;C/–
bundle P gives rise to a rank n smooth vector bundle E with trivial determinant
bundle. Moreover, the nondegenerate symmetric form Q defines an everywhere
nondegenerate section Q 2�0.S2.E�//. We will usually interpret the section Q as a
symmetric isomorphism QW E!E� . By nondegeneracy, det.Q/W ƒnE!ƒnE� is
an isomorphism, and defines a trivialization of the line bundle .ƒnE/2 .

Proposition 2.6 An SO.n;C/–Higgs bundle .PSO.n;C/; '/ on † is equivalent to a
triple .E ;Q;ˆ/ where

� E is a rank n holomorphic vector bundle with ƒnE ŠO ,

� Q 2H 0.†; S2E�/ is everywhere nondegenerate,

� ˆ 2H 0.†;End.E/˝K/ and satisfies ˆTQCQˆD 0.
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Two SO.n;C/–Higgs bundles .E ;Q;ˆ/ and .E 0;Q0; ˆ0/ are isomorphic if there is a
smooth bundle isomorphism f W E!E 0 with f TQ0f DQ and such that f �x@E 0Dx@E
and f �ˆ0 Dˆ. A holomorphic subbundle of F � E is called isotropic if QjF � 0.
Note that an isotropic subbundle has rank at most

�
n
2

˘
.

Definition 2.7 An SO.n;C/–Higgs bundle .E ;Q;ˆ/ is stable if for all ˆ–invariant
isotropic subbundles F � E we have deg.F / < 0.

In general, the notion of stability for a G–Higgs bundle is more subtle. When G is a
real form of a complex subgroup of SL.n;C/ we have the following simplified notion
of polystability [15]:

Definition 2.8 Let G be a real form of a semisimple Lie subgroup of SL.n;C/. A
G–Higgs bundle .PHC ; '/ is polystable if and only if the corresponding SL.n;C/–
Higgs bundle .PSL.n;C/; '/ obtained via extension of structure group is polystable in
the sense of Definition 2.5.

Although it is not immediately clear from the above definition, a stable SO.n;C/–Higgs
bundle is polystable in the sense of Definition 2.8. Let G.PHC / be the gauge group of
smooth bundle automorphisms of a principal HC –bundle PHC . The group G.PHC /

acts on the set of holomorphic structures on PHC and sections of �1;0.†; PHC ŒmC�/

by pullback. This action preserves the set of polystable G–Higgs bundles, and the
orbits through polystable points are closed.

Definition 2.9 Fix a smooth principal HC –bundle PHC on †. The moduli space
of G–Higgs bundle structures on PHC consists of isomorphism classes of polystable
Higgs bundles with underlying smooth bundle PHC :

M.†; PHC ;G/D fpolystable G-Higgs bundle structures on PHCg=G.PHC /:

The union over the set of isomorphism classes of smooth principal HC –bundles on † of
the spaces M.†; PHC ;G/ will be referred to as the moduli space of G–Higgs bundles
and denoted by M.†;G/, or, when there is no confusion, by M.G/.

In fact, the space M.†;G/ can be given the structure of a complex algebraic variety
of complex dimension .g� 1/ dim G [28; 47; 44]. Moreover, we have the following
fundamental result, which allows one to go back and forth between statements about
the Higgs bundle moduli space and the character variety. We will say more about how
this correspondence works in Section 6.
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Theorem 2.10 Let � be the fundamental group of a closed oriented surface S and let
G be a real simple Lie group with maximal compact subgroup H. For each choice of
a Riemann surface structure † 2 Teich.S/, the moduli space M.†;G/ of G–Higgs
bundles on † is homeomorphic to the G–character variety X .�;G/.

Remark 2.11 When G is compact, Theorem 2.10 was proven using the theory of
stable holomorphic bundles by Narasimhan and Seshadri [41] for G D SU.n/ and
Ramanathan [42] in general. For G complex, it was proven by Hitchin [28] and
Donaldson [13] for GD SL.2;C/ and Simpson [47] and Corlette [11] in general using
the theory of Higgs bundles and harmonic maps. For G a general real reductive Lie
group and appropriate notions of stability, Theorem 2.10 was proven in [15].

It will be useful to know when the equivalence class of a G–Higgs bundle .P; '/
defines a smooth point or a singular point of the moduli space M.G/. Moreover, it
will be important to distinguish between “mild” singular points, ie orbifold points, and
other singular points. Define the automorphism group of .P; '/ by

Aut.P; '/D fg 2 G.PHC / j g � .
x@P ; '/D .x@P ; '/g:

Note that the center Z.GC/ of GC is equal to the intersection of the kernel of the
representation AdW HC ! GL.mC/ with the center of HC . For every G–Higgs bun-
dle .P; '/ we have Z.GC/ � Aut.P; '/. The following proposition follows from
Propositions 3.17 and 3.18 of [15]:

Proposition 2.12 For a simple Lie group G, if .P; '/ is a polystable G–Higgs bundle
which is stable as a GC –Higgs bundle, then Aut.P; '/ is finite and the isomorphism
class of .P; '/ in M.G/ is an orbifold point of type Aut.P; '/=Z.GC/. In particular,
.P; '/ defines a smooth point of M.G/ if and only if Aut.P; '/D Z.GC/.

We will use this proposition to determine when an polystable SO0.2; 3/–Higgs bundle
defines a smooth point or orbifold point of the moduli space.

2.3 The Lie groups SO0.2 ; 3/ and Sp.4; R/

Here we collect the necessary Lie theory for the groups of interest. In particular, we
explain the isomorphism between the groups PSp.4;R/ and SO0.2; 3/.

The group Sp.4; R/ Consider the symplectic form � D
�

0 Id
�Id 0

�
on C4 . The

symplectic group Sp.4;C/ consists of linear transformations g 2 GL.4;C/ such that
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gT�g D�. The Lie algebra sp.4;C/ of Sp.4;C/ consists of matrices X such that
XT�C�X D 0. Such an X 2 sp.4;C/ is given by

X D

�
A B

C �AT

�
;

where A, B and C are 2� 2 complex matrices with B and C symmetric.

One way of defining the group Sp.4;R/ is as the subgroup of Sp.4;C/ consisting of
matrices with real entries. However, when dealing with Sp.4;R/–Higgs bundles it will
be useful to consider Sp.4;R/ as the fixed-point set of a conjugation � which acts by

�.g/D

�
0 Id
Id 0

�
xg

�
0 Id
Id 0

�
:

The fixed points of the induced involution (also denoted by �) on the Lie algebra
sp.4;C/ gives the Lie algebra sp.4;R/ as the set of matrices

X D

�
A B

C �AT

�
;

where A;B and C are 2 � 2 complex-valued matrices with A D � xAT and B D
C DBT . Since the conjugation � commutes with the compact conjugation g! g�1T

of Sp.4;C/, the composition defines the complexification of a Cartan involution
� W sp.4;C/! sp.4;C/ for sp.4;R/. On the Lie algebra sp.4;C/ the involution �
acts by

�

��
A B

C �AT

��
D

�
A �B

�C �AT

�
:

Thus, the complexification of the Cartan decomposition of sp.4;R/ is given by

(2-2) sp.4;C/D hC˚mC D gl.2;C/˚S2.V /˚S2.V �/;

where S2.V / denotes the symmetric product of the standard representation V of
GL.2;C/.

The group SO0.2 ; 3/ Fix positive-definite quadratic forms Q2 and Q3 on R2

and R3 , respectively, and consider the signature .2; 3/ form

QD

�
Q2
�Q3

�
on R5 . The group SO.2; 3/ consists of matrices g 2 SL.5;R/ such that gTQg DQ .
There are two connected components of SO.2; 3/, and the connected component of
the identity will be denoted by SO0.2; 3/.
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The Lie algebra so.2; 3/ consists of matrices X such that XTQCQX D 0. A matrix
X 2 so.2; 3/ decomposes as �

A Q�13 BTQ2
B C

�
;

where B is a 3�2 matrix, A is a 2�2 matrix which satisfies ATQ2CQ2AD 0, and
C is a 3�3 matrix which satisfies CTQ3CQ3C D 0. Thus, the Cartan decomposition
is given by

so.2; 3/D h˚mD .so.2/˚ so.3//˚Hom.R2;R3/:

Complexifying this gives a decomposition of HCDSO.2;C/�SO.3;C/–modules

(2-3) so.5;C/D hC˚mC D .so.2;C/� so.3;C//˚Hom.V;W /;

where V and W denote the standard representations of SO.2;C/ and SO.3;C/ on
C2 and C3 , respectively.

The isomorphism PSp.4; R/ Š SO0.2 ; 3/ Let U be a 4–dimensional real vector
space with a symplectic form � 2ƒ2U � . The 6–dimensional vector space ƒ2U � has
a natural orthogonal structure given by ha; bi DC, where a^bDC�^�. Moreover,
the signature of this orthogonal structure is .3; 3/. Since � 2 ƒ2U � has norm 1,
the orthogonal complement of the subspace spanned by � defines a 5–dimensional
orthogonal subspace with a signature .2; 3/ inner product. This defines a surjective
map Sp.4;R/! SO0.2; 3/ with kernel ˙Id. Since ˙Id is the center of Sp.4;R/, the
group SO0.2; 3/ is isomorphic to the adjoint group PSp.4;R/.

The universal cover of SO.5;C/ is the spin group Spin.5;C/. The split real form of
Spin.5;C/ will be denoted by Spin.2; 3/. The isomorphism PSp.4;R/Š SO0.2; 3/

defines an isomorphism between Sp.4;R/ and the connected component of the identity
of the spin group Spin0.2; 3/.

3 Complex orthogonal bundles

Holomorphic O.n;C/–bundles will be an important tool in the next sections. We
describe their main properties and, for nD 2, we describe their parameter spaces.

3.1 General properties

For Q a symmetric nondegenerate form on Cn , define

O.n;C/D fA 2 GL.n;C/ j ATQADQg:
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The standard representation O.n;C/ on Cn allows one to describe a principal O.n;C/–
bundle in terms of a rank n complex vector bundle V . On V the form Q defines a global
section Q 2 �0.†; S2.V �// which is everywhere nondegenerate. A holomorphic
structure on the orthogonal bundle .V;Q/ is a holomorphic structure x@V on V for
which Q is holomorphic. The determinant det.V / is a holomorphic line bundle, and
nondegeneracy of Q is equivalent to det.Q/ never vanishing. Thus, det.V /2ŠO and
det.V / is a holomorphic O.1;C/–bundle. In particular, holomorphic O.1;C/–bundles
are exactly the 22g holomorphic line bundles L with L2 DO .

There are two main topological invariants of O.n;C/–bundles on a Riemann surface:
the first and second Stiefel–Whitney classes,

sw1.V;QV / 2H 1.†;Z2/D Z2g2 and sw2.V;QV / 2H 2.†;Z2/D Z2:

The first Stiefel–Whitney class is the obstruction to reducing the structure group
to SO.n;C/. Hence, sw1.V;QV / D sw1.det.V /; det.QV // vanishes if and only if
det.V / D O . The class sw1 2 H 1.†;Z2/ can also be interpreted as a Z2–bundle
� W †sw1!†, ie an unramified double cover, which is connected if and only if sw1¤0.
The cover †sw1 inherits the complex structure from † by pullback, and it is a Riemann
surface of genus g0 D 2g� 1. The second Stiefel–Whitney class is the obstruction to
lifting the structure group from O.n;C/ to Pin.n;C/.

The following Whitney sum formula will help us to compute these invariants:

(3-1)
sw1.V ˚W /D sw1.V /C sw1.W /;
sw2.V ˚W /D sw2.V /C sw2.W /C sw1.V /^ sw1.W /:

3.2 Bundles of rank 2 with vanishing first Stiefel–Whitney class

We will now recall Mumford’s classification [40] of the holomorphic SO.2;C/ and
O.2;C/–bundles. These parameter spaces will be denoted by B.†; SO.2;C// and
B.†;O.2;C//, respectively, and shortened to B.SO.2;C// and B.O.2;C// when
possible.

We will write a holomorphic SO.2;C/–bundle as .V;QV ; !/, where .V;QV / is a holo-
morphic O.2;C/–bundle and ! is a holomorphic volume form compatible with QV .
The form ! can be seen as a nonzero holomorphic section of ƒ2V D det.V / Š O .
Such an SO.2;C/–bundle can be described explicitly since SO.2;C/ŠC� :

SO.2;C/Š

�
A 2 SL.2;C/

ˇ̌̌
AT

�
0 1

1 0

�
AD

�
0 1

1 0

��
D

��
e� 0

0 e��

� ˇ̌̌
� 2C

�
:
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Thus, the isomorphism class of .V;QV ; !/ is determined by a holomorphic line
bundle L:

(3-2) .V;QV ; !/D

�
L˚L�1;

�
0 1

1 0

�
;

�
0 1

�1 0

��
I

here ! D
�
0 1
�1 0

�
is seen as a skew symmetric bilinear form on L˚L�1 .

The degree of L provides a topological invariant of SO.2;C/–bundles whose reduction
modulo 2 is the second Stiefel–Whitney class. The parameter space B.SO.2;C// is
then the Picard group of holomorphic line bundles on †,

B.SO.2;C//D Pic.†/:

In particular, it is a disjoint union of countably many tori of complex dimension g .

The classification of O.2;C/–bundles is more complicated and will depend on the
values of the Stiefel–Whitney classes. Denote by Bsw1.O.2;C// and Bsw2

sw1 .O.2;C//

the subsets containing bundles with fixed values of sw1 or of sw1 and sw2 .

Orthogonal bundles in the subspace B0.O.2;C// admit two different SO.2;C/–struc-
tures: �

L˚L�1;

�
0 1

1 0

�
;

�
0 1

�1 0

��
and

�
L�1˚L;

�
0 1

1 0

�
;

�
0 1

�1 0

��
:

This equivalence corresponds to an action of Z2 on Pic.†/ given by L 7!L�1 . Thus,

B0.O.2;C//D Pic.†/=Z2:

Since sw2.V;QV / D jdeg.L/j .mod 2/, for an O.2;C/–bundle with vanishing first
Stiefel–Whitney class, the second Stiefel–Whitney class lifts to an N –invariant. Denote
by B0;d .O.2;C// the subspace containing O.2;C/–bundles with jdeg.L/j D d .

When d > 0, we can choose L 2 Picd .†/ which represents a point in B0;d .O.2;C//.
Thus, for d > 0, B0;d .O.2;C// is identified with the torus Picd .†/ of degree d line
bundles. When d D 0, both L and L�1 have degree zero. Hence, B0;0.O.2;C//D
Pic0.†/=Z2 is singular with 22g orbifold points corresponding to the line bundles
L 2 Pic0.†/ with LŠ L�1 or, equivalently, L2 ŠO .

B0;d .O.2;C//D
�

Picd .†/ if d > 0;
Pic0.†/=Z2 if d D 0:
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3.3 Bundles of rank 2 with nonvanishing first Stiefel–Whitney class

Now consider the spaces Bsw1.†;O.2;C// for sw1 ¤ 0. Note that it is nonempty.

Lemma 3.1 For every sw1 2 H 1.†;Z2/ n f0g and sw2 2 H 2.†;Z2/, the space
Bsw2

sw1 .†;O.2;C// is not empty.

Proof Fix sw1¤ 0. If sw2D 0, consider the bundle .V;QV /D
�
L˚O;

�
1 0
0 1

��
, with

L2 DO and sw1.L/D sw1 . By (3-1), sw1.V;QV /D sw1 and sw2.V;QV /D 0.

For sw2 ¤ 0, by nondegeneracy of the cup product there exists a t 2 H 1.†;Z2/

such that sw1 ^ t ¤ 0. Now consider the bundle .V;QV /D
�
L1˚L2;

�
1 0
0 1

��
with

L21DL
2
2DO and sw1.L1/D sw1Ct and sw1.L2/D t . By (3-1), sw1.V;QV /D sw1

and sw2.V;QV /D sw1.L1/^ sw1.L2/D .sw1C t /^ t D sw1 ^ t ¤ 0.

For sw1 2H 1.†;Z2/ n f0g, consider the double cover � W †sw1 !† of genus g0 D
2g� 1. We have the pullback map

��W Bsw1.†;O.2;C//! B.†sw1 ;O.2;C//:

For � the covering involution of †sw1 , consider the group homomorphism

Id˝ ��W Pic.†sw1/! Pic.†sw1/; M 7!M ˝ ��M:

We will denote the kernel of Id˝�� by Prym.†sw1/D ker.Id˝��/ because it is closely
related to the Prym variety of the covering (see below). Note that � induces a Z2–action
on Prym.†sw1/ by �.M/DM�1 . Thus, there is a natural injective map

Prym.†sw1/=Z2! B0.†sw1 ;O.2;C//:

Proposition 3.2 (see [40]) The map �� maps bijectively onto Prym.†sw1/=Z2 :

��
�
Bsw1.†;O.2;C//

�
D Prym.†sw1/=Z2 � B0.†sw1 ;O.2;C//:

We provide a proof of this and the following propositions because the details are
important for the next section.

Proof Let .V;QV / 2 Bsw1.†;O.2;C//. By the geometric interpretation of sw1 as a
double cover, .��V; ��QV / 2 B0.†sw1 ;O.2;C//. In particular, there is a line bundle
M 2 Pic.†sw1/ such that

.��V; ��QV /D

�
M ˚M�1;

�
0 1

1 0

��
:
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Since M ˚M�1 is a pullback, it is isomorphic to ��.M/˚ ��.M�1/. Thus either
M D ��.M/ or M D ��.M�1/. But, if ��M DM, then .V;QV / would have sw1D 0.

Every line bundle M satisfying M D ��.M�1/ can be obtained in this way, since
we can construct an O.2;C/–bundle .V;QV /D .��M;����/ by pushforward. Since
†sw1 !† is unramified, ����.M/DM ˚ ��M.

We now only need to understand the subspace Prym.†sw1/.

Lemma 3.3 (see [40]) Every M 2 Prym.†sw1/ admits a meromorphic section s
such that s˝ ��s D 1.

Proof By Tsen’s theorem (see [36]), for every meromorphic function f on †, there
exists a meromorphic function g on †sw1 such that g��g D ��f . We start with a
meromorphic section t of M. Then t˝ ��t is a meromorphic function on †sw1 that is
the pullback of a function on †. So, we can find a meromorphic function g on †sw1

such that t ˝ ��t D g��g . Define s D tg�1 ; this is again a meromorphic section of M
and s˝ ��.s/D 1.

Consider the group homomorphism

‰W Pic.†sw1/! Pic0.†sw1/; L 7! L˝ ��L�1:

Lemma 3.4 There is an exact sequence

0! Z2! Pic.†/
��
�! Pic.†sw1/

‰
�! Pic0.†sw1/

Id˝��
���! Pic.†sw1/:

Proof The image of ‰ is in ker.Id˝ ��/ since .L˝ ��L�1/˝ ��.L˝ ��L�1/DO .
Moreover, if M 2 ker.Id˝ ��/, we can find a meromorphic section s of M such
that s ˝ ��s D 1. Let D be the divisor of the zeros of s (but not the poles, so
that D.s/ D D � �.D/). Now, since the line bundle L.D/ has the property that
L.D/��L.D/�1DM, M is in the image of ‰ . The kernel of ‰ can also be computed
explicitly: if L˝ ��L�1DO , then LD ��L; hence, L is the pullback of a line bundle
on †, and vice versa. Hence, ker.‰/D ��.Pic.†//.

Proposition 3.5 The group Prym.†sw1/ is the disjoint union of two homeomorphic
connected components Prym0.†sw1/ and Prym1.†sw1/ such that

‰.Pici .†sw1//D Prymi .mod2/.†sw1/:

Moreover, Prym0.†sw1/ is an abelian variety of dimension g� 1.
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Proof The kernel of ‰ consists of line bundles which are pullbacks; in particular,
they all have even degree. Thus, the components Pic2k.†sw1/ all have the same image.
Similarly, the components Pic2kC1.†sw1/ all have the same image which is disjoint
from the image of the even components. The space Prym0.†sw1/ is the quotient of
the abelian variety Pic.†sw1/ by the abelian subvariety ��.Pic.†//, so it is an abelian
variety of dimension g0�g D g� 1.

The abelian variety Prym0.†sw1/ is usually called the Prym variety of the cover
� W †sw1 !†.

Proposition 3.6 If .V;QV /2Bsw2
sw1 .†;O.2;C//, then its pullback to the double cover

†sw1 defines a point in Prymsw2.†sw1/. This gives a bijection

��W Bsw2
sw1 .†;O.2;C//! Prymsw2.†sw1/=Z2:

Proof Consider the bundle .V;QV /D
�
L˚O;

�
1 0
0 1

��
, with L2 DO and sw1.L/D

sw1 . By the proof of Lemma 3.1, .V;QV / is in B0sw1.†;O.2;C// and we have
.��V; ��QV /D

�
O˚O;

�
1 0
0 1

��
. Hence, .V;QV / is in Prym0.†sw1/. Since sw2 is

constant on connected components, all the points of Prym0.†sw1/ have sw2 D 0. By
Lemma 3.1, there exists a bundle in B1sw1.†;O.2;C//. This bundle must pull back to
Prym1.†sw1/, so all the points in Prym1.†sw1/ must have sw2 D 1.

The space Prymsw2.†sw1/=Z2 is singular, it has 22g�2 orbifold points corresponding
to the fixed points of the Z2–action. They correspond to polystable O.2;C/–bundles,
who split orthogonally as a direct sum of two distinct O.1;C/–bundles,

.V;QV /D

�
L1˚L2;

�
1 0

0 1

��
;

with L21 D L
2
2 DO .

Summarizing, the space B.O.2;C// splits into the connected componentsG
d2N

B0;d .O.2;C//t
G

sw1¤0
sw2

Bsw2
sw1 .O.2;C//;

and every one of these pieces can be described explicitly. In the next section the
parameter spaces of maximal PSp.4;R/–Higgs bundles are described and we will see
that its connected components are indexed by a finite subset of �0

�
B.O.2;C//

�
.
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Topologically, a connected component of B.O.2;C// is a torus or the quotient of a
torus by the inversion involution (x 7! x�1 ). Their rational cohomology is given by
the following:

Proposition 3.7 The cohomology of each component of B.†;O.2;C// is:

� If d ¤ 0, then H�
�
B0;d .†;O.2;C//

�
DH�..S1/2g ;Q/.

� H j
�
B0;0.†;O.2;C//

�
D

�
H j ..S1/2g ;Q/ if j is even,
0 otherwise.

� If sw1 ¤ 0, then H j
�
Bsw2

sw1 .†;O.2;C//
�
D

�
H j ..S1/2g�2;Q/ if j is even,
0 otherwise.

Proof For d ¤ 0, the space B0;d .†;O.2;C// is given by Picd .†/ and hence it is
a torus of dimension 2g . The component B0;0.†;O.2;C// is the quotient of a 2g–
dimensional torus by inversion and the components Bsw2

sw1 .†;O.2;C// are quotients of
a .2g�2/–dimensional torus by inversion.

Given a CW–complex X with an action of a finite group �, there is an isomorphism
between the cohomology of the quotient X=� and the �–invariant cohomology of X
(see [38, Section 2], where the author summarizes Chapter 5 of [22]),

H�.X;Q/� DH�.X=�;Q/:

Since, the Z2–action by inversion on a torus .S1/2m acts on the cohomology group
H j ..S1/2m;Q/ by .�1/j , the result follows.

Proposition 3.8 A holomorphic O.2;C/–bundle on † with nonzero first Stiefel–
Whitney class has no holomorphic isotropic line subbundles.

Proof Let .V;QV / be a holomorphic O.2;C/–bundle on †, and suppose L� V is
an isotropic line subbundle. In every fiber Vz there are two isotropic lines. Denote
by mz the isotropic line that is not in L. The union of all the mz is a holomorphic line
subbundle M, and V D L˚M. Hence, det.V /D LM. Since L and M are nowhere
perpendicular, QV defines a holomorphic isomorphism between M and L� D L�1 .
This implies det.V /DO and sw1.V;QV /D 0.

3.4 Gauge transformations

We can now easily determine the group of holomorphic gauge transformations

HO.2;C/.V;QV /
of an O.2;C/–bundle.
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In the case when sw1.V;QV /D 0, for deg.L/� 0, we can write

.V;QV /D
�
L˚L�1;

�
0 1

1 0

��
:

In this splitting every holomorphic gauge transformation can be written as a matrix�
a b
c d

�
, where a; d 2C , b 2H 0.†;L2/ and c 2H 0.†;L�2/. There are two cases:

� If L2 DO , then LŠ L�1 and b; c 2C . In this case, HO.2;C/ Š O.2;C/:

(3-3) HO.2;C/.V;QV /D
��
a 0

0 a�1

� ˇ̌̌
a 2C�

�
[

��
0 b

b�1 0

� ˇ̌̌
b 2C�

�
:

� If L2 ¤ O , then b D 0. The condition that the matrix preserves QV implies
that c D 0, and ad D 1. In this case,

(3-4) HO.2;C/.V;QV /DC� Š SO.2;C/D

��
a 0

0 a�1

� ˇ̌̌
a 2C�

�
:

When sw1.V;QV /¤ 0, we can pull back .V;QV / to the double cover †sw1 :

.��V; ��QV /D
�
M ˚M�1;

�
0 1

1 0

��
:

Every gauge transformation of .V;QV / induces a �–invariant gauge transformation of
.��V; ��QV /. Written in matrix form, the condition of �–invariance becomes�

a b

c d

�
D

�
0 1

1 0

��
a b

c d

��
0 1

1 0

�
D

�
d c

b a

�
:

This implies aD d and bD c . Together with the condition of preserving Q , this gives
only 4 possible elements:�

1 0

0 1

�
;

�
�1 0

0 �1

�
;

�
0 1

1 0

�
and

�
0 �1

�1 0

�
:

If M 2 DO , we have HO.2;C/.V;QV /D Z2˚Z2 . In this case, .V;QV / splits as an
orthogonal direct sum L1˚L2 with L21 D L

2
2 DO and L1 ¤ L2 . When M 2 ¤O ,

only diagonal elements are possible; thus, in this case HO.2;C/.V;QV /D Z2 .

4 PSp.4; R/–Higgs bundles

In this section, we describe the moduli space of PSp.4;R/–Higgs bundles. To do
this, we use the isomorphism of PSp.4;R/ with SO0.2; 3/ described in Section 2.3.
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After some setup, we prove Theorems 4.21, 4.26 and 4.32, parametrizing all connected
components of maximal PSp.4;R/–Higgs bundles.

4.1 General definition

Using the complexified Cartan decomposition (2-3) and Definition 2.3, an SO0.2; 3/–
Higgs bundle is a pair .P; '/, where P is a holomorphic principal SO.2;C/�SO.3;C/–
bundle and ' 2H 0.†;PŒHom.C2;C3/�˝K/. The vector bundle E D PŒC2˚C3�

associated to the standard representations of SO.2;C/� SO.3;C/ splits as a direct
sum E D V˚W , where V and W are holomorphic vector bundles of rank 2 and 3,
respectively, with holomorphic orthogonal structures QV and QW and with trivial
determinants det.V/D det.W/DO . In this notation, ' 2H 0.†;Hom.V;W/˝K/.

The SO.2;C/–bundle .V;QV / splits holomorphically as a direct sum,

(4-1) .V;QV /D
�
L˚L�1;

�
0 1

1 0

��
:

The splitting of V allows us to split the Higgs field: ' D .; ˇ/, where

 2H 0.†;L�1˝W˝K/ and ˇ 2H 0.†;L˝W˝K/:

Definition 4.1 An SO0.2; 3/–Higgs bundle is a tuple .L; .W;QW /; ˇ; /, where

� L is a holomorphic line bundle and .W;QW / is a holomorphic rank three
holomorphic orthogonal vector bundle with det.W/DO .

�  2H 0.†;L�1˝W˝K/ and ˇ 2H 0.†;L˝W˝K/.

The SL.5;C/–Higgs bundle associated to an SO0.2; 3/–Higgs bundle determined by
.L; .W;QW /; ˇ; / is

(4-2) .E ; ˆ/D

0@L˚W˚L�1;

0@0 ˇT 0

 0 ˇ

0 T 0

1A1A :
Here ˇ and  are interpreted as holomorphic bundle maps

ˇW L�1!W˝K and  W L!W˝K;

and ˇT D ˇ� ıQW W W! LK and T D � ıQW W W! L�1K .
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Remark 4.2 Since E D L˚W˚L�1 has a holomorphic orthogonal structure

QD

0@0 0 1

0 �QW 0

1 0 0

1A
with respect to which ˆTQCQˆD 0, .E ;Q;ˆ/ is an SO.5;C/–Higgs bundle.

To construct the moduli space we need to restrict our attention to the tuples

.L; .W;QW /; ˇ; /

that give rise to polystable Higgs bundles, we will call them polystable tuples. Re-
call .L; .W;QW /; ˇ; / is a polystable tuple if the SL.5;C/–Higgs bundle (4-2) is
polystable in the sense of Definition 2.5.

The moduli space of SO0.2; 3/–Higgs bundles on † can be described as

M.SO0.2; 3//D f.L; .W;QW /; ˇ; / j polystable tuples g=�:

For SO0.2; 3/–Higgs bundles, there are two topological invariants: the Toledo number
� D degL 2 Z and the second Stiefel–Whitney class sw2.W;QW /.

Lemma 4.3 Let .L; .W;QW /; ˇ; / be a polystable tuple. If deg.L/>0, then ¤0.
Moreover, if deg.L/ > g� 1, then T ı  ¤ 0.

Proof We will interpret  as a map  W LK�1!W , so that T ı W LK�1!L�1K .
First note that if  D 0 and deg.L/ > 0, then L would be an invariant subbundle of
positive degree. This contradicts polystability.

The image .LK�1/ is contained in a line subbundle M � W , with deg.M/ �

deg.L/� 2gC 2. The kernel of T is orthogonal to the image of  . So, outside the
zeros of  , ker.T /DM? . Let’s assume now that T ı  D 0, hence M �M? , ie
M is isotropic. In this case, M?=M has degree zero since it is an O.1;C/–bundle.
This implies deg.M?/ D deg.M/. Now M? ˚L is a '–invariant subbundle and
deg.M?˚L/� 2 deg.L/� 2gC 2. By polystability, we have deg.L/� g� 1.

Proposition 4.4 For polystable SO0.2; 3/–Higgs bundles, the Toledo number satisfies
the Milnor–Wood inequality j� j � 2g� 2.
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Proof Consider a polystable SO0.2; 3/–Higgs bundle with � > g�1. By Lemma 4.3,
polystability forces T ı  2 H 0.L�2K2/ n f0g, and hence deg.L/ � 2g � 2. For
� < 1�g , similar considerations imply deg.L/� �2gC 2.

For every � 2 Z, let M� .SO0.2; 3//�M.SO0.2; 3// denote the subspace containing
Higgs bundles with Toledo number � . The Milnor–Wood inequality gives a decompo-
sition of the moduli space as

M.SO0.2; 3//D
G

j� j�2g�2

M� .SO0.2; 3//:

We can subdivide these subspaces further. Namely, for every sw2 2H 2.†;Z2/, let
M�;sw2.SO0.2; 3// denote the subspace of M� .SO0.2; 3// containing Higgs bundles
with second Stiefel–Whitney class sw2 . As these discrete invariants vary continuously,
each M�;sw2.SO0.2; 3// is a union of connected components of M.SO0.2; 3//.

Remark 4.5 The map .L; .W;QW /; ˇ; /$ .L�1; .W;QW /; ; ˇ/ defines an iso-
morphism M�;sw2.SO0.2; 3//ŠM��;sw2.SO0.2; 3//. Thus, it suffices to restrict our
analysis to 0� � � 2g� 2.

The SO0.2; 3/–Higgs bundles with j� j D 2g� 2 are called maximal SO0.2; 3/–Higgs
bundles, these Higgs bundles will be the focus of the remainder of the paper. By
Remark 4.5, we can restrict our attention to � D 2g� 2. We will use the notation

Mmax.SO0.2; 3//DM2g�2.SO0.2; 3//;

Mmax;sw2.SO0.2; 3//DM2g�2;sw2.SO0.2; 3//:

4.2 Maximal SO0.2 ; 3/–Higgs bundles

In this subsection, we will describe the Higgs bundles in Mmax.SO0.2; 3//.

Maximal SO0.2; 3/–Higgs bundles satisfy the following important property:

Proposition 4.6 Let .L; .W;QW /;ˇ;/ be a maximal SO0.2;3/–Higgs bundle; then
the map  W L!W˝K is nowhere vanishing, nowhere isotropic and .L�1K/2 DO .

Proof By Lemma 4.3, T ı is a nonzero section of .L�1K/2 . For deg.L/D 2g�2,
this implies .L�1K/2DO , and thus  is nowhere vanishing and nowhere isotropic.
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Since .LK�1/2 DO , LK�1 is a holomorphic O.1;C/–bundle. Hence, for maximal
SO0.2; 3/–Higgs bundles, the first Stiefel–Whitney class of LK�1 gives an additional
topological invariant:

sw1 D sw1.LK�1/ 2H 1.†;Z2/' Z2g2 :

Proposition 4.7 If .L; .W;QW /; ˇ; / is a maximal SO0.2; 3/–Higgs bundle, then
.L�1K/ � W is an orthogonal subbundle. If F D .LK�1/? , then W splits
holomorphically as W D LK�1˚F and det.F/D L�1K D LK�1 .

Proof By Proposition 4.6, .LK�1/ is never isotropic, and hence the restriction
of QW there is nondegenerate. Thus, W D .LK�1/ ˚ .LK�1/? , and, since
det.LK�1˚F/DO , we have det.F/D L�1K .

The O.2;C/–bundle .F ;QF / determines the bundles L and .W;QW /.

Proposition 4.8 The two topological invariants sw1; sw2 of the maximal SO0.2; 3/–
Higgs bundle agree with the topological invariants of .F ;QF /:

sw1.F ;QF /D sw1.LK�1/D sw1; sw2.F ;QF /D sw2.W;QW /D sw2:

Proof This follows from the Whitney sum formula (3-1). Since .W;QW / is an
SO.3;C/–bundle, we have sw1.W;QW /D 0, and hence

sw1.F ;QF /D sw1.LK�1/:

Since sw1.F ;QF /^sw1.LK�1/D 0, (3-1) implies sw2.W;QW /D sw2.F ;QF /.

Let Mmax
sw1 .SO0.2; 3// be the subset of Mmax.SO0.2; 3// containing Higgs bundles

with sw1.LK�1/D sw1 , and Mmax;sw2
sw1 .SO0.2; 3// be the subset of Mmax

sw1 .SO0.2; 3//

containing the Higgs bundles with sw2.W;QW /D sw2 .

The orthogonal bundle .F ;QF / defines a map to the space of O.2;C/–bundles,

Mmax.SO0.2; 3//! B.O.2;C//:

By Proposition 4.8, this map sends Mmax;sw2
sw1 .SO0.2; 3// to Bsw2

sw1 .O.2;C//.

For a polystable maximal SO0.2; 3/–Higgs bundle .L; .W;QW /; ˇ; /, we can write
the maps ˇ and  in terms of the decomposition W D LK�1˚F . Since the holo-
morphic splitting of W was determined by the image of  , we can take  D

�
1
0

�
.

The map ˇ will be written as ˇ D
� q2
ı

�
, where q2W L�1! LK�1˝K is a quadratic

differential and ı 2H 0.F ˝LK/DH 0.F ˝ det.F/K2/. We have thus proven:

Geometry & Topology, Volume 23 (2019)



1280 Daniele Alessandrini and Brian Collier

Proposition 4.9 A polystable maximal SO0.2; 3/–Higgs bundle is determined by
the triple ..F ;QF /; q2; ı/, where .F ;QF / is a holomorphic orthogonal bundle, q2 2
H 0.†;K2/ is a quadratic differential and ı 2H 0.F ˝ det.F/K2/.

Remark 4.10 The SL.5;C/–Higgs bundle associated to a maximal SO0.2; 3/–Higgs
bundle determined by a triple ..F ;QF /; q2; ı/ is

.E ; ˆ/D

0BB@det.F/K˚ det.F/˚F ˚ det.F/K�1;

0BB@
0 q2 ı

T 0

1 0 0 q2
0 0 0 ı

0 1 0 0

1CCA
1CCA :

We find it helpful to think of such an object schematically as

(4-3) det.F/K
1
// det.F/

1
//

q2
uu

det.F/K�1
q2

uu

ıvv
˚

F
ıT

hh

We first need to understand when two triples ..F ;QF /; q2; ı/ and ..F 0;QF /; q02; ı
0/

give rise to isomorphic Higgs bundles. In this notation, F and F 0 denote holomorphic
structures x@F and x@0F on an underlying smooth orthogonal bundle .F;QF / such that
QF is holomorphic with respect to both x@F and x@0F .

Proposition 4.11 Let F and F 0 be two holomorphic structures on a smooth rank 2
orthogonal bundle .F;Q/. Two triples .F ; q2; ı/, .F 0; q02; ı

0/ give rise to SO0.2; 3/–
Higgs bundles which are isomorphic if and only if q2D q02 and there is a smooth gauge
transformation g 2 GO.2;C/.F;Q/ such that g �F �g�1 D F 0 and ı0 D det.g/ �g � ı .

Proof Let I be the smooth bundle underlying I D det.F/, and consider the two
smooth gauge transformations

g1 2 GSO.2;C/.IK˚ IK
�1/ and g2 2 GSO.3;C/

�
ƒ2F ˚F;

�
1

QF

��
:

If the SO0.2; 3/–Higgs bundles associated to .F ; q2; ı/ and .F 0; q02; ı
0/ are isomorphic,

g2 �

�
1 q2
0 ı

�
g�11 D

�
1 q02
0 ı0

�
:

Geometry & Topology, Volume 23 (2019)



The geometry of maximal components of the PSp.4;R/ character variety 1281

Write g1 D
�
�
��1

�
and g2 D

�
a b
c d

�
W ƒ2F ˚F !ƒ2F ˚F , and note that

gT2

�
1

QF

�
g2 D

�
1

QF

�
:

With this decomposition we compute�
a b

c d

��
1 q2
0 ı

��
��1

�

�
D

�
��1a �aq2C b�

c��1 c�q2C d�ı

�
:

Thus, we have cD0 and �Da . The orthogonality of g2 implies bD0, dTQF dDQF
and aD det.d/D˙1. Thus, we have d 2 GO.2;C/.F;QF /, �D det.d/ and

g2 �

�
1 q2
0 ı

�
�g�11 D

�
�

d

��
1 q2
0 ı

��
��1

�

�
D

�
1 q2
0 �dı

�
:

Remark 4.12 When a triple .F ; q2; ı/ defines a polystable Higgs bundle, we will call
it a polystable triple. The moduli space of maximal SO0.2; 3/–Higgs bundles on †
can be described as

Mmax.SO0.2; 3//D f..F ;QF /; q2; ı/ j polystable triplesg=�;

where two triples are equivalent if and only if the associated SO0.2; 3/–Higgs bundles
are isomorphic. The space Mmax.SO0.2; 3// can be further subdivided in the pieces
Mmax;sw2

sw1 .SO0.2; 3// according to the Stiefel–Whitney classes of .F ;QF /.

4.3 The case sw1.F; QF / D 0

To determine when a triple .F ; q2; ı/ is polystable we start with the case sw1D 0. For
this case, .F ;QF / reduces to an SO.2;C/–bundle, hence det.F/D L�1K DO . As
in Section 3.3, there is a holomorphic line bundle M 2 Pic.†/ such that

.F ;QF /D
�
M ˚M�1;

�
0 1

1 0

��
:

The splitting of F gives a decomposition of the map ı :

ı WD

�
�

�

�
W K�1! .M ˚M�1/˝K;

where � 2H 0.†;MK2/ and � 2H 0.†;M�1K2/.

A polystable maximal SO0.2; 3/–Higgs bundle with vanishing sw1 is then determined
by the tuple .M; q2; �; �/, where M 2 Pic.†/ is a holomorphic line bundle, q2 2
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H 0.†;K2/, � 2 H 0.†;MK2/ and � 2 H 0.†;M�1K2/. The SO.5;C/–Higgs
bundle .E ;Q;ˆ/ associated to a maximal SO0.2; 3/–Higgs bundle determined by a
tuple .M; q2; �; �/ is

(4-4)

0BBBB@M ˚K˚O˚K�1˚M�1;

0BBBB@
�1

1

�1

1

�1

1CCCCA ;
0BBBB@
0 0 0 � 0

� 0 q2 0 �

0 1 0 q2 0

0 0 1 0 0

0 0 0 � 0

1CCCCA
1CCCCA :

Proposition 4.13 The SO.5;C/–Higgs bundle .E ;Q;ˆ/ associated to .M;�; �; q2/
is stable if and only if one of the following holds:

(1) 0 < deg.M/� 4g� 4 and �¤ 0.

(2) 4� 4g � deg.M/ < 0 and � ¤ 0.

(3) deg.M/D 0, �¤ 0 and � ¤ 0.

The SO0.2; 3/–Higgs bundle determined by .M;�; �; q2/ is polystable if and only if
the associated SO.5;C/–Higgs bundle is stable or deg.M/D 0, �D 0 and � D 0.

Proof The SO.5;C/–Higgs bundle .E ;Q;ˆ/ associated to a tuple .M;�; �; q2/ is
given by (4-4). Recall from Definition 2.7 that an SO.5;C/–Higgs bundle is stable if
and only if there are no nonnegative degree isotropic subbundles which are left invariant
by the Higgs field. Suppose V � E is an invariant isotropic subbundle with nonnegative
degree. Denote the inclusion map by0BBBB@

a

b

c

d

e

1CCCCAW V!M ˚K˚O˚K�1˚M�1:

Note that since V is isotropic we have �aeC bd � c2 D 0 and invariance is given by

ˆ

0BBBB@
a

b

c

d

e

1CCCCAD
0BBBB@

�d

�aC �e

bC q2c

c

�d

1CCCCA :
First suppose rk.V/D1. Since deg.V/�0, we have dD0, and hence, by invariance, we
must have bD 0 and cD0. Now, since V is isotropic, either aD0 or eD0. Therefore,
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if deg.M/ > 0, the SO.5;C/–Higgs bundle is stable only if �¤ 0 2H 0.M�1K2/.
In particular, this gives a bound 0 � deg.M/ � 4g � 4. Similarly, if deg.M/ < 0,
the SO.5;C/–Higgs bundle is stable if and only if � ¤ 0 and 4� 4g � deg.M/� 0.
Finally, if deg.M/D 0 and either �D 0 or � D 0, then the Higgs bundle is not stable
since M or M�1 is an invariant isotropic line bundle of nonnegative degree. However,
if �¤ 0 and � ¤ 0, .E ;Q;ˆ/ is stable.

Now suppose rk.V/D 2 and that E has no positive degree invariant line subbundle.
If V has a line subbundle L of positive degree, then the restriction of the above map has
d D c D 0 and e D 0 if deg.M/� 0 and aD 0 if deg.M/� 0. Since L is assumed
to not be invariant we have b ¤ 0. But b ¤ 0 contradicts the fact that ˆ.L/ � V
is isotropic. Finally, suppose V has no positive degree line subbundles. In this case,
V is a semistable vector bundle. Hence, V�K�1 is a semistable vector bundle with
nonpositive degree. This implies H 0.V�˝K�1/D 0, and thus d D 0. By invariance,
we have c D 0 and thus b D 0. Since V is isotropic, aD 0 or e D 0. Thus, .E ;Q;ˆ/
has no nonnegative-degree, rank two invariant isotropic subbundles.

To complete the proof, note that if .E ;Q;ˆ/ is a stable SO.5;C/–Higgs bundle,
then .M;�; �; q2/ defines a polystable SO0.2; 3/–Higgs bundle. If deg.M/ > 0 and
� D 0 or deg.M/ < 0 and � D 0, then the associated SL.5;C/–Higgs bundle is
not polystable. Finally, if deg.M/ D 0 and � D 0 and � ¤ 0, then the associated
SL.5;C/–Higgs bundle is not polystable since M defines a degree zero invariant
subbundle with no invariant complement. Similarly, if � D 0, then M�1 is a degree
zero invariant subbundle with no invariant complement. Thus, we conclude that the
SO0.2; 3/–Higgs bundle determined by .M;�; �; q2/ is polystable if and only if the
associated SO.5;C/–Higgs bundle is stable or deg.M/D 0, �D 0 and � D 0.

By Proposition 4.11, the SO0.2; 3/–Higgs bundles defined by .M;�; �; q2/ and
.M 0; �0; �0; q2/ are isomorphic if and only if there is a smooth gauge transformation
g2GO.2;C/.M˚M

�1;
�
0 1
1 0

�
/ such that g�M DM 2Pic.†/ or g�M DM�12Pic.†/

and g �
�
�
�

�
D
�
�0

�0
�
. Thus, the number

d D jdeg.M/j 2 Z\ Œ0; 4g� 4�

gives a new invariant to the maximal polystable SO0.2; 3/–Higgs bundles with sw1D0.
Let

Mmax
0;d .SO0.2; 3//�Mmax

0 .SO0.2; 3//

Geometry & Topology, Volume 23 (2019)



1284 Daniele Alessandrini and Brian Collier

denote the subspace of Higgs bundles determined by tuples .M;�; �; q2/ such that
jdeg.M/j D d . This new invariant only depends on .F ;QF /2B.O.2;C// and refines
the second Stiefel–Whitney class:

sw2 D d .mod 2/:

We will see that all of these subspaces define connected components of M.SO0.2; 3//.
The orbifold points of Mmax

0;d
.SO0.2; 3// are determined as follows:

Proposition 4.14 For d > 0, the space Mmax
0;d
.SO0.2; 3// is smooth. When d D 0,

the isomorphism class of the polystable SO0.2; 3/–Higgs bundle associated to a tuple
.M;�; �; q2/ is a

� nonorbifold singularity if and only if �D � D 0,

� Z2–orbifold singularity if and only if M DM�1 , �¤ 0 and �D �� for some
� 2C� , or

� smooth point otherwise.

Proof By Proposition 4.13, the SO.5;C/–Higgs bundle given by a tuple .M;�; �; q2/
is stable if and only if d ¤ 0 or d D 0 and �¤ 0 and � ¤ 0. Thus, by Proposition
2.12 the isomorphism class of such tuples define smooth and orbifold points of
Mmax
0;d
.SO0.2; 3//. To determine the type of orbifold point we need to compute the

automorphism group Aut.V;W; �/ of the associated SO0.2; 3/–Higgs bundle.

By Proposition 4.11, we need only consider how the holomorphic automorphism group
HO.2;C/.M˚M

�1/ acts on the sections � and � . Recall from (3-4) that, if M ¤M�1 ,
then the holomorphic gauge transformations are given by

g D

�
�

��1

�
W M ˚M�1!M ˚M�1

for � 2C� . We have

g �

�
�

�

�
D

�
�

��1

��
�

�

�
D

�
��

��1�

�
:

Thus, by Proposition 4.11, for M ¤M�1 , the automorphism group of the SO0.2; 3/–
Higgs bundle associated to a tuple .M;�; �; q2/ is trivial for � ¤ 0 or � ¤ 0. In
particular, for d > 0, the space M0;d .SO0.2; 3// is smooth.
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For d D 0 and M DM�1 2 Pic0.†/, recall from (3-3) that HO.2;C/.M ˚M
�1/Š

O.2;C/ and we need to also consider holomorphic gauge transformation of the form

g D

�
�

��1

�
W M ˚M�1!M ˚M�1

for � 2C� . We have

g �

�
�

�

�
D�

�
�

��1

��
�

�

�
D

�
���

���1�

�
:

Thus, by Proposition 4.11, if � ¤ 0 and � ¤ 0, the Higgs bundles associated to
.M;�; �; q2/ and .M;�0; �0; q2/ are isomorphic if and only if � D���. In this case
the automorphism group of the associated Higgs bundle is Z2 . On the other hand, if
�D �D 0, then the automorphism group of the associated Higgs bundle is not discrete,
and thus a tuple .M; 0; 0; q2/ defines a nonorbifold singularity.

Remark 4.15 For a geometric interpretation of the singular points of the subspace
M0;0.SO0.2; 3//, see Proposition 4.38.

4.4 The case sw1.F; QF / ¤ 0

When sw1 ¤ 0, the associated SO.5;C/–Higgs bundle is always stable.

Proposition 4.16 The SO.5;C/–Higgs bundle associated to a triple ..F ;QF /; q2; ı/
with sw1.F ;QF /¤ 0 is stable.

Proof The proof is very similar to Proposition 4.13. Recall that the SO.5;C/–Higgs
bundle associated to a triple ..F ;QF /; q2; ı/ is given by

.E ;Q;ˆ/D

0BB@KI˚ I˚F ˚K�1I;

0BB@
0 0 0 1

0 �1 0 0

0 0 �QF 0

1 0 0 0

1CCA ;
0BB@
0 q2 ı

T 0

1 0 0 q2
0 0 0 ı

0 1 0 0

1CCA
1CCA ;

where I D det.F/. We will show that E has no ˆ–invariant isotropic subbundles with
nonnegative degree.

Suppose L is an isotropic invariant line subbundle with nonnegative degree. As in the
proof of Proposition 4.13, L must be an isotropic line subbundle of .F ;QF /. However,
by Proposition 3.8, since sw1¤ 0, F has no isotropic line subbundles. Again, as in the
proof of Proposition 4.13, if V � E is an isotropic rank two bundle with nonnegative
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degree, then V DF . But F is not isotropic, and we conclude that the SO.5;C/–Higgs
bundle .E ;Q;ˆ/ is stable.

As in Section 3, for sw1 2H 1.†;Z2/nf0g let � W †sw1!† be the associated double
cover and denote the covering involution by �. Let Ksw1 be the canonical bundle
of †sw1 ; since the covering is unramified, we have ��K DKsw1 . Recall that

Prym.†sw1/D fM 2 Pic0.†sw1/ j �
�M ŠM�1g:

Proposition 4.17 A polystable maximal SO0.2; 3/–Higgs bundle with nonvanishing
sw1 is determined by the tuple .M; f; �; q2/, where

M 2 Prym.†sw1/; � 2H 0.†;M�1K2sw1/; q2 2H
0.†;K2/

and
f W M ! ��M�1 is an isomorphism.

Moreover, the covering map � W †sw1 !† induces a pullback map

(4-5) ��WMmax
sw1 .†; SO0.2; 3//!Mmax

0;0 .†sw1 ; SO0.2; 3//:

Proof Let .F ;QF / be an orthogonal rank two bundle with nonzero first Stiefel–
Whitney class sw1 , and write IDdet.F/. Then ��IDO and there is M 2Prym.†sw1/

such that
.��F ; ��QF /Š

�
M ˚M�1;

�
0 1

1 0

��
:

Note that ��F is ��–invariant: ����F Š ��F . Moreover, the natural projection
��F!F gives a choice of an isomorphism ��F! ����F . When this isomorphism
is restricted to M, we get an isomorphism f W M ! ��M�1 , and when it is restricted
to M�1 , the isomorphism is ��f �1W M�1! ��M.

Recall that the maximal SO0.2; 3/–Higgs bundle associated to ..F ;QF /; q2; ı/ is
given by

.V;QV ;W;QW ; �/D

�
KI˚K�1I;

�
0 1

1 0

�
; I˚F ;

�
1 0

0 QF

�
;

�
1 q2
0 ı

��
:

We have

��.V;QV ;W;QW /D

0@Ksw1 ˚K
�1
sw1 ;

�
0 1

1 0

�
;M ˚O˚M�1;

0@0 0 10 1 0

1 0 0

1A1A :
Geometry & Topology, Volume 23 (2019)



The geometry of maximal components of the PSp.4;R/ character variety 1287

Moreover, ��q2 2H 0.†sw1 ; K
2
sw1/ and the decomposition of ��F splits ��ı as

��ı WD

�
�

�

�
W K�1sw1 ! .M ˚M�1/˝Ksw1 ;

where � 2H 0.†sw1 ;MK
2
sw1/ and � 2H 0.†sw1 ;M

�1K2sw1/. Also, since the pulled-
back objects are invariant under the covering involution and ��f W ��M !M�1 , we
have ��� ıf D�. Thus, we have �D 0 if and only if � D 0. By Proposition 4.13, the
pulled-back SO0.2; 3/–Higgs bundle is a maximal polystable SO0.2; 3/–Higgs bundle
whose isomorphism class defines a point in Mmax

0;0 .†sw1 ; SO0.2; 3//.

Proposition 4.18 Two tuples .M; f; �; q2/ and .M 0; f 0; �0; q02/ give rise to isomor-
phic SO0.2; 3/–Higgs bundles if and only if one of the following holds:

(1) M 0 DM, q02 D q2 , f 0 D ��2f and �0 D ��1� for � 2C� ,

(2) M 0 DM�1 , q02 D q2 , f 0 D ��2��f �1 and �0 D���1f �1 ı ��� for � 2C� .

Proof The two Higgs bundles on † are isomorphic if and only if their pullbacks
to †sw1 are isomorphic via a gauge transformation which is invariant under the cov-
ering involution. Thus, we can apply Proposition 4.14, and compute how the gauge
transformations act on � and f .

By Proposition 4.16, all tuples .M; f; �; q2/ from Proposition 4.17 define polystable
SO0.2; 3/–Higgs bundles on † whose associated SO.5;C/–Higgs bundle is sta-
ble. Thus, all points of Msw2;max

sw1 .SO0.2; 3// are smooth or orbifold points. Using
Proposition 2.12, we have the following:

Proposition 4.19 The singularities of Msw2;max
sw1 .SO0.2; 3// are all orbifold singu-

larities. Moreover, the polystable SO0.2; 3/–Higgs bundle associated to a tuple
.M; f; �; q2/ defines a

� Z2˚Z2–orbifold point if M DM�1 and �D 0,

� Z2–orbifold point if M DM�1 , �¤ 0, f D ��2��f �1 and �D����.f�/

for some � 2C� ,

� Z2–orbifold point if M ¤M�1 and �D 0,

� smooth point otherwise.
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Proof We need to check which of the gauge transformations described in Proposition
4.14 act trivially on the Higgs bundle described by a tuple .M; f; �; q2/. When
M DM�1 , the first two points follow from Proposition 4.18(2). When M ¤M�1 ,
the last two points follow from Proposition 4.18(1).

Remark 4.20 For a geometric interpretation of the singular points of the subspace
Msw2;max

sw1 .SO0.2; 3//, see Proposition 4.39.

4.5 Parametrizing the components Mmax
0;d

.SO0.2 ; 3//

We start by parametrizing the components Mmax
0;d
.SO0.2; 3// for d > 0.

Theorem 4.21 For 0 < d � 4g� 4, the space Mmax
0;d
.SO0.2; 3// is diffeomorphic to

the product Fd�H 0.†;K2/, where H 0.†;K2/ is the space of holomorphic quadratic
differentials on † and Fd is a rank 3g� 3C d holomorphic vector bundle over the
.4g�4�d/th symmetric product Sym4g�4�d .†/ of †.

Proof By Proposition 4.14, when 0 < d � 4g � 4, the space Mmax
0;d
.SO0.2; 3// is

smooth. Define the space

yFd D f.M;�; �/ jM 2 Picd .†/; � 2H 0.M�1K2/ n 0; � 2H 0.MK2/g:

In Section 4.3 we described a surjective map

y‰W yFd �H 0.K2/!Mmax
0;d .SO0.2; 3//:

There is an action of C� on yFd given by � � .M;�; �/D .M; ��; ��1�/. Moreover,
by the proof of Proposition 4.14, y‰.M;�; �; q2/ D y‰.M 0; �0; �0; q02/ if and only if
.M;�; �; q2/ and .M 0; �0; �0; q02/ are in the same C� orbit. Thus, if Fd D yFd=C� ,
then Fd �H 0.†;K2/ is diffeomorphic to Mmax

0;d
.SO0.2; 3//.

Given an C�–equivalence class Œ.M;�; �/�, the projective class of the nonzero section
� defines an effective divisor on † of degree �d C 4g� 4. This defines a projection
� W Fd ! Sym�dC4g�4.†/. If D 2 Sym�dC4g�4.†/ and O.D/ is the holomorphic
line bundle associated to D, then ��1.D/ is identified (noncanonically) with the vector
space H 0.O.D/�1K4/ŠCdC3g�3 .

Corollary 4.22 For d ¤ 0, the connected component Mmax
0;d
.SO0.2; 3// is homotopi-

cally equivalent to the space Sym4g�4�d .†/.
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The cohomology of the symmetric product of a surface was computed in [38].

Remark 4.23 When d D 4g � 4, the space Mmax
0;4g�4.SO0.2; 3// is the Hitchin

component from (2-1) and the parametrization was given by Hitchin [29].

The component Mmax
0;0 .SO0.2; 3// (for d D 0) is the hardest to describe because of the

presence of singularities. We will describe it in Theorem 4.26, but we first introduce
some notation and prove some preliminary lemmas.

Let OCPn�1.�1/ denote the tautological holomorphic line bundle over CPn�1 . Let
Tn denote the rank n holomorphic vector bundle over CPn�1 obtained by taking the
direct sum of OCPn�1.�1/ with itself n times:

Tn DOCPn�1.�1/˚ � � �˚„ ƒ‚ …
n times

OCPn�1.�1/:

Let Un be the quotient of the total space of Tn , by the equivalence relation that collapses
the zero section of Tn to a point,

Un D Tn=fzero sectiong:

Lemma 4.24 The topological space Un is contractible.

Proof Since Tn is a vector bundle, its total space can be retracted to the zero section.
When the same retraction is applied to Un , it retracts the latter space to its singular
point. Hence, Un is contractible.

Lemma 4.25 Consider the action of C� on Cn�Cn given by ��.v; w/D .�v; ��1w/.
If yUn is the C�–invariant subspace

yUn D .Cn
n f0g/� .Cn

n f0g/[f.0; 0/g �Cn
�Cn;

then the quotient yUn=C� is homeomorphic to Un .

Proof Consider the map

y�W .Cn
n f0g/� .Cn

n f0g/!CPn�1 � .Cn
˚ � � �˚Cn/;

.v; w/ 7! .Œv�; .w1v;w2v; : : : ; wnv//:

The image of this map is exactly the vector bundle Tn minus the zero section, and the
map is C�–invariant. This map induces a homeomorphism

�W .Cn
n f0g/� .Cn

n f0g/=C�! Tn n fzero sectiong:
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We can extend � to a map

�0W yUn=C�! Un

by defining it as � on .Cn n f0g/� .Cn n f0g/=C� , and by mapping the point .0; 0/
to the point of Un corresponding to the zero section of Tn . To check that �0 is
a homeomorphism, we just need to verify the following elementary fact: given a
sequence .vm/ in Cn and .xm/ in C , then xmvm! 0 if and only if there exists a
sequence .�m/ in C� such that ��1m xm! 0 and �m! 0.

Theorem 4.26 The component Mmax
0;0 .SO0.2; 3// is homeomorphic to

.A=Z2/�H 0.†;K2/;

where H 0.†;K2/ is the space of holomorphic quadratic differentials on †, A is
a holomorphic fiber bundle over Pic0.†/ with fiber U3g�3 and Z2 acts on A by
pullback by inversion on Pic0.†/. In particular, Mmax

0;0 .SO0.2; 3// is homotopically
equivalent to the quotient Pic0.†/=Z2 .

Proof Define the spaces

zAD f.M;�; �/ jM 2 Pic0.†/; � 2H 0.†;M�1K2/; � 2H 0.†;MK2/g;

yAD f.M;�; �/ 2 zA j �D 0 if and only if � D 0g:

In Section 4.3, we constructed a surjective map from yA�H 0.†;K2/ to the space
Mmax
0;0 .SO0.2; 3//. By the proof of Proposition 4.14, .M;�; �; q2/ and .M 0; �0�0; q02/

define the same point in Mmax
0;0 .SO0.2; 3// if and only if, for � 2C� ,

.M 0; �0; �0; q02/D .M; ��; �
�1�; q2/ or .M 0; �0; �0; q02/D .M

�1; ��; ��1�; q2/:

Let A be the quotient of yA by the C�–action � � .M;�; �/ D .M; ��; ��1�/. We
claim that the map A! Pic0.†/ defined by sending an equivalence class ŒM;�; ��
to M is a holomorphic bundle over Pic0.†/ with fiber U3g�3 . In particular, A is
homotopically equivalent to Pic0.†/' .S1/2g . Indeed, the fiber of this map over the
point M 2 Pic0.†/ is given by�

.H 0.†;MK2/ n f0g �H 0.†;M�1K2/ n f0g/[f.0; 0/g
�
=C�:

We have dimH 0.†;MK2/D dimH 0.†;M�1K2/D 3g�3; hence, by Lemma 4.25,
the fiber is the space U3g�3 .
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The action of Z2 on Pic0.†/ by inversion (M !M�1 ) lifts to an action on A by
sending .M;�; �/ to .M�1; �; �/. We conclude that the component Mmax

0;0 .SO0.2; 3//

is homeomorphic to A=Z2 �H 0.†;K2/.

Corollary 4.27 The component Mmax
0;0 .SO0.2; 3// is homotopically equivalent to the

space B0;0.O.2;C//. Its rational cohomology is given by Proposition 3.7.

4.6 Parametrizing the components Mmax;sw2
sw1

.SO0.2 ; 3//

Fix a pair of cohomology classes .sw1; sw2/2H 1.†;Z2/�H 2.†;Z2/ with sw1¤ 0.
We will use the notation of Section 3.3. Let � W †sw1!† be the genus g0D2g�1 dou-
ble cover associated to sw1 , �W †sw1!†sw1 be the corresponding covering involution
and Prymsw2.†sw1/ be a connected component of ker.Id˝ ��/.

Proposition 4.28 There is a holomorphic vector bundle E ! Prymsw2.†sw1/ of
rank 6g � 6 such that for every M 2 Prymsw2.†sw1/, the fiber EjfM g is the space
H 0.†sw1 ;M

�1K2sw1/.

Proof Consider the Poincaré line bundle P!Pic0.†sw1/�†sw1 . This is the universal
bundle of the fine moduli space Pic0.†sw1/; it has the property that for every M 2
Pic0.†sw1/, the restriction PjfM g�†sw1

is a line bundle on †sw1 isomorphic to M. Let
�Pic0 and �†sw1

be the projections from Pic0.†sw1/�†sw1 to the two respective factors.
Now P˝��†sw1

K2sw1 is a line bundle over Pic0.†sw1/�†sw1 with the property that its
restriction to every M 2 Pic0.†sw1/ is a line bundle over †sw1 isomorphic to MK2sw1 .
The pushforward E 0 D .�Pic0/�.P˝�

�
†sw1

K2sw1/ is a vector bundle over Pic0.†sw1/

whose fiber over every point M 2 Pic0.†sw1/ is the vector space H 0.†sw1 ;MK
2
sw1/.

In particular, it has dimension 3g0� 3D 6g� 6. The bundle E is the pullback of E 0

via the map
Prymsw2.†sw1/! Pic0.†sw1/; M 7!M�1:

Proposition 4.29 There is a holomorphic line bundle J ! Prymsw2.†sw1/ such that
for every M 2 Prymsw2.†sw1/, the fiber J jfM g is the space End.M; ��M�1/.

Proof Similar to the proof of the previous proposition.

We will consider the direct sum E ˚ J as a vector bundle of rank 6g � 5 over
Prymsw2.†sw1/ whose total space parametrizes the tuples .M; f; �/ where M 2
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Prymsw2.†sw1/, f 2End.M; ��M�1/ and �2H 0.†sw1 ;M
�1K2sw1/. We will denote

by H the open subset

(4-6) HD f.M; f; �/ 2 E ˚J j f ¤ 0g

parametrizing the tuples .M; f; �/ where f is an isomorphism. We define an action
of C� on the total space of H via the formula

(4-7) � � .M; f; �/D .M; �2f; ��/:

The quotient H0 DH=C� is the space parametrizing gauge equivalence classes of the
triples .M; f; �/, with f an isomorphism. This space is a bundle over Prymsw2.†sw1/

whose fiber over the point M is isomorphic to

H 0.†sw1 ;M
�1K2sw1/=˙1:

The space H0 is an orbifold which has one orbifold point in each fiber with orbifold
group Z2 . This point is defined by the class Œ.M; f; 0/�. On the space H0 we have a
Z2–action given by

(4-8) � � Œ.M; f; �/�D Œ.��M; ��f; ���/�:

We can describe the quotient space by this action.

Proposition 4.30 The quotient space H0=Z2 is an orbifold where:

(1) The image of the 22g�2 points Œ.M; f; 0/� where M D ��M define orbifold
points with orbifold group Z2˚Z2 .

(2) The image of the points Œ.M; f; 0/� with M ¤ ��M form a (nonclosed) subman-
ifold of orbifold points with orbifold group Z2 .

(3) The image of the points Œ.M; f; �/� with M D ��M, �D ��� and �¤ 0 form
a (nonclosed) submanifold of orbifold points with orbifold group Z2 .

(4) All the other points are smooth.

The image of the points Œ.M; f; 0/� form a closed subspace which is orbifold isomor-
phic to Prymsw2.†sw1/=Z2 . Moreover, the quotient space H0=Z2 is homotopically
equivalent to Prymsw2.†sw1/=Z2 .

Proof The action of the group Z2 is not free, so the quotient is an orbifold. To
understand the orbifold points we just need to compute the stabilizer of every point.
Since H0 is a bundle whose fiber is contractible, it can be retracted to its zero section.
The retraction can be made in a Z2–equivariant way, so this passes to the quotient.
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The Z2–action on H0 can be extended trivially to an action on H0 �H 0.†;K2/.

Proposition 4.31 There is a Z2–invariant surjective map

y‰W H0 �H 0.†;K2/!Mmax;sw2
sw1 .SO0.2; 3//:

This induces a bijective map on the quotient,

‰W .H0=Z2/�H 0.†;K2/!Mmax;sw2
sw1 .SO0.2; 3//:

Proof In Section 4.4, we described a surjective map from H0 �H 0.K2/ to the space
Mmax;sw2

sw1 .SO0.2; 3//. By Proposition 4.18, this map is Z2–invariant and injective on
the quotient by Z2 .

Theorem 4.32 Let .sw1; sw2/ 2H 1.†;Z2/�H 2.†;Z2/ be a pair of cohomology
classes with sw1 ¤ 0. Let Mmax;sw2

sw1 .SO0.2; 3// be the corresponding component
of moduli space of maximal SO0.2; 3/–Higgs bundles from (4-9), and let H0 !
Prymsw2.Xsw1 ; †/ be the bundle defined above. There is an orbifold isomorphism
between Mmax;sw2

sw1 .SO0.2; 3// and the space

.H0=Z2/�H 0.†;K2/:

Proof The isomorphism is given by the map described in Proposition 4.31. This map
is an orbifold isomorphism by Propositions 4.19 and 4.30.

Corollary 4.33 The component Mmax;sw2
sw1 .SO0.2; 3// is homotopically equivalent to

the space Bsw2
sw1 .O.2;C//. Its rational cohomology is given by Proposition 3.7.

4.7 Zariski closures of maximal PSp.4; R/–representations

In this section we will use the parametrizations from the previous section to compute
the Zariski closure of a maximal representation. This will play a key role in Section 6.

Let Xmax.SO0.2; 3// denote the subset of the SO0.2; 3/–character variety which cor-
responds to Mmax.SO0.2; 3//; we will call � 2 Xmax.SO0.2; 3// a maximal repre-
sentation. Using the correspondence between Higgs bundles and representations, for
each integer d 2 Œ0; 4g � 4� we will suggestively denote the connected component
of Xmax.�; SO0.2; 3// corresponding to Mmax

0;d
.SO0.2; 3// by Xmax

0;d
.�; SO0.2; 3//.

Similarly, for each .sw1; sw2/ 2 H 1.S;Z2/ n f0g �H 2.S;Z2/ we will denote the
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connected component of Xmax.�; SO0.2; 3// corresponding to Mmax;sw2
sw1 .SO0.2; 3//

by Xmax;sw2
sw1 .�; SO0.2; 3//. Thus, Xmax.�; SO0.2; 3// decomposes asG
d2Œ0;4�

Xmax
0;d .�; SO0.2; 3//t

G
.sw1;sw2/2

H1.S;Z2/nf0g�H2.S;Z2/

Xmax;sw2
sw1 .�; SO0.2; 3//:

To determine when a maximal SO0.2; 3/–Higgs bundle gives rise to a maximal repre-
sentation � with smaller Zariski closure we need the following definition of reduction
of structure group for a Higgs bundle.

Definition 4.34 Let G and G0 be reductive Lie groups with maximal compact sub-
groups H and H0 and Cartan decompositions g D h˚m and g D h0 ˚m0. Given
i W G0! G, we can always assume, up to changing i by a conjugation, that i.H0/� H

and di.m0/�m. A G–Higgs bundle .P; '/ reduces to a G0–Higgs bundle .P 0; '/ if
the holomorphic HC –bundle P admits a holomorphic reduction of structure group
to an H0C –bundle P 0 and, with respect to this reduction, ' 2 H 0.P 0Œm0C�˝K/ �
H 0.PŒmC�˝K/.

Using the nonabelian Hodge correspondence, this definition can be interpreted as a
property of the corresponding representation of � D �1.†/.

Proposition 4.35 Let G0 be a reductive Lie subgroup of a reductive Lie group G.
The Zariski closure of a reductive representation �W � ! G is contained in G0 up to
conjugation if and only if the corresponding polystable G–Higgs bundle reduces to a
G0–Higgs bundle.

In [6], it is shown that if the Zariski closure of a maximal representation � is a proper
subgroup G0 � SO0.2; 3/, then G0 is a group of Hermitian type and the inclusion
map G0! SO0.2; 3/ is a tight embedding. Moreover, the associated representation
�W �! G0 is also maximal.

The list of tightly embedded subgroups of O.2; 3/ is as follows [26]:

� O.2; 1/�O.2/, where the inclusion is induced by the isometric embedding of
R2;1!R2;3 which sends .x1; x2; x3/! .x1; x2; x3; 0; 0/.

� O.2; 2/�O.1/, where the inclusion is induced by the isometric embedding of
R2;2!R2;3 which sends .x1; x2; x3; x4/! .x1; x2; x3; x4; 0/.

� O.2; 1/, where the inclusion is induced by the irreducible five-dimensional
representation of O.2; 1/.
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Denote the subgroup of O.2; 1/�O.2/ contained in SO0.2; 3/ by S0.O.2; 1/�O.2//

and the subgroup of O.2; 2/ �O.1/ contained in SO0.2; 3/ by S0.O.2; 2/ �O.1//.
Both of these groups have two connected components. The identity component of
S0.O.2; 1/�O.2// is SO0.2; 1/� SO.2/ and that of S0.O.2; 2/�O.1// is SO0.2; 2/.
The subgroup of O.2; 1/ contained in SO0.2; 3/ is SO0.2; 1/.

Proposition 4.36 An S0.O.2; 1/�O.2//–Higgs bundle is determined by the data
.L;W; ; ˇ/ where L 2 Pic.†/, W is a rank two holomorphic orthogonal bundle,
 2H 0.L�1 det.W/˝K/ and ˇ 2H 0.L˝ det.W/˝K/. Moreover, such a Higgs
bundle reduces to an SO0.2; 1/�SO.2/–Higgs bundle if and only if det.W/DO .

Proof The maximal compact subgroup of O.2; 1/�O.2/ is HD O.2/�O.1/�O.2/.
A triple .A;B; C / 2 H belongs to S0.O.2; 1/�O.2// if and only if A 2 SO.2/, and
B D det.C /. Thus, an S0.O.2; 1/�O.2//–Higgs bundle is given by a holomorphic
O.2;C/–bundle W , a holomorphic O.1;C/–bundle given by det.W/, an SO.2;C/–
bundle .L˚L�1/ and a holomorphic map

�D .; ˇ/W L˚L�1! det.W/˝K:

Such a Higgs bundle reduces to SO0.2; 1/ if and only if det.W/DO .

Proposition 4.37 An S0.O.2; 2/�O.1//–Higgs bundle is determined by the data
.L;W; ; ˇ/ where L 2 Pic.†/, W is a rank two holomorphic orthogonal bundle,
 2H 0.L�1˝W˝K/ and ˇ 2H 0.L˝W˝K/. Moreover, such a Higgs bundle
reduces to an SO0.2; 2/–Higgs bundle if and only if det.W/DO .

Proof The maximal compact subgroup of O.2; 2/�O.1/ is HD O.2/�O.2/�O.1/.
A triple .A;B; C / 2 H belongs to S0.O.2; 2/�O.1// if and only if A 2 SO.2/, and
det.B/ D C. Thus, an S0.O.2; 2/�O.2//–Higgs bundle is given by a holomorphic
O.2;C/–bundle W , a holomorphic O.1;C/–bundle given by det.W/, an SO.2;C/–
bundle .L˚L�1/ and a holomorphic map

�D .; ˇ/W L˚L�1!W˝K:

Such a Higgs bundle reduces to SO0.2; 2/ if and only if det.W/DO .

We have the following characterization of when a maximal SO0.2; 3/–Higgs bundles
reduces to one of the tightly embedded subgroups listed above:
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Proposition 4.38 A maximal SO0.2; 3/–Higgs bundle in Mmax
0 .SO0.2; 3// deter-

mined by a polystable tuple .M;�; �; q2/ reduces to an

(1) SO0.2; 1/–Higgs bundle (irreducibly embedded) if and only if d D 4g� 4 and
� D 0.

(2) SO0.2; 1/�SO.2/–Higgs bundle if and only if d D 0 and �D � D 0.

(3) S0.O.2; 2/�O.1//–Higgs bundle if and only if d D 0 and M 2DO and �D ��
for some � 2C� .

(4) SO0.2; 2/–Higgs bundle if and only if d D 0 and M DO and � D ��.

Proof The first part of the proposition follows from the definition of the Hitchin
component, and the second part follows directly from Proposition 4.36.

For the third and fourth parts, consider a maximal SO0.2; 3/–Higgs bundle determined
by .M;�; �; q2/ with M 2 DO . In this case, the SO.2;C/–bundle .M ˚M;

�
0 1
1 0

�
/

has two holomorphic line subbundles M1 and M2 which are orthogonal and isomorphic
to M. They are given by

M1!M ˚M; x 7! .x; x/; and M2!M ˚M; x 7! .x;�x/:

In the splitting M1˚M2 , the map
�
�
�

�
W K�1!MK˚M�1K is given by�

�C �

�� �

�
W K�1!M1K˚M2K:

If �D ��1� for some � 2C� , then, by the proof of Proposition 4.14, such a Higgs
bundle is isomorphic to the one determined by .M; �1=2�; �1=2�; q2/. In the splitting
M1˚M2 , the map

�
�
�

�
W K�1!MK˚M�1K is given by�
2�1=2�

0

�
W K�1!M1K˚M2K:

Since O ˚ M1 is a holomorphic O.2;C/–bundle and M1 ˝ M2 ˝ O D O , by
Proposition 4.37, such a Higgs bundle reduces to an S0.O.2; 2/�O.1//–Higgs bundle.
Moreover, this Higgs bundle reduces to SO0.2; 2/ if and only if M DO .

Note that the SO0.2;3/–Higgs bundle .L;W;ˇ;/ associated to an S0.O.2; 2/�O.1//–
Higgs bundle .L0;W 0; ˇ0;  0/ is given by LD L0, W DW 0˚ det.W/ and

ˇ D

�
ˇ0

0

�
W L�1!W˚ det.W/ and  D

�
 0

0

�
W L!W˚ det.W/:
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Thus, the nontrivial holomorphic SO0.2; 3/–gauge transformation given by

�IdW L˚L�1! L˚L�1 and
�
�Id 0

0 1

�
W W˚ det.W/!W˚ det.W/

defines a nontrivial automorphism of the Higgs bundle. By Proposition 4.14, all other
Higgs bundle Mmax

0 .SO0.2; 3// have trivial automorphism groups. Thus, no other
Higgs bundles in Mmax

0 .SO0.2; 3// reduce to S0.O.2; 2/�O.1//.

For the components Mmax;sw2
sw1 .SO0.2; 3// with sw1¤ 0, we have the following classi-

fication of Higgs bundle reductions. Recall from Proposition 4.17 that a Higgs bundle
in the component Mmax;sw2

sw1 .SO0.2; 3// is determined by a tuple .M; f; �; q2/ where
M 2 Prymsw2.†sw1/, f W M ! ��M�1 an isomorphism, � is the covering involution
of the double cover †sw1 , � 2H 0.M�1K2sw1/ and q2 2H 0.K2/.

Proposition 4.39 Fix sw1 2H 1.†;Z2/¤ 0, a maximal SO0.2; 3/–Higgs bundle in
Mmax;sw2

sw1 .SO0.2; 3// determined by a polystable tuple .M; f; �; q2/

(1) reduces to an S0.O.2; 1/�O.2//–Higgs bundle if and only if �D 0,

(2) reduces to an S0.O.2; 2/�O.1//–Higgs bundle if and only if M D ��M, f D
��2��f �1 and �D����.f�/ for some � 2C� .

If both conditions are met, the Higgs bundle reduces to an S0.O.2; 1/�O.1/�O.1//–
Higgs bundle.

Proof Let � W †sw1!† be the connected double cover of a nonzero sw12H 1.†;Z2/.
An SO0.2; 3/–Higgs bundle on † reduces to a subgroup of SO0.2; 3/ if and only if
its pullback to †sw1 reduces. Recall that the pullback of a Higgs bundle in

Mmax;sw2
sw1 .†; SO0.2; 3//

determined by a tuple .M; f; �; q2/ defines a Higgs bundle in Mmax
0;0 .†sw1 ; SO0.2; 3//

determined by .M;�; ��.�f �1/; ��.q2//.

The result now follows from Proposition 4.38.

Putting together the above propositions we have the following:

Theorem 4.40 Let � be the fundamental group of a closed oriented surface of genus
g � 2. If �W � ! SO0.2; 3/ is a maximal representation which is not in the Hitchin
component, then � defines a smooth point of the character variety Xmax.�; SO0.2; 3//

if and only if the image of � is Zariski dense. In particular, for 0 < d < 4g� 4 every
representation in Xmax

0;d
.�; SO0.2; 3// is Zariski dense.

Geometry & Topology, Volume 23 (2019)



1298 Daniele Alessandrini and Brian Collier

4.8 Other comments

The extra invariants for maximal SO0.2; 3/–Higgs bundles give a decomposition of
Mmax.SO0.2; 3// as

(4-9)
G

0�d�4g�4

Mmax
0;d .SO0.2; 3//t

G
sw1¤0

sw2

Mmax;sw2
sw1 .SO0.2; 3//:

Remark 4.41 We have shown that every one of the spaces in (4-9) is nonempty and
connected, so we have 2.22g�1/C4g�3 connected components of Mmax.SO0.2; 3//.
In [21], it is proven that M�;sw2.SO0.2; 3// is connected for j� j< 2g� 2. This gives
2.2.22g � 1/C 4g� 3/C 4.2g� 3/C 2D 22gC2C 16g� 20 connected components
of M.SO0.2; 3//.

5 Sp.4; R/–Higgs bundles

In this section, we describe the G–Higgs bundles in the case when G is the group
Sp.4;R/DSpin0.2; 3/. Recall from Section 2.3 that, for Sp.4;R/, the complexification
of the maximal compact subgroup is HC D GL.2;C/ and the complexified Cartan
decomposition is given by

sp.4;C/D gl.2;C/˚ .S2.V /˚S2.V �//;

where V is the standard representation of GL.2;C/ and S2.V / is the symmetric tensor
product.

Definition 5.1 An Sp.4;R/–Higgs bundle over † is given by a triple .V; ˇ; /
where V ! † is a holomorphic rank 2 vector bundle, ˇ 2 H 0.S2.V/˝ K/ and
 2H 0.S2.V�/˝K/.

The SL.4;C/–Higgs bundle associated to an Sp.4;R/–Higgs bundle .V; ˇ; / is

(5-1) .E ; ˆ/D
�
V˚V�;

�
0 ˇ

 0

��
:

Here ˇ and  are symmetric holomorphic maps ˇW V�! V˝K and  W V! V�˝K .
Since E D V˚V� has a holomorphic symplectic structure �D

�
0 Id
�Id 0

�
with respect

to which �T�C�� D 0, this is an Sp.4;C/–Higgs bundle.
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Proposition 5.2 Given an Sp.4;R/–Higgs bundle .V;ˇ;/, the associated SO0.2;3/–
Higgs bundle is .L;W; ˇ; /D .ƒ2V; S2.V�/˝ƒ2V; ˇ; /.

Proof Given an Sp.4;R/–Higgs bundle .V; ˇ; /, the corresponding SO0.2; 3/–
Higgs bundle is determined by the map Sp.4;C/! SO.5;C/ described in Section 2.3.
For the bundle, one takes the second exterior product

ƒ2.V˚V�/Šƒ2.V/˚V˝V�˚ƒ2.V�/Dƒ2V˚ƒ2.V�/˚Hom.V;V/:

The orthogonal structure on this bundle is given by
�
0 1
1 0

�
on ƒ2.V/˚ƒ2.V�/ and

the Killing form on Hom.V;V/ (ie hA;Bi D tr.AB/). The symplectic structure
� D

�
0 Id
�Id 0

�
2 ƒ2.V� ˚ V/ corresponds to Id 2 Hom.V;V/. If Hom0.V;V/ is the

space of traceless homomorphisms, then

h�i? Dƒ2V˚Hom0.V;V/˚ƒ2V�:

If V is the standard representation of GL.2;C/, then Hom0.V; V / is the representation
S2.V /˝ƒ2V � Š S2.V /�˝ƒ2V . Thus,

Hom0.V;V/D S2.V/˝ƒ2V� Š S2.V�/˝ƒ2V:

This gives L D ƒ2V and W D S2.V/˝ƒ2V� Š S2.V�/˝ƒ2V . Finally, note that
 2H 0.†; S2.V�/˝K/DH 0.†;L�1˝W ˝K/ and ˇ 2H 0.†; S2.V/˝K/D
H 0.†;L˝W˝K/.

For an Sp.4;R/–Higgs bundle .V; ˇ; /, the integer deg.V/D deg.ƒ2V/ is a topolog-
ical invariant called the Toledo number. This agrees with the Toledo number deg.L/
we defined for the associated SO0.2; 3/–Higgs bundle.

The Milnor–Wood inequality for SO0.2; 3/ gives jdeg.V/j � 2g� 2 (for the original
proof of this fact, see [20]). If M� .Sp.4;R// is the moduli space of Sp.4;R/–Higgs
bundles .V; ˇ; / with deg.V/D � , then

M.Sp.4;R//D
G

j� j�2g�2

M� .Sp.4;R//:

Proposition 5.3 The image of the map

� WM� .Sp.4;R//!M� .SO0.2; 3//

is M�;1.SO0.2; 3// when � is odd and M�;0.SO0.2; 3// when � is even.
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Proof If .L; .W;QW /; ˇ; / is an SO0.2; 3/–Higgs bundle, then it can be lifted to
a Higgs bundle for Sp.4;R/ D Spin0.2; 3/ if and only if the structure group of the
SO.5;C/–bundle .E ;QE/ lifts to Spin.5;C/. This happens if and only if the second
Stiefel–Whitney class sw2.E ;QE/D .deg.L/ mod 2/C sw2.W;QW / vanishes.

Let .L; .W;QW /; ˇ; / be the SO0.2; 3/–Higgs bundle associated to .V; ˇ; /. Note
that, for each of the 22g line bundles I 2 Pic0.†/ with I 2DO , the SO0.2; 3/–Higgs
bundles associated to .V; ˇ; / and .V ˝ I; ˇ; / are the same.

5.1 Maximal Sp.4; R/–Higgs bundles

We now focus on the case when the Toledo number of an Sp.4;R/–Higgs bundle
.V; ˇ; / is maximal. Maximal Sp.4;R/–Higgs bundles have been studied in [20; 4];
our main goal here is to relate previous work with our description of the maximal
PSp.4;R/ components. Using the invariants established for SO0.2; 3/–maximal Higgs
bundles we will write Mmax.PSp.4;R// asG

sw12H1.†;Z2/nf0g
sw22H2.†;Z2/

Mmax;sw2
sw1 .PSp.4;R//t

G
0�d�4g�4

Mmax
0;d .PSp.4;R//:

By Propositions 5.2 and 4.6, for a maximal Sp.4;R/–Higgs bundle .V; ˇ; /, the map
 W V ! V� ˝K is a holomorphic isomorphism.1 Thus, for each choice of square
root K1=2 , we have an isomorphism

� ı  W V˝K�1=2! V˝K�1=2:

Moreover, since  is symmetric, the pair .V˝K�1=2; � ı / defines a holomorphic
O.2;C/–bundle. The first and second Stiefel–Whitney class of V ˝ K�1=2 help
distinguish the connected components of maximal Sp.4;R/–Higgs bundles.

If the first Stiefel–Whitney classes of V˝K�1=2 vanishes, then there is a holomorphic
line bundle N with deg.N /� 0 such that

V DNK1=2˚N�1K1=2:

In this case, polystability forces deg.N /� 2g� 2 since ˇW V�! V˝K is given by

(5-2) ˇ D

�
a b

b c

�
W N�1K�1=2˚NK�1=2!NK3=2˚N�1K3=2

1This holds more generally for maximal Sp.2n;R/–Higgs bundles (see [16]).
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and if deg.N / > 2g � 2, then c D 0 and NK�1=2 � V ˚ V� is a positive degree
which is invariant by the Higgs field ˆD

�
0 ˇ
 0

�
. Note that when deg.N /D 2g� 2,

N 2 DK and we are in one of the 22g Hitchin components for Sp.4;R/. In the cases
0� deg.N /<2g�2 and .sw1; sw2/2H 1.†;Z2/nf0g�H 2.†;Z2/, Gothen showed
that the invariants of the orthogonal bundle distinguish the connected components of
the moduli space of maximal Sp.4;R/–Higgs bundles Mmax.Sp.4;R//.

Theorem 5.4 [20] Fix a square root K1=2 of K and let Mmax;sw2
sw1 .Sp.4;R// denote

the set of maximal Sp.4;R/–Higgs bundles .V; ˇ; / such that the Stiefel–Whitney
classes of the orthogonal bundle .V˝K�1=2; � ı / are sw1 and sw2 with sw1 ¤ 0.
For 0� d < 2g� 2, let Mmax

0;d
.Sp.4;R// denote the set of maximal Sp.4;R/–Higgs

bundles .V; ˇ; / such that V˝K�1=2DN ˚N�1 for deg.N /D d . Then the spaces
Mmax;sw2

sw1 .Sp.4;R// and Mmax
0;d
.Sp.4;R// are nonempty and connected.

Counting the above invariants and adding the 22g Sp.4;R/–Hitchin components give
the following corollary:

Corollary 5.5 The space Mmax.Sp.4;R// has 3 �22gC2g�4 connected components.

To obtain the new invariants for a maximal Sp.4;R/–Higgs bundle we had to fix a
square root of the canonical bundle K . The associated invariants depend on this choice
in the following manner:

Proposition 5.6 The first Stiefel–Whitney class of the orthogonal bundle

.V˝K�1=2; � ı /

does not depend on the choice of square root K1=2 . The second Stiefel–Whitney class
does not depend on the choice of square root if and only if the first Stiefel–Whitney
class vanishes.

Proof Recall that two different square roots of K differ by an I 2 Pic0.†/ with
I 2 D O . Thus, we need to compare the Stiefel–Whitney classes of V ˝K�1=2˝ I
with those of V ˝K�1=2 . If � is a rank two bundle and � is a line bundle, then the
total Stiefel–Whitney class of �˝ � is given by [39, Exercise 7.C]:

(5-3) sw.�˝ �/D .1C sw1.�/C sw1.�//^ .1C sw2.�/C sw1.�//

D 1C sw1.�/C .sw1.�/^ sw1.�/C sw2.�//:
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Thus, the first Stiefel–Whitney classes of V ˝K�1=2 and V ˝K�1=2 ˝ I are the
same for all choices of I. The second Stiefel–Whitney classes of V ˝K�1=2 and
V˝K�1=2˝I are the same for all choices of I if and only if sw1.V˝K�1=2/D 0.

Proposition 5.7 Consider the map � WMmax.Sp.4;R//!Mmax;0.PSp.4;R//.

� ��1
�
Mmax;0

sw1 .PSp.4;R//
�
DMmax

sw1 .Sp.4;R// for each sw1 2H 1.†;Z2/nf0g;
in particular , it has two connected components.

� ��1
�
Mmax
0;2d

.PSp.4;R//
�
DMmax

0;d
.Sp.4;R// for 0� d � 2g�2; in particular ,

it is connected for d 2 Œ0; 2g � 2/ and has 22g connected components when
d D 2g� 2.

� The inverse image of all the other components (when sw2 D 1) is empty.

Proof By Proposition 5.3, Mmax.Sp.4;R// is a covering of Mmax;0.PSp.4;R//.
Moreover, two maximal Sp.4;R/–Higgs bundles .V; ; ˇ/ and .V 0;  0; ˇ0/ map to the
same PSp.4;R/–Higgs bundle if and only if V 0 Š V ˝ I with I 2 D O ,  Š  0 and
ˇŠˇ0. For a fixed square root K1=2 of K , let sw1 and sw2 denote the Stiefel–Whitney
classes of the orthogonal bundle V˝K�1=2 . The first Stiefel–Whitney class invariant of
a maximal Sp.4;R/–Higgs bundle agrees with the first Stiefel–Whitney class invariant
of the associated SO0.2; 3/–Higgs bundle since ƒ2.V/Dƒ2.V˝K�1=2/˝K . Thus,
Mmax

sw1 .Sp.4;R// is a covering of Mmax;0
sw1 .PSp.4;R//.

If sw1 ¤ 0, then Mmax
sw1 .Sp.4;R// has two connected components which are distin-

guished by the second Stiefel–Whitney class of V˝K�1=2 . If sw1 D 0 and .V; ; ˇ/
is a maximal Higgs bundle in Mmax

0;d
.Sp.4;R//, then V D NK1=2 ˚N�1K1=2 for

some N 2 Picd .†/. The bundle ƒ2.V˚V�/ is then given by

K˚N 2
˚O˚O˚N�2˚K�1:

Thus, for 0 � d < 2g � 2, the space Mmax
0;d
.Sp.4;R// maps to Mmax

0;2d
.PSp.4;R//,

and the space Mmax
0;2g�2.Sp.4;R// maps to Mmax

0;4g�4.PSp.4;R//.

5.2 Parametrizing Mmax.Sp.4; R//

We now turn to parametrizing the connected components of Mmax.Sp.4;R// as
coverings of the parametrizations of the components of Mmax;0.PSp.4;R// from
Theorems 4.21, 4.26 and 4.32. Recall that the Abel–Jacobi map sends a divisor D to
the line bundle O.D/; this defines a map

aW Symm.†/! Picm.†/:
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Recall also that the squaring map defines a 22g –covering sW Picm.†/! Pic2m.†/.
The fiber product

(5-4) a�Picm.†/D f.D;L/ 2 Sym2m.†/�Picm.†/ j a.D/D L2g

thus defines a smooth 22g –covering of the symmetric product Sym2m.†/.

Theorem 5.8 Let † be a Riemann surface with genus g � 2. For 0 < d � 2g � 2,
the subspace Mmax

0;d
.Sp.4;R// of the moduli space of Sp.4;R/–Higgs bundles on †

is diffeomorphic to ��F2d �H 0.K2/, where

� H 0.K2/ is the space of holomorphic quadratic differentials on †,
� F2d is the rank 3g � 3C 2d holomorphic vector bundle over the symmetric

product Sym4g�4�2d .†/ from Theorem 4.21,
� � W a�Pic2g�2�d .†/! Sym4g�4�2d .†/ is the 22g –covering given by (5-4).

In particular, Mmax
0;d
.Sp.4;R// is a 22g –covering of Mmax

0;2d
.PSp.4;R//.

Proof Similar to the proof of Theorem 4.21, set

yF2d D f.M;�; �/ jM 2 Pic2d .†/; � 2H 0.M�1K2/ n f0g; � 2H 0.MK2/g

and let F2d D yF2d=C� , where �2C� acts by � �.M;�; �/D .M; ��; ��1�/. Recall
that the map which associates to an equivalence class Œ.M;�; �/� the projective class
of � turns F2d into a rank 3g � 3C 2d vector bundle over the symmetric prod-
uct Sym4g�4�2d .†/. Let sW Pic2g�2�d .†/! Pic4g�4�2d .†/ be the 22g –covering
defined by the squaring map. Pulling back this covering by the Abel–Jacobi map
aW Sym4g�4�2d .†/! Pic4g�4�2d .†/ defines a 22g –covering

� W a�Pic2g�2�d .†/! Sym4g�4�d .†/:

This covering can be interpreted as the space of effective divisors D of degree
4g � 4 � 2d together with a choice of square root of a.D/. Finally, the pullback
��F2d of the vector bundle F2d to a�Pic2g�2�d .†/ can be interpreted as the set
of tuples consisting of a point in F2d together with choice of square root of the line
bundle associated to the corresponding effective divisor.

By Proposition 5.7, for 0 < d � 2g � 2, the space Mmax
0;d
.Sp.4;R// is a connected

covering of Mmax
0;2d

.PSp.4;R//. Recall from (5-2) that, after fixing a square root K1=2

of K , a Higgs bundle in Mmax
0;d
.Sp.4;R// is determined by

.V; ˇ; /D
�
NK1=2˚N�1K1=2;

�
� q2
q2 �

�
;

�
0 1

1 0

��
;
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where N 2 Picd .†/, q2 2H 0.K2/, � 2H 0.N 2K2/ and � 2H 0.N�2K2/. As in
the PSp.4;R/ case, the section � must be nonzero by stability. Thus, such a Higgs
bundle is determined by a tuple .�; �; q2/ and a choice of square root of the line
bundle N�2K2 .

Two such Higgs bundles�
NK1=2˚N�1K1=2;

�
� q2
q2 �

�
;

�
0 1

1 0

��
;�

N 0K1=2˚N 0�1K1=2;

�
�0 q02
q02 �

0

�
;

�
0 1

1 0

��
are isomorphic if and only if N DN 0 and there is a holomorphic gauge transformation
gW V! V such that

.g�1/T
�
0 1

1 0

�
g�1 D

�
0 1

1 0

�
and g

�
� q2
q2 �

�
gT D

�
�0 q02
q02 �

0

�
:

Thus, in the splitting V DNK1=2˚N�1K1=2 , we have gD
�
� 0
0 ��1

�
for � 2C� and

such a gauge transformation acts by

g

�
� q2
q2 �

�
gT D

�
�2� q2
q2 ��2�

�
:

In particular, if Œ�� denotes the degree 4g� 4� 2d effective divisor associated to the
projective class of �, then the isomorphism class of such an Sp.4;R/–Higgs bundle
is uniquely determined by the data .Œ��; �; q2/ and a choice of square root of a.Œ��/.
Thus, the component Mmax

0;d
.Sp.4;R// is diffeomorphic to ��F2d �H 0.K2/.

Remark 5.9 In the special case of 0 < d < g� 1, a different parametrization of the
components Mmax

0;d
.Sp.4;R// was given in [4].

Theorem 5.10 Let † be a Riemann surface with genus g � 2. The connected
component Mmax

0;0 .Sp.4;R// of the moduli space of Sp.4;R/–Higgs bundles is homeo-
morphic to s�A=Z2 �H 0.K2/, where

� H 0.K2/ is the space of holomorphic differentials on †,

� A is the holomorphic fiber bundle over Pic0.†/ from Theorem 4.26,

� sW Pic0.†/! Pic0.†/ is the squaring map,

� Z2 acts on s�A by pullback by inversion on Pic0.†/.

In particular, Mmax
0;0 .Sp.4;R// is a 22g –covering of Mmax

0;0 .PSp.4;R//.
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Proof We will use the same notation as the proof of Theorem 5.8. As in the proof of
Theorem 4.26, consider the space

zAD f.L; �; �/ j L 2 Pic0.†/; � 2H 0.L�1K2/; � 2H 0.LK2/g:

Let yA � zA denote the set of tuples .L; �; �/ with � D 0 if and only if � D 0, and
set AD yA=C� , where � 2C� acts as � � .L; �; �/D .L; ��; ��1�/. The map which
takes an equivalence class Œ.L; �; �/� to L 2 Pic0.†/ turns A into a holomorphic
bundle over Pic0.†/. The pullback s�A by the squaring map is a holomorphic bundle
over Pic0.†/ which parametrizes points in A together with a choice of square root
of the associated line bundle L 2 Pic0.†/. Recall finally that Z2 acts on Pic0.†/ by
inversion and pullback lifts this action to a Z2–action on A. Denote the quotient of A
by this action by A=Z2 .

By Proposition 5.7, the space Mmax
0;0 .Sp.4;R// is a connected covering of the compo-

nent Mmax
0;0 .PSp.4;R//. Recall from (5-2) that, after fixing a square root K1=2 of K ,

a Higgs bundle in Mmax
0;0 .Sp.4;R// is determined by

.V; ˇ; /D
�
NK1=2˚N�1K1=2;

�
� q2
q2 �

�
;

�
0 1

1 0

��
;

where N 2 Pic0.†/, q2 2H 0.K2/, � 2H 0.N 2K2/ and � 2H 0.N�2K2/. As in
the PSp.4;R/ case, polystability forces � D 0 if and only if � D 0. Thus, such a
Higgs bundle is determined by a tuple .N 2; �; �; q2/ together with a choice of square
root of the line bundle N 2 2 Pic0.†/.

Two such Higgs bundles�
NK1=2˚N�1K1=2;

�
� q2
q2 �

�
;

�
0 1

1 0

��
;�

N 0K1=2˚N 0�1K1=2;

�
�0 q02
q02 �

0

�
;

�
0 1

1 0

��
are isomorphic if and only if N DN 0 or N�1 DN 0 and there is a holomorphic gauge
transformation gW V! V such that

.g�1/T
�
0 1

1 0

�
g�1 D

�
0 1

1 0

�
and g

�
� q2
q2 �

�
gT D

�
�0 q02
q02 �

0

�
:
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Thus, in the splitting V DNK1=2˚N�1K1=2 , we have gD
�
� 0
0 ��1

�
or gD

�
0 �
��1 0

�
for � 2C� . Such gauge transformations act by�

� 0

0 ��1

��
� q2
q2 �

��
� 0

0 ��1

�
D

�
�2� q2
q2 ��2�

�
and �

0 �

��1 0

��
� q2
q2 �

��
0 ��1

� 0

�
D

�
�2� q2
q2 ��2�

�
:

In particular, the isomorphism class of a Higgs bundle in Mmax
0;0 .Sp.4;R// is uniquely

determined by a point it in s�A=Z2 and a holomorphic quadratic differential. Thus,
Mmax
0;0 .Sp.4;R// is homeomorphic to s�A=Z2 �H 0.K2/.

For sw1 2H 1.†;Z2/ n f0g, let †sw1 be the corresponding unramified covering of †
and denote the covering involution by �.

Proposition 5.11 For each sw1 2H 1.†;Z2/ n f0g, the squaring map

sW Prym.†sw1/! Prym.†sw1/; M 7!M 2;

is a 22g�1–covering of the connected component of the identity Prym0.†sw1/.

Proof Recall from Proposition 3.5 that Prym.†sw1/ � Pic0.†sw1/ is the disjoint
union of two isomorphic connected components and the connected component of the
identity Prym0.†sw1/ is an abelian variety of dimension g�1. Moreover, recall that a
line bundle M 2 Prym.†sw1/ lies in Prym0.†sw1/ if M D L˝ ��L�1 for L an even
degree line bundle on †sw1 and M 2 Prym1.†sw1/ if M D L˝ ��L�1 for L an odd
degree line bundle on †sw1 . Thus, the square M 2 of a line bundle M 2 Prym1.†sw1/

lies in Prym0.†sw1/.

Since Prym0.†sw1/ is an abelian variety of dimension g � 1, the restriction of the
map s to Prym0.†sw1/ is a 22g�2–cover. As Prym1.†sw1/ is a Prym0.†sw1/–torsor,
we conclude that the squaring map is a 22g�1–covering of Prym0.†sw1/.

We will consider the direct sum s�E ˚ J , a vector bundle of rank 6g � 5 over
Prym.†sw1/ whose total space parametrizes the tuples .N;j; �/ where N2Prym.†sw1/,
j 2 End.N; ��N�1/ and � 2 H 0.†sw1 ; N

�2K2sw1/. We will denote by K the open
subset

f.N; j; �/ 2 s�E ˚J j j ¤ 0g
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parametrizing the tuples .N; j; �/ where j is an isomorphism. We define an action
of C� on the total space of K via the formula

(5-5) � � .N; j; �/D .N; �2j; �2�/:

The quotient K0 D K=C� is the space parametrizing all the gauge equivalence classes
of the triples .N; j; �/ with j an isomorphism. This space is a vector bundle over
Prym.†sw1/ whose fiber over the point N is isomorphic to H 0.N�2K2sw1/. On the
space K0 we have a Z2–action given by

(5-6) � � Œ.N; j; �/�D Œ.��N; ��j; ���/�:

Recall that the space H from (4-6) was defined to be the subset of E˚J !Prym.†sw1/

consisting of pairs .M; f / where f W M ! ��M�1 is an isomorphism. Let H0 denote
the connected component of H which maps to the identity component of Prym.†sw1/.
The natural map

s�E ˚J ! E ˚J ; .N; j; �/ 7! .N 2; j 2; �/;

defines a map K! H0 which is a covering of degree 22g�1 . Moreover, this map
is equivariant with respect to the C�–actions defined by (5-5) and (4-7), and thus
descends to the quotients,

pW K0!H00:

Moreover, p.ŒN; j; ��/D ŒM; f; �0� if and only if M DN 2 , f D j 2 and �0 D˙�;
thus, the map pW K0!H00 is a covering of degree 22g .

Finally, note that the map pW K0!H00 is equivariant with respect to the Z2–actions
defined by (5-6) and (4-8). Thus, the map

(5-7) pW K0=Z2!H00=Z2

is a 22g –covering.

Theorem 5.12 Let † be a Riemann surface of genus g � 2. For each sw1 2
H 1.†;Z2/ n f0g, the subspace Mmax

sw1 .Sp.4;R// of the moduli space of Sp.4;R/–
Higgs bundles on † is diffeomorphic to K0=Z2 �H 0.K2/. Moreover, the natural
map

Mmax
sw1 .Sp.4;R//!Mmax;0

sw1 .PSp.4;R//

is given by (5-7). Hence, Mmax
sw1 .Sp.4;R// is a 22g –covering of Mmax;0

sw1 .PSp.4;R//

with two connected components.
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Proof Fix sw1 2 H 1.†;Z2/ n f0g and let � W †sw1 ! † be the associated double
cover. By Proposition 5.7, the space Mmax

sw1 .Sp.4;R// is the disjoint union of two
isomorphic connected components which cover M0;max

sw1 .PSp.4;R//. Let .V; ˇ; / be
an Sp.4;R/–Higgs bundle in Mmax

sw1 .Sp.4;R// and recall that the bundle .ƒ2V˝K�1/
is a holomorphic O.1;C/–bundle with first Stiefel–Whitney class sw1 . By (5-2),

��V ŠN��K1=2˚N�1��K1=2;  D

�
0 1

1 0

�
; ˇ D

�
� q02
q02 �

�
;

where

N 2 Pic0.†sw1/; � 2H 0.N�2��K2/; � 2H 0.N 2��K2/; q02 2H
0.��K2/:

Moreover, since the pullback is invariant under the covering involution, we have

N 2 Prym.†sw1/; ���D � and q02 D �
�q2;

where q2 2 H 0.K2/. Thus, such a Higgs bundle is determined by a holomorphic
quadratic differential q2 2H 0.K2/ and a point in s�E .

As in the proof of Theorem 5.10, two such Higgs bundles on †sw1 are gauge equivalent
if and only if there is a gauge transformation of N��K1=2˚N�1��K1=2 with the
form

�
� 0
0 ��1

�
or
�
0 �
��1 0

�
for � 2 C� . Such a gauge transformation descends to a

gauge transformation of V if and only if ��g D g , and hence � D ˙1. The gauge
transformation

�
�1 0
0 �1

�
acts on ˇ by�

�1 0

0 �1

��
��� ��q2
��q2 �

��
�1 0

0 �1

�
D

�
��� ��q2
��q2 �

�
and the gauge transformation

�
0 ˙1
˙1 0

�
sends N��K1=2 to N�1��K1=2 and acts

on ˇ by �
0 ˙1

˙1 0

��
��� ��q2
��q2 �

��
0 ˙1

˙1 0

�
D

�
� ��q2

��q2 ���

�
:

The proof that Mmax
sw1 .Sp.4;R// is diffeomorphic to K0=Z2 �H 0.K2/ follows from

the same arguments as the proof of Theorem 4.32.

6 Unique minimal immersions

In this section we show that for each maximal PSp.4;R/–representation � there
exists a unique �–equivariant minimal immersion from the universal cover of S to
the Riemannian symmetric space of PSp.4;R/. We start by recalling some basic
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facts about harmonic maps and the nonabelian Hodge correspondence between Higgs
bundles and character varieties.

6.1 Harmonic metrics

For a principal G–bundle P, a reduction of structure group to a subgroup H � G is
equivalent to a G–equivariant map r W P ! G=H. A reduction of structure group for a
flat bundle is equivalent a � –equivariant map r W zS!G=H. A metric on a G–bundle P
is defined to be a reduction of structure group to the maximal compact subgroup H� G.

Let �W �! G be a representation and let h�W zS ! G=H be a metric on the associated
flat bundle zS �� G. Given a metric g on S, one can define the norm kdh�k of dh� ,
which, by equivariance of h� , descends to a function on S. The energy of h� is the
L2–norm of dh� , namely

E.h�/D

Z
S

kdh�k
2 dvolg :

Note that the energy of h� depends only on the conformal class of the metric g , and
so only on the Riemann surface structure † associated to g .

Definition 6.1 A metric h�W z†! G=H on z†�� G is harmonic if it is a critical point
of the energy functional.

Let r0;1 denote the holomorphic structure on .T �†˝ h��T .G=H//˝C induced by
the Levi-Civita connection on G=H. The following is classical:

Proposition 6.2 A metric h�W zX ! G=H is harmonic if and only if the .1; 0/–part
@h� of dh� is holomorphic, that is, r0;1@h� D 0.

The following theorem, proven by Donaldson [13] for SL.2;C/ and Corlette [11] in
general, is the starting point of our analysis.

Theorem 6.3 Let � 2 X .�;G/; for each Riemann surface structure † on S there is a
metric h�W z†! G=H on z†�� G which is harmonic. Furthermore, h� is unique up to
the action of the centralizer of � .

A homogeneous space G=H is called reductive if the Lie algebra g has an AdH–invariant
decomposition gD h˚m. If W is a linear representation of H, denote the associated
bundle G�HW ! G=H by ŒW �. The tangent bundle T .G=H/ of G=H is isomorphic
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to Œm�. Since the action of H on g is the restriction of the G–action, the bundle Œg�
is trivializable. Furthermore, the inclusion T .G=H/ Š Œm� � Œg� Š G=H� g can be
interpreted as an equivariant 1–form ! on G=H valued in g, that is, ! 2�1.M; g/.

Definition 6.4 The equivariant g–valued 1–form ! 2 �1.G=H; g/ is called the
Maurer–Cartan form of the homogeneous space G=H.

The Maurer–Cartan form !G 2�
1.G; g/G of G is G–equivariant, and admits an H–

equivariant splitting !G D prh !G˚ prm !G , where

prh !G 2�
1.G; h/H and prm !G 2�

1.G;m/H:

The form prh !G defines a connection on the principal H–bundle G! G=H called the
canonical connection. We will denote the corresponding covariant derivative on an
associated bundle by rc . The form prm !G is an equivariant 1–form which vanishes
on vertical vector fields. Thus, prm !G descends to a 1–form on G=H valued in Œm�
which is the Maurer–Cartan form ! . The following is classical (see Chapter 1 of [8]):

Lemma 6.5 Let f W G=H! G=H�V be a smooth section of the trivial bundle; then
df Drcf C! �f . If V D g is the adjoint representation, then rc D d � ad! and the
torsion is given by Trc D�12 Œ!; !�

m .

For any reductive homogeneous space, a smooth map f W S! G=H defines a principal
H–bundle f �G ! S with a connection f �rc ; furthermore, the derivative df 2
�0.S; T �S ˝f �T .G=H//D�0.S; T �S ˝f �Œm�/ is identified with the pullback of
the Maurer–Cartan form f �! .

Let † be a Riemann surface structure on S. Complexifying the splitting gD h˚m

gives an AdHC –invariant splitting gC D hC ˚ mC . Thus, T .G=H/ ˝ C D ŒmC�

and the complex linear extension of the Maurer–Cartan form ! is a 1–form valued
in ŒmC�. The .0; 1/–part of f �rc defines a holomorphic structure on the HC –bundle
f �G�H HC .

Example 6.6 For a Cartan involution, the splitting gD h˚m is orthogonal and Bg

is positive definite on m and negative definite on h. Thus, h is the Lie algebra of a
maximal compact subgroup H� G and Bg induces a G–invariant Riemannian metric
on G=H. Since Œm;m�� h, by Lemma 6.5, the canonical connection is the Levi-Civita
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connection on .G=H; Bg/. The flatness equations of rcC ad! on G=H�g decompose
as

(6-1)
�
Frc C

1
2
Œ!; !�D 0 on h;

rc! D 0 on m;

and a map f W †! G=H is harmonic if and only if .f �rc/0;1.f �!/1;0 D 0.

Let � be the real conjugation giving gC D g˝C , and denote the extension of � to
forms again by �W ��.G=H; ŒmC�/!��.G=H; ŒmC�/. Denote the compact real from
� ı� of gC by � , and note that � D�� on �1.G=H; ŒmC�/. Pulling back � by a map
f W †! G=H defines a conjugation on forms

f ��W �i;j .†; f �ŒmC�/!�j;i .†; f �ŒmC�/:

Since ! is real, we have

f �! D f �!1;0Cf �!0;1 D f �!1;0Cf ��.f �!1;0/D f �!1;0�f ��.f �!1;0/:

Thus, putting the flatness and harmonic equations together yields:

Proposition 6.7 Let f W z† ! G=H be an equivariant harmonic map; the flatness
equations of f �.rc C!/ decompose as

(6-2)
�
Ff �rc C Œf

�!1;0;�f ��.f �!1;0/�D 0;

.f �rc/0;1f �!1;0 D 0:

Remark 6.8 Let � 2 X .�;G/ and let h�W z†! G=H be the corresponding �–equi-
variant harmonic metric from Theorem 6.3. This data defines a G–Higgs bundle
.P; '/ on † as follows. By equivariance, the holomorphic HC –bundle h��GŒHC� on z†
descends to a holomorphic HC –bundle PHC over †. Also, since h� is harmonic, the
.1; 0/–part of the pullback of the Maurer–Cartan form h��!

1;0 is holomorphic and
descends to a holomorphic section ' 2H 0.†;PHC ŒmC�˝K/.

If PH � PHC is a reduction of structure group to the maximal compact subgroup H,
then the associated bundle PHC ŒmC�D PHŒmC� decomposes as PHŒm�˚PHŒim�. For
such a reduction, the compact real form � of gC defines a conjugation

� W �1;0.†; PHŒmC�/!�0;1.†; PHŒmC�/:

Moreover, ��. / is the Hermitian adjoint of  2�1;0.†; PHŒmC�/ with respect to
the metric induced by the Killing form on PHŒmC�. The following theorem was proven
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by Hitchin for GD SL.2;C/ [28] and Simpson for G complex semisimple [47]. For
the general statement below see [15].

Theorem 6.9 Let .PHC ; '/ be a G–Higgs bundle; there exists a reduction of structure
group PH � PHC to the maximal compact subgroup H, so that

(6-3) FAC Œ';��.'/�D 0

if and only if .PHC ; '/ is polystable. Here FA denotes the curvature of the Chern
connection of the reduction.

Equation (6-3) is called the Hitchin equation. By definition of the Chern connection,
r
0;1
A ' D 0; thus, Hitchin’s equation is the same as the decomposition of the pullback

of the flatness equations (6-2) by an equivariant harmonic map. Given a solution
to Hitchin’s equation, the connection AC ' � �.'/ is a flat G–connection. Hence,
for each Riemann surface structure † on S, Theorems 6.3 and 6.9 give a bijective
correspondence between the moduli space of polystable G–Higgs bundles and the
G–character variety of � , M.†;G/Š X .�;G/.

6.2 The energy function and minimal surfaces

Given � 2 X .�;G/ and a Riemann surface structure † on S, let h�W z†! G=H be the
harmonic metric. If G is a group of Hermitian type and � is a maximal representation,
then the centralizer of � is compact [6]. Thus, the harmonic metric is unique for
maximal representations.

Definition 6.10 The Hopf differential of a harmonic map f W † ! .N; g/ is the
holomorphic quadratic differential qf D .f �g/.2;0/ 2H 0.†;K2/.

The Hopf differential measures the failure of a map f to be conformal. In particular,
qf D 0 if and only if f is a conformal immersion away from the singularities of df .
In this case, it is not hard to show that the rank of df is either 0 or 2, and thus the
only singularities of df are branchpoints. This is equivalent to the image of f being a
branched minimal immersion [43; 46].

Proposition 6.11 Let G be a real form of a reductive subgroup of SL.n;C/ and
consider � 2 X .�;G/. Fix a Riemann surface structure † on S and let .PHC ; '/ be
the G–Higgs bundle corresponding to � . The harmonic metric h�W z†! G=H is a
branched minimal immersion if and only if tr.'2/D 0. Moreover, h� is unbranched if
and only if ' is nowhere vanishing.
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Proof By Remark 6.8 the Higgs field ' is identified with the .1; 0/–part of the
derivative of the harmonic map. The metric on G=H comes from the Killing form.
Since G is a real form of a subgroup of SL.n;C/, the Hopf differential of a harmonic
metric h�W z†! G=H is a constant multiple of

tr.h��!
1;0
˝ h��!

1;0/D tr.'2/ 2H 0.†;K2/:

The branched minimal immersion is branchpoint-free if and only if h��!
1;0 D ' is

nowhere vanishing.

Remark 6.12 For a Lie group of Hermitian type, the Higgs field of a maximal Higgs
bundle is nowhere vanishing, so the corresponding minimal immersions are always
unbranched.

For each representation � 2X .�;G/ consider the energy function on Teichmüller space
which gives the energy of the harmonic metric h� ,

(6-4) E�W Teich.S/!R�0; † 7!
1

2

Z
†

jdh�j
2:

The critical points of E� are branched minimal immersions [43; 46].

Remark 6.13 If � is an Anosov2 representation, then the energy function E� is
smooth and proper [34]. Thus, for each Anosov representation there exists a Riemann
surface structure in which the harmonic metric is a branched minimal immersion.
However, such a Riemann surface structure is not unique in general. Indeed, there
are quasi-Fuchsian representations for which many such Riemann surfaces structures
exist [30].

For Hitchin representations, Labourie conjectured [34] that the Riemann surface
structure in which the harmonic metric is a branched minimal immersion is unique.
Labourie’s conjecture has been established for Hitchin representations into a rank two
split Lie group [35], but is open in general. Since maximal representations are examples
of Anosov representations [5], existence holds for all maximal representations. We
now show that the branched minimal immersion is unique for all maximal SO0.2; 3/–
representations.

2The definition of an Anosov representation is not necessary for our considerations, however we refer
the reader to [32; 23; 31] for the appropriate definitions.

Geometry & Topology, Volume 23 (2019)



1314 Daniele Alessandrini and Brian Collier

Theorem 6.14 Let � be the fundamental group of a closed oriented surface and let
Xmax.�; SO0.2; 3// be the character variety of maximal SO0.2; 3/–representations
of � . For each � 2 Xmax.�; SO0.2; 3// there is a unique Riemann surface structure †
in which the unique harmonic metric h�W z†!SO0.2; 3/=.SO.2/�SO.3// is a minimal
immersion with no branchpoints.

Remark 6.15 In [9], Theorem 6.14 was proven for representations in the connected
components Xmax

0;d
.�; SO0.2; 3// for d ¤ 0. Here we prove it for all of the other

components of Xmax.�; SO0.2; 3//. This result has recently been extended to all
maximal representations in any real rank two Lie group of Hermitian type in [10] using
very different methods.

It remains to prove Theorem 6.14 for the components

Xmax
0;0 .�; SO0.2; 3// and Xmax;sw2

sw1 .�; SO0.2; 3//:

We will first prove the statement for the smooth locus of Xmax
0;0 .�; SO0.2; 3// by showing

that the cyclic surface technology of [35; 9] can be applied. For the nonsmooth locus, we
use our knowledge of the Zariski closure of such representations to establish uniqueness
for all representations in Xmax

0;0 .�; SO0.2; 3//. Finally, for Xmax;sw2
sw1 .�; SO0.2; 3//, after

pulling back to the double cover Ssw1 associated to sw1 2H 1.S;Z2/nf0g, we will use
uniqueness for Xmax

0;0 .�1.Ssw1/; SO0.2; 3// to establish Theorem 6.14 for the connected
component Xmax;sw2

sw1 .�; SO0.2; 3//.

The proof of Theorem 6.14 makes use of the following result:

Theorem 6.16 [35, Theorem 8.1.1] Let � W P !M be a smooth fiber bundle with
connected fibers and F W P !R be a positive smooth function. Define

N D fx 2 P j dx.F jP�.x//D 0g

and assume for all m 2M the function F jPm is proper and that N is connected and
everywhere transverse to the fibers. Then � is a diffeomorphism from N onto M and
F jPm has a unique critical point, which is an absolute minimum.

For d > 0, let P D Teich.S/ � Xmax
0;d

.SO0.2; 3// and let � W P ! Xmax
0;d

.SO0.2; 3//

denote the projection onto the second factor. Let F W P ! R be the function giving
the energy of the associated harmonic metric F.†; �/D 1

2

R
† jdh�j

2 .

Recall that d.†;�/F� D 0 if and only if the corresponding harmonic metric h� is a
minimal immersion. This space is connected since it is homeomorphic to the product of
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Teich.S/ with the vector bundle Fd from Theorem 4.21. Thus, since Xmax
0;d

.SO0.2; 3//

is smooth for d > 0, to prove Theorem 6.14 for Xmax
0;d

.SO0.2; 3//, it only remains to
prove that the critical submanifold N is everywhere transverse to the fibers of P. This
is done by associating a special “cyclic surface” to each minimal immersion associated
to a point .†; �/ 2 N, and showing that there are no first-order deformations of this
cyclic surface which fix � 2 Xmax

0;d
.�; SO0.2; 3//.

6.3 SO0.2 ; 3/–cyclic surfaces

We now briefly recall the notion of a cyclic surface from [35] and the generalization
of [9]. After this we will show how to associate a cyclic surface to a representation in
the smooth locus of Xmax

0;0 .�; SO0.2; 3//.

Let gD so.5;C/ denote the Lie algebra of SO.5;C/, let c� g be a Cartan subalgebra
and �C.g; c/ � �.g; c/ denote a choice of positive roots. Recall that there are two
simple roots f˛1; ˛2g and �C D f˛1; ˛2; ˛1 C ˛2; ˛1 C 2˛2g. The Lie algebra g

decomposes into root spaces as

(6-5) g�˛1�2˛2 ˚ g�˛1�˛2 ˚ g�˛2 ˚ g�˛1 ˚ c˚ g˛1 ˚ g˛2 ˚ g˛1C˛2 ˚ g˛1C2˛2 :

The following decomposition will be useful:

(6-6)
g0 D c; g1 D g�˛1 ˚ g�˛2 ˚ g˛1C2˛2 ;

g2 D g�˛1�˛2 ˚ g˛1C˛2 ; g3 D g˛1 ˚ g˛2 ˚ g�˛1�2˛2 :

Fix a Cartan involution � W g! g which preserves c and �.g˛/ D g�˛ for all roots.
Let t� c be the fixed-point locus of � jc . Let T� SO.5;C/ be the connected subgroup
with Lie algebra t; T is a maximal compact torus. Since the root space splittings
(6-5) and (6-6) are AdT –invariant, the homogeneous space G=T is reductive, and the
Maurer–Cartan form ! 2�1.G=T; g/ decomposes as

! D !�˛1�2˛2 C!�˛1�˛2 C!�˛1 C!�˛2 C!i tC!˛1 C!˛2 C!˛1C˛2 C!˛1C2˛2

and
! D !i tC!1C!2C!3:

Remark 6.17 In [35] it is shown that homogeneous space SO.5;C/=T can be identi-
fied with the space of tuples .�C � c�; �; �/ where

� c is a Cartan subalgebra,

� �C � c� is a choice of positive roots,
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� � is a Cartan involution which preserves c and � is a split real form which
commutes with � and globally preserves c.

The involutions � and � above also must satisfy certain compatibilities. Namely, both
must globally preserve a principal three-dimensional subalgebra s which contains
x D 1

2

P
˛2�C H˛ and �.H˛1C2˛2/D�H˛1C2˛2 .

The trivial Lie algebra bundle Œg�!SO.5;C/=T admits two conjugate linear involutions
ƒ and ‚ given by

ƒ..�C � c�; �; �/; v/D �.v/ and ‚..�C � c�; �; �/; v/D �.v/;

where we have used the previously mentioned identification of a point in SO.5;C/=T

with a tuple .�C � c�; �; �/.

Definition 6.18 Let † be a Riemann surface and let ! 2�1.G=T; g/ be the Maurer–
Cartan form of G=T. A smooth map f W †! G=T is called a cyclic surface if f �!1
is a .1; 0/–form and

f �!2 D f
�!i t D f

�!Cf �‚.!/D f �! �f �ƒ.!/D 0:

6.4 Proof of Theorem 6.14

For Higgs bundles in Mmax
0 .SO0.2; 3//, there are two important reductions of structure

group. The decomposition of the holomorphic bundle E as a direct sum of line bundles

E DM ˚K˚O˚K�1˚M�1

defines a reduction of structure group to the maximal complex torus C of SO.5;C/.
On the other hand, the metric solving the Hitchin equation gives a reduction of structure
group to the maximal compact subgroup SO.5/� SO.5;C/. These two reductions of
structure are compatible if and only if the holomorphic line bundle decomposition of E
is orthogonal with respect the metric solving Hitchin’s equation. This is equivalent to
having the commuting diagrams of �–equivariant maps

(6-7)

SO.5;C/=C SO.5;C/=Too

��

z†
h�

//

H�

OO
f�

66

SO.5;C/=SO.5/

:
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Proposition 6.19 If � 2 Xmax
0;0 .�; SO0.2; 3// is a smooth point, † is a Riemann

surface structure on S and h�W z† ! SO0.2; 3/=SO.2/ � SO.3/ � SO.5;C/=SO.5/

is the associate harmonic metric, then the holomorphic reduction H� from (6-7) is
compatible with the harmonic metric h� if and only if h� is a minimal immersion.
Moreover, the reduction f� from (6-7) is an SO0.2; 3/–cyclic surface with f �� !�˛1
nonzero and f �� !�˛2 nowhere vanishing.

Proof Let � 2 X .SO0.2; 3// be a smooth point, and let † be a Riemann surface
structure on S. Recall that the SO.5;C/–Higgs bundle .E ;Q;ˆ/ corresponding to �
is given by0BBBB@M ˚K˚O˚K�1˚M�1;

0BBBB@
�1

1

�1

1

�1

1CCCCA ;
0BBBB@
0 0 0 � 0

� 0 q2 0 �

0 1 0 q2 0

0 0 1 0 0

0 0 0 � 0

1CCCCA
1CCCCA

with � and � both nonzero. Moreover, the harmonic metric h� is a minimal immersion
if and only if q2 D 0. In this case, the diagonal SO.2;C/�SO.3;C/–gauge transfor-
mation g D diag.�1;�i; 1; i;�1/ acts as AdgˆD iˆ. The gauge transformation g
is therefore preserved by the metric connection A solving Hitchin’s equation. Thus,
the eigenbundle splitting of g is orthogonal with respect to the metric solving Hitchin’s
equations, and the holomorphic line bundle splitting of E is compatible with the metric
reduction.

Let H D diag.h1; h2; 1; h�12 ; h�11 / be the metric solving Hitchin equations and

f�W z†! SO.5;C/=T

be the equivariant map of the associated reduction of structure group. The pullback of the
complexification of the Maurer-Cartan form of SO.5;C/=T is given by f �� !DˆCˆ

� ,
with f �� !1 D ˆ and f �� !3 D ˆ

� . Since � is an SO0.2; 3/–representation and f�
lifts the metric solving Hitchin’s equations, we have

f �� ! �f
�
� ƒ.!/D .ˆCˆ

�/� .ˆCˆ�/D 0

and

f �� !Cf
�
� ‚.!/D .ˆCˆ

�/C .�ˆ��ˆ/D 0:

Thus, f� is a �–equivariant cyclic surface. Finally, f �� !�˛1 D� and f �� !�˛2 D 1.
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Remark 6.20 Let �t W �! SO0.2; 3/ be a 1–parameter family of representations in
Xmax
0;0 .�; SO0.2; 3// and f�t W †�t ! SO0.2; 3/ be a 1–parameter family of cyclic sur-

faces with f ��0!�˛1 nonzero and f ��0!�˛2 nowhere vanishing. By Theorem 7.5 of [9],
if d
dt
†�t

ˇ̌
tD0

is nonzero in T†�0Teich.S/, then
�
d
dt

ˇ̌
tD0
�t
�
¤02T�Xmax

0;0 .�;SO0.2;3//.

Proof of Theorem 6.14 Let Xmax
0;0 .�; SO0.2; 3//

sm denote the smooth locus of the
connected component Xmax

0;0 .�; SO0.2; 3//. Set

P D Teich.S/�Xmax
0;0 .�; SO0.2; 3//

sm

and let � W P ! Xmax
0;0 .�; SO0.2; 3//

sm denote the projection onto the second factor.
Define the energy function

F W Teich.S/�Xmax
0;0 .�; SO0.2; 3//

sm
!R

as in (6-4). Recall that the restriction F� to the fibers of P is smooth and proper [34]
and that the critical points of F� are the minimal immersions we seek. Set

N D f.†; �/ 2 P j d.†;�/.F�/D 0g:

Since F� is proper, for each � 2Xmax
0;0 .�; SO0.2; 3// there exists a Riemann surface †

in which the harmonic metric h�W z† ! SO0.2; 3/=.SO.2/ � SO.3// is a minimal
immersion. Moreover, by Proposition 6.19, for each such pair .†; �/ there is an
associated SO0.2; 3/–cyclic surface f�W z†! SO0.2; 3/=T which lifts the harmonic
metric. By Remark 6.20, if v 2 T.†;�/N, then d�.v/¤ 0, and hence N is transverse
to the fiber of P at .†; �/. Finally, N is homeomorphic to the product of Teich.S/

with the smooth locus of A=Z2 from Theorem 4.26. Since the smooth locus of
A=Z2 is connected, the space N is also connected. By Theorem 6.16, for all � 2
Xmax
0;0 .�; SO0.2; 3//

sm there is a unique Riemann surface structure † on S in which
the harmonic metric is a minimal immersion.

If � 2 Xmax
0;0 .�; SO0.2; 3// is not a smooth point, then, by Proposition 4.38, � fac-

tors through the product of either a maximal SO0.1; 2/–representation or a maximal
SO0.2; 2/–representation with a compact group. Since uniqueness is known for maxi-
mal SO0.1; 2/– [51] and SO0.2; 2/–representations [45], we are done.

Now suppose �2Xmax;sw2
sw1 .�; SO0.2; 3// and let � W Ssw1!S be the double cover asso-

ciated to sw12H 1.S;Z2/. Recall from (4-5) that the representation ��ı�W �1.Ssw1/!

SO0.2; 3/ is maximal and lies in Xmax
0;0 .�1.Ssw1/; SO0.2; 3//. Since there is a unique

Riemann surface structure †sw1 on Ssw1 in which the ���–equivariant harmonic
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metric h��� is a minimal immersion and ��W Teich.S/! Teich.Ssw1/ is injective,
we conclude that, for each maximal representation � 2 Xmax;sw2

sw1 .�; SO0.2; 3//, there
is a unique Riemann surface structure †� in which the harmonic metric h�W z†�!
SO0.2; 3/=SO.2/� SO.3/ is a minimal immersion.

7 Mapping class group invariant complex structure

In this section we show that the space of maximal representations into a real rank two
Lie group of Hermitian type admits a mapping class group invariant complex structure.
More generally, we prove the following theorem:

Theorem 7.1 Let G be a semisimple algebraic Lie group of Hermitian type, and let
C � Xmax.�;G/ be an open MCG.S/–invariant subset of maximal representations �
admitting a unique �–equivariant minimal surface in the symmetric space of G (ie C
is an open set of maximal representations where Labourie’s conjecture holds). The
space C admits the structure of a complex analytic space such that MCG.S/ acts on C
by holomorphic maps and so that the natural map C ! Teich.S/ given by the minimal
surface is holomorphic.

Remark 7.2 The analog of Theorem 7.1 holds when G is a split semisimple Lie group
and C is the union of the Hitchin components on which Labourie’s conjecture holds. In
this case, the proof is straightforward since for every n there exists a holomorphic vector
bundle Hn over Teichmüller space Teich.S/ whose fiber at each point †2Teich.S/ is
naturally identified with the vector space H 0.†;Kn/ of holomorphic n–differentials
on †.

As Labourie’s conjecture has been established for the Hitchin components of the split
semisimple Lie groups of rank 2, the Hitchin components for such groups admit the
structure of a complex manifold, which MCG.S/ acts on holomorphically.

The proof of Theorem 7.1 requires more work than its analog for the Hitchin component
because the space of maximal representations has nontrivial topology. Moreover, the
presence of singularities leads to the technical complication that the components will
not in general be complex manifolds but only complex analytic spaces. For these
reasons, the proof we give uses only general principles, and thus avoids dealing with
what the space of maximal representations looks like.

In Theorem 6.14, Labourie’s conjecture was proven for maximal representations into
PSp.4;R/ and Sp.4;R/. As a corollary of Theorems 6.14 and 7.1 we have:
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Corollary 7.3 The spaces Xmax.�;PSp.4;R// and Xmax.�; Sp.4;R// admit the
structure of a complex analytic space on which MCG.S/ acts by holomorphic maps.

In [10], Theorem 6.14 has been extended to all maximal representations into any rank
two semisimple Lie group of Hermitian type. Thus, applying Theorem 7.1 we have the
following extension of Corollary 7.3:

Corollary 7.4 Let � be the fundamental group of a closed surface of genus g � 2.
The space of maximal representations of � into a rank two semisimple Lie group of
Hermitian type admits the structure of a complex analytic space on which MCG.S/ acts
by holomorphic maps, and such that the natural map to Teich.S/ given by the minimal
surface is holomorphic.

Recall that character varieties also carry a mapping class group invariant symplectic
structure, usually called the Goldman symplectic form. A natural question is whether or
not this symplectic structure is compatible with the complex structure from Theorem 7.1
since it would then define a mapping class group invariant Kähler structure. This is
known only for the PSL.2;R/–Hitchin components, ie the Teichmüller space of S.

The proof of Theorem 7.1 will be based on the following theorem:

Theorem 7.5 Given a complex reductive algebraic Lie group GC , there is a complex
analytic space M.U ;GC/ with a holomorphic map � WM.U ;GC/! Teich.S/ such
that

(1) ��1.†/ is biholomorphic to M.†;GC/ for every † 2 Teich.S/,

(2) � is a trivial topological fiber bundle,

(3) the pullback operation on Higgs bundles gives a natural action of MCG.S/ on
M.U ;GC/ by holomorphic maps that lifts the action on Teich.S/.

We will call the complex analytic space M.U ;GC/ the universal moduli space of
Higgs bundles; it contains all the Higgs bundles with reference to all the possible
complex structures on S. The proof of Theorem 7.5 relies on Simpson’s construction
of the moduli space of Higgs bundles for Riemann surfaces over schemes of finite type
over C . More specifically we will use [49, Corollary 6.7]. We note that Teich.S/ is
not a scheme of finite type over C .
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7.1 Complex analytic spaces

In this section we recall the definition of a complex analytic space. This is a necessary
framework to discuss about complex structures for singular spaces.

A complex analytic variety is a subset V �Cn such that for every point z 2 V there
exists an open neighborhood U of z in Cn and a finite family f1; : : : ; fk 2O.U / of
holomorphic functions on U such that

V \U D fx 2 U j f1.x/D � � � D fk.x/D 0g:

Note that the set V does not need to be closed in Cn , but it is always locally closed (a
closed subset of an open subset of Cn ). For example, every open subset of a complex
analytic variety is a complex analytic variety.

For a subset U � V , a function f W U ! C is holomorphic if there exists an open
neighborhood U 0 of U in Cn and a holomorphic function f 0W U 0 ! C such that
f D f 0jU . We will denote by OV .U / the C–algebra of holomorphic functions on U.
These C–algebras form a sheaf OV called the sheaf of holomorphic functions on V .
The pair .V;OV / is a locally ringed space, ie a space with a sheaf of C–algebras
where every stalk has a unique maximal ideal.

Similarly, if V � Cn and W � Cm are two complex analytic varieties, a map
f W V !W is holomorphic if, for every z 2 V , there exists an open neighborhood U
of z in Cn and a holomorphic map f 0W U !Cm such that f jU\V D f 0jU\V .

A complex analytic space is a locally ringed space that is locally isomorphic to a
complex analytic variety. More precisely, we have the following definition:

Definition 7.6 A complex analytic space is a locally ringed space .X;OX / where for
every x 2X there exists an open neighborhood U of x in X and a complex analytic
variety V �Cn such that the sheaves .U;OX jU / and .V;OV / are isomorphic.

Definition 7.7 If X and Y are complex analytic spaces, a map f W X ! Y is holo-
morphic if, for every z 2X, there exist open neighborhoods U of z and U 0 of f .z/
such that f .U / � U 0 and both .U;OV jU / and .U 0;OW jU 0/ are complex analytic
varieties such that f defines a holomorphic map between them.

7.2 Universal Teichmüller curve

The Teichmüller space Teich.S/ has a natural complex structure that turns it into
a complex manifold of complex dimension 3g � 3. This structure was defined by
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Teichmüller as the unique complex structure for which Teich.S/ is a fine moduli space.
This means that there is a universal family f W U ! Teich.S/, where

� U is a complex manifold of dimension 3g� 2,

� f is a holomorphic function that is also a trivial smooth fiber bundle,

� f �1.†/ is a submanifold of U isomorphic to † for every † 2 Teich.S/.

The universal family is usually called the universal Teichmüller curve. For more details
and an historical account, see the survey paper [1].

Proposition 7.8 There is a unique action of the mapping class group on U which lifts
the action on Teich.S/. This action is properly discontinuous but not free.

Proof For every mapping class � 2MCG.S/, consider the diagram

(7-1)

U

f
��

U

f
��

Teich.S/
�
// Teich.S/

The map � ı f has all the properties of the universal Teichmüller curve f , so, by
uniqueness of the universal Teichmüller curve, there exists a unique biholomorphism
�U W U ! U which makes (7-1) commute. This defines an action of MCG.S/ because
if � and  are two mapping classes, then �U ı U and .� ı /U agree since they both
make (7-1) commute.

The map f is now MCG.S/–equivariant and proper, hence the action of MCG.S/ on U
is properly discontinuous since MCG.S/ acts properly discontinuously on Teich.S/.
The action is not free since, for every † 2 Teich.S/ which is fixed by an element of
MCG.S/, there exists a point of † which is fixed.

We denote by Mod.S/ D Teich.S/=MCG.S/ the moduli space of Riemann surfaces.
Following [12], we call the space U=MCG.S/ the moduli space of pointed Riemann
surfaces. It is a complex analytic space which has a natural holomorphic projection
U=MCG.S/! Mod.S/. However, it does not have the nice properties of the map
U ! Teich.S/, since for a † 2Mod.S/ which is fixed by some element of MCG.S/,
the fiber in U=MCG.S/ is not isomorphic to † but to the quotient of † by its stabilizer
in MCG.S/. This corresponds to the fact that Mod.S/ is not a fine moduli space.
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For each subgroup H<MCG.S/, we have quotient spaces

U=H! Teich.S/=H:

The space Teich.S/=H can often be interpreted as the moduli spaces of Riemann
surfaces with some kind of partial marking, and U=H is the pointed version. Especially
interesting subgroups H arise from the construction in the following example:

Example 7.9 Consider the action of MCG.S/ on the cohomology group H 1.S;Zm/

with coefficients in the cyclic group Zm . This defines a representation

hmW MCG.S/! Sp.2g;Zm/:

Denote the kernel of hm by Hm and set

(7-2) Teichm.S/D Teich.S/=Hm:

The space Teichm.S/ can be interpreted as the moduli space of pairs .†; ˛/, where †
is an abstract Riemann surface homeomorphic to S and ˛W �1.†/!Z2gm is a surjective
group homomorphism (a partial marking). Similarly, UmD U=Hm is a pointed version
of this moduli space.

The group Hm�MCG.S/ from Example 7.9 has finite index; furthermore, when m� 3,
Hm is torsion-free (see [14, Theorem 6.9]). This gives the following proposition:

Proposition 7.10 For each integer m� 3, the spaces Teichm.S/ and Um are complex
manifolds. Moreover, Teich.S/!Teichm.S/ and U! Um are holomorphic coverings
and Teichm.S/!Mod.S/ and Um! U=MCG.S/ are finite branched covering.

7.3 Scheme structures

Fix an integer m� 3. Some of the spaces introduced in Section 7.2 — for instance, the
moduli space Mod.S/ and the pointed moduli space U=MCG.S/ — are the analytifica-
tions of quasiprojective algebraic schemes of finite type over C . Similarly, the spaces
Teichm.S/ and Um are also the analytifications of smooth quasiprojective algebraic
schemes of finite type over C (see [12]). Denote the corresponding quasiprojective
schemes by

Modqp.S/; .U=MCG.S//qp; Teichqpm .S/ and Uqpm :
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The Teichmüller space Teich.S/ is not the analytification of an algebraic scheme.
However, since we have a covering map Teich.S/!Teichm.S/, the Teichmüller space
is locally biholomorphic to a complex manifold with this property.

So far, we have only considered Higgs bundles on Riemann surfaces over C . However,
for a complex algebraic reductive Lie group GC , Simpson [48; 49] constructed the
moduli space M.C;GC/ of GC –Higgs bundles on every scheme C which is smooth
and projective over a scheme of finite type over C . Moreover, he showed that this moduli
space is a quasiprojective scheme. The scheme morphism f

qp
m W U

qp
m ! Teich

qp
m .S/ is

smooth and projective (see [12]); hence, applying Simpson’s construction to Uqpm , we
obtain the moduli space M.Uqpm ;GC/ of GC –Higgs bundles on Uqpm . We summarize
the above discussion in the following proposition; see [49, Corollary 6.7] for more
details:

Proposition 7.11 The moduli space of GC –Higgs bundles on the Riemann sur-
face Uqpm defines a quasiprojective scheme Mqp.Uqpm ;GC/ over Teich

qp
m .S/ with

the property that for every geometric point .†; ˛/ 2 Teich
qp
m .S/, the fiber of .†; ˛/ in

Mqp.Uqpm ;GC/ is the moduli space Mqp..f
qp
m /�1.†; ˛/;GC/DMqp.†;GC/.

The analytifications M.Um;GC/ and M.†;GC/ are complex analytic spaces with the
following properties:

Proposition 7.12 There is a holomorphic map

M.Um; GC/! Teichm.S/

such that for every .†; ˛/ 2Teichm.S/, the fiber over .†; ˛/ in M.Um;GC/ is biholo-
morphic to M.†;GC/.

7.4 Proof of Theorems 7.1 and 7.5

We are now ready to prove Theorem 7.5 which asserts that there is a complex analytic
space M.U ;GC/ with a holomorphic map � WM.U ;GC/! Teich.S/ such that for
every † 2 Teich.S/, ��1.†/ is biholomorphic to M.†;GC/ and there is a unique
lift of the action of the mapping class group on Teich.S/ to M.U ;GC/.

Proof of Theorem 7.5 Fix an integer m� 3, and consider the covering Teich.S/!

Teichm.S/ from (7-2). Let M.U ;GC/ denote the topological space that is the fiber
product of the maps M.Um;GC/! Teichm.S/ and Teich.S/! Teichm.S/.

Geometry & Topology, Volume 23 (2019)



The geometry of maximal components of the PSp.4;R/ character variety 1325

Since the map Teich.S/! Teichm.S/ is a local biholomorphism, the natural map
M.U ;GC/!M.Um;GC/ is also locally invertible, so M.U ;GC/ inherits a structure
of complex analytic space from M.Um;GC/. With respect to this structure, the map

� WM.U ;GC/! Teich.S/

is holomorphic. Moreover, by Proposition 7.12, for every † 2 Teich.S/, ��1.†/ is
biholomorphic to M.†;GC/.

Consider the map

…WM.U ;GC/! X .�;GC/�Teich.S/; E 7! .N�.E/.E/; �.E//;

where N†WM.†;GC/! X .�;GC/ is the homeomorphism given by Theorem 2.10.
The map … is a homeomorphism which commutes with the projections to Teich.S/;
thus, � WM.U ;GC/! Teich.S/ is a trivial topological fiber bundle.

The group MCG.S/ acts on M.U ;GC/ by pullback: Consider � 2 MCG.S/ and
E 2M.U ;GC/. If �.E/D†, there is a unique holomorphic map y'W �.†/!† that
is homotopic to the identity. We define �.E/ to be the Higgs bundle y'�E over �.†/.
This gives the lift of the action of MCG.S/ to M.U ;GC/.

Let Hm �MCG.S/ be the subgroup whose quotient gives Teichm.S/. For � 2Hm , the
fact that the action of � on M.U ;GC/ is holomorphic follows from the construction
of M.U ;GC/ as a fiber product. If � …Hm , then � acts nontrivially on Teich

qp
m .S/

and Uqpm :

Uqpm

f
qp
m
��

�Um
// Uqpm

f
qp
m
��

Teich
qp
m .S/

�
// Teich

qp
m .S/

The map � ı f qpm W U
qp
m ! Teich

qp
m .S/ can also be used to define a moduli space of

Higgs bundles Mqp.Uqp;�m ;GC/. Using the fiber product as above, we can construct a
complex analytic space, which we denote by M.U� ;GC/. Pulling back by ��1 gives
a holomorphic map

(7-3) M.U ;GC/!M.U� ;GC/:

Note that the map �Um defines an isomorphism between the schemes

� ıf qpm W U
qp
m ! Teichqpm .S/ and f qpm W U

qp
m ! Teichqpm .S/:
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As Simpson’s construction is functorial, the above isomorphisms induce an isomorphism
between Mqp.Uqp;�m ;GC/ and Mqp.Uqpm ;GC/. Finally, this isomorphism induces a
biholomorphism

(7-4) M.U� ;GC/ŠM.U ;GC/:

The action of � on M.U ;GC/ is given by the composition of the holomorphic maps
in (7-3) and (7-4), hence it is holomorphic.

The following corollary is important for our application of Theorem 7.5 to maximal
representations:

Corollary 7.13 Let G be a semisimple algebraic Lie group of Hermitian type. For each
integer � 2 Z n f0g, there is a complex analytic space M� .U ;G/ with a holomorphic
map � WM� .U ;G/! Teich.S/ such that

(1) for each † 2 Teich.S/, the fiber ��1.†/ is biholomorphic to the moduli space
M� .†;G/ of G–Higgs bundles with Toledo invariant equal to � ,

(2) � is a trivial topological fiber bundle,

(3) the pullback operation on Higgs bundles gives a natural action of MCG.S/ on
M� .U ;GC/ by holomorphic maps that lifts the action on Teich.S/.

Proof Let GC be the complexification of G. If H is the maximal compact subgroup
of G, let HC < GC be its complexification. The group HC is the fixed-point set of a
holomorphic involution � W GC! GC . The involution � induces involutions

� WM.†;GC/!M.†;GC/ and � WMqp.Uqpm ;GC/!Mqp.Uqpm ;GC/:

The involution on Mqp.Uqpm ;GC/ induces a holomorphic involution on the universal
moduli space of Higgs bundles � WM.U ;GC/!M.U ;GC/.

Let M.†;GC/
� and M.U ;GC/

� be the fixed-point sets of the involutions � ; they are
complex analytic subsets. For each � ¤ 0, the map M� .†;G/!M.†;GC/

� induced
by the inclusion G! GC is injective since we restrict our attention to a nonzero value
of � . Moreover, its image is a union of connected components of M.†;GC/

� . If
M� .U ;G/ is the union of the connected components of M.U ;GC/

� that contain the
images of M� .†;G/, then M� .U ;G/ is a complex analytic space that has all the
properties required by the theorem.
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We are now ready to prove Theorem 7.1, which asserts that if C is an open MCG.S/–
invariant subset of maximal representations on which Labourie’s conjecture holds, then
C admits a complex analytic structure such that the mapping class group acts on C by
holomorphic maps.

Proof of Theorem 7.1 Let Mmax.U ;G/ denote the space M� .U ;G/ for the maximal
value that � can assume for the group G. Let’s consider the map

P WMmax.U ;G/! Xmax.�;G/; E 7!N�.E/.E/;

where N†WMmax.†;G/! X .�;G/ is the homeomorphism from Theorem 2.10, and
� WMmax.U ;G/! Teich.S/ is the natural projection. The map P is surjective, but not
injective since P�1.†/Š Teich.S/. We will write

C U
D P�1.C /�Mmax.U ;G/I

C U is open since C is open.

Recall that holomorphic tangent bundle of Teichmüller space is the bundle H2 whose
fiber over a † 2 Teich.S/ is naturally identified with the vector space H 0.†;K2/ of
holomorphic differentials. Consider the holomorphic function

(7-5) Tr2W C U
!H2; .†; E ; '/ 7! tr.'2/:

The subspace C U
0 D Tr�12 .0/ is a complex analytic subspace of C U . This space

parametrizes the set of all the G–Higgs bundles where the harmonic map given by the
solution of Hitchin’s equations is a branched minimal immersion.

Now consider the restriction of the map P to the complex analytic subspace C U
0 ,

P jCU
0
W C U

0 ! C:

The restricted map is surjective. Indeed, maximal representations are Anosov [5] and
hence admit at least one equivariant branched minimal immersion; see Remark 6.13.
The map is injective since we are assuming Labourie’s conjecture holds on C. This
bijection gives C the structure of complex analytic space such that MCG.S/ acts by
holomorphic maps.

8 Mapping class group equivariant parametrization

In this section we will give a detailed description of the construction of Section 7 for
the groups PSp.4;R/ and Sp.4;R/. As a result, we obtain a parametrization of the
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components of maximal representations that is equivariant for the action of MCG.S/.
Moreover, we describe the quotient Xmax.�;G/=MCG.S/.

8.1 Description of Xmax.�;G/

Let GD PSp.4;R/ or Sp.4;R/ and consider the holomorphic function

Tr2WMmax.U ;G/!H2

from (7-5). Recall from Sections 4 and 5 that the moduli space of maximal Higgs
bundles can be written as a product

Mmax.†;G/DN �H 0.†;K2/:

Moreover, the GC –Higgs bundle .E ; '/ associated to a point .x; q2/2N �H 0.†;K2/

has Tr2.E ; ';†/D 0 if and only q2 D 0.

As we have seen in the proof of Theorem 7.1, Tr2
�1.0/ is a complex analytic space

which is homeomorphic to Xmax.�;G/ by Theorem 6.14. From now on, we will
identify the two spaces

Xmax.�;G/D Tr2
�1.0/:

Consider the natural map

(8-1) T W Xmax.�;G/! Teich.S/; .†; E ; '/ 7!†:

The parametrization theorems in Sections 4 and 5 give an explicit description of the
map T . We will restrict the map to the different connected components of Xmax.�;G/,
and describe each one of them.

For GD PSp.4;R/, the following statements follow directly from putting Theorems
6.14 and 7.1 together with Theorems 4.21, 4.26 and 4.32.

Corollary 8.1 For every d 2 .0; 4g � 4�, the map T restricted to the component
Xmax
0;d

.�;PSp.4;R// is a trivial fiber bundle over Teich.S/. The fiber over †2Teich.S/

is biholomorphic to the rank 3g � 3C d holomorphic vector bundle Fd over the
.4g�4�d/th symmetric product of † described in Theorem 4.21.

Corollary 8.2 The map T restricted to the component Xmax
0;0 .�;PSp.4;R// is a trivial

fiber bundle over Teich.S/. The fiber over † 2 Teich.S/ is biholomorphic to .A=Z2/,
where, as described in Theorem 4.26, A is the holomorphic fiber bundle over Pic0.†/

and Z2 acts on A by pullback by inversion on Pic0.†/.
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Corollary 8.3 For each .sw1; sw2/ 2 H 1.†;Z2/ n f0g �H 2.†;Z2/, the map T
restricted to the component Xmax;sw2

sw1 .�;PSp.4;R// is a trivial fiber bundle over
Teich.S/. The fiber over † 2 Teich.S/ is biholomorphic to .H0=Z2/, where H0

is the bundle over Prymsw2.Xsw1 ; †/ described in Theorem 4.32.

Similarly, for G D Sp.4;R/, the following statements follow directly from putting
Theorems 6.14 and 7.1 together with Theorems 5.8, 5.10 and 5.12. As with PSp.4;R/,
we denote the connected components of the character variety Xmax.�; Sp.4;R//

which correspond to the Higgs bundle connected components Mmax
d;0
.Sp.4;R// and

Mmax;sw2
sw1 .Sp.4;R// by Xmax

d;0
.�; Sp.4;R// and Xmax;sw2

sw1 .�; Sp.4;R//, respectively.

Corollary 8.4 For each d 2 .0; 2g � 2�, the map T restricted to the component
Xmax
0;d

.�; Sp.4;R// is a trivial fiber bundle over Teich.S/. The fiber over † 2 Teich.S/

is biholomorphic to the space ��F2d described in Theorem 5.8.

Corollary 8.5 The map T restricted to the component Xmax
0;0 .�; Sp.4;R// is a trivial

fiber bundle over Teich.S/. The fiber over † 2 Teich.S/ is biholomorphic to the space
s�A=Z2 described in Theorem 5.10.

Corollary 8.6 For .sw1; sw2/ 2 H 1.†;Z2/ n f0g � H 2.†;Z2/, the map T re-
stricted to the component Xmax;sw2

sw1 .�; Sp.4;R// is a trivial fiber bundle over Teich.S/.
The fiber over † 2 Teich.S/ is biholomorphic to the space K0=Z2 described in
Theorem 5.12.

8.2 Action of MCG.S /

If we assume that we understand the action of MCG.S/ on Teich.S/, then the parametri-
zations given by the above corollaries allow us to understand the action of MCG.S/ on
Xmax.�;G/ in an explicit way. We will now describe the quotient space

Q.�;G/D Xmax.�;G/=MCG.S/:

The action of MCG.S/ on Xmax.�;G/ is properly discontinuous (see [50; 32]); thus,
the quotient Q.�;G/ is again a complex analytic space.

Recall that the fiber bundle map T W Xmax.�;G/! Teich.S/ from (8-1) is MCG.S/–
equivariant, and so induces a map

(8-2) yT W Q.�;G/!Mod.S/:
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The map yT is a holomorphic submersion, but is no longer a fiber bundle map. This is
because the action of MCG.S/ on Teich.S/ is not free, and the Riemann surfaces with
nontrivial stabilizer project to the singular points of Mod.S/.

We will write Teich.S/ D Teich.S/free t Teich.S/fix where Teich.S/free is the open
dense subset where the action of MCG.S/ is free, and Teichfix.S/ is the subset of
points where the action of MCG.S/ is not free. Similarly, we will write Mod.S/D

Modsm.S/ t Modsing.S/, where Modsm.S/ is the open dense subset consisting of
smooth points and Modsing.S/ is the subset consisting of orbifold singularities.

On T �1.Teichfree.S//, the action of MCG.S/ is properly discontinuous and free, and
the quotient is yT �1.Modsm.S//. The restriction of yT to this open dense subset of
Q.�;G/ is a holomorphic fiber bundle over Modsm.S/. The fibers over the points in
Modsm.S/ will be called generic fibers and will be described below. The fibers over
the points of Modsing.S/ are harder to describe because it is necessary to take into
account the action of the stabilizer of the corresponding point in Teichfix.S/.

8.3 The connected components of Q.�;PSp.4; R//

We first count the connected components of Q.�;PSp.4;R//; this was done in [24]
for maximal Sp.4;R/–representations, and we follow a similar line of argument here.
The mapping class group acts on H 1.S;Z2/ and on H 2.S;Z2/. The action on the
second homology is trivial, and the action on the first homology induces a surjective
homomorphism

MCG.S/! Sp.H 1.S;Z2//:

In particular, MCG.S/ acts transitively on all nonzero elements of H 1.S;Z2/, and
so there are two orbits: the orbit of zero and the orbit through the nonzero elements.
Given a nonzero element sw1 2H 1.S;Z2/ consider its stabilizer,

PMCG.S/D fg 2MCG.S/ j g � sw1 D sw1g:

We will call PMCG.S/ the parabolic mapping class group because it is the inverse
image of a parabolic subgroup of Sp.H 1.S;Z2//; it is a subgroup of index 22g�1. The
invariant d is preserved by the action of MCG.S/ since the pullback of a line bundle
of degree d by a holomorphic map still has degree d . These simple considerations
already tell us what are the connected components of Q.�;PSp.4;R//:

Theorem 8.7 For each d 2 Œ0; 4g� 4�, the mapping class group MCG.S/ preserves
each connected component Xmax

d
.�;PSp.4;R// and, for each sw2 , MCG.S/ permutes
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the connected components Xmax;sw2
sw1 .�;PSp.4;R//. In particular, Q.�;PSp.4;R// has

4g� 1 connected components.

The connected components of Q.�;PSp.4;R// will be denoted as

Qd .�;PSp.4;R//D Xmax
d .�;PSp.4;R//=MCG.S/;

Qsw2.�;PSp.4;R//D

� G
sw12H1.S;Z2/nf0g

Xmax;sw2
sw1 .�;PSp.4;R//

�.
MCG.S/:

We can now describe the topology of the components of Q.�;PSp.4;R//; the next two
theorems follow from Theorem 8.7, the considerations in Section 8.2 and the corollaries
in Section 8.1.

Theorem 8.8 For 0 � d � 4g � 4, the map yT W Qd .�;PSp.4;R//! Mod.S/ is a
holomorphic submersion over Mod.S/.

� When d > 0, the generic fiber is biholomorphic to the rank 3g�3Cd holomor-
phic vector bundle Fd over the .4g�4�d/th symmetric product of † described
in Theorem 4.21.

� When d D 0, the generic fiber is biholomorphic to .A=Z2/, where, as described
in Theorem 4.26, A is the holomorphic fiber bundle over Pic0.†/ and Z2 acts
on A via pullback by the inverse map on Pic0.†/.

The description of Qsw2.�;PSp.4;R// is slightly harder because an orbit of MCG.S/

intersects 22g � 1 different components. The stabilizer of one of these components is
the parabolic mapping class group PMCG.S/. The quotient of the Teichmüller space
by this subgroup is a .22g�1/–orbifold cover of the moduli space,

Teich.S/=PMCG.S/!Mod.S/:

Each component Qsw2.�;PSp.4;R// can be seen as the quotient

Qsw2.�;PSp.4;R//D Xmax;sw2
sw1 .�;PSp.4;R//=PMCG.S/:

Thus, there is a holomorphic submersion

yT 0W Qsw2.�;PSp.4;R//! Teich.S/=PMCG.S/:

In this way we find two descriptions of Qsw2.�;PSp.4;R//, one describes it using a map
to Mod.S/ with a disconnected fiber, and the other using a map to Teich.S/=PMCG.S/

with a connected fiber.
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Theorem 8.9 Let sw2 2H 2.S;Z2/.

� The map yT W Qsw2.�;PSp.4;R//!Mod.S/ is a holomorphic submersion with
generic fiber biholomorphic to the disjoint union of 22g � 1 copies of .H0=Z2/,
where H0 is the bundle over Prymsw2.Xsw1 ; †/ described in Proposition 4.28.

� The map yT 0W Qsw2.�;PSp.4;R//! Teich.S/=PMCG.S/ is a holomorphic sub-
mersion with generic fiber biholomorphic to .H0=Z2/.

8.4 The connected components of Q.�;Sp.4; R//

Counting the connected components of Q.�; Sp.4;R// is slightly more complicated;
they were counted in [24, Theorem 10]. To distinguish the components of

Xmax.�; Sp.4;R//

we have Higgs bundle invariants sw1 2H 1.S;Z2/, sw2 2H 2.S;Z2/, d 2 Z and an
extra invariant to distinguish between the 22g Hitchin components.

The invariant that distinguishes the Hitchin components is a choice of a square root
of K . There is a well-known topological interpretation of this choice; it is equivalent to
a choice of a spin structure on S. Spin structures have a topological invariant called the
Arf invariant, which takes values in Z2 and is preserved by the action of MCG.S/. A
spin structure is called even or odd depending on the value of the Arf invariant. There
are 2g�1.2g C 1/ even and 2g�1.2g � 1/ odd spin structures (see [2]). The mapping
class group acts transitively on the set of odd spin structures and on the set of even spin
structures.

Recall from Section 5 that Xmax.�; Sp.4;R// decomposes asG
.sw1;sw2/2

H1.S;Z2/nf0g�H2.S;Z2/

Xmax;sw2
sw1 .�; Sp.4;R//t

G
d2Œ0;2g�2�

Xmax
d .�; Sp.4;R//:

Using the notation above, we now state the theorem which determines the connected
components of Q.�; Sp.4;R//.

Theorem 8.10 [24, Theorem 10] For each d 2 Œ0; 2g� 2/, the mapping class group
MCG.S/ preserves Xmax

d
.�; Sp.4;R//. For sw2 2H 2.S;Z2/, the action of MCG.S/

permutes the components Xmax;sw1
sw1 .�; Sp.4;R//. For Xmax

2g�2.�; Sp.4;R//, MCG.S/

acts on the 22g connected components with two orbits distinguished by the Arf invariant.
In particular, Q.�; Sp.4;R// has 2gC 2 connected components.
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The connected components of Q.�; Sp.4;R// will be denoted as

Qd .�; Sp.4;R//D Xmax
d .�; Sp.4;R//=MCG.S/ for d 2 Œ0; 2g� 2/;

Qsw2.�; Sp.4;R//D

� G
sw12H1.S;Z2/nf0g

Xmax;sw2
sw1 .�; Sp.4;R//

�.
MCG.S/;

Q2g�2;0.�; Sp.4;R//tQ2g�2;1.�; Sp.4;R//D Xmax
2g�2.�; Sp.4;R//=MCG.S/;

where Q2g�2;a.�; Sp.4;R// denotes the quotient space for Arf invariant a 2 Z2 .

We can now describe the components of Q.�; Sp.4;R//. The next three theorems
follow from Theorem 8.10, the considerations in Section 8.2, and the corollaries in
Section 8.1.

Theorem 8.11 For 0 � d < 2g � 2, the map yT W Qd .�; Sp.4;R//! Mod.S/ from
(8-2) is a holomorphic submersion.

� When 0 < d < 2g� 2, the generic fiber is biholomorphic to the space ��F2d
described in Theorem 5.8.

� When d D 0, the generic fiber is biholomorphic to the space s�A=Z2 described
in Theorem 5.10.

To describe the components corresponding to sw1 ¤ 0, we consider also the map

yT 0W Qsw2.�; Sp.4;R//! Teich.S/=PMCG.S/:

Again, we find two descriptions of Qsw2.�; Sp.4;R//, one describes it using a map to
Mod.S/ with a disconnected fiber, and the other using a map to Teich.S/=PMCG.S/

with a connected fiber.

Theorem 8.12 Let sw2 2H 2.S;Z2/.

� The map yT W Qsw2.�; Sp.4;R//!Mod.S/ is a holomorphic submersion with
generic fiber biholomorphic to the disjoint union of 22g � 1 copies of the space
K0=Z2 described in Theorem 5.12.

� The map yT 0W Qsw2.�; Sp.4;R//! Teich.S/=PMCG.S/ is a holomorphic sub-
mersion with generic fiber biholomorphic to K0=Z2 .

Finally, we consider quotients of the Hitchin components Q2g�2;a.�; Sp.4;R//. Given
a spin structure on S, the subgroup of the mapping class group preserving it is called
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the spin mapping class group; see [27] for more information. There are two conjugacy
classes of spin mapping class groups which depend on the Arf invariant of the preserved
spin structure. They will be denoted by SMCGa.S/, where a 2Z2 is the corresponding
Arf invariant. The group SMCG0.S/ is a subgroup of index 2g�1.2g C 1/, and
SMCG1.S/ has index 2g�1.2g�1/. The stabilizer in MCG.S/ of a Hitchin component
is the group SMCGa.S/. The quotient of the Teichmüller space by one of these
subgroups is a finite orbifold cover of the moduli space,

Teich.S/=SMCGa.S/!Mod.S/:

Each component Q2g�2;a.�; Sp.4;R// can be seen as the quotient of one Hitchin
component by the relevant spin mapping class group. Thus, there is a holomorphic
submersion

yT 0W Q2g�2;a.�; Sp.4;R//! Teich.S/=SMCGa.S/:

As before, we find two description of the spaces Q2g�2;a.�; Sp.4;R//.

Theorem 8.13 For each a 2 Z2 , the map yT W Q2g�2;a.�; Sp.4;R//! Mod.S/ is
a holomorphic submersion with generic fiber biholomorphic to the disjoint union of
2g�1.2g C1/ or 2g�1.2g �1/ copies of the vector space H 0.†;K4/. The map yT 0 is
a holomorphic submersion with generic fiber biholomorphic to H 0.†;K4/.

References
[1] A A’Campo-Neuen, N A’Campo, L Ji, A Papadopoulos, A commentary on Teich-

müller’s paper “Veränderliche Riemannsche Flächen”, from “Handbook of Teichmüller
theory, IV” (A Papadopoulos, editor), IRMA Lect. Math. Theor. Phys. 19, Eur. Math.
Soc., Zürich (2014) 805–814 MR

[2] M F Atiyah, Riemann surfaces and spin structures, Ann. Sci. École Norm. Sup. 4
(1971) 47–62 MR

[3] S B Bradlow, O García-Prada, P B Gothen, Maximal surface group representations
in isometry groups of classical Hermitian symmetric spaces, Geom. Dedicata 122 (2006)
185–213 MR

[4] S B Bradlow, O García-Prada, P B Gothen, Deformations of maximal representations
in Sp.4;R/ , Q. J. Math. 63 (2012) 795–843 MR

[5] M Burger, A Iozzi, F Labourie, A Wienhard, Maximal representations of surface
groups: symplectic Anosov structures, Pure Appl. Math. Q. 1 (2005) 543–590 MR

[6] M Burger, A Iozzi, A Wienhard, Surface group representations with maximal Toledo
invariant, Ann. of Math. 172 (2010) 517–566 MR

Geometry & Topology, Volume 23 (2019)

http://dx.doi.org/10.4171/117-1/20
http://dx.doi.org/10.4171/117-1/20
http://msp.org/idx/mr/3289717
http://dx.doi.org/10.24033/asens.1205
http://msp.org/idx/mr/0286136
http://dx.doi.org/10.1007/s10711-007-9127-y
http://dx.doi.org/10.1007/s10711-007-9127-y
http://msp.org/idx/mr/2295550
http://dx.doi.org/10.1093/qmath/har010
http://dx.doi.org/10.1093/qmath/har010
http://msp.org/idx/mr/2999985
http://dx.doi.org/10.4310/PAMQ.2005.v1.n3.a5
http://dx.doi.org/10.4310/PAMQ.2005.v1.n3.a5
http://msp.org/idx/mr/2201327
http://dx.doi.org/10.4007/annals.2010.172.517
http://dx.doi.org/10.4007/annals.2010.172.517
http://msp.org/idx/mr/2680425


The geometry of maximal components of the PSp.4;R/ character variety 1335

[7] M Burger, A Iozzi, A Wienhard, Higher Teichmüller spaces: from SL.2;R/ to other
Lie groups, from “Handbook of Teichmüller theory, IV” (A Papadopoulos, editor),
IRMA Lect. Math. Theor. Phys. 19, Eur. Math. Soc., Zürich (2014) 539–618 MR

[8] F E Burstall, J H Rawnsley, Twistor theory for Riemannian symmetric spaces: with
applications to harmonic maps of Riemann surfaces, Lecture Notes in Mathematics
1424, Springer (1990) MR

[9] B Collier, Maximal Sp.4;R/ surface group representations, minimal immersions and
cyclic surfaces, Geom. Dedicata 180 (2016) 241–285 MR

[10] B Collier, N Tholozan, J Toulisse, The geometry of maximal representations of surface
groups into SO.2; n/ , preprint (2017) arXiv

[11] K Corlette, Flat G–bundles with canonical metrics, J. Differential Geom. 28 (1988)
361–382 MR

[12] P Deligne, D Mumford, The irreducibility of the space of curves of given genus, Inst.
Hautes Études Sci. Publ. Math. 36 (1969) 75–109 MR

[13] S K Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London
Math. Soc. 55 (1987) 127–131 MR

[14] B Farb, D Margalit, A primer on mapping class groups, Princeton Mathematical Series
49, Princeton Univ. Press (2012) MR

[15] O García-Prada, P B Gothen, I Mundet i Riera, The Hitchin–Kobayashi correspon-
dence, Higgs pairs and surface group representations, preprint (2009) arXiv

[16] O García-Prada, P B Gothen, I Mundet i Riera, Higgs bundles and surface group
representations in the real symplectic group, J. Topol. 6 (2013) 64–118 MR

[17] W M Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in
Math. 54 (1984) 200–225 MR

[18] W M Goldman, Topological components of spaces of representations, Invent. Math.
93 (1988) 557–607 MR

[19] W M Goldman, Mapping class group dynamics on surface group representations, from
“Problems on mapping class groups and related topics” (B Farb, editor), Proc. Sympos.
Pure Math. 74, Amer. Math. Soc., Providence, RI (2006) 189–214 MR

[20] P B Gothen, Components of spaces of representations and stable triples, Topology 40
(2001) 823–850 MR

[21] P B Gothen, A G Oliveira, Rank two quadratic pairs and surface group representa-
tions, Geom. Dedicata 161 (2012) 335–375 MR

[22] A Grothendieck, Sur quelques points d’algèbre homologique, Tôhoku Math. J. 9
(1957) 119–221 MR

[23] F Guéritaud, O Guichard, F Kassel, A Wienhard, Anosov representations and
proper actions, Geom. Topol. 21 (2017) 485–584 MR

Geometry & Topology, Volume 23 (2019)

http://dx.doi.org/10.4171/117-1/14
http://dx.doi.org/10.4171/117-1/14
http://msp.org/idx/mr/3289711
http://dx.doi.org/10.1007/BFb0095561
http://dx.doi.org/10.1007/BFb0095561
http://msp.org/idx/mr/1059054
http://dx.doi.org/10.1007/s10711-015-0101-9
http://dx.doi.org/10.1007/s10711-015-0101-9
http://msp.org/idx/mr/3451467
http://msp.org/idx/arx/1702.08799
http://dx.doi.org/10.4310/jdg/1214442469
http://msp.org/idx/mr/965220
http://dx.doi.org/10.1007/BF02684599
http://msp.org/idx/mr/0262240
http://dx.doi.org/10.1112/plms/s3-55.1.127
http://msp.org/idx/mr/887285
https://www.degruyter.com/viewbooktoc/product/459114
http://msp.org/idx/mr/2850125
http://msp.org/idx/arx/0909.4487
http://dx.doi.org/10.1112/jtopol/jts030
http://dx.doi.org/10.1112/jtopol/jts030
http://msp.org/idx/mr/3029422
http://dx.doi.org/10.1016/0001-8708(84)90040-9
http://msp.org/idx/mr/762512
http://dx.doi.org/10.1007/BF01410200
http://msp.org/idx/mr/952283
http://dx.doi.org/10.1090/pspum/074/2264541
http://msp.org/idx/mr/2264541
http://dx.doi.org/10.1016/S0040-9383(99)00086-5
http://msp.org/idx/mr/1851565
http://dx.doi.org/10.1007/s10711-012-9709-1
http://dx.doi.org/10.1007/s10711-012-9709-1
http://msp.org/idx/mr/2994046
http://dx.doi.org/10.2748/tmj/1178244839
http://msp.org/idx/mr/0102537
http://dx.doi.org/10.2140/gt.2017.21.485
http://dx.doi.org/10.2140/gt.2017.21.485
http://msp.org/idx/mr/3608719


1336 Daniele Alessandrini and Brian Collier

[24] O Guichard, A Wienhard, Topological invariants of Anosov representations, J. Topol.
3 (2010) 578–642 MR

[25] O Guichard, A Wienhard, Anosov representations: domains of discontinuity and
applications, Invent. Math. 190 (2012) 357–438 MR

[26] O Hamlet, Tight maps and holomorphicity, Transform. Groups 19 (2014) 999–1026
MR

[27] J L Harer, Stability of the homology of the moduli spaces of Riemann surfaces with
spin structure, Math. Ann. 287 (1990) 323–334 MR

[28] N J Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc.
55 (1987) 59–126 MR

[29] N J Hitchin, Lie groups and Teichmüller space, Topology 31 (1992) 449–473 MR

[30] Z Huang, B Wang, Counting minimal surfaces in quasi-Fuchsian three-manifolds,
Trans. Amer. Math. Soc. 367 (2015) 6063–6083 MR

[31] M Kapovich, B Leeb, J Porti, Dynamics on flag manifolds: domains of proper discon-
tinuity and cocompactness, Geom. Topol. 22 (2018) 157–234 MR

[32] F Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math.
165 (2006) 51–114 MR

[33] F Labourie, Flat projective structures on surfaces and cubic holomorphic differentials,
Pure Appl. Math. Q. 3 (2007) 1057–1099 MR

[34] F Labourie, Cross ratios, Anosov representations and the energy functional on Teich-
müller space, Ann. Sci. Éc. Norm. Supér. 41 (2008) 437–469 MR

[35] F Labourie, Cyclic surfaces and Hitchin components in rank 2 , Ann. of Math. 185
(2017) 1–58 MR

[36] S Lang, On quasi algebraic closure, Ann. of Math. 55 (1952) 373–390 MR

[37] J C Loftin, Affine spheres and convex RPn–manifolds, Amer. J. Math. 123 (2001)
255–274 MR

[38] I G Macdonald, Symmetric products of an algebraic curve, Topology 1 (1962) 319–343
MR

[39] J W Milnor, J D Stasheff, Characteristic classes, Annals of Mathematics Studies 76,
Princeton Univ. Press (1974) MR

[40] D Mumford, Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup.
4 (1971) 181–192 MR

[41] M S Narasimhan, C S Seshadri, Stable and unitary vector bundles on a compact
Riemann surface, Ann. of Math. 82 (1965) 540–567 MR

[42] A Ramanathan, Stable principal bundles on a compact Riemann surface, Math. Ann.
213 (1975) 129–152 MR

Geometry & Topology, Volume 23 (2019)

http://dx.doi.org/10.1112/jtopol/jtq018
http://msp.org/idx/mr/2684514
http://dx.doi.org/10.1007/s00222-012-0382-7
http://dx.doi.org/10.1007/s00222-012-0382-7
http://msp.org/idx/mr/2981818
http://dx.doi.org/10.1007/s00031-014-9283-8
http://msp.org/idx/mr/3278859
http://dx.doi.org/10.1007/BF01446896
http://dx.doi.org/10.1007/BF01446896
http://msp.org/idx/mr/1054572
http://dx.doi.org/10.1112/plms/s3-55.1.59
http://msp.org/idx/mr/887284
http://dx.doi.org/10.1016/0040-9383(92)90044-I
http://msp.org/idx/mr/1174252
http://dx.doi.org/10.1090/tran/6172
http://msp.org/idx/mr/3356929
http://dx.doi.org/10.2140/gt.2018.22.157
http://dx.doi.org/10.2140/gt.2018.22.157
http://msp.org/idx/mr/3720343
http://dx.doi.org/10.1007/s00222-005-0487-3
http://msp.org/idx/mr/2221137
http://dx.doi.org/10.4310/PAMQ.2007.v3.n4.a10
http://msp.org/idx/mr/2402597
http://dx.doi.org/10.24033/asens.2072
http://dx.doi.org/10.24033/asens.2072
http://msp.org/idx/mr/2482204
http://dx.doi.org/10.4007/annals.2017.185.1.1
http://msp.org/idx/mr/3583351
http://dx.doi.org/10.2307/1969785
http://msp.org/idx/mr/0046388
http://dx.doi.org/10.1353/ajm.2001.0011
http://msp.org/idx/mr/1828223
http://dx.doi.org/10.1016/0040-9383(62)90019-8
http://msp.org/idx/mr/0151460
https://www.degruyter.com/viewbooktoc/product/474553
http://msp.org/idx/mr/0440554
http://dx.doi.org/10.24033/asens.1209
http://msp.org/idx/mr/0292836
http://dx.doi.org/10.2307/1970710
http://dx.doi.org/10.2307/1970710
http://msp.org/idx/mr/0184252
http://dx.doi.org/10.1007/BF01343949
http://msp.org/idx/mr/0369747


The geometry of maximal components of the PSp.4;R/ character variety 1337

[43] J Sacks, K Uhlenbeck, Minimal immersions of closed Riemann surfaces, Trans. Amer.
Math. Soc. 271 (1982) 639–652 MR

[44] A Schmitt, Moduli for decorated tuples of sheaves and representation spaces for
quivers, Proc. Indian Acad. Sci. Math. Sci. 115 (2005) 15–49 MR

[45] R M Schoen, The role of harmonic mappings in rigidity and deformation problems,
from “Complex geometry” (G Komatsu, Y Sakane, editors), Lecture Notes in Pure and
Appl. Math. 143, Dekker, New York (1993) 179–200 MR

[46] R Schoen, S T Yau, Existence of incompressible minimal surfaces and the topology
of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. 110
(1979) 127–142 MR

[47] C T Simpson, Constructing variations of Hodge structure using Yang–Mills theory and
applications to uniformization, J. Amer. Math. Soc. 1 (1988) 867–918 MR

[48] C T Simpson, Moduli of representations of the fundamental group of a smooth projec-
tive variety, I, Inst. Hautes Études Sci. Publ. Math. 79 (1994) 47–129 MR

[49] C T Simpson, Moduli of representations of the fundamental group of a smooth projec-
tive variety, II, Inst. Hautes Études Sci. Publ. Math. 80 (1994) 5–79 MR

[50] A Wienhard, The action of the mapping class group on maximal representations,
Geom. Dedicata 120 (2006) 179–191 MR

[51] M Wolf, The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989)
449–479 MR

Mathematisches Institut, Universitaet Heidelberg
Heidelberg, Germany

Department of Mathematics, University of Maryland
College Park, MD, United States

daniele.alessandrini@gmail.com, briancollier01@gmail.com

Proposed: Benson Farb Received: 27 August 2017
Seconded: Jean-Pierre Otal, Anna Wienhard Accepted: 21 July 2018

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.2307/1998902
http://msp.org/idx/mr/654854
http://dx.doi.org/10.1007/BF02829837
http://dx.doi.org/10.1007/BF02829837
http://msp.org/idx/mr/2120597
http://msp.org/idx/mr/1201611
http://dx.doi.org/10.2307/1971247
http://dx.doi.org/10.2307/1971247
http://msp.org/idx/mr/541332
http://dx.doi.org/10.2307/1990994
http://dx.doi.org/10.2307/1990994
http://msp.org/idx/mr/944577
http://dx.doi.org/10.1007/BF02698887
http://dx.doi.org/10.1007/BF02698887
http://msp.org/idx/mr/1307297
http://dx.doi.org/10.1007/BF02698895
http://dx.doi.org/10.1007/BF02698895
http://msp.org/idx/mr/1320603
http://dx.doi.org/10.1007/s10711-006-9079-7
http://msp.org/idx/mr/2252900
http://dx.doi.org/10.4310/jdg/1214442885
http://msp.org/idx/mr/982185
mailto:daniele.alessandrini@gmail.com
mailto:briancollier01@gmail.com
http://msp.org
http://msp.org



	1. Introduction
	1.1. Maximal PSp(4,R)–representations
	1.2. Higgs bundles and Labourie's conjecture
	Organization of the paper
	Acknowledgements

	2. Character varieties and Higgs bundles
	2.1. Character varieties
	2.2. Higgs bundles
	2.3. The Lie groups SO_0(2,3) and Sp(4,R)

	3. Complex orthogonal bundles
	3.1. General properties
	3.2. Bundles of rank 2 with vanishing first Stiefel–Whitney class
	3.3. Bundles of rank 2 with nonvanishing first Stiefel–Whitney class
	3.4. Gauge transformations

	4. PSp(4,R)–Higgs bundles
	4.1. General definition
	4.2. Maximal SO_(2,3)–Higgs bundles
	4.3. The case sw_1(F,Q_F)=0
	4.4. The case sw_1(F,Q_F) is nonzero
	4.5. Parametrizing the components M^max_0,d(SO_0(2,3))
	4.6. Parametrizing the components M^max,sw2_sw1(SO_0(2,3))
	4.7. Zariski closures of maximal PSp(4,R)–representations
	4.8. Other comments

	5. Sp(4,R)–Higgs bundles
	5.1. Maximal Sp(4,R)–Higgs bundles
	5.2. Parametrizing M^max(Sp(4,R))

	6. Unique minimal immersions
	6.1. Harmonic metrics
	6.2. The energy function and minimal surfaces
	6.3. SO_0(2,3)–cyclic surfaces
	6.4. Proof of Theorem 6.14

	7. Mapping class group invariant complex structure
	7.1. Complex analytic spaces
	7.2. Universal Teichmüller curve
	7.3. Scheme structures
	7.4. Proof of Theorems 7.1 and 7.5

	8. Mapping class group equivariant parametrization
	8.1. Description of X^max(Gamma,G)
	8.2. Action of MCG(S)
	8.3. The connected components of Q(Gamma,PSp(4,R))
	8.4. The connected components of Q(Gamma,Sp(4,R))

	References

