Volume 23, issue 4 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 5, 2251–2782
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
 
Author index
To appear
 
Other MSP journals
Central limit theorem for spectral partial Bergman kernels

Steve Zelditch and Peng Zhou

Geometry & Topology 23 (2019) 1961–2004
Bibliography
1 R J Berman, Bergman kernels and equilibrium measures for line bundles over projective manifolds, Amer. J. Math. 131 (2009) 1485 MR2559862
2 P Bleher, B Shiffman, S Zelditch, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math. 142 (2000) 351 MR1794066
3 T Can, P J Forrester, G Téllez, P Wiegmann, Singular behavior at the edge of Laughlin states, Phys. Rev. B 89 (2014)
4 L Charles, Berezin–Toeplitz operators, a semi-classical approach, Comm. Math. Phys. 239 (2003) 1 MR1997113
5 I Daubechies, Coherent states and projective representation of the linear canonical transformations, J. Math. Phys. 21 (1980) 1377 MR574700
6 H Delin, Pointwise estimates for the weighted Bergman projection kernel in n, using a weighted L2 estimate for the equation, Ann. Inst. Fourier (Grenoble) 48 (1998) 967 MR1656004
7 M Dimassi, J Sjöstrand, Spectral asymptotics in the semi-classical limit, 268, Cambridge Univ. Press (1999) MR1735654
8 M R Douglas, S Klevtsov, Bergman kernel from path integral, Comm. Math. Phys. 293 (2010) 205 MR2563804
9 G B Folland, Harmonic analysis in phase space, 122, Princeton Univ. Press (1989) MR983366
10 L Hörmander, The analysis of linear partial differential operators, IV : Fourier integral operators, 275, Springer (1985) MR781537
11 N Lindholm, Sampling in weighted Lp spaces of entire functions in n and estimates of the Bergman kernel, J. Funct. Anal. 182 (2001) 390 MR1828799
12 Z Lu, B Shiffman, Asymptotic expansion of the off-diagonal Bergman kernel on compact Kähler manifolds, J. Geom. Anal. 25 (2015) 761 MR3319950
13 X Ma, G Marinescu, Holomorphic Morse inequalities and Bergman kernels, 254, Birkhäuser (2007) MR2339952
14 A Melin, J Sjöstrand, Fourier integral operators with complex-valued phase functions, from: "Fourier integral operators and partial differential equations" (editor J Chazarain), Lecture Notes in Math. 459, Springer (1975) 120 MR0431289
15 L Boutet de Monvel, V Guillemin, The spectral theory of Toeplitz operators, 99, Princeton Univ. Press (1981) MR620794
16 L Boutet de Monvel, J Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegő, from: "Journées : Équations aux dérivées partielles de Rennes", Astérisque 34–35, Soc. Math. France (1976) 123 MR0590106
17 R Paoletti, Scaling asymptotics for quantized Hamiltonian flows, Internat. J. Math. 23 (2012) MR2999047
18 R Paoletti, Local scaling asymptotics in phase space and time in Berezin–Toeplitz quantization, Internat. J. Math. 25 (2014) MR3225584
19 F T Pokorny, M Singer, Toric partial density functions and stability of toric varieties, Math. Ann. 358 (2014) 879 MR3175144
20 D Robert, Autour de l’approximation semi-classique, 68, Birkhäuser (1987) MR897108
21 J Ross, M Singer, Asymptotics of partial density functions for divisors, J. Geom. Anal. 27 (2017) 1803 MR3667411
22 Y A Rubinstein, S Zelditch, The Cauchy problem for the homogeneous Monge–Ampère equation, I : Toeplitz quantization, J. Differential Geom. 90 (2012) 303 MR2899878
23 B Shiffman, S Zelditch, Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds, J. Reine Angew. Math. 544 (2002) 181 MR1887895
24 E M Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, 43, Princeton Univ. Press (1993) MR1232192
25 X G Wen, Quantum field theory of many-body systems: from the origin of sound to an origin of light and electrons, Oxford Univ. Press (2004)
26 P Wiegmann, Nonlinear hydrodynamics and fractionally quantized solitons at the fractional quantum Hall edge, Phys. Rev. Lett. 108 (2012)
27 S Zelditch, Index and dynamics of quantized contact transformations, Ann. Inst. Fourier (Grenoble) 47 (1997) 305 MR1437187
28 S Zelditch, P Zhou, Interface asymptotics of partial Bergman kernels on S1–symmetric Kaehler manifolds, preprint (2016) arXiv:1604.06655
29 S Zelditch, P Zhou, Central limit theorem for toric manifolds, preprint (2018) arXiv:1802.08501
30 S Zelditch, P Zhou, Interface asymptotics of partial Bergman kernels around a critical level, preprint (2018) arXiv:1805.01804
31 S Zelditch, P Zhou, Pointwise Weyl law for partial bergman kernels, from: "Algebraic and analytic microlocal analysis" (editors M Hitrik, D Tamarkin, B Tsygan, S Zelditch), Springer Proc. Math. Stat. 269, Springer (2018) 589