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A deformation of instanton homology for webs

PETER B KRONHEIMER
ToMASz S MROWKA

A deformation of the authors’ instanton homology for webs is constructed by intro-
ducing a local system of coefficients. In the case that the web is planar, the rank of
the deformed instanton homology is equal to the number of Tait colorings of the web.

57R58; 05C15

1 Introduction

1.1 Statement of results

In an earlier pair of papers [14; 13], the authors studied an SO(3) instanton homology
for “webs” (embedded trivalent graphs) in closed, oriented 3-manifolds. In particular,
toaweb K C R3, the authors associated a vector space J#(K) over the field F = Z/2.
One of the reasons for being interested in J # is that, in conjunction with the other
results of [14], the following conjecture implies the four-color theorem; see Appel and
Haken [1].

Conjecture 1.1 [14] If K lies in the plane R? C R3, then the dimension of JHK)
is equal to the number of Tait colorings of K .

The homology J #(K) is constructed from the Morse theory of the Chern—Simons
functional on a space of connections B associated with K. In this paper, we introduce
a system of local coefficients I" on 5 and use it to define a variant, J #(K:T), which is
a module over the ring R = F[Z3] (elements of which we write as finite Laurent series
in variables Ty, T5, T%). The property that is conjectural for J#(K) is a theorem for
its deformation J#(K:T).

Theorem 1.2 If K lies in the plane, then the rank of J*(K:T') as an R—module is
equal to the number of Tait colorings of K.
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From the construction of J#(K;T)) as a Morse homology with coefficients in a local
system, it is apparent that it is the homology of a complex (C, d) of free R—modules.
Furthermore, the original J #(K) can be recovered as the homology of the complex
(C®rF,0®1), where F is made into an R—module by evaluation at 7; = 1. From
this it follows that there is (for all K') an inequality

(1) dimp J*(K) > rankg J*(K;T),

because the rank of the differential d ® 1 cannot be larger than the rank of d. From the
theorem above, we now obtain:

Corollary 1.3 If K lies in the plane, then the dimension of J#(K ) is greater than or
equal to the number of Tait colorings of K .

Although this corollary is “half” of Conjecture 1.1, it does not have any implication
for the four-color theorem. It does, however, put Conjecture 1.1 into perspective.
The inequality (1) can be refined by constructing a spectral sequence, which allows
us to interpret Conjecture 1.1 as saying that, in the planar case, a certain spectral
sequence collapses. For nonplanar webs, the spectral sequence may not collapse, and
the inequality (1) can be strict. Indeed, in Section 6.4, we give an example of a web
in R? for which J#(K;T) has rank 0 while J#(K) is nonzero. Whether or not the
web is planar, the differentials dy, d, and d3 in our spectral sequence are always zero
(as a consequence of a nontrivial calculation, Proposition 6.13), so the first interesting
question arises with dy.

1.2 Ingredients of the proof

The content of Theorem 1.2 is that the deformed instanton homology can be effectively
computed when K is planar. As an introduction to why this is so, recall that for each
edge e of K there is an operator u, defined on J ﬁ(K) [14] which satisfies ug =0. We
will see that there is a similar operator on the deformed instanton homology J#(K;T")
and that in the deformed case there is a relation

) ud 4+ Pu, =0,
where P € R is the nonzero element

3) P=T\LT+ T, 'T;' + LT, ' T, + T, ' T,
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The polynomial satisfied by u, therefore has two roots 0 and P'/2, the second of
which is repeated (because we are in characteristic 2). After replacing R by its field
of fractions and adjoining P2 we may therefore decompose J #(K:T) into the
generalized eigenspaces of the operator u.. As e runs through all edges, we obtain
a collection of commuting operators whose generalized eigenspaces provide a finer
decomposition of the instanton homology. This eigenspace decomposition leads to Tait
colorings in the planar case.

The proof of the relation (2), and the calculation of P, involves an explicit under-
standing of some small instanton moduli spaces. The particular form of P is also
central to the proof that the differentials ¢y, d, and d3 are zero in the spectral
sequence (Proposition 6.13), the essential point being that P vanishes to order 4 at the
point (1,1, 1).

1.3 Remarks

We have restricted our exposition in this introduction to the case that K lies in R3
or 3. But the construction of J*(K;T), and the spectral sequence which leads to the
inequality (1), both extend without modification to the more general case of webs in
a closed, oriented 3—manifold Y. We will develop the construction with this greater
generality, returning to the case of R3 for the proof of Theorem 1.2.

Acknowledgement The work of Kronheimer was supported by the National Science
Foundation through NSF grants DMS-1405652 and DMS-1707924. The work of
Mrowka was supported by NSF grant DMS-1406348, and by a grant from the Simons
Foundation, grant number 503559 TSM.

2 An equivalent construction of J*(K)

2.1 Summary of the original construction

The basic objects of study in [14] are closed, oriented, three-dimensional orbifolds Y
whose local isotropy groups are all either Z /2 or Z /2 x Z /2. We call such an orbifold
a bifold. The underlying topological space |)v’| is a 3—manifold, and the singular set
is an embedded trivalent graph, or web, K C |f|. In the other direction, given an
oriented 3—manifold Y and a web K C Y, there is a corresponding bifold, which we
may denote simply by (Y, K).
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By a bifold connection (E, A) over Y, we mean an orbifold vector bundle E with
fiber R® and structure group SO(3), with a connection A, such that the action of the
isotropy groups on the fibers of E at the singular points is nontrivial. Marking data
f on Y consists of an open set Uy, and an SO(3) bundle E, — U, \ K. A bifold
bundle E is marked by p if there is given an isomorphism o: E;, — E|y, . An iso-
morphism T between p—marked bundles with connection, (E, A,0) and (E’, A’,¢")
is an isomorphism of bifold bundles with connection such that the automorphism
ot E n — Ey lifts to the determinant-1 gauge group. The marking data p is
strong if the automorphism group of every p—marked bifold connection is trivial.

Two simple examples of strong marking data are highlighted in [14]. The first is on the
bifold (S3, H) where H is a Hopf link. In this example, the marking data sz has U, w
a ball containing H and E is a bundle with w,(E) nonzero on the boundary of the
tubular neighborhood of either component of H. The second example is (S?, §) where
0 is a standardly embedded theta graph: two vertices joined by three arcs lying in a
plane R? C S3. (This orbifold is the global quotient of S* by an action of the Klein
4—group.) In this example, the marking data pg again has U, a ball containing 6, and
E,, is the trivial bundle.

Given strong marking data p on Y, there is a Banach manifold B; (Iv’; ) parametrizing
isomorphism classes of marked bundles with connection, of Sobolev class le. In this
case, one may define an instanton homology group J(Y; 1t) as the Morse homology
of a perturbed Chern—Simons functional on Bl(f’; W) with coefficients in the prime
field F of characteristic 2. The two examples in the previous paragraph both have
one-dimensional instanton homology:

J((S* H);ug)=F,
J((S3,0); ng) =F.

In [14], the authors defined J #(IV’) for an arbitrary bifold Y without marking data by
forming a connected sum with (S 3 H ), with its own marking. That is,

JHY) := J(Y #(S®, H); ).

Here, when writing a connected sum, we mean that the connected sum is formed at
nonsingular points of the two bifolds. The definition is valid, because the marking data
Qg is strong on the connected sum. In the case that Y arises fromaweb K CR3C §3,
we simply write J#(K).
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In the general case, to make J # natural, we should take Y to be a closed bifold
with a framed basepoint in the nonsingular part, in order to form the connected sum.
Having done this, J # becomes a functor from a category in which a morphism is a
4—dimensional bifold cobordism with a framed arc joining the basepoints at the two
ends of the cobordism. As in dimension three, the underlying topological space |AV’ |
of a 4-dimensional bifold is a 4—manifold, and the singular set is a restricted type of
two-dimensional subcomplex called a foam. The space of morphisms in the category
can be extended by allowing the foams to carry extra data in the form of dots on the
faces of the foam. See [14].

2.2 Replacing the Hopf link with the theta graph

While this was not pursued in [14], one could form a connected sum with (S3,6)
instead of (S3, H) above. Let us temporarily write

(4) JYY) = J(Y #(S3,0); pa).

We shall show that J T(I?) and J ti(I?) are isomorphic for all Y. We then have:

Proposition 2.1 On the cobordism category of bifolds with framed basepoint, the two
functors J* and J*¥ are naturally isomorphic.

Proof The proof is an application of an excision principle, stated in two variants as
Propositions 4.1 and 4.2 in [14]. As an application of the first version, a connected sum
theorem is given as Proposition 4.3 in [14], and we it restate here as an isomorphism

(5)  J#YV#(S3 Hyp) = J(V1 #(S3, H); 1) @ J (Yo #(S3, H); o).

In the version described in [14], the marking u was pug throughout. But we could
also take additional marking data p; on )v’, for i =1, 2. So, on the left of the above
isomorphism we could take

p=prUpsUpg

and so on. While this connected sum theorem is an application of Proposition 4.1 of [14]
and involves the Hopf link H, one can similarly use the other version, Proposition 4.2,
and replace H with 8. Thus, we also have

(6) J(V1 #Y2#(S3,0); 1) = J(Y, #(S3,0); 1) @ J(Y2 #(S3,0); ).

Geometry & Topology, Volume 23 (2019)
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We now apply (5) with Yi =Y and ¥, = (S3,6). For marking data, we take
Ww =Wy U g, where py = pg. From this we obtain

J(Y #(S3,0)#(S® H) g Upgr) = JHY) @ J((S3,0) #(S3, H); o U ).
In a similar way, from (6), we obtain
J(Y #(S3,0)#(S3 H) g Upgr) = JT(V) @ J((S3,0) #(S3, H): jug U ).

Combining the last two isomorphisms, we have an isomorphism of finite-dimensional
F —vector spaces of the form

@) JFMer=JI Vel

where I = J(S?, H U ;). In the notation of [14], the vector space I is I#(6),
which is nonzero by the results of Section 7.1 of [14]. It follows that J li(Iv/) and J 7L()V’ )
are isomorphic.

The excision isomorphisms in [14] are natural with respect to bifold cobordisms, and
it follows that the isomorphism (7) expresses a functorial isomorphism between J#
and JT. a

From this point on, we will use 6 rather than H in the construction of J #. That is,
we will drop the notation J T and take (4) as the definition of J #. For brevity, we will
sometimes write B# (IV/) for the relevant space of marked bifold connections,

(8) BYY) = B(Y #(S3, 0); o).

3 Instanton homology with local coefficients

3.1 Maps to the circle

Consider again the standard theta-graph 6 C S3. The corresponding orbifold (S3, 6) is
a quotient of a standard 3—sphere S3 by the Klein 4—group V. Take the marking data
Mg to have Uy, = S 3 with E w trivial. (This is equivalent to the previous description,
in which U, was a ball in S 3 containing #.) The space of marked connections
Bg = B((S?, 6); ) parametrizes bifold SO(3) connections (E, A) equipped with a
homotopy class of trivializations of E on the nonsingular part, S*\ @, or, equivalently,
a lift of the structure group of E to SU(2). If we pull back the principal SU(2) bundle
to S3 and take the associated vector bundle with fiber C2, we obtain a pair (E , /f)
consisting of a vector bundle with a connection with structure group SU(2), and an
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action of the quaternion group Qg on the bundle, preserving the connection. The
quotient V4 = Qg/(£1) acts on the base, while the kernel -1 C Qg acts on the fibers
of the bundle.

Let I;, I, and I3 be the nontrivial elements of V4, and let IAm be lifts of these in Qg
satisfying I 1 I. )= I 3. Let s+ and s_ be the two vertices of the theta graph, and let 51
be their unique preimages in S3. Let ym for m = 1,2, 3 be the arcs of 8 where the
isotropy group is generated by I, and let ¥, be chosen lifts of these, as paths from
S_ to 5. The lifts can be chosen so that their tangent vectors at S_ are a right-handed
triad.

Let (E , /’1\) be an equivariant bundle on S3, as above. Let E + and E_ be the fibers
of E over 54 . Parallel transport along ¥, gives an isomorphism

Lm(/f): E_—> E.,..

Since 9, is fixed by I, the isomorphism (/T) commutes with the action of I,
on E_ and E+. Let
t: E_—>C? 14 Ef—>C?

be Qg-—equivariant isomorphisms of determinant 1. Each of these is unique up to +1.
The isomorphism
T4 OLm(//l\)O‘(:II Cc?-cC?

is then an element of SU(2) that commutes with I,n, and which has an ambiguity
of 1 resulting from the ambiguity in 7. The commutant C (IAm) in SU(2) is a copy
of the circle group, and can be identified with the standard circle S! = R/Z by a
unique isomorphism

L:C(In) —>R/Z

sending I, m to %. To remove the ambiguity of +1, we take the square (written as 2L
in additive notation), and we define

hn(A) = 2L (v4 0 t(A) 0 1),
to obtain a well-defined map
) hm: Bg —>R/Z, m=1,2,3.

The maps /1, hy and i3 depend on some universal choices (essentially the labeling
of some standard arcs in S3 ), but we regard these choices as having been made, once
and for all.
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The maps /,, constructed here for the orbifold (S3, @) can be defined in the same way
for connected sum with (S3, ). That is, if we take an arbitrary bifold Y and consider
the space of marked connections Bﬁ()? ) defined as in (8), then we have maps

(10) hm: B¥(Y) > R/Z, m=1,2,3,

defined in just the same way, using 6.

3.2 The local system

Given a topological space B and a continuous map
h: B—R/Z.

we can construct a local system I' of rank-1 R-modules I" on B, where R is the
ring F[Z] = F[T, T~!] of finite Laurent series. The local system we want is pulled
back from the universal example on R/Z. We do this concretely by regarding R as
contained in the larger ring F[R], and for each b € B we set

r, = T"®R,
where E(b) is any lift of 2(b) to R. If ¢ is a path from a to b, then
F;: I; — Fb

is multiplication by Tf’(b)_g(“) , where 7 is any continuous lift of 4 along the path.
Given a collection of maps 41, ...,h, from B to R/Z we can similarly construct a
local system of rank-1 R-modules, where R is now the ring of finite Laurent series
in n variables 717, ..., Ty.

We apply this now to these three circle-valued maps %y, i, and /A3, defined above
at (10), to obtain a local system I" on B* ()V’ ) for any bifold Y. This is a local system
of free R—modules of rank 1, where R = F[Z3] is the ring of finite Laurent series in
variables 77, T5, T3. (Local systems of this sort were constructed in [11; 12], using
maps of a similar sort, but see the remarks at the end of this section for a brief discussion.)

We can now construct the instanton homology groups J tlt()V’; I') with coefficients
in the local system I'. That is, after equipping Y with an orbifold Riemannian
metric and perturbing the Chern—Simons functional on Bﬁ(f’) to achieve Morse—Smale
transversality, we define an R-module

(11) cHy:1) =P ;.
B
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where the sum is over critical points (a finite set), and define a boundary map

(12) or= ) It

(@.8,0)
where the sum is over pairs of critical points (o, 8) and gradient trajectories ¢ of
index 1.

Lemma 3.1 The square dr o dr is zero.

Proof Recall from [14] that the usual proof that 0% = 0 needs extra care for the
instanton homologies such as J # . The reason is that the proof involves analyzing moduli
spaces of flow-lines of index 2, and there is a codimension-2 bubbling phenomenon.

So consider a moduli space M;(«, B) of flow-lines of index 2, between critical points
o and B. Let M, (a,B) be the 1-dimensional quotient obtained by dividing by
translations. Each connected component of M (e, 8) belongs to a particular homotopy
class of paths ¢ from « to 8, to which corresponds a map in the local system,

I}Z Ib —> IB.
If we pick one representative [A] for each end of M (e, B), we therefore have

(13) > Tea=0

ends
because the ends come in pairs.

The ends of M, (a, B) are of two sorts. First, there are ends corresponding as usual to
broken trajectories,

Mi(a.y) x M{(y. B).

The contribution of these ends to the above sum is the matrix entry for 8% from o to f.
The remaining ends belong to antiselfdual bifold connections on the cylinder where (as
we approach the end) there is bubbling, in which an instanton of charge % bubbles off
at a point of the cylinder corresponding to a vertex of the web K U 6.

As explained in [14, Section 3.3], the bubble-ends come in groups of four. This is the
reason that 9> = 0 when the coefficients are F. With local coefficients, however, the
four ends in each group can each contribute differently to the sum (13), because they
belong to different homotopy classes of paths ¢. In more detail, the weak limit of a
sequence of connections where a bubble occurs with Yang—Mills action % belongs
to a zero-dimensional moduli space on the cylinder, and this can therefore only be a
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moduli space My(«, o) of constant trajectories. So these extra ends occur only when
o = B. The contribution of these ends therefore has the form of a sum over vertices v
of K U@ of the form

> G + T + Tews) + Teway)-
v

where each ¢(v,7) is a path from « to «. From the construction of I it is clear that
I (v,iy = 1 unless v is one of the two vertices of 6. Furthermore, when v is one of the
vertices of 0, the term I (, ;) is a universal quantity, independent of K and «, which
depends only the curvature of the instanton at the bubble point. Therefore there is a
universal relation of the form

drodr = W1,

where W € R is independent of K. Finally, if we consider the special case that K is
empty, we see that W must be zero. Indeed, in this special case, dr is zero, because
the complex has only one generator and is Z /2 graded. a

The lemma tells us that we have a complex (or more properly a differential module).
The finitely generated R—module J ﬁ()v’; I') is defined as its homology. We summarize
the definition:

Definition 3.2 For a closed oriented bifold Y, we define B (Iv’) as the space of marked
SO(3) connections on the marked bifold (IV’ #(S3,0); ug). Here the marking region
of j1g is an open ball B3 containing the graph 6§ C S3, with the trivial bundle. We
write R for the ring F[Z3] of finite Laurent series in variables T, T», T3, and we
define I' as the local system of R—modules on B#()v’) constructed from the three
circle-valued functions (10). We define J ﬁ()V/; I') as the Floer homology with these
local coefficients on Bﬁ()v’). a

As usual, given a web K C Y, where Y is a 3—manifold with framed basepoint, we
write J#(Y, K;T') for the case that Y = (Y,K). If Y = S3 and the framed basepoint
is at infinity, we simply write J H(K;T).

We can give a concrete interpretation of the maps I% for a path { from « to 8 in BHY),
which will be helpful later. First, our definition means that

IN TN TN
(14) =10 T Te,

where Al is the change in a continuous lift i of I along the path ¢. Since /1y, is
defined in terms of the holonomy of an S! connection, the change in /,, along a path
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can be expressed as the integral of the curvature of an S! bundle with connection. Let
ym for m = 1,2, 3 again be the three arcs of 6 and 7, their chosen lifts to S3. The
path ¢ gives rise to an SO(3) connection on R x S3, which we may restrict to R X 7, ,
where its structure group reduces to C(/,,); (the identity component of the commutant
of I,, in SO(3)). The latter is a circle group, so there are two possible isomorphisms

C(In); — S' ccC.

The marking gives us a preferred lift I, m in SU(2) and picks out a preferred isomorphism
of C(I,;); with S!. Via this isomorphism, our bundle on R x ¥,, becomes an S'!
bundle with connection K. The change in the holonomy, Al m » 18 then the Chern—Weil
integral,

=~ i
(15) Ahpy = o R Fg.
Remarks As mentioned above, instanton Floer homology with local coefficients was
applied previously to knots and links in the authors’ earlier papers [11; 12]. The
local systems used there (also denoted by the generic letter I') were defined in a
similar manner, but the circle-valued functions / that were used were obtained from
holonomies along the components of the knot or link K itself. By contrast, the circle-
valued functions in the present paper are defined using the holonomy along the edges
of the auxiliary graph 6.

3.3 Functoriality and basic properties

Maps from cobordisms The functorial properties of J#(¥, K) carry over to the case
of local coefficients. As in [14, Definition 3.10], we define a category C # whose objects
are pairs (Y, K) where K is a web in a closed, oriented 3—manifold Y equipped with
a framed basepoint yg € Y \ K. The morphisms are isomorphism classes of triples
(X,X,y), where X is a 4—dimensional cobordism, ¥ is an embedded foam with
“dots”, and y is a framed arc joining the basepoints. Then we have a functor

(16) J ﬁ(—; I): ct > (finitely generated R—modules),

where R =F[Z3]. To the empty web in R3 C S3, for example, this functor assigns the
free rank-1 module R, and to a closed foam in R* it assigns a module map R — R,
ie an element of R itself.

The changes that are necessary, to adapt the definition from the case of constant
coefficients to the case of the local system I', are modeled on the definitions in
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[11, Section 5.2], and we outline them here. Given a cobordism (X, X, y) from
(Yo, Ko, yo) to (Y1, K1, y1), we first use the framing along y to identify a neighbor-
hood of y with [0, 1]x B3, and we use this to include a copy of the product foam [0, 1]x6
in X. Writing X* for the union of ¥ with the product foam, we have a cobordism of
pairs (X, %) from (Yy, KqU®) to (Y7, K;U@). Let « and B be critical points for the
perturbed Chern—Simons functional in B#(Y;) and B#(Y7), respectively (Definition 3.2).
We attach cylindrical ends to the cobordism, and consider a corresponding moduli
space of marked antiselfdual connections M r‘(X , 2, B). These are the antiselfdual
connections on the cylindrical-end orbifold obtained from (X, >#), with the marking
region [0, 1] X jtg. As usual, we can regard the moduli space as contained in a larger
Banach manifold of connections, B*(X, =; «, B).

To define the map (16) at the chain level, what we need formally is a homomorphism
of R—modules
A z. Fa —> Fﬂ

for each pair of critical points (, 8) and each connected component z of B#(X, Z; ., B).
The chain-level map can then be defined as

a7 jh= @@(; A[n])’

where 1 runs through points in zero-dimensional moduli spaces in B (X, % a, B).

For this to be a chain map (following the usual argument involving broken trajectories
as in [11]), what is required is a composition law, as follows. Given a path &, in B*(Y;)
from « to o, and given z as above, we form a composite z’ € 7o (B*(X, =; ¢/, B)) by
concatenating [{o] and z. What we require is then

(13) Ay = AZOF;'O,
with a corresponding composition law also for the Y; end.

Finally, we can complete the definition of J#(—;T") by giving the appropriate formula
for A,. In the cylindrical-end orbifold obtained from (X, £*), we have a product
region contalmng 2—dimensional facets R x y,, for m = 1,2, 3, as in (15). Given a
connection A representing the connected component z in B*(X, ;a, B), we obtain
an S'! bundle with connection, K, over R x Ym > and just as in (15) we can evaluate a
Chern—Weil integral,

(19) &m = 57— Fk.
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and we define
_ 78178278
(20) AZ_T11T22T33.

The composition law (18) holds because the Chern—Weil integral is additive for broken
trajectories. Essentially the same composition law, but for composite cobordisms, is
what is used also to prove the functorial properties of J A(=:D).

There is a natural extension of this construction which is applied (for example) in
the proof of the “exact triangles”, Proposition 3.4 below. Suppose that the cylindrical
end bifold corresponding to (X, %) is equipped with a family of Riemannian metrics
parametrized by a compact, smooth manifold G with boundary. We suppose that all
the metrics are the same outside a compact region. One then has parametrized moduli
spaces

ME(X,Si0,8) > G.

By taking a sum over all points in zero-dimensional moduli spaces, one obtains a map
of R-modules, just as in (16). Thus, we obtain a map at the chain level,

mg: CH(Yy, Ko:T) = CH(Yy, Ky; 1),

me :@?(; A[,,]).

(So the map j11 above now arises as the special case that G is a point.) When G has

by

positive dimension, the map m g is a chain map if G has no boundary. Since the proof
involves counting boundary points of 1-dimensional moduli spaces, the general case,
when the boundary of G is nonempty, has an extra term. The general formula is

21D domg +mgod=myg.

We have followed here the notation and exposition of [10, Section 3.9]. The adaptation
of the proof of this formula to the case of local coefficients follows again from the
additivity of the integral (19) along composite cobordisms.

Remark It is useful to note that the verification here of the functorial properties of J #
with local coefficients does not run into any complications of same sort that arise in the
proof that 9> = 0 (Lemma 3.1). In that earlier lemma, the proof involved moduli spaces
of index 2, an index which was large enough to allow bubbling to occur at the vertices
of 6. In the definition of the chain maps (17), however, the moduli spaces that are used
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are zero-dimensional, and the verification that the j* commutes with 9 involves only
1—-dimensional moduli spaces, as does the argument to prove the functorial property
for composite cobordisms.

Applications of excision We have an excision property for J B(—: D), just as we
do for J* with constant coefficients. The prototype that is most relevant here is
[14, Theorem 4.2], which concerns the following situation. Let Y be abifold containing
two orbifold 2—spheres S; and S, each of which has three orbifold points. We allow
Y to have more than one component, and we consider the situation that S; and S,
belong to distinct components. By cutting along S; and S, and regluing, we obtain a
new bifold Y'. The theorem from [14] gives an isomorphism (with coefficients IF')

(22) J(Y, )= J(Y' 1)

for appropriate marking data p and p’. Here, for a bifold with more than one component,
J is defined as the homology of the tensor product of the complexes corresponding to
the components. (So J (}v’, W) is also a tensor product, by the Kiinneth theorem, if the
coefficients are F = 7Z/2.)

The main application of this excision isomorphism in the constant-coefficient case is
the multiplicative property for connected sums of bifolds (or split unions of webs),
stated above as (6). When written for the case of a split union of webs K = K; U K
(meaning that there is an embedded 2—sphere S which separates K; from K3 ), the
multiplicative property becomes

(23) JHK) = JHK)) ® JHKS)
when the coefficients are F.

In order to understand the adaptation for the case of a local coefficient system, we
first recall how (23) is deduced from the excision isomorphism (22). We let }v’l be the
bifold (S3, ), and Y, be the bifold (S, K U6). Let S; be a 2—sphere in S which
is the boundary of a standard neighborhood of one of the two vertices of 6, meeting 6
in three points. We apply the excision isomorphism with Y =Y,UY,, taking S; C Y,
as above, and taking S, to be the internal connect sum of S; with a 2—sphere which
separates K; from K. In the latter case, we enlarge the marking region U, so that
it includes a neighborhood of S, , without altering the first homology of the marking
region. (Such an enlargement of the marking region does not alter B()v’z; Uy), so
the Floer homology is also unchanged. See [14].) After cutting and gluing, the new
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bifold Y is the disjoint union of (S3, K; U6) and (S*, K, U ). Interpreting (22) in
this case, we obtain

TH@) ® JHK) = JH(K1) ® JHK).
which is the desired result (23), because J#(@) is F.

We now have the following counterpart to (23) for the case of the local system I'. As in
[14, Corollary 4.4], we extend the statement by including a description of the naturality
of the isomorphism.

Proposition 3.3 Suppose K = K; U K is a split web in R®, meaning that there is
an embedded 2—sphere S which separates K| from K,. Suppose that at least one of
the J#(K;:T) is a free R—module. Then there is an isomorphism,

JHK:T) = JHK:T) ®g JH(Ky: T).

Moreover, if ¥ C [0, 1] x S? is a split cobordism, meaning that ¥ = % U £, and ¥
is disjoint from [0, 1] x S, then

JHE D) =74 D) ®@r JH(=,: T).

In general, if neither is free, then J*(K:;T') is related to J*(K:T') and J*(K,:;T) by
a Kiinneth theorem (a spectral sequence). a

Proof We form the bifold ¥ = ¥; U Y, the orbifold 2—spheres S; C Y;, and the
new bifold Y’ as described above in the outline of the result from [14]. Each of
IV/I and )v’z contains a theta graph in its singular set, giving rise to local systems I
on the configuration spaces of marked connections B(Iv’i, Wi). On the configuration
space B (f, ), which we define as the product space, there is a product local system

=1 ®rI5.
The local system I' can be seen as arising from the map
B()V’ ) — T3

given by the sum of the maps on the two factors 5 ()v’i, ;). Having a local system I’
on the product configuration space B()V’, ), we can again form a Morse complex
with local coefficients for the perturbed Chern—Simons functional: it is again the
tensor product of the two complexes that compute B(Iv’l , ;1) and B(Iv’z, na2;:132).
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We define J (IV’, w; I') as the homology of this product complex. We make the same
constructions for Y’. The isomorphism in the proposition is equivalent to showing

(24) JY, D)= JY' u: T
(just as (23) follows from (22)).

Recall from [3; 9; 7] that the proof of such an excision isomorphism is achieved
by constructing (bifold) cobordisms X and X, from Y to Y’ and back, in order to
construct maps both ways, say J (AV/ ) and J ()? ’). One then proves that the composite of
the maps J (A} ) and J (AV’ '), in either order, is the identity, by a surgery argument. The
only essential change now is to understand that X and X' give rise to maps of the Floer
homology groups with local coefficients. As in the discussion of functoriality above, to
use the cobordism X to construct a chain map, we must define a homomorphism of
R-modules
Ay Ty — Fé

for every connected component z of the space B()? , ., a, B) of marked connections
on X.

To understand how to define z, we need to recall the geometry of X , which follows
the model in [10] for example. Let U be the 2—manifold with corners in Figure 1,
viewed as a cobordism between manifolds with boundary, from 7 x d/ to 91 x I. Let
Z be the 4—dimensional bifold S x U, where S is the three-pointed orbifold 2—sphere.
The singular set of S x U consists of three copies of U, say {pi, pa2, p3} x U. The

Figure 1: The saddle U, viewed as a surface with corners: a cobordism from
I x0dIl todl x1I.
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Figure 2: The foam ® formed from three copies of U, as a cobordism from
6; UBb, to 9{ U9§

nontrivial part of the cobordism X is exactly a copy of S x U, and X itself is the
union of S x U with four product cobordisms.

The singular set of X contains a foam ® which is a cobordism from two theta graphs,
6, U, C Y, to a different pair of theta graphs, 0] U0; C Y'. This ® is the union of
{P1, p2, p3} x U with four copies of [0, 1] x €, where € isa “Y” graph. See Figure 2,
which depicts @ equivalently as obtained from {p1, p,, p3}xU by identifying {p;} x/
with {p;} x [ for each of four arcs /. We write ®;, ®, and ®3 for the three copies
of U in .

The situation is now very much the same as in the case of the functoriality discussion
above. Instead of a trivial cobordism [0, 1] x 6 from 6 to itself, we have a nontrivial
cobordism ® from 6; U 6, to 9{ U 9;. But the construction of A, is essentially
unchanged. Corresponding to z, we have an S ! bundle with connection, K, over ®,
and we define three real numbers

(25) ’

=L | Fg.
8m 7 o, K

just as in the previous situation (19). Finally, we define A, by the corresponding
formula,
A, =TE'TTS.

Once again, Stokes’ theorem shows that this is a well-defined homomorphism from I},

/
to Fﬂ.
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As in [3; 9; 7], the proof is completed by a neck-stretching argument. The composite
cobordisms X4 = X’Uf,, X’ and X_ = )?/Uf,)? each contain a copy of R+ of S1xS.
Here again S is the bifold 2—sphere with three bifold points. The marking regions
contain R4 . The argument that each composite is the identity is the same. The key
feature of the of proof is that S xS, with the marking region being the whole manifold,
has a unique marked flat bifold connection p, which is in addition irreducible. By the
chain-level composition law arising from (21), the composite chain map used to define
J(X")oJ(X) is chain homotopic to the one induced by X . Doing the neck stretching
along the copy of R4 breaks X into two disjoint bifolds X 1 and X 2, each with three
cylindrical ends. The three ends of X; are modeled cylinders whose cross-sections
are two oppositely oriented copies of Y; and a copy of R . Using moduli spaces on
these manifolds which are asymptotic to p on R4 and integrating over corresponding
surfaces in the X;, we can define chain maps that give rise to a map

J(Xi): J(Yi, ui; T) = J(Yi, wis T).

Another application of (21) and additivity of the corresponding curvature integrals
used in the defining twisted coefficient map tells us that the chain maps used to define
J (AV’ "YolJ (X ) and J (1\} (LY ») are chain homotopic. If we take a standard Z = D?>x .S
with cylindrical end and glue together with either of the X;, we obtain a manifold
diffeomorphic to the product R x Y;. Note that on Z, with the marking set being all
of the manifold, there is again a unique marked bifold flat connection p. This p is
irreducible and extends p. Since p is flat, the curvature integrals needed to compute
local coefficient maps are zero. We conclude, from a final application of (21) and
additivity of the curvature integrals used in the definition of the twisted coefficient
map, that (up to chain homotopy) there is no difference in using X; as we have or the
product I x Y; in defining twisted coefficient maps. That is,

(26) J(X)oJ(X)=J(X)=J(X;1UX))=JIxY,LLIxY,)=J(IxY),

which is the identity on J(Iv’, w; 7). a
Exact triangles The other general properties that we wish to restate in the local-
coefficient case are the exact triangles from [13]. The setup here is that we have six

webs (in R3 orin a general 3—-manifold) which are the same outside a ball and which
differ inside the ball as shown in Figure 3.

There are standard elementary foam-cobordisms from K;y; and L;4; to K; and L;.
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K2 Kl KO

XA

Figure 3: Six webs in Y differing inside a ball

Proposition 3.4 Given K; and L; as in Figure 3, the sequence of R—modules ob-
tained by applying the functor J#(—;T) to the 3—periodic sequence

(27) "'—>L2—>L1—>L0—>L2—>"-
is exact. So too is the sequence obtained from
(28) ---—>L2—>K1—>K0—)L2—)---,

as well as the two other sequences obtained by cyclically permuting the indices (though
there is no essential difference).

Proof The proof for the sequence (27) is given in [13] for constant coefficients. Let
us write C; for the chain group corresponding to L; with local coefficients, so that
JY(L;:T) is Hx(C;). The elementary cobordisms give chain maps of R—-modules

Fii C,' — C,'_l

for all 7, by the formula (16). To prove exactness, following the same argument as
before, one must first show that F; o F;_; is chain homotopic to zero:

29) FioFijy1=0d0J;+ Ji—100.

Having constructed such a J;: C; — C;—, (the “first chain homotopy”), one must
verify a second chain-homotopy formula: the existence of K;: C; — C;_3 such that
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(omitting the indices)
(30) FJ+JF+ DK+ KD: C; — Cij_3

is an isomorphism. (See [13, Section 6].) For the definition of J; and K;, one
again examines zero-dimensional moduli spaces; but now these moduli spaces lie over
families of metrics, Q and P, of dimension 1 and 2, respectively. Thus, given a pair of
critical points corresponding to generators « and S for the chain groups C; and C;_,
(respectively C;_3) we have zero-dimensional moduli spaces

MQ(“?:B)_)Q9 MP(a’IB)_)P»

respectively. (So the fiber dimensions over Q and P are —1 and —2, respectively.)
When local coefficients are used, the definition of J; and K; is no longer given by
just counting the points in these moduli spaces, but instead taking the sum of their
contributions in the same way as (16). Thus,

1= @B(L )

with a formula of the same shape for K. The chain-homotopy formulas (29) and (30)
arise eventually from application of the principle (21) to compactifications of the
families of metrics P and Q. We have already observed that (21) extends without
change to the local coefficient case, so this completes the outline of the proof for the
exactness of (27).

For the second sequence (28), a shortcut was taken in [13]: the exactness of (28)
was deduced from the exactness of (27), using additional relations satisfied by J #,
Nevertheless, as indicated in [13], one can ignore the shortcut and give a direct proof
for (28), along just the same lines as (27). This direct proof adapts without essential
change to the case of local coefficients. O

4 The cubic relation for «

4.1 Statement of the result

To each edge e of a web K C Y, there is an operator

ue: JHY, K;T) — JHY, K;T).
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In the language of foams with dots, this is the operator corresponding to a cylindrical
foam [0, 1] x K with a dot on the face [0, 1] x e. With constant coefficients [, the
operator satisfies ug = 0, as shown in [14]. But the result with the local system of
coefficients I' is different.

Proposition 4.1 The operator u, satisfies

ug + Pu, =0,
where P € R is the element (3).
This result is of a very similar form as the N = 3 case of a general result for SU(N)
gauge theory, treated in [16]. Our argument follows [16] quite closely, though in the

end the argument here is considerably simpler. The proof has some setup required,
which we present first.

4.2 Characteristic classes of the basepoint bundles

Let X be a connected, 4—dimensional bifold cobordism from Y' to Y. Let v be
marking data on X (possibly empty) and let B* (AV’ ; V) denote the space of marked
bifold connections which are fully irreducible (ie have trivial automorphism group).
Depending on the bundle and the marking, this may be all of B(X’ ;). Write X° for
the nonsingular part of the orbifold. Then there is a universal SO(3) bundle [4; 2]

E — X° x B*(X:v).

If we pick a basepoint x € X°, then we obtain a bundle E, — B* (f ;v) and charac-
teristic classes
Wi = wi (Ex) € H' (B*(X;v); F).

If s belongs to a 2—dimensional face of the singular set of X, then we can pass to a
smooth Z /2 cover of a chart around s and obtain a bundle

Ey — B*(X;v)

carrying an involution on the fibers. The 41 and —1 eigenspaces of the involution are
respectively a line bundle

31) ]Ls—>B*(/\};v)
and a rank-2 bundle

(32) W, — B*(X:v).
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Although phrased differently, the real line bundle Ly is the same one that is used to
define the operators u in [14], and we write

ug = wy(Ly) € H' (B*(X;v)).

Lemma 4.2 We have the relation

3 2
uy + Wi xuy +wa xus +ws3 x =0.

Remark Notwithstanding the notation in the lemma, the class wj x is zero, because
our bundles have structure group SO(3) rather than O(3).

Proof of the lemma Although our exposition asked that x be in the smooth part, we
may use the Z /2 cover of a coordinate chart at s in the singular set of X, and we can
therefore compute the classes w; as

Wi x = wi(Es),

where E s 1s the bundle which has ILg as a subbundle. The relation in the lemma is a
universal relation for a rank-3 bundle containing a line subbundle: it expresses the fact
that the complementary rank-2 bundle has w3 = 0. a

4.3 Properties of the point-class operators

Next we parlay the relation from Lemma 4.2 into a relation among operators on the
instanton Floer homology groups. We recall how certain cohomology classes in the
space of connections give rise to operators, following constructions that go back to [5].

To put ourselves in the framework for J i (Iv’; I'), we take X tobe the product cobordism
from Y # (S3,0) to itself, and we write Xt for the infinite cylinder. We take the
framed arc y in X joining the basepoints to be [0, 1] X yg, and the strong marking
data v also to be a product [0, 1]x 1tg. We suppose that a holonomy perturbation of the
Chern—Simons functional has been chosen so that the critical points are nondegenerate
and the moduli spaces M («, B) of marked solutions on Xt are cut out transversely.

Now let Z C X bea compact 4—dimensional subbifold with boundary. By its inter-
section with v, this bifold inherits marking data, and we impose on Z the condition
that the restriction map

(33) HY(U,;F)—> H (U, N Z:F)
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is injective. (This condition is easily fulfilled: we may arrange that Z contains tubular
neighborhoods of loops in U, that generate H;(U,;F).) This condition is sufficient
to ensure that if (£, A) is a solution in any of the moduli spaces M («, ), then
the restriction of (E, A) to Z has trivial automorphism group. We therefore have
restriction maps

(34) M(a,B)— B*(Z;vN Z).

Let ve HY(B*(Z;v N Z);F) be a cohomology class represented as the dual of a
codimension-d subvariety V, which we take to a be subset stratified by Banach sub-
manifolds with a smooth open stratum of codimension ¢ and other strata of codimension
d + 2 or more. We suppose these are chosen so that all strata are transverse to the
maps (34).

The intersections My («, B) NV are compact by Uhlenbeck’s theorem provided that
either

(1) d <7 and Z does not meet the singular set of the orbifold; or

(2) d <3 and Z meets the singular set of X only in the strata with Z /2 stabilizer.

If d <6 or d <2, respectively, in the above cases, then we obtain a chain map
by summing over the points in these compact intersections. (The proof of the chain
property involves moduli spaces of dimension d + 1, which is the reason for the
stronger restriction on d.) The chain map on C ﬁ()V’; I') is defined by

> 2 I
a,B teMy(a,f)NV

and it gives rise to an operator
v: JHY;T) > JRY; D).
A priori, the operator depends on all the choices made.

We apply this construction to the cohomology class us described above, for s a
basepoint in a face [0, 1] x e of the singular set. To do so, we choose Z containing the
point s, not meeting the seams of the foam, and satisfying the constraint that (33) is
injective. We can regard ug as a class in H!(B*(Z;v N Z);F), where it is the first
Stiefel-Whitney class of the line bundle ;. We define V' as the zero-set of a section
of Ly which is transverse to zero and transverse also to the inclusions of (33) in the
zero set. The construction of such a transverse section requires smooth partitions of
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unity on B*(Z;v N Z), which we can always ensure by using L2 Sobolev spaces (so
that our Banach manifolds are Hilbert manifolds). We are in case (2) above, so we
obtain an operator

Ue: Jﬁ()v’; r— Jﬁ(f/; ).

We proceed similarly for the classes w; x . In this case, since x is not on the foam, we
can choose Z to be disjoint from the foam (so that we are in case (1) above). The
class w; x can be regarded as the Stiefel-Whitney classes of the basepoint bundle E
on B*(Z;Z Nv). We can define V as the subset where i sections of E, fail to be
independent, having chosen these sections to achieve transversality to the stratification
by rank. In this way, the classes w; x give rise to operators

wix: JHY:T) > JHY:T)
fori =1,2,3.

These operators are independent of choices made (except for the choice of edge e
in the case of u,). In particular, there is no dependence on the choice of Z or the
representatives V/, by standard chain-homotopy arguments.

Lemma 4.3 The above operators satisfy the relation

35) u2+w1,xug+w2,xue+w3,x =0.

Proof Let sy, 5o and s3 be distinct basepoints on [0, 1] x ¢, let Z;, Z, and Z;
be three disjoint subbifolds of X containing these, and let U; be a subvariety dual

to ug; in B*(Zj;v N Zj). A standard gluing argument [8], used to treat composite

3

cobordisms in general, shows that the composite operator u;

can be computed from
the chain map defined by the moduli spaces

M3(oc,,3)ﬂU1 N U2 ﬂU3.

Using further disjoint subsets Z4, Z5 and Z¢ and three distinct basepoints in X,
we construct dual representatives for the classes w;, wy and ws. Let Z be a larger
subset of X that contains all the Z; but still meets the singular set of X only in the
codimension-2 faces. The operator on the left-hand side of (35) is then computed from
the intersection

Ms(a,B)NV,

where V' has codimension 3 and is dual to the zero class in H>(B*(Z;v);F). We can
therefore construct a codimension-2 stratified subvariety W with dW = V. Let H be
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the operator defined on chains by the intersections M (c, 8) N W. At the chain level,
we then obtain a chain homotopy formula of the shape

ug + wlyxug +wy xte + w3 x =0H + HO

by counting the ends of the 1-dimensional moduli spaces M3(a, 8) N W. Because
no moduli spaces of dimension 4 or more are involved, there is no bubbling, and the
ends of the 1-dimensional moduli space are all of the form M3 («, 8) NV (giving the
left-hand side) or arise from simple broken trajectories (giving the right-hand side). O

4.4 Calculating the Stiefel-Whitney operators

To complete the proof of Proposition 4.1 from Lemma 4.3, we need to compute the
operators wj x .

Proposition 4.4 On J ﬁ()v’; I'), the operators w;  and ws_ are both zero, while
wy x is multiplication by the element P € R.

Proof We first observe that it is sufficient to prove this in the case that Y =S3. From
the definition of J ”, we recall that

JHS3T) = J((S3,0); s T)

and that this is a copy of R. To understand why the special case is sufficient, consider
the disjoint union Y = Y1 U Y2, where

Y =Y #(S%,0), Y,=5#(5°,0),

with marking data g implied in both cases. We have local systems I and I from
the two copies of 6, and we form the local system ' =T ® g [; on B()v’). Because
the second is a free R—module, the instanton homology is a tensor product,

JY:T)=JX1:T)) @ J(Y; ).

We can take basepoints x; and x, in the nonsingular parts of either component. By
naturality of the isomorphism, the resulting operators on the tensor product are w; x, ®1
and 1 ® w; x,. By an application of excision and its naturality, these two operators
are equal. Because J (Iv’z; I3) = R, the operator w; y, is multiplication by an element
of R. The same therefore holds for w; x, .

So let us consider the operators

wix: J((S*,0);ng:T) — J((S?,0); ug: 1),
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or in the shorthand notation of webs, the operators
Wi x: Jﬁ(Q; r— J**(@; ).

By Proposition 8.11 of [14], this instanton homology group is Z /2 graded. Being a
free rank-1 R-module, it is nonzero in only one of the two gradings. The operators
wq,x and w3 , have odd degree and are therefore zero.

It remains to calculate w; x on J #(;T). In this Morse homology, there is a unique
nondegenerate critical point « (without the need for holonomy perturbation), and
to calculate wy x we need to describe the 2—dimensional moduli space M («, o)
of marked antiselfdual orbifold connections on the cylinder. As in Section 3.1, the
three-dimensional orbifold can be described as the quotient of a round sphere S3
by V4 = Qg/(£1), and marked connections are Qg—equivariant SU(2) connections
on S3. A conformal compactification of the cylinder R x S 3/Vy is the orbifold
4—sphere S4 /V*. The fixed-point set of V4 on S* isacircle S' C S*. This circle
can be identified with the union of the lines R x 54+ and R x5_ in the cylinder, together
with two points at infinity.

1
4

and its pullback to the round S* therefore has Yang—Mills action 1. In this way, we

The two-dimensional moduli space has Yang—Mills action 3 on the orbifold cylinder,

have identified M, («, ) as the space of Qg—equivariant 1—instantons in an SU(2)
bundle on S*. The 1-instanton moduli space on the round 4—sphere is a 5—ball, and the
subspace of instantons that are invariant under the action of V4 is an open 2-ball inside
the 5-ball (the one that spans the circle Stcs 4). The Uhlenbeck compactification
of this V,—invariant moduli space is the closed 2—disk, obtained by attaching St

Each V,—invariant 1—instanton becomes Qg—equivariant by lifting the action to the
total space of the SU(2) bundle. However, the lift is not unique. Given one lift, we
can obtain others by multiplying by any character Qg — {£1}. Since Qg has four
characters, the moduli space M» (o, o) consists of four open disks,

3
My(a,a) = U Diz,
i=0

each of which has S as its Uhlenbeck boundary.

Let M be the “small” compactification of the equivariant moduli space on S4, obtained
by collapsing S to a point. This is a bouquet of four 2—spheres,
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If x is a basepoint in S4 / V4 which does not lie on S1, then the basepoint SO(3)
bundle E on the moduli space extends as a bundle on M.

Lemma 4.5 The Stiefel-Whitney class of the basepoint bundle is nonzero on each
sphere in the bouquet:

wy(Ex)[SP=1, i=0,1,2,3.

We postpone the proof of this lemma until the end of this subsection, presenting it after
the proof of Lemma 4.6 below.

To continue the proof of Proposition 4.4 we can choose a subset Z C S4 / V4 disjoint
from the singular set of the orbifold, and we can choose therein a dual representative W,
for w,(Ey) such that the M N W is disjoint from the vertex of the bouquet and meets
each of the spheres Sl.2 transversely. The lemma tells us that Siz N W, is an odd number
of points. Returning to the viewpoint of the cylinder R x (§ 3/V,), we learn that the
transverse intersection M> (o, @) N W, consists of an odd number of points in each
of the disks Dl.z fori =0,1,2,3. Soif ; is a single point of D; for each i, then we
have that w; , is multiplication by the element

F;'O + Ffl + Fé'z + F§3 € HOII](Fa, Fa) =R.

To complete the proof of Proposition 4.4, we must compute each I, and show that
the above sum is P. The following lemma therefore finishes the argument. a

Lemma 4.6 Let {; € M,(«,«) be a point of Di2 fori =0,1,2,3. Then, with suitable
conventions and numbering of the components, we have

Iy = T1 T2 T3,

Ly, =TT, 'T; ",

Ly, =T, 'TLT; !,

Iy, =TT, Ts.
Proof of Lemma 4.6 Consider the case of {y € Dg . We take this point to be the center
of the disk, which is the standard 1-instanton on S* with SO(5) symmetry. Each of
the disks corresponds to one choice of how to lift the action of V4 on the standard

SO(3) 1-instanton to an action of Qg on the SU(2) bundle. We take D(z) to be the one
obtained by identifying the SU(2) bundle of the centered and scaled 1—instanton with
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the spin bundle S~ on S+ and making Qg C Spin(5) act on the spin bundle in the
standard way. We use the formulas (14) and (15) to compute I%, .

After conformally compactifying R x S3 to get S*, the space R x ¥, becomes one
hemisphere in the 2—sphere §,§, C §* which is the fixed point set of I, € V4. The
SO(3) instanton bundle on S* is the rank-3 bundle A~ C AZ. Along §,f1 this bundle
decomposes under the action of I, as

where the circle bundle K, — §,%l can be identified with the tangent bundle, as a
bundle with connection. Because we are integrating over half of the sphere, we see
from (15) that

Ah(8o) = 3 deg Ky = e(Sy) = 1.

(There is some sign ambiguity remaining in our construction of I", but the final sign
here fixes our conventions.) From (14), we therefore obtain

Ty, = 1 Ty T5.

The other three disks Dl.2 are obtained by changing the lift of the V4 action to Qg by a
nontrivial character of Qg. The each nontrivial character changes two of the three lifts
fl, fz and f3 by —1. Changing Im by —1 changes the identification C(I;); — S
by z +— —z, and so changes ﬁm to —Zm. Thus, I%, differs from I%, by changing the
sign of the exponent of T}, for two of the three values of 7. This proves the lemma. O

Proof of Lemma 4.5 We return to the postponed proof of Lemma 4.5. The sphere
Sl.2 is obtained from a the closed disk 2_912 by collapsing the boundary to a point. We
need to describe both the bundle E, — Z_)iz and the trivialization that is used when
collapsing the boundary.

Let X be a lift of x to the round sphere S*. There is a unique 2—disk D? c §* which
has boundary S! and contains £. We may take it that X is the center of the disk.
We identify the centered 1-instanton bundle with A~ as in the previous lemma. The
disk Dl.z in the moduli space M is obtained by applying conformal transformations,
and we can use these to identify Di2 with D? in such a way that the basepoint bundle

Ey — Dl-z
becomes the bundle
L* (A_) | 52 s
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where ¢ is the involution on the disk that fixes the center x. The trivialization of A~
that we must use on the boundary of D? is the V4—invariant trivialization of A~ on the
circle S'. This is the same trivialization as is obtained by parallel transport around S!.

The question of whether w, is zero or not now becomes the question of whether
the trivialization of A~ on S! obtained by parallel transport can be extended to a
trivialization on a disk in S* spanned by S1. The answer is that it cannot, and this is
essentially the same point as occurs in the proof of the previous lemma: on a suitable
disk, we can reduce the structure group of A~ to SO(2), and the SO(2) bundle has
degree 1 with respect to the trivialization. a

4.5 Three-edge relations

Before moving on, we consider a different relation involving the operators u,, which
can be proved in the same manner. Let S be an orbifold 2—sphere with three singular
points with local isotropy group Z/2. Suppose S is embedded in Y as a suborbifold.
(In terms of the web K in the three-manifold ¥ = |)v/|, this is a sphere meeting K
transversely in three points belonging to edges of K.) Corresponding to the three
points of intersection, we have three operators

uy uz,uz: JHY:T) = JHY: D).
Lemma 4.7 The three operators u;, u, and u3 satisty the relations
Uy +uy+us =0, ujuus;=020.

Proof Let X = [0, 1] x Y,and Z C X be a regular neighborhood of the sphere
{%} x S, meeting the singular set only in the codimension-2 strata. On B*(Z) we have
three cohomology classes u; for i = 1,2, 3, and the first relation in the lemma will
follow, just as in the proof of Lemma 4.3, if we establish a relation in the cohomology
of B*(Z),

u; +up +uz =0.

This is equivalent to showing that for any bifold SO(3) connection on S x S, the
product of the three real line bundles I; — S1 obtained from the three orbifold points
of S is trivial. The triviality of IL; is equivalent to the bifold bundle £ having w, =0
on the torus S! x §;, where §; C S is a circle linking the i™ singular point. Since the
sum of the three tori bounds in the smooth part of S Iy § the above relation follows.

The second relation is an algebraic consequence of the first relation and the relations
“13 + Pu; = 0. O
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5 Proof of the main theorem

In this section, we present the proof of Theorem 1.2. Although the final statement of
the theorem involves webs K in R® or S3, we continue to treat the case of a general
bifold ¥ corresponding to a web K C Y, for as long as possible. Nevertheless, the
3—manifold ¥ will be omitted from our notation, and we write J#(K; T) for J 11()v’ ;).
We will make clear that ¥ = S in the statements that require it.

5.1 The edge-decomposition

Let R’ be obtained from R by adjoining an inverse 1/ P for the element for P of
Equation (3). For any bifold Y, let T/ be the local system I' ® g R”. The corresponding
instanton homology group J#(K;T”) is an R’—module. The polynomial

u + Pu
which annihilates the edge-operators u, is the product of factors # and u? 4+ P which
are coprime in R’[u]. That is, we have
au+bw*+ P)=1

in R'[u], where a = u/P and b = 1/P. It follows that the module J*(K;T”) has a
direct-sum decomposition,

JHK:T) = ker(ue) @ ker(u? + P) = ker(u,) @ im(ue).

This is the (generalized) eigenspace decomposition: if we were to adjoin a square root
of P, then these summands would become the eigenspace and generalized eigenspace
for the two eigenvalues 0 and P 1/2 " There is one such decomposition for each
edge e of K, and since the operators belonging to different edges commute, we obtain
a decomposition of the R’-module into simultaneous generalized eigenspaces. To
introduce notation for this, let us write

E(K) = {edges of K},
and given a subset s C E(K), let us write
V(K;s) = (ﬂ ker(ue)) N (m im(ue)).
ecs e¢s

Then we have a decomposition of the R’—module into 2#£() direct summands,

(36) JHE:T)= @ V(K:s).
SCE(K)
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Definition 5.1 For any web K C Y, we refer to the above direct-sum decomposition
of the R’-module J*(K;T") as the edge-decomposition.

5.2 The case of the unknot

We calculate the edge decomposition for the unknot K in R3, which has a single,
circular edge e.

Proposition 5.2 For the unknot K = U, the R—module J fU; I') is free of rank 3,
and with respect to a standard basis the matrix of the operator u, is

000
10P
010

Over the ring R’ the module J “U:T) decomposes as a direct sum of ker(u,) and
im(u,), which have ranks 1 and 2, respectively.

As in [14], we obtain information about the unknot by considering the unknotted
2—sphere S C R* as a foam. We write S () for the 2—sphere with m dots, considered
as a cobordism from the empty web to itself. As a cobordism, it has an evaluation in
J“(—; I'), which we write as

(S(m)) € R.

Lemma 5.3 Form =0,1 and 2, we have (S(m)) = 0,0, 1, respectively. For m > 2,
we have (S(m)) = P(S(m —2)).

Proof This follows [14]. For m < 2, the formula for the dimension of the moduli
spaces tells us that the zero-dimensional moduli spaces have negative Yang—Mills action,
and are therefore empty. For m = 2, we are evaluating uﬁ on a compact moduli space
of flat connections on the 4—dimensional cylinder. The moduli space is equal to RIP?,
and the evaluation of ug is 1 because u, restricts to the generator in cohomology.
When using local coefficients, the evaluation (S(2)) is therefore equal to 1- A, where
A, is given by the formula (20) as in Section 3.3. Because the connections are flat, the
exponents in the formula (20) are zero, and therefore A, = 1. The claim for m > 2 is
a consequence of the relation (2). O

Proof of Proposition 5.2 Let us write S as the union of two disks Dt and D™,
viewed as cobordisms from the empty web to U and back. Let D* (m) be the same
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foams, but with m dots. Let us write
v = JHDT(m);T) e JHU; D),
am = JHD(m);T) e Hom(J*(U:T). R).

We have a,,(v,) = (S(m + n)), so from the lemma we can read off these pairings. If

we set
by = ay + Pay,
by =a,
by =ay,
then we can read off that
bm(vn) = Omn

for m,n < 2.

The representation variety of U is RIP?, and there is a holonomy perturbation with three
critical points. The complex that computes J lit(U ; I') therefore has three generators, so
JH(U; T) is either free of rank 3, or has rank strictly less. But the above relation shows
that v, v;, v, generate a free submodule. So J#(U;T) has rank 3, with the v; as a
basis.

To compute the matrix of u, in the basis vgy, v{, v, we must compute by, (tevs,),
which again can be interpreted as evaluations of 2—spheres with dots:

bo(uevm) = (S(m+3)) + P(S(m + 1)),

bi(uevm) = (S(m +2)),

by (uevm) = (S(m +1)).
From this one may compute the matrix shown in the proposition. The kernel of u, is
the free rank-1 module spanned by the element

P

0
1

The image of u, is the free rank-2 module spanned by the elements

0 0
1], 0
0 1

The same applies after tensoring with R’ to make P invertible, and in that case the
free module of rank 3 is the direct sum of these two submodules. a
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In terms of the notation of (36) and Definition 5.1, the conclusion of the proposition is
that
rank V(U;{e}) = 1,
(37)
rank V(U; @) = 2.

5.3 The case of the theta graph

Next, we calculate the edge-decomposition for the theta graph 6, with its three edges
€1, €2, €3.

Proposition 5.4 For the theta graph, the deformed instanton homology J #(0:T) is
free of rank 6. In the edge-decomposition of the R'—module J#(0;T"), the nonzero
summands are the summands V(6;s) where s C {e1, e, e3} is a singleton. Each of
the three nonzero summands has rank 2.

Following [14] again, we look at the closed foam ® C R* consisting of three disks
with a common circle as boundary. Let ® (1, m,, m3) denote this foam with m; dots
on the i™" disk, and let

(©(my,my,ms3)) € R

be the evaluation of the closed foam in J#(—;T'). These evaluations are entirely
determined by the following lemma:

Lemma 5.5 The evaluation (®(m,m,,m3)) is symmetric in the three variables. It
is zero if all the m; are positive, or if the sum of the m; is either even or less than three.
We have

(©(0,1,2)) =1.
Finally, it my > 3, then

(O(my,my,m3)) = P(O(my —2,my,m3)).

Proof The symmetry is clear. The assertion that the evaluation is zero if all the m;
are positive follows from the relation uju,u3 = 0 in Lemma 4.7. The assertion
that the evaluation is zero if the sum of the m; is even follows from the dimension
formula [14] and the fact that bifold bundles for this foam have Yang—Mills action
a multiple of %. If the sum of the m; is less than three, then the moduli spaces that
contribute have negative Yang—Mills action, so the evaluation is zero. The evaluation for
®(0, 1, 2) holds because the moduli space of flat connections is the three-dimensional

Geometry & Topology, Volume 23 (2019)



1524 Peter B Kronheimer and Tomasz S Mrowka

flag manifold: this calculation proceeds as in [14] of the case of constant coefficients F,
with the same adaptation to the case of local coefficients, I', as presented in the proof
of Lemma 5.3 above. m|

Proof of Proposition 5.4 Mimicking the calculation for the case of the unknot, we
introduce the half-foams ®1 and ®~ as cobordisms from @ to 6 and from 6 to &,
and we write

v(l,m,n) = JHO (|, m,n);T) € J}O; 1),

a(l,m,n) = J*@O~(m);T) € Hom(J*(#;T), R).
The pairing between these can be computed from the lemma, and we can compute that
the pairing between the six elements

(38)  ©(0,0,0), v(0,0,1), v(0,0,2), v(0,1,0), v(0,1,1), v(0,1,2)

and the similarly dotted a’s is upper triangular with entries 1 on the diagonal. It
follows that these six elements v(/,m,n) generate a free submodule of rank 6. On the
other hand, the representation variety of 6 is the flag manifold, and the Chern—Simons
functional has a perturbation with six critical points. So (much as in the case of the
unknot), we conclude that J ﬁ(9; I') is free of rank 6 and the elements (38) are a basis.

Four of the six basis elements v(/,m, n) have n > 0, from which it follows that the
rank of im(u3) (and hence also the rank of ker(u§ + P)) is at least four. The same
applies to all the u; by symmetry. The relation u; 4+ u, + u3 = 0 from Lemma 4.7
implies u% + u% + u% =0, soif

X € ker(u% + P)n ker(u% + P)Nn ker(u% +P)
then Px = 0. It follows that

im(uq) Nim(u) Nim(us3)

also consists of P—torsion elements, so this submodule has rank 0.

If we pass now to the free, R'—module J#(0;T), we see that each submodule im(u;)
has rank at least 4, and that the intersection of all three is zero. Since the whole module
has rank 6, it follows that im(u,) Nim(u3) has rank exactly 2, and that

im(uy) Nim(usz) = ker(uq) = V(0;{e1}).

In the edge-decomposition, the instanton homology J#(6;T”) is now the direct sum
of the three rank-2 modules V' (0;{e;}): the other summands are zero because all the
rank is accounted for. a
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There is an additional relation that can be extracted from this computation:

Lemma 5.6 For the operators on J #(0:T), we have the relation

Uruz +usuy +ujuy = P.

Proof Since both are free modules, it is sufficient to check this on the R’—module
JHO: ). Using the edge-decomposition and symmetry, we may reduce to checking
it on the summand V(6;{e;}). This rank-2 submodule is im(u,) Nim(u3) and is
spanned by v(0, 1, 1) and v(0, 1, 2). Since u; = 0 on this summand, the operator on
the left of the relation in the lemma is just u,u3. So we are left to check that

uu3zv(0,1,n) = Pv(0,1,n)
for n =1 and n = 2. This is equivalent to
v(0,2,n+1) = Pv(0,1,n).

A basis for the dual of this summand is provided by (0, 0,0) and «(0,0, 1). So we
have to show

(©(0,2,m+1)) = P(O(0,1,m))

for m = 1,2 and 3. Both sides are zero unless m = 2, in which case both sides are P,
by Lemma 5.5. a

5.4 Edge-decompositions and 1-sets

The relation of Lemma 5.6, for operators on the theta graph, extends to the case of
a general web K C Y, as follows. At each vertex, there are three incident edges
(e1, ez, e3), where we allow that two of the three may be the same. Let u1, u, and
u3 be the corresponding operators on the R—module J #(K:T). Then we have the
following relations:

Proposition 5.7 The three operators uy, u,, u3 on J H(K;T) corresponding to the
edges incident at a vertex satisfy the three relations

(39) Uy +uy+uz =0,
40) UpUz + Uz + Uity = P,
(41) Uious =0.
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Proof The first and third relations are special cases of the relations of Lemma 4.7.
The middle relation (40) follows from the case of the theta graph (Lemma 5.6) by an
application of excision, as in [14, Proposition 5.8]. O

Remark The three relations of this proposition reflect the fact that, at a vertex x of
the singular set of the orbifold, we have a direct-sum decomposition of the basepoint
bundle E, as a sum of three real line bundles,

Ex=L;®oL®Ls,
and corresponding relations among the characteristic classes,

Up + Uz + U3z =wpy,

upus +usuy +uUguy = wp x,

UjuaU3 = w3 x.
One could convert these relations among cohomology classes (in particular, the second
relation) into relations between corresponding operators, using the same ideas as the
proof of Proposition 4.1. This would provide an alternative proof of the operator
relations. However, the argument needs to be carried out in the space of connections

on a neighborhood of a vertex, where codimension-2 bubbling can occur, making the
proof more difficult.

We say that a subset s C E(K) is a k—set (for k = 1 or 2) if, at each vertex of K,
exactly k of the three incident edges belong to s. The complement of a 1-set is a 2—set.
This is standard terminology, but since our webs are allowed to have (for example)
no vertices, it is possible for a subset s to be both a 1-set and a 2—set. (In particular,
both @ and {e} are 1-sets in the case of the unknot.) A 2—set is the same as a disjoint
union of cycles which includes every vertex. A 1-set is also called a perfect matching.
Every bridgeless trivalent graph admits a perfect matching [15].

Proposition 5.8 In the edge-decomposition

JHK:T) = P V(K:s),

sCE(K)

the summand V(K s) is zero if s is not a 1 —set.

Proof Let uq, u,, us be the operators corresponding to the three edges incident at a
vertex of K. Over the ring R’, consider the operators

wy = (1/Pusuz, my=1/Puzuy, n3=~1/Plujus
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on J#(K;T”). From Proposition 5.7, we have

T+t =1
and

wimwj =0

for i # j. From this it follows that the m; are projections (Hiz = m;) and that their
images give a direct-sum decomposition

JHK;T) = im(m;) ®im(m2) @ im(rr3).

It is also clear that im(ry) for example is contained in im(u,) N im(u3), and also
im(7r;) C ker(u) by another application of (41). So we have

(42) im(mry) C ker(uq) Nim(uy) Nim(us).

The reverse inclusion holds also, because if x € ker(u1) then m,x = w3x = 0, from
which it follows that x = 71 x. We learn that

(43) Jﬂ(K; I') = ker(u;) Nim(uy) Nim(u3) @ ker(us) Nim(uz) Nim(uq)
@ ker(usz) Nim(uq) Nim(uy).

But the first term on the right is the direct sum of all those summands V(K;s) for
which s contains e; but not e, or e3, and the sum of the three terms subspaces on the
right is the sum of all V(K s) for which s contains exactly one of the three edges. O

Corollary 5.9 For any web K in Y, we have a direct-sum decomposition

JHE:T) = P V(K:s). O

1-sets s
Corollary 5.10 For any web K in Y and any subset t C E(K), we have

ﬂ ker(ue) =0

ect

in J¥(K;T') if ¢ is not contained in a 1—set. Similarly,

()im(ue) =0
ect

if t is not contained in a 2—set. O
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Figure 4: Webs in Y differing inside a ball with edges labeled
5.5 Applications of the exact triangle and excision

The excision isomorphism which gives rise to the product rule, Proposition 3.3, respects
the edge-decompositions of the webs that are involved. As a simple application, we
have the following:

Lemma 5.11 Let K CY be a web, and let s C E(K) be 1-set. Let K’ be the union
K UU, where U is an unknot contained in a ball disjoint from K. Let e be the single
edge of U, and s’ C E(K’) be the 1-set s U{e}. Then

V(K;s) = V(K';s).

Proof Proposition 5.2 tells us that V(U {e}) is a free module of rank 1. So we apply
Proposition 3.3 to obtain

V(K';s") = V(K;s) @ V(U;{e}) = V(K;s). |

Consider next the exact triangle of Proposition 3.4 for the case of L;, Ky, Ky. The
proof works for any local system, so the exact sequence holds for the R’—modules
Jﬁ(—; I'). Foreachof Ly, K; and Ko, let py, ..., p4 be points lying at the indicated
locations on the webs, shown in Figure 4.

Corresponding to these marked points, we have operators u;, ..., us on J¥(K:T")
for each of the three webs, and the homomorphisms in the exact sequence commute
with these operators, because they come from cobordisms in which the points lie on
common faces. Of course, some of the operators are equal: say u; = u,, for example,
as operators on J#(K:T).

For each of u, ..., u4, we have a decomposition of J¥(K: ) into ker(u;) & im(u;),
and the long exact sequence of Proposition 3.4 decomposes into a direct sum of 16
exact sequences, although many terms are zero. We give two applications of this idea.
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Figure 5: Webs K and K’ in Y as in Corollary 5.14. The edges shown
belong to 1-sets s and s’.

Lemma 5.12 For the webs K; and K, the summands
4
ﬂ ker(u;)
i=1
in J¥(K1:T) and J*(K¢:; T") are isomorphic.
Proof The corresponding summand of J 1d(L »:T) is zero by Corollary 5.10, because
the edges of L, on which the points pq, ..., p4 lie are not part of a 1-set. So the

exact sequence for these summands becomes an isomorphism between the other two
terms. o

Lemma 5.13 For the webs L, and K, the summands
(im(z1) Nim(ug)) N (ker(uy) Nker(us))
in J¥(L,;T7) and J#(K; T’) are isomorphic.
Proof The corresponding summand of J#(K;;T’) is zero because u; = u5, S0

ker(u1) Nim(u;) = 0. So again the exact sequence becomes an isomorphism between
the other two terms. a

We can draw the following corollaries of these two lemmas, in the language of the
edge-decomposition, Definition 5.1.

Corollary 5.14 Let s and s’ be 1-sets for the webs K and K’ in Y. Suppose that
K and K’ differ only in a ball, as in Figure 5, and that the edges of K and K’ which
meet the ball belong to s and s, respectively. Then

V(K;s) = V(K';s).
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el €2 1 e’

Figure 6: Webs K and K’ in Y as in Corollary 5.15. The edge ¢; belongs
to the 1—set s. The other edges do not.

Proof This is an immediate consequence of the definition of V(K;s) and Lemma 5.12.
O

The second corollary is a little more elaborate, but still straightforward.

Corollary 5.15 Let s and s’ be 1-sets for the webs K and K’ in Y. Suppose that
K and K’ differ only in a ball, as in Figure 6. Suppose that the edge e¢; of K belongs
to s (so that the other edges of K the figure do not). Suppose that the edge ¢’ of K’
does not belong to s’. Then

V(K;s) = V(K';s).

Proof Set L, = K and apply Lemma 5.13 to the ball which forms a neighborhood

of the edge e,. Then the web K, in Lemma 5.13 becomes a union of K’ and an

unknotted circle U. Writing e for the single edge of U, we learn that
V(K;s)=V(K'UU;s"U{e}).

Now apply Lemma 5.11. a

We can summarize Corollaries 5.14 and 5.15 and Lemma 5.11 together as saying that
V(K,s) is unchanged if we alter only the edges of K that belong to s, by the addition
of 1-handles, 0-handles or 2—-handles (saddle-moves, and births and deaths of circles).

Proposition 5.16 Let (K,s) and (K',s’) be two webs in Y, each equipped with
l-sets s C E(K) and s’ C E(K'). Let

c= |J e = J @
ecE(K)\s e’eE(K')\s’

be the closed loops in Y formed by the edges of the complementary 2—sets. Suppose
that C = C’ as subsets of Y, and that the 1—sets s and s’ define the same relative
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homology class in H{(Y,C;Z/2). Then

V(K,s) = V(K',s').

Proof The homology between s and s’ is a composition of isotopies, births, deaths
and saddle moves, and the addition and subtraction of bigons as in Corollary 5.15. O

5.6 Calculation for planar webs

We now turn to the special case of webs K in the plane R? C R3. Let s be a 1-set
for K, and let C be the union of closed cycles formed by the complementary 2—set. We
say that s is even if its homology class in H; (R3, C;Z/2) is zero. This is equivalent
to saying that s has an even number of endpoints on each of the connected components
of C.

Proposition 5.17 Let K be a planar web and let s be an even 1—set. Then V(K, s)
is a free R'—module of rank 2", where n is the number of components in C. If s is
not even, then V(K,s) = 0.

Proof If s is even, then we can apply Proposition 5.16 to see that V(K, s) is isomor-
phic to V(K’, @), where K’ is the disjoint union of the circles that constitute C, with
no vertices. Since K is planar, K’ is an unlink. If it has #» components, then by the
product formula in Proposition 3.3 and the unknot calculation in Proposition 5.2, we
have

V(K', @) =V(U, 2)®" = (R @& R)®".
This establishes the first claim.

For the second claim, suppose s is not even, and let C; C C be a connected component
on which s has an odd number of endpoints. Then, using Proposition 5.16, we can re-
place (K, s) with (K’, s”), where the cycles of the complementary 2—set are unchanged,
but s’ has exactly one endpoint on Cy, and V(K,s) = V(K’,s’). Furthermore, we
can arrange that C; bounds a disk that is disjoint from the rest of K’. In the language
of [14], the web K’ now has an embedded bridge; that is, there is a 2—sphere in R3
meeting K’ transversely in a single point. It follows that the bifold representation
variety of K’ is empty and J#(K’;T") = 0. So V(K’,s') = 0 a fortiori. O
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Corollary 5.18 For a planar web K, the R'—module J*(K,T") is a free module of

rank
Z on (s) ,

s€{even 1-sets}

where, for each s, the number n(s) is the number of cycles in the complementary
2—set. a

Corollary 5.19 For a planar web K, the rank of the R'—module J B(K,T) is equal
to the number of Tait colorings of K.

Proof It is an elementary fact that the number of Tait colorings is equal to the sum
that appears in the previous corollary. Indeed, given a Tait coloring, the edges colored
“red” are a 1-set, and to complete the coloring we must alternate “blue” and “green”
along the cycles of the complementary 2-set. This will not be possible if the 1-set is
not even, and can be done in 2") ways when it is. a

Finally, we return to the ring R and the local system I"'. We do not know whether
J #(K ;') is a free R—module, but we do know that its rank is the same as that of the
R’-module J¥#(K;T"). This is because both ranks are equal to the dimension of the
F—vector space J¥(K:T ®pg F), where F is the field of fractions of both R and R’.
This proves Theorem 1.2. O

6 Comparison of the deformed and undeformed homology

6.1 The spectral sequence of the m-adic filtration

Recall that R is the ring of finite Laurent series in variables 77, 75, T3, and that
I" is a local system of free rank-1 R-modules on B# ()V’). Let m < R be the ideal
generated by

{T;—1]|i=1,2,3};

let R;, be the localization of R at this maximal ideal: the ring of rational functions
whose denominator is nonzero at (1,1, 1). Let m <0 R, be the unique maximal ideal
in the localization. Let I}, = I ® g Ry, be the local system of R;;,—modules obtained
from T.

Using the local system I3, in place of I', we can form the instanton homology group
Jﬂ(}v’; In). Its rank as an R,,—module is equal to the rank of Jﬂ(f/; I}») as an
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R-module, because R,; and R have the same field of fractions. In particular, if
Y = (S3, K) and K is planar, then the rank is equal to the number of Tait colorings
of K.

Write
(44) C(Tn) = CHY:Tn) =@ Tup
B

for the chain complex whose homology is J r‘(IV/; In), as in (11). Although the termi-
nology “complex” is traditional, it should be remembered that C(I},;) has no grading
in general. It is a differential R,,—module. We write d,, for the differential, so

JHY ;Tw) = H(C(Tn), 3m).
The rank-1 local system I3, has the m—adic filtration
LpDml, Dm?h, D---,
and there is the corresponding filtration of the differential group,
C(T) DmC (D) Dm?C(Ty) D -+ .

By its construction, m? C(I},) is the same as C(m?I},). The m—adic filtration of the
differential group gives rise to an induced filtration of the homology,

45) Y T)=F">F' >F%...,

where as usual F? is the subset of the homology that can be represented by cycles in
m?C(I;).

For the statement of the next proposition, recall that J ﬁ()v’) denotes the instanton

homology with coefficients F = Z /2.

Proposition 6.1 There is a convergent spectral sequence of differential R,,—modules
whose E| page is the filtered module

JHY) @ gr R

with the filtration obtained from the m—adic filtration of R,,, and which abuts to the
filtered module J 1Dt()v’; I,) with the filtration 7P induced by the m—adic filtration
of C(I}y,). Thus,

Jﬁ(}v}) ®grRm = gr Jﬁ(?; D).

Furthermore, the filtration FP is m—stable, in that mF? C FP*! with equality for
large enough p.
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Proof Since C(I};,) has finite rank as an R,,—module, the existence of a convergent
spectral sequence from the filtered differential module C(I};) is standard. See for
example [6, Theorem A3.22]. Note that, although the situation most often considered
is a graded differential module (a complex in the traditional sense), we can create a
complex from the differential module by placing C(I},;) in every degree,

Lm0 2 () 2 () s

In the present example, the £ page is the homology of the associated graded differential
module,
M C(Gn))/ P+ C (L)) = C((WPTp) /(mP T T)).

The local system (m?T},)/(m?T1T},) is isomorphic to the constant coefficient system
m? /mPt1 because each 7} acts trivially on the quotient. This identifies the E; page
as J ﬂ(IV’) ®gr Ry, as claimed. For the claim of m—stability, see [6, Exercise A3.42]. O

We have the following corollary (which can also be proved simply and directly, as
pointed out in the introduction):
Corollary 6.2 There is an inequality of ranks,

dimp Jﬁ(lv’) > rankpg, J#(K; [};) = rankg Jﬁ(K; ).

Proof The spectral sequence tells us that
dimp (J*(Y) ® (m? /mP*1)) > dimp (F?/FPT1),

for these are the dimensions of the associated graded modules on the E! page and the
limit, respectively. Because the filtration is m—stable, we have

dimp (F? /FPH) ~ dimp (P JH(Y;: T) /mP TRV T)),
and the right-hand side is asymptotic to n dim(m? /m?*1), where n is the rank of

Jﬁ(}v’; Ln). a

Corollary 6.3 (Corollary 1.3 of the introduction) If K C R? C R3 is a planar web,
then the dimension of J*(K) is greater than or equal to the number of Tait colorings
of K.

Proof This is now an immediate consequence of Corollary 6.2 and Theorem 1.2. O
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The simplest example where this provides a new bound is the case of the 1—skeleton of
the dodecahedron. Previous work [14; 13] provided a lower bound of 58 in this case,
but the corollary provides a lower bound of 60. The authors do not know whether the
inequality of Corollary 1.3 continues to hold if K is not planar.

6.2 Criteria for equality of ranks

We examine when equality can occur for the inequality of ranks in Corollary 6.2. For
this purpose, we introduce a variant of the local system I'. First, let us extend the
ground field I by transcendentals z;, z,, z3, and write

F =F(z1, 22, 23).

We replace our ring R and its localization R, by R = R®T and its localization R,y,.
The latter is the local ring at the point (1,1, 1) in A3, and we now wish to restrict to a
generic line through (1, 1, 1), namely a line

(T1, Ty, T3) = (1 + z1t, 1 4+ zp¢, 1 + z31).

Thus, we introduce the ring S which is the localization at 0 € A! of the polynomial
ring ﬁ[l], and we regard S as a module over R by

(46) qz: Ty > 1+ zjt.

We write
ngS

for the maximal ideal in this local ring. We have a local system of .S —modules
I[s=T®rS
and instanton homology groups J#(K; Is).

The analysis of J#(K:Tg) runs in the same way as J*(K:T') and J*(K:T},). The
main point is that the image of P under the homomorphism ¢, is a nonzero element
Pg € S. It has the form

(47) Pg = (Z z,?z})z“ +0(t°).
i<j
Our edge operators u, now satisfy uS + Psu, = 0, and the fact that Pg is nonzero

is sufficient for us to repeat the previous arguments. The ranks of J#(K;Tg) and
J ﬁ(K ;') as an S-module and an R-module, respectively, are the same, because the
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field of fractions of S is obtained by adjoining ¢ to the field of fractions of R. This
allows us to carry over Theorem 1.2 directly; or we could repeat the same proof. Either
way, we have:

Proposition 6.4 If K lies in the plane, then the rank of J*(K; Ts) as an S —module
is equal to the number of Tait colorings of K. a

Consider the n—adic filtration of the local system I's, and the corresponding filtration
of the differential S—module C¥#(I's) which computes J¥#(K; '), as in Section 6.1.
We have an induced filtration of J#(K;Ty),

(48) JHK:Ts)=6">6' g2+,

as the counterpart to the filtration (45) of J #(K;T}n). We therefore have a spectral
sequence, just as in Proposition 6.1.

Proposition 6.5 There is a convergent spectral sequence of ungraded differential
S —modules whose E| page is the filtered module

Jﬂ(f’)@)grS

with the filtration obtained from the n—adic filtration of S, and which abuts to the filtered
module Jﬁ(f; I's) with the filtration G? induced by the n—adic filtration of C(I's).
Thus,

JHY) ®grS = gr JHY : Ty).

Furthermore, the filtration GP is n—stable, in that nG? C GPT1 with equality for large
enough p. a

The reason for replacing the 3—dimensional regular local ring R,, with the 1-dimen-
sional local ring S is that the induced filtration G? on the homology is much easier to
understand in the case that S is a principal ideal domain. The above spectral sequence
is now an example of a Bockstein spectral sequence, associated in this case to the exact
coefficient sequence

0S8 >F—o.

The next simplification in the case of a principal ideal domain is that the induced
filtration on the homology of a complex is easier to understand.
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Lemma 6.6 Let S be a domain, and let (C, 0) be a differential S —module, with C
a free S —module. Let H(C) be its homology. Let n = (t) <1 S be a principal ideal
generated by a prime t, and let GP be the p™ step of the filtration of H(C) induced
by the n—adic filtration of C. Then G? =n? H(C).

Proof Membership of G? means that a homology class o can be written in the
form [a], where da = 0 and a € n?C. The latter condition means that a = t”b for
some b, and the condition 1#9b = 0 implies db = 0. So there is a homology class
B = [b] with o =t?B8. So a € n? H(C). The reverse inclusion is straightforward,
whether or not the ideal is principal. a

So the induced filtration of J ti()v’; Is) is the n—adic filtration of the homology group

as an S—module, and the associated graded object to which the spectral sequence of

Proposition 6.5 abuts has terms

. n? J4(Y: Ts)

g, JH(¥iTg) = — =
nP+1J8(Y; Ts)

So the spectral sequence in Proposition 6.5 implies an inequality of ranks,

. PJRY:T
dimp Jﬂ(Y)zdimﬁ( n? S L) )

n?+1 J4(Y; Ty)

Equality holds if and only if all differentials d, in the spectral sequence vanish. By
Nakayama’s lemma, we have

. ( JH(Y; Ts)
dlmﬁ

S 297 ) > rankg JH(Y; Ty),
nJﬁ(Y;FS))

with equality only if J H (IV’; Is) is a free S—module. Further, in the case that J #(}v’; Is)
is free, all the pieces of the associated grade object have dimension equal to the rank
of the module. This proves the following proposition:
Proposition 6.7 We have

dimp Jﬁ()v’) > rankg Jﬁ(f’; Iy),
and equality holds if and only if all differentials d, with r > 1 in the spectral sequence

of Proposition 6.5 are zero, and in that case the module J ﬂ(}v’; Is) is free. a
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Although we have obtained a criterion from the Bockstein spectral sequence, the other
tool one can use in the case of principal ideal domain is the universal coefficient theorem
for homology. Our differential module C#(Ig) is a free S—module, from which C* (ﬁ)
is obtained by reducing mod (¢). The universal coefficient theorem therefore tells us
that we have split short exact sequence and an isomorphism

JAY)QF = JHY:Ts) @ F @ Tor(J*(Y: Ts). S/(1)).

Concretely, the finitely generated .S —module J ﬁ()v’; I's) has a decomposition

S

JHY:Tg) = S” e ——
(V:T5) = 8" ® can @ ® (an

(t?1)

and the universal coefficient theorem tells us that
dimp J*(Y) =r +21.

In particular, equality holds in Proposition 6.7 if and only if J ﬁ(Iv’; Ig) is torsion free.
As a corollary, combining this with Proposition 6.4, we obtain the following:

Corollary 6.8 Let K be a planar web. Then dimy J*(K) is greater than or equal to
the number of Tait colorings, and equality holds if and only if one of the following two
equivalent conditions holds:

(1) the spectral sequence of Proposition 6.5 collapses at the E| page; or

(2) the instanton homology J H(K; [g) is torsion free. a

Remark While we chose to introduce three indeterminates z; in order to have a
general line through (1, 1, 1), it is apparent from the formula (47) that Pg is nonzero if
we make either of the substitutions (z,z5,2z3)=(1,1,1), 0r (z1,2,,2z3)=(1,1,0). In
place of the ring S, we could have used the smaller ring S obtained as the localization
of F[¢] at ¢ = 0, made into an R—module by either of the two homomorphisms

qa.1.1): R—S, qui0: R—S
given by
qa,): (T, Ty, T3) = (1 +¢t, 1+, 1+1),
g0 (11,12, T3) > (1 +1,1+1,1),

respectively.
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6.3 Nonvanishing for the homology with local coefficients

Returning to the three-dimensional local ring Rj, or to R itself and the original
local coefficient system I', the universal coefficient theorem provides not a long exact
sequence but a Tor spectral sequence, because we are not dealing with a principal ideal
domain. Namely, there is a spectral sequence with

2 _ R/ rh/v.
E, =Tor, (J*(Y:I'),F)

abutting to J ﬁ()V/). As an R—module, [ has a resolution by a complex of free R—
modules of length 3, so the Tor groups that appear on the E2 page are zero for p > 3.
(So only the d, and d3 differentials are potentially nonzero.) A useful consequence is
that, if Jﬁ()?; I') is zero, then so is Jﬁ(l“). From the nonvanishing theorem in [14] we
therefore obtain a nonvanishing theorem for J ji(}v’; .

Theorem 6.9 Let K C R3 be a web with no spatial bridge. Then J*(K:;T) is a
nonzero R-module. O

6.4 Two nonplanar examples

The diagram on the left in Figure 7 is an example of a nonplanar web K; C R3 for
which the ranks of J#(K;) and J#(K;;T) are different.

The web K; admits only one 1-—set, which is the singleton {e¢;} consisting of the S—
shaped “chain” of the handcuffs. From the edge-decomposition, we therefore learn that
JHK:T') = V(K;;{e1}). Similarly, for the other web in the picture, J#(K,;T") =
V(K3;{e2}). From an application of Proposition 5.16, we have V(Ki;{e;}) =
V(K3;{es2}), and it follows that there is an isomorphism

JHEK T = JHK: T),

.

Ky K,
Figure 7: The tangled handcuffs and the standard handcuffs
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L
Figure 8: The linked handcuffs L

But the web K, has an embedded bridge, so J ﬂ(K 2:T7) = 0. It follows that for the
“tangled handcuffs” K, we have J ﬂ(K 1; ") = 0. For the coefficient system I", we do
not have a complete calculation, but we can record at least the following consequence:

Proposition 6.10 For the tangled handcuffs K in Figure 7, we have
rankg J#(K:T) = 0.

It is a finitely generated torsion module.

The web K; does not have an embedded bridge. (Indeed, its SO(3) representation
variety is nonempty and consists of one fully irreducible representation whose image
in SO(3) is the octahedral group.) So Theorem 6.9 tells us that J#(K;;T") is nonzero.
From the corresponding nonvanishing theorem for J#(K;) proved in [14], we also
learn that

dimp J*(K;) > 0.

The tangled handcuffs are therefore an example where there are nontrivial differentials
in the spectral sequence of Proposition 6.1.

A related example is the “linked handcuffs” L in Figure 8. There is an exact triangle
(Proposition 3.4) in which the role of L, is played by the linked handcuffs and the
role of both K; and Ky is played by the unknot U. The connecting homomorphism
is provided by a cobordism, X, from one unknot to the other. This cobordism is
obtained by starting with the cylindrical cobordism [0, 1]x U in [0, 1] x R? and taking
a connected sum with the pair (S*4, RIP?), where the RP? is standardly embedded
in S* with self-intersection —2. A gluing argument shows that the induced map

JHU:T) - JYU:T)
is equal to the map arising from the 2—dimensional cohomology class

ze H*(B*(U);F)
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given by
Z = w2 (Ws),

where Wy is the rank-2 bundle (32) corresponding to the point s on the cylinder where
the connected sum is made. From the Whitney sum formula, we have

z=uj +wa 1 (Ex),
so the corresponding operator on J fU; I)is ug + P. So there is a short exact sequence
0— coker(ug + P) — Jﬁ(L; r— ker(ug + P) — 0.

The calculation in Proposition 5.2 tell us that both the kernel and cokernel of u2 + P
are free of rank 2. So the exact sequence of R—modules is

0>R®R— JHL:T)>R®R—0,

which necessarily splits. We record this result:

Proposition 6.11 For the linked handcuffs L in Figure 8, we have
JHL;T) ~ R*

as an R-module. O

This example shows that the rank of J¥#(L;T) is not always equal to the number of
Tait colorings for nonplanar webs. (The linked handcuffs have no Tait colorings.)
With coefficients in the field F, the original J ﬁ(L) has rank 4 also, as can be seen
using essentially the same exact sequence, because the kernel and cokernel of 2 have
dimension 2 in J*(U).

6.5 Vanishing of the first three differentials

It is not hard to identify the differential on the E; page of the spectral sequence,
Proposition 6.1, arising from the filtration of the local ring R,,. Recall that the local
system is defined using maps to the circle,

hi: BF(Y) > R/Z, i=1,2,3,

described at (10). If s is the generator of H!(R/Z;TF), then by pullback we obtain
classes
t; e H'(B*(Y);F), i=1,2,3.
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As in Section 4.3, these classes give rise to operators
(49) i JHY) - JHY).

Explicitly, let hi_1(8) C Bﬁ(f) be a generic level set of A; transverse to all 1-—
dimensional moduli spaces M1 («, 8). Then the matrix entries of the correspond-
ing chain-map 7; on the chain level are the mod 2 count of the intersection points
Mi(a, B) N A1 (8).

Lemma 6.12 The differential on the E| page of the spectral sequence of Proposition
6.1 is the operator
di: JFY) @ m? /m? ) 5 JHY) @ (mPT! /mP12),
given by ,
di=) ue®(-T),
i=1

where T; is the homomorphism m? /m?+! — mP+1 /mP+2 gjven by multiplication
by T;. In particular, d; is zero if and only if each t; is zero.

Proof The formula for d arises by expanding the expression for d,, around 7; = 1.
Let us trivialize the local system I};; on the complement of V; U V, U V3, so that we
identify I}, g = Ry, for all critical points 8, and for a path { which is transverse to
the three V; we have

Dne = T1"1T2"2T3"3,

where 7; is the signed intersection number of ¢ with V;. Modulo m?, this is equal to
3
1+ Z ni(1-=Tj),
1

where 7; i1s the mod 2 residue of n;. Thus, at the chain level, we have

3
(50) Om =03+ %(l—Tp)+x,
1

where the matrix entries of x belong to m? and 9 is the ordinary differential on J ﬁ(f’) ,
extended to the trivial local system with fiber R,;. |

It turns out that the operators 7; on J #(IV’) are identically zero. In fact, we have more:
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Proposition 6.13 For any bifold Y, the differentials dy, dy and d3 in the spectral
sequence of Proposition 6.1 are zero.

Proof Fix an integer k > 0, and consider the R-module

8k — mk/mk+4’

where m is the maximal ideal at 7; = 1. Let Ay be the local coefficient system
obtained from I" by tensoring with this module,

Ar =T Qg .

For each k, we then have instanton homology groups J #()V’; Ay). The local system is
a system of R/m*-modules, and this ring has an m—adic filtration, of finite length, as

k+4

does the module m¥ /m . The latter filtration has associated graded

61) =
&rp (%) {0 if p>4.

For any Y, we have the usual spectral sequence,
(51) THY) @ gr(8) = gr JH(Y s Ap),

and the assertion that the differentials d, are zero for r < 3 in the original spectral
sequence of Proposition 6.1 is equivalent to saying that all the differentials in the
spectral sequence (51) are zero. This in turn is equivalent to an equality of dimensions
of finite-dimensional F—vector spaces,

(52) dim J*(Y; Ag) = dim J#(Y) x dim 8.

To prove the equality (52) and so complete the proof of Proposition 6.13, we will draw
on the material of Section 2.2, so we again consider the orbifold (S3, H) corresponding
to the Hopf link, and the marking data pg with w,(E,) nonzero. In order to keep
the notation more compact, we write

H = ((S* H);jup)
for this marked orbifold, and we similarly introduce

T =((S°.0); o).

We write Y = (}v’, wy) for an arbitrary auxiliary orbifold, with possibly empty marking.
We consider the instanton homology group J(H # T), and the variant with local
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coefficients, J(H #T; I'), where the local system as usual is obtained from the marked
(S3,60) summand by the usual circle-valued functions.

Lemma 6.14 The Morse complex whose homology is J(H # T ; T") is quasi-isomor-
phic to a free module of rank 4 with the differential given by

00P O

|00 P
= 1000 0
000 0

In particular, J(H # T ;") is isomorphic to a sum of two copies of R/(P).

Proof The proof uses a skein exact sequence, and is very close to the calculation
of J#(L;T) for the “linked handcuffs” in Proposition 6.11. The skein sequence that
holds when the crossing is entirely contained in the marking region is the usual skein
sequence for links, as developed in [10]. We deduce that the Morse complex which
computes J(H # T ;") is quasi-isomorphic to the mapping cylinder of a certain chain
map

(53) C(U#T:T)— C(U#T:T),

where U is the unknot. The chain map arises from the same cobordism as in the
proof of Proposition 6.11, namely the connect sum of the cylindrical cobordism with
(S*, RP?), where the RP? has self-intersection —2. Now, however, the marking
region encompasses the whole of the cobordism, and the marking data has w, nonzero
on the complement of the RP? in S*. This map (53) is the operator corresponding to
the class

7= wy(Wy),

just as in Proposition 6.11, but now Ws is the orientable rank-2 bundle corresponding
to a basepoint on U. This is the same as the basepoint operator w; x, which acts
by multiplication by P. The instanton homology J(U # T ;T") is free of rank 2, and
arises from a complex with trivial differential, because the representation variety is a
2—sphere. (This is the calculation of 7#(U) from [10].) So the complex C(H #T;T')
is quasi-isomorphic to the mapping cone of multiplication by P,

R®RLs ROR,

which is what the lemma states. O
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Corollary 6.15 With the local coefficient system Ay, the instanton homology
JH#T;Ap)

is the direct sum of four copies of the module & .

Proof The calculation (47) shows that the element P belongs to the ideal m* < R.
So the action of P on & is zero. The previous lemma therefore tells us that the Morse
complex that computes J(H #T ; Ay) is four copies of the fiber §; and the differential
is zero. a

To continue the proof of Proposition 6.13, we now pass from the special case H # T
to the general case JHY)=J(Y #T), by excision. As in Section 2.2, there are
excision cobordisms of marked bifolds, from (a) to (b) and from (b) to (c), inducing
isomorphisms on J in each case, where (a)—(c) are

(a) Y. =(T#H)U(T#Y)U (H),
(b) Yy =(T)U(T#H#Y)U (H),
©) Y. =(T)U(T#H)U(H#Y).

In each case, two of the connected components contain a marked theta graph T, so
for each of (a)-(c) we may define a map to the torus 7'3 by using the sum of the
maps coming from the two copies. In this way, we have a local system I' over the
configuration spaces in all three cases. The maps obtained from the excision cobordisms
give maps on instanton homology with local coefficients, and the composite of the two
gives an isomorphism

J(Ya; Ag) = J(Ye; Ag).

The contribution of H to the calculation of the instanton homology of Y, is trivial,
and the Morse complex C(Y,; Ay) that computes J(Y,; Ag) can be described as a
tensor product,

C(T#H;A)QrC(T#H:T).

Corollary 6.15 therefore gives an isomorphism
C(Yai Ag) = C(T #Y: 0,
and hence an isomorphism

J(Ya: Ap) = J(T#Y; Ay)®4.
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On the other hand, the contribution of the first T in the calculation for the instanton
homology of Y, is trivial, and the local coefficient system comes only from the 7 # H
term. So the Morse complex has a description,

C(Ye: Ag) = (8¢)® ®F C(H #Y).
So we have isomorphisms
J(Ye: M) = (8)®* @ J(H #Y) = (5)®* @ J(T #Y).
Comparing these expressions for Y, and Y., we see that
dim J(T #Y;Ap) =dim J(T #Y) xdim(8z),

which becomes the desired inequality (52) when we take Y to be the unmarked bifold Y.
This completes the proof of Proposition 6.13. a
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