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Hausdorff dimension of boundaries of
relatively hyperbolic groups

LEONID POTYAGAILO

WEN-YUAN YANG

We study the Hausdorff dimension of the Floyd and Bowditch boundaries of a
relatively hyperbolic group, and show that, for the Floyd metric and shortcut metrics,
they are both equal to a constant times the growth rate of the group.

In the proof, we study a special class of conical points called uniformly conical points
and establish that, in both boundaries, there exists a sequence of Alhfors regular
sets with dimension tending to the Hausdorff dimension and these sets consist of
uniformly conical points.
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1 Introduction

1.1 Main results

The main goal of the paper is to calculate the Hausdorff dimension of the limit set of a
geometrically finite action of a finitely generated group G on a compactum X. Every
action G ÕX we consider is a convergence action, ie the induced action on the space
of the distinct triples is discontinuous. We say that G ÕX is minimal if X coincides
with the limit set ƒXG (or ƒG if X is fixed) of the action, which is the set of the
accumulation points of every orbit Gx for x 2X.
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A point � 2 X is called conical if there exists a sequence of elements gn 2 G for
n� 1 such that the closure of f.gn�; gn�/ W n� 1g in X2 is disjoint from the diagonal
�.X2/ D f.x; x/ W x 2 Xg for any � 2 X n � . If, in addition, the set of elements
fgng

�1
nC1 W n� 1g is in a uniformly bounded distance from the identity, then � is called

uniformly conical. A quantitative version of an L–uniformly conical point for L� 0
is given in Definition 2.2.

The action of a subgroup H <G on X is parabolic if H fixes a point p 2X, called a
parabolic fixed point. The parabolic action is bounded parabolic if H acts properly
and cocompactly on X n fpg. We will always assume that the action of the whole
group G is nonparabolic, so there is no global fixed point.

A minimal nonparabolic action G ÕX is called geometrically finite (or relatively hy-
perbolic) if every point x 2X is either conical or bounded parabolic (see Definition 2.2).
The stabilizer of a parabolic point is a maximal parabolic subgroup of G. We denote
by P the set of maximal parabolic subgroups and call it the peripheral system for
the action. A group is called relatively hyperbolic with respect to P if G admits a
geometrically finite action on X with the peripheral system P. If the compactum X

on which G acts is metrizable then the action is geometrically finite if and only if the
induced action on the space of distinct pairs is cocompact (we say in this case that the
action on X is 2–cocompact); see V Gerasimov [12]. If the opposite is not stated, we
will always assume that a relatively hyperbolic group is finitely generated and so X is
metrizable.

Let G be a group with a finite generating set S. Assume that 1 … S and S D S�1 .
Consider the word metric dS on G. Denote B.n/D fg 2G W dS .1; g/� ng for n� 0.
The growth rate ıG;S of G relative to S is the limit

ıG;S D lim
n!1

log #B.n/
n

:

Recall that Floyd completion of a group G generated by S is the Cauchy completion
of the Cayley graph G .G; S/ equipped with the distance �o

�
obtained by rescaling

the length of an edge e 2 G .G; S/ by a scalar function �d.e;o/ for a fixed � 2 .0; 1/
and a basepoint o 2 G. The distance �o

�
is called the Floyd distance at o, and we

use the notation � if o and � are clear from the context (see Section 2.2 for more
details). We denote by G� and @�G the corresponding Floyd completion and its
boundary, respectively. By Gerasimov’s theorem [13, Proposition 3.4.6] for every
finitely generated relatively hyperbolic group the space @�G is the universal pullback
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Hausdorff dimension of boundaries of relatively hyperbolic groups 1781

space for every geometrically finite action of G ÕX in the sense that there exists an
equivariant continuous mapping F W @�G!X (called the Floyd map).

A Karlsson proved that the action of G on the compact space G� is a convergence
action [22]. Let @c

�
G (resp. @uc

�
G ) denote the set of all (resp. all uniformly) conical

points for the action. We denote by Hdim� the Hausdorff dimension with respect to
�D ��;o . The first main result of the paper is the following:

Theorem 1.1 Let G be a relatively hyperbolic group with a finite generating set S.
There exists a constant 0 < �0 < 1 such that

Hdim�.@�G/D Hdim�.@c
�G/D Hdim�.@uc

� G/D�
ıG;S

log�
for any � 2 Œ�0; 1/.

Remark For a hyperbolic group the Floyd metric is bilipschitz equivalent to the visual
metric on the Gromov boundary (with appropriate choices of parameters). Even though
this result seems to be a folklore, we have not found the corresponding reference in the
literature. We provide a proof of it in the appendix. As a consequence the result of
M Coornaert [5] for the hyperbolic groups is a partial case of Theorem 1.1.

Note that the action of G on the Floyd boundary @�G is not necessarily geometrically
finite, as is shown in Yang [38] for Dunwoody’s inaccessible groups. In particular, the
Floyd boundary is not in general homeomorphic to the limit set ƒG. So it is natural to
ask if an analogous result to Theorem 1.1 is true for ƒG.

Consider a minimal geometrically finite action of G on a compact X DƒG. It is shown
in Gerasimov and Potyagailo [14] that the Floyd metric � transferred by the Floyd map
F W @�G!ƒG is a metric on ƒG, called the shortcut metric, and is denoted by x� (see
Section 2.2).

Our next goal is to calculate the Hausdorff dimension Hdimx� of ƒG with respect to x� .
Denote by ƒucG the set of uniformly conical points of ƒG. The following theorem
provides the same conclusion for the shortcut metric as in the case of the Floyd metric:

Theorem 1.2 Let G be a group with a finite generating set S acting geometrically
finitely on a compactum X DƒG. Then there exists a constant 0 < �0 < 1 such that

Hdimx�.ƒG/D Hdimx�.ƒucG/D�
ıG;S

log�
for any � 2 Œ�0; 1/.
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The above theorems imply the following:

Corollary 1.3 For any shortcut metric x� , the Hausdorff dimension of the limit set of
every relatively hyperbolic action of a group G is constant and is equal to

Hdim�.@�G/D Hdimx�.ƒG/D�
ıG;S

log�

for any � 2 Œ�0; 1/, where �0 2 .0; 1/ is a fixed number.

We say that a metric space X is Ahlfors Q–regular for a constant Q>0 if there exists
a Borel measure � on X such that

�.B.x; r//� rQ

for any open ball B.x; r/ centered at x 2 X of radius r > 0, where the symbol �
denotes the bilipschitz equivalence between two quantities, C�1rQ � �.B.x; r//�
CrQ for a uniform constant C.

Our next main result shows that the Hausdorff dimension of the Floyd boundary and of
the limit set of a relatively hyperbolic action can be well approximated by a sequence
of Ahlfors regular subsets.

Theorem 1.4 Let G be a finitely generated relatively hyperbolic group with a finite
generating set S. Then there exists a sequence of Ahlfors Qi –regular subsets Xi in
@�G or ƒG such that Xi consists of uniformly conical points, 0 <Qi <�ıG;S=log�
and Qi !�ıG;S=log� as i !1.

The proof of Theorem 1.4 is based on the existence of an L–transitional geodesic tree
T D T .L/�G (Lemma 3.7) depending on a parameter L� 0. Every vertex of T is
a central point of a geodesic interval, whose size depends on L, and which belongs to a
neighborhood of a left coset (horosphere) gP where P 2P (see Section 2.4). We show
that the endpoints of such a tree are L–uniformly conical (Lemma 2.11). However, it
is not true in general that every uniformly conical point appears as an endpoint of an
L–transitional tree for a bounded L (see the discussion after Lemma 2.11). The proof
of Theorem 1.4 shows that the Hausdorff dimension of the endpoints of L–transitional
trees well approximate the Hausdorff dimension of the Floyd boundary (or the limit
set) if L!1. We recapitulate all these facts in the following:

Corollary 1.5 There exists a sequence Ti of Li –transitional trees such that Xi D @Ti
from the statement of Theorem 1.4 are Ahlfors Qi –regular spaces.
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In the fractal geometry, there is another useful notion of dimension called box-counting
dimension of metric spaces X (also known as Minkowski–Bouligand dimension). Let
N.�/ denote the maximal number of pairwise disjoint balls with radius � contained
in X. Then the box-counting dimension is defined, when it exists, as

Bdim.X/D lim
�!0

logN.�/
log 1=�

:

It is a general fact that the Hausdorff dimension is less than the box-counting dimension
(see Falconer [9]). Thus, Theorems 1.1 and 1.2 give a lower bound on the box-counting
dimension. In the following result, we prove that they are in fact equal:

Theorem 1.6 Under the assumption of Theorem 1.2,

Bdim�.@�G/D Bdimx�.ƒG/D�
ıG;S

log�

for any � 2 Œ�0; 1/, where �0 2 .0; 1/ is a fixed number.

Remark A similar conclusion was proved for the limit sets of geometrically finite
Kleinian groups by B Stratmann and M Urbański in [30]. Their proof makes use of
global measure formulas due to D Sullivan [33] (see Stratmann and S Velani [31] for
another proof). Although an Ahlfors Q–regular space has the box-counting dimension
equal to Q for any Q>0, Corollary 1.5 does not imply the upper bound for the whole
limit set (or the Floyd boundary).

Let us mention some problems related to our study.

For hyperbolic groups, Coornaert [5] proved that the Gromov boundary is Ahlfors
regular with respect to the visual metric; in fact, he showed that the class of Patterson–
Sullivan measures (PS measures in short) on the Gromov boundary coincides with
the Hausdorff measures of the right dimension, up to a bounded constant. In view of
Theorem 1.4 and Corollary 1.5, it is natural to ask whether the Floyd boundary (or the
limit set) is itself Ahlfors regular for the Floyd (or shortcut) metric.

Recall that a metric space is doubling if every ball of radius R can be covered by a
uniform number of balls of radius 1

2
R . J Mackay and A Sisto [23] proved that the

Bowditch boundary endowed with the visual metric is doubling if and only if the
peripheral subgroups are virtually nilpotent.

Starting from the action on the Cayley graph, the second author developed in [36] a
theory of Patterson–Sullivan measures on the Floyd and Bowditch boundaries (see also
a discussion in Section 1.2).
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Recall also that a measure � is called doubling if

�.B.x;R//� �
�
B
�
x; 1
2
R
��

for any x 2X and R > 0. It is clear that a metric space carrying a doubling measure
must be doubling. Although we suspect that PS measures are not Ahlfors-regular on
@�G and ƒG, we do expect that the following is true:

Question 1.7 The PS measures on the Floyd boundary and Bowditch boundary
equipped with the Floyd/shortcut metric are doubling.

A positive answer would provide a striking contrast with the visual metric, where the
nilpotency of the peripheral subgroups must be imposed.

We believe that the first step to attack the question is to provide an explicit description
of the metric balls with respect to the Floyd and shortcut metrics. For that purpose,
we conduct a detailed study of the geodesics with respect to the shortcut metric in the
completion G .G; S/[ƒG. This generalizes the result of Gerasimov and Potyagailo [15]
that the geodesics of the Floyd metrics are approximated by so-called tight paths.

Considering generalized tight paths (see Definition 5.10) we show that they approximate
the geodesics with respect to the shortcut metric. We refer to Proposition 5.12 for a
precise statement. The following result is an application of this proposition providing
useful approximation formulas for the Floyd and shortcut metrics on the essential parts
of the corresponding spaces.

Let @uc
L;oG and ƒuc

L;oG denote subsets of uniformly conical points in @uc
�
G and ƒucG

depending on the above parameter L (see Section 2.4 for the precise definitions).

Proposition 5.14 Under the assumptions of Theorem 1.1 there exists 0 < �0 < 1 such
that for any L> 0 and � 2 Œ�0; 1/ we have

��;o.�; �/�L �
n for all � ¤ � 2 @uc

L;oG

and
x��;o.�; �/�L �

n for all � ¤ � 2ƒuc
L;oG;

where nD d.o; Œ�; ��/.

1.2 Historical remarks and motivations

We provide here a short history of the study of the Hausdorff dimension of the limit set
of various convergence actions: Kleinian, hyperbolic and relatively hyperbolic.
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The identification of the Hausdorff dimension with the critical exponent of Poincaré
series was first established by S Patterson [25]. He introduced a probability measure
on the limit set of the convex–cocompact Fuchsian groups, and proved that up to a
constant it is equal to the Hausdorff measure. Sullivan generalized this result and
constructed such measures (called since then Patterson–Sullivan measures) on the limit
sets of geometrically finite Kleinian groups acting on the hyperbolic space Hn of
dimension n [32]. To finish the discussion of the case of Kleinian groups, we note the
result of C Bishop and P Jones, who proved in [1] that for a nonelementary Kleinian
group acting on the hyperbolic 3–space the Hausdorff dimension of the conical limit set
is equal to the critical exponent of the Poincaré series (compare with our Theorems 1.1
and 1.2). The latter results were generalized by F Paulin [26] to discrete groups of
isometries of Riemannian manifolds of strictly negative curvature.

Coornaert has generalized the results of Patterson and Sullivan to the class of word-
hyperbolic groups [5]. In particular he proved that the Hausdorff dimension of the
(Gromov) boundary of such a group with respect to the visual metric is equal to the
critical exponent of the Poincaré series.

A natural question arises whether Coornaert’s theorem holds for the class of rela-
tively hyperbolic groups. However, it was shown by M Burger and S Mozes that
if G is a closed subgroup of the isometry group of a CAT.�1/ space X and the
parabolic subgroups of G are not amenable then the critical exponent is infinite [3,
Proposition 1.6]. Such an example of a relatively hyperbolic group whose parabolic
subgroups contain noncyclic free subgroups was constructed by D Gaboriau and Paulin
[11, Example 1, page 189]. By [26] it then follows that the Hausdorff dimension of
the limit set for the action of such a group with respect to the visual metric is infinite
too. So in order to generalize Coornaert’s theorem to the class of relatively hyperbolic
groups one must replace the visual metric by a different one.

The Floyd metric obtained by a rescaling procedure of the word metric is a natural
candidate as it extends to the Floyd compactification of a group. Furthermore, by
a theorem of Gerasimov there exists an equivariant and continuous map from the
Floyd boundary @�G to the limit set of any relatively hyperbolic action of G [13].
In particular, if G is hyperbolic, the Floyd and Gromov boundaries are bilipschitz
equivalent for some exponential Floyd function.

M Bourdon has observed (private communication) that the Hausdorff dimension of the
Floyd boundary of a relatively hyperbolic group, calculated with respect to the Floyd
metric obtained with the exponential rescaling function �n with � 2 .0; 1/, is always
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bounded above by �ıG;S=log� (see Lemma 4.1). However, the question of whether it
admits a lower strictly positive bound which is equal to the same constant remained
open. This was our first motivation, giving rise to Theorem 1.1. Theorem 1.2 is then
obtained by transferring the Floyd metric from the Floyd boundary @�G to the limit
set ƒG of the geometrically finite action using the above Gerasimov map.

The lower bound estimate for the Hausdorff dimension in Theorems 1.1 and 1.2 follows
from Theorem 1.4, providing the approximation of the boundary points by Ahlfors
regular subsets Xi . These subsets entirely consist of uniformly conical points which
form the space of ends of subtrees of the Cayley graph of G. Note that the idea of such
an approximation by trees is quite standard in both settings: hyperbolic (see eg Gromov
[19, Section 6.1]) or Kleinian (see Bishop and Jones [1]). However, these constructions
of trees essentially use the hyperbolicity of the ambient space. The latter property is not
true for a relatively hyperbolic group: the Cayley graph is not in general hyperbolic and
the relative Cayley graph is hyperbolic but the action on the set of vertices is not proper.
The approximating trees constructed in the paper admit certain periodicity, allowing
us to obtain a Patterson–Sullivan measure � on Xi also having periodic properties.
Theorem 1.4 then shows that these measures converge to the Hausdorff measure on a
subset of uniformly conical points whose dimension coincides with the full Hausdorff
dimension of the ambient space.
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2 Preliminaries

2.1 Notation and conventions

Let .Y; d/ be a geodesic metric space. Given a subset X and a number r � 0, let
Nr.X/D fy 2 Y W d.y;X/ � rg. For x 2 Y let B.x; r/DNr.fxg/. Sometimes, we
will write Bd .x; r/ to emphasize the metric d .

Given a point y 2 Y and a closed subset X � Y , let ProjX .y/ be the set of points x
in X such that d.y; x/ D d.y;X/. The projection of a subset A � Y to X is then
ProjX .A/D

S
a2A ProjX .a/.

We always consider a rectifiable path ˛ in Y with arc-length parametrization. Denote
by `.˛/ the length of ˛ , and by ˛� and ˛C the initial and terminal points of ˛ ,
respectively. Let x; y 2 ˛ be two points which are given by parametrization. Then
denote by Œx; y�˛ the parametrized subpath of ˛ going from x to y . We also denote
by Œx; y� a choice of a geodesic in Y between x; y 2 Y .

A path ˛ is called a c–quasigeodesic for c � 1 if

`.ˇ/� c � d.ˇ�; ˇC/C c

for any rectifiable subpath ˇ of ˛ .

Let ˛ and ˇ be two paths in Y . Denote by ˛ �ˇ (or simply ˛ˇ ) the concatenated path
provided that ˛C D ˇ� .

A path ˛ going from ˛� to ˛C induces a first-to-last order as follows. Given a
property (P), a point z on ˛ is called the first point satisfying (P) if z is among the
points w on ˛ with the property (P) such that `.Œ˛�; w�˛/ is minimal. The last point
satisfying (P) is defined in a similar way (replacing Œ˛�; w�˛ by Œw; ˛C�˛ ).

Let f and g be real-valued functions with domain understood in the context. Then
f �ci g means that there is a constant C > 0 depending on parameters ci such that
f < Cg , and �ci is defined similarly. We use the symbol �ci if both inequalities are
true. For simplicity, we omit ci if they are some universal constants.

Denote by k � k the diameter of a set in a metric space. Recall the notion of Hausdorff
measures in a metric space.
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Definition 2.1 Let X be a subset in a metric space .Y; d/. Given numbers �; s � 0,
define

Hs�.X/D inf
�X

kUik
s
WX �

1[
iD1

Ui ; Ui � Y; kUik � �

�
:

Define Hs.X/ D lim�!0Hs�.X/, the s–dimensional Hausdorff measure of X. The
Hausdorff dimension of X is defined as

Hdimd .X/D inffs � 0 WHs.X/D 0g D supfs � 0 WHs.X/D1g:

By convention, set inf∅D supfs 2R�0g D1. Thus, HdimdX 2 Œ0;1�. Note that
Hs.X/ may be zero for s D HdimdX.

2.2 Floyd boundary and relative hyperbolicity

Let G be a group with a finite generating set S. Assume that 1 … S and S D S�1 . Let
G .G; S/ be the Cayley graph of G with respect to S. Denote by dS (or simply by d
if there is no ambiguity) the word metric on G .G; S/.

Fix 0 < � < 1 and a basepoint o 2G. We define a Floyd metric ��;o as follows. The
Floyd length l�;o.e/ of an edge e in G .G; S/ is �n , where nD d.o; e/. The Floyd
length l�;o.
/ of a path 
 is the sum of Floyd lengths of its edges. This induces a
length metric ��;o on G .G; S/, which is the infimum of Floyd lengths of all possible
paths between two points.

Let G� be the Cauchy completion of G with respect to ��;o . The complement @�G
of G .G; S/ in G� is called the Floyd boundary of G. The @�G is called nontrivial if
#@�G > 2. We refer the reader to [10; 13; 14; 22] for more details.

By construction, the following equivariant property holds:

(1) ��;o.x; y/D ��;go.gx; gy/

for any g 2G. The Floyd metrics with different basepoints are related by a bilipschitz
inequality,

(2) �d.o;o
0/
�
��;o.x; y/

��;o0.x; y/
� ��d.o;o

0/

for any two points o; o0 2G.

We now recapitulate several standard definitions concerning geometrically finite con-
vergence actions which will be often used later.
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Definition 2.2 Let X be a compact metrizable space on which G admits a minimal
and nontrivial convergence action by homeomorphisms.

(1) A point � 2X is called conical if there exists a sequence of elements gn 2G
for n� 1 such that the closure of fgn.�; �/ W n� 1g in X2 is disjoint from the
diagonal �.X2/ D f.x; x/ W x 2 Xg for any � 2 X n � . If, in addition, there
exists L> 0 such that d.1; gng�1nC1/�L, then � is called L–uniformly conical
(or uniformly conical if the constant L is not important).

(2) A point � 2 X is called bounded parabolic if the stabilizer G� of � in G is
infinite, and acts properly and cocompactly on X n� . The subgroup G� is called
maximal parabolic.

(3) A convergence group action of G on X is called geometrically finite if every
limit point � 2X is either a conical point or a bounded parabolic point.

As was mentioned in the introduction, a pair .G;P/ is relatively hyperbolic if G
admits a geometrically finite group action on a compact metrizable space X such that
P coincides with the collection of maximal parabolic subgroups (peripheral system).
Using the relative Cayley graph one can construct the limit set ƒG of the action
with the boundary of this graph [2, Section 8]. We will often call the Bowditch
boundary the limit set ƒG of a geometrically finite action. Bowditch proved that if G
is finitely generated then ƒG up to an equivariant homeomorphism depends only on
the pair .G;P/ [2, Theorem 9.4]. We also note the same result still holds in general
case when G is not finitely generated [17, Corollary 6.1.e].

The following result establishes a universal pullback property of the Floyd boundary:

Proposition 2.3 [13, Corollary 1.5] Suppose .G;P/ is a relatively hyperbolic pair.
Then there exists 0 < �0 < 1 such that for any � 2 Œ�0; 1/ there exists a continuous
G–equivariant surjective map, (called the Floyd map),

F�W @�G!ƒG:

Let Gp be the stabilizer of a parabolic point p2X for the action GÕXDƒG. Denote
by ƒ@�G.Gp/ and @�Gp the limit set of Gp for its action on the Floyd boundary @�G
of G and the Floyd boundary of Gp , respectively. The following result precisely
describes the kernel of the Floyd map:

Geometry & Topology, Volume 23 (2019)
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Proposition 2.4 [14, Theorem A] Under the assumption of Proposition 2.3,

F�1� .p/Dƒ@�G.Gp/

for any parabolic point p in ƒG. Moreover, F�1
�
.p/ consists of one point if p is a

conical point.

Remark The above statement admits a stronger form; namely, Corollary 7.7 of [15]
proves that if in addition the Floyd rescaling function satisfies

f .n/

f .2n/
� const

(eg if f D 1=P where P is a polynomial of degree at least 2) then

F�1� .p/D @�Gp:

We equip ƒG with a shortcut metric as follows: Let

! D f.�; �/ 2 @�G � @�G W F�.�/D F�.�/g

be the relation on @�G given by the Floyd map F�W @�G!ƒG. For any �; � 2G� ,
define a pseudodistance z��;o.�; �/ on G� to be

(3) z��;o.�; �/D inf
n�1

� nX
iD1

��;o.�i ; �i / W .�i ; �iC1/ 2 !; 1� i < n; �1 D �; �n D �

�
:

We have

(4) z��;o.�; �/� ��;o.�; �/ for all �; � 2G�;

and it is a maximal pseudometric on G� �G� satisfying this inequality and vanishing
on ! . It is shown in [13, Proposition 8.3.1] that the space �ƒG WDƒGtG .G; S/ (called
the attractor sum) is compact. The action G Õ �ƒG is convergence and such that its
restriction on G .G; S/ is the identity and on ƒG it coincides with the initial action.
Furthermore, the Floyd map F� extends to an equivariant continuous map (denoted by
the same symbol),

F�W G�! �ƒG;
such that F�jG� id. Pushing forward z��;o with F� , we obtain a shortcut pseudometric
on �ƒG ,

(5) x��;o.x; y/D z��;o.F
�1
� .x/; F�1� .y// for all x; y 2 �ƒG;
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which turns out to be a real metric on �ƒG (see the remark after Lemma 3.2 in [14] for
details). By the above construction, one can easily see that the shortcut metrics x��;o
satisfy the properties (1) and (2) too.

Convention 2.5 Since from now on we will always suppose that � 2 Œ�0; 1/, where
�0 is given by Proposition 2.3. We omit the index � in l�;o; ��;o and x��;o if � is
given in the context.

Finally, we recall the following visibility lemma:

Lemma 2.6 (visibility lemma [22, Lemma 1]) There is a function �W R�0!R�0
such that for any v 2 G and any geodesic 
 in G .G; S/, we have if lv.
/ � � , then
d.v; 
/� �.�/.

Remark The same result is valid for quasigeodesics or more general ‚–geodesics
where ‚W N!G is a polynomial distortion function [14, Lemma 5.1].

2.3 Floyd geodesics

In this subsection, we provide a few basic tools to study Floyd geodesics. We will either
present a complete proof or give an exact reference to a statement which is claimed.
The results obtained below will be used further on in the paper.

We say that a path ˛W Z! G .G; S/ ends at � 2 @�G if � D limn!1 ˛.n/. Write in
this case ˛C D � , and ˛� D limn!�1 ˛.n/. It follows from Lemma 2.6 that every
geodesic ray ends at a point of the Floyd boundary. Moreover, G� is a geodesic metric
space and is a visual boundary: any two distinct points �; � 2G� are connected by a
bi-infinite word geodesic belonging to the Cayley graph [14, Proposition 2.4].

The following lemma states that word geodesic rays are also Floyd and shortcut
geodesics:

Lemma 2.7 Let o 2 G be a basepoint and 
 be a geodesic ray with 
� D o. Then,
for any v 2 
 , we have

l�;o.Œv; x�
 /D x��;o.v; y/

and
l�;o.Œv; x�
 /D ��;o.v; x/;

where x D 
C 2 @�G and y D F.x/ 2 ƒG, where F is the Floyd map given in
Proposition 2.3.
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Proof We only prove the result for the shortcut metric. In the case of the Floyd metric
a straightforward calculation shows that the geodesic ray 
 as well as every subray is
also a ��;o–Floyd geodesic.

By definition (3) of a shortcut metric, for any n 2N , there exist pairs .�i ; �iC1/ 2 !
for 1� i < m such that

x��;o.v; y/�
X

1�i�m

��;o.�i ; �i /�
1

2n
;

where �1 D v and �m D x . Every geodesic ray Œo; �1� is also a Floyd geodesic so we
can choose z�1 2 Œo; �1� such that ��;o.z�1; �1/� 1

2n
. It follows that

x��;o.v; y/� ��;o.v; z�1/�
1

n
:

Choose w 2 Œv; y�
 such that d.v;w/D d.v; z�1/D n. Then

(6) ��;o.v; z�1/� ��;o.v; w/:

Indeed, connect v and z�1 by a curve ˛ . There exists a point u D ˛.t0/ such that
the subcurve ˛0 D Œv; u�˛ contains exactly n edges. Since 
 is a word geodesic, for
the kth edge e 2 ˛0 and the kth edge e1 2 Œv; w�
 we have l�;o.e/ � l�;o.e1/ for
k 2 f0; : : : ; ng. Then l�;o.˛/� l�;o.˛

0/� ��;o.v; w/. So (6) follows.

We have

x��;o.v; y/� ��;o.v; z�1/�
1

n
� ��;o.v; w/�

1

n
� l�;o.Œv; x�
 /�

�nCd.o;v/

1��
�
1

n
:

Passing to the limit, we obtain

x��;o.v; y/� l�;o.Œv; x�
 /D ��;o.v; x/:

Since ��;o.v; x/� x��;o.v; y/, we conclude that l�;o.Œv; 
C�
 /D x��;o.v; 
C/.
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2.4 Transitional paths and uniformly conical points

In this subsection we shall give a description of uniformly conical points in ƒG using
the geometry of a Cayley graph.

Let .G;P/ be a relatively hyperbolic pair. Let P D fgP W g 2G; P 2 zPg, where zP is
a maximal set of nonconjugate subgroups in P. Following [14] we call the elements
of P horospheres.

Definition 2.8 [21, Definition 8.9] Fix �; R > 0. Let 
 be a path in G .G; S/ and
v 2 
 a vertex. Given X 2 P, we say that v is .�; R/–deep in X if


 \B.v;R/�N�.X/:

If v is not .�; R/–deep in any X 2 P, then v is called an .�; R/–transition point of 
 .

The following lemma together with Lemma 2.6 will be invoked several times:

Lemma 2.9 (1) For any c � 1 and R > 0, there exist � D �.c/; � D �.�; R/ > 0
such that for any c–quasigeodesic 
 and an .�; R/–transitional point v in 
 , we
have

�v.
�; 
C/� x�v.
�; 
C/ > �:

(2) For any c � 1 and �; � > 0 there exists R D R.c; �; �/ > 0 such that for any
c–quasigeodesic 
 and a point v 2 
 with x�v.
�; 
C/ > � , we have that v is an
.�; R/–transitional point of 
 .

Proof (2) Suppose not; then there are c�1 and �; �>0 such that for all n, there exist
c–quasigeodesics 
n and vn2
n such that vn is .�; n/–deep and x�vn..
n/�; .
n/C/>�.
Up to a normalization we may assume that vn D v D 
n.0/. Then 
n..�n; n// �
N�.Xn/ for Xn 2 P. By compactness of uniform quasigeodesics in the Tychonoff
topology, we obtain a limit horocycle ˛ such that ˛˙ D q and every part of ˛ belongs
to 
n for sufficiently large n (see [16, Proposition 5.9] for more details). Then the
diameter of @.
n\˛/ with respect to the distance x�v tends to 0. As 
n are geodesics
whose interior points are all in the graph we must have x�v..
n/�; .
n/C/! 0, which
is a contradiction.

(1) By [14, Corollary 3.9] there exists a constant � D �.c/ such that for every X 2 P

any c–quasigeodesic with endpoints in X lies in N�.X/ (all horospheres are uniformly
quasiconvex). For the constants c and � D �.c/ the statement now follows from
[16, Corollary 5.10], following a similar argument as above.
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We introduce a special class of paths, which plays an important role in the present
study.

Definition 2.10 Given �; R;L > 0, a path 
 in G .G; S/ is called .�; R;L/–transi-
tional (or simply transitional if the choice of the constants is not important) if for any
point v 2 
 , there exists an .�; R/–transitional point w 2 
 such that `.Œv; w�
 /� L.

We say that an infinite path 
 in G .G; S/ is eventually .�; R;L/–transitional if there
exists v 2 
 such that Œv; 
C/
 is .�; R;L/–transitional.

We fix the constant � D �.1/ > 0 given by Lemma 2.9(1). The following lemma
characterizes uniformly conical points as the endpoints of transitional geodesic rays:

Lemma 2.11 Let .G;P/ be a relatively hyperbolic pair. There exists R>0 for which
the following property is true:

A point � 2ƒG is L–uniformly conical for some L> 0 if and only if some (or any)
geodesic ray ending at � is eventually an .�; R;L/–transitional geodesic ray.

Proof (D)) Since G acts geometrically finitely on ƒG, it follows from Theorem 1C
of [34] that there exists ı > 0 such that for any conical point � 2ƒG, there exists a
sequence .gn/�G such that for all points �2 .ƒG[G/n� one has x�1.gn�; gn�/> ı .
Let r0 WD �

�
1
2
ı
�
, where � is given by Lemma 2.6.

Assume that � is an L–uniformly conical point for some L > 0. Let 
 D Œ
�; �/
be a geodesic ray ending at � and .gn/ � G be the above sequence taken for the
pair .
�; �/. Then x�1.gn�; gn
�/ D x�g�1n .�; 
�/ >

1
2
ı and d.1; gng�1nC1/ � L for

all n � 1. By Lemma 2.6, 
 \B.g�1n ; r0/ ¤ ∅ for n � 1. Let vn 2 
 be such that
d.vn; g

�1
n /< r0 . By the inequality (2), x�vn.
�; �/> � , where �D�r0 � 1

2
ı is a uniform

constant. Moreover, d.vn; vnC1/� LC 2r0 .

Hence, Lemma 2.9(2) gives rise to a uniform constant R for which vn are all .�; R/–
transitional for n� 1.

( D)) Let 
 be an .�; R;L/–transitional geodesic ray at � D 
C , and vn for n� 0 a
sequence of .�; R/–transitional points in 
 such that d.vn; vnC1/ � L and vn! � .
Then x�vn.
�; �/� � , where � > 0 is given by Lemma 2.9(1). Write gn WD v�1n . Then
x�1.gn
�; gn�/�� . In other words, f.gn
�; gn�/g lies outside a uniform neighborhood
of the diagonal �.ƒG2/.

Since the action is convergence, the point � is conical. As d.1; gng�1nC1/ � L, it is
uniformly conical.
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Remarks (1) The proof of the “ D)” direction equally applies to a conical point
in the Floyd boundary @�G without assuming the geometrical finiteness of the
action.

(2) The existence of the uniform constant ı>0 which measures the size of a compact
fundamental set for the cocompact action of G on the set of distinct pairs was
only used to prove the implication “D)” (in order to get a uniform constant R).
The existence of such a constant implies that the action of G on a metrizable
space ƒG is 2–cocompact; the converse statement that a 2–cocompact and
nonelementary convergence action is geometrically finite is shown in [12], and
its proof does not request the metrizability of the space X DƒG.

(3) As a corollary we see that for each L> 0 the set of L–uniformly conical points
is G–invariant, although this is not clear at all from the dynamical definition.

Corollary 2.12 Let � D �.1/ > 0 given by Lemma 2.9(1). For any R;L > 0, an
.�; R;L/–transitional geodesic ray ends at a uniformly conical point � 2 @�G.

As another consequence of the proof, we have the following result:

Corollary 2.13 Let G ÕX be a geometrically finite action. Then, for any uniformly
conical point � 2X, there exists a constant L > 0 with the following property: there is
a sequence of elements gn 2G such that for any geodesic 
 ending at � , we have

Œv; �Œ
�
[
n�1

B.gn; L/

for some v 2 
 .

Remark In the setting of Kleinian groups, this property is used to define uniformly
conical points; see [29]. The corollary also holds for “quasigeodesics” instead of
“geodesics”.

We set up some notation for future discussions about uniformly conical points.

Let � and R be given by Lemma 2.11. Denote by ƒuc
LG the set of uniformly conical

points � 2ƒG such that there exists an .�; R;L/–transitional geodesic ray 
 ending
at � . It is obvious that ƒuc

LG is a G–invariant set.

Fixing a basepoint o 2 G, denote by ƒuc
L;oG the set of all uniformly conical points

� 2ƒuc
LG where a geodesic 
 between o and � is .�; R;L/–transitional.
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Clearly, G �ƒuc
L;oG D ƒ

uc
LG. Thus, the set ƒuc

L;oG can be thought as a fundamental
domain for the action of G on the set ƒuc

LG.

Similarly, we define the set of uniformly conical points @uc
L;oG and @uc

LG on the Floyd
boundary @�G. By Proposition 2.4, there exists a one-to-one correspondence between
ƒuc
LG and @uc

LG.

2.5 Contracting property

Recall that k � k denotes the diameter of a set in a metric space.

Definition 2.14 For c � 1, a subset X is called c–contracting in a metric space Y if
there exist �c ;Dc > 0 such that

(7) kProjX .
/k<Dc

for any c–quasigeodesic 
 in Y with N�c .X/\ 
 D∅.

A collection of c–contracting subsets is referred to as a c–contracting system if �c
and Dc depend only on c .

A system X has a bounded intersection property if for any � > 0 there exists R D
R.�/ > 0 such that

kN�.X/\N�.X
0/k<R

for any two distinct X;X 0 2X.

In what follows, our discussion applies to the Cayley graph of a relatively hyperbolic
group .G;P/ with a finite generating set S. In particular, we are interested in the
contracting system with bounded intersection given by the following lemma:

Lemma 2.15 [16] Let P D fgP W g 2 G;P 2 zPg, where zP is a complete set of
conjugacy representatives in P. There exists RW R>0!R>0 such that the collection
P is a c–contracting system with the R–bounded intersection for each c � 1.

Proof The contracting property of the system P is proven in [16, Proposition 8.5],
and the bounded intersection is in [16, Proposition 5.6]; the last property can be also
deduced from [8, Theorem 4.1].

The following lemma will be often used further on:
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Lemma 2.16 Let P be the collection of horospheres in Lemma 2.15. For any c � 1,
there exists �c D �.c/ > 0 such that for every c–quasigeodesic 
 in G .G; S/ and
� � �c we have:

For each R � 0, there exists LD L.�;R/ > 0 such that the condition

maxfd.
�; X/; d.
C; X/g< �

for some X 2 P implies that every point z 2 
 satisfying d.z; 
�/; d.z; 
C/ > L is
.�c ; R/–deep in X.

Proof The result is proved in [36, Lemma 2.8] for geodesics. We provide below a
proof to make precise the choice of the constants.

By Lemma 2.15, let �c and Dc be the constants such that for any X 2 P, for any
c–quasigeodesic outside N�c .X/, the diameter of its projection to X is bounded above
by Dc .

Set �c WD c.2�c CDc/C c . If a c–quasigeodesic has two endpoints in N�c .X/ for
X 2 P, then it lies in N�c .X/. Indeed, if x; y 2 
 satisfy

maxfd.x;X/; d.y;X/g � �c

and .x; y/
 \N�c .X/D∅, then by Lemma 2.15, d.x; y/ � 2�c CDc . Since 
 is
c–quasigeodesic, we have `.Œx; y�
 /� �c and Œx; y�
 �N�c .X/.

Set LD c.2�CDc/C cCR for � � �c . We first claim 
 \N�c .X/¤∅. Otherwise,
we obtain, using projection,

2L� `.
/� cd.
�; 
C/C c � c.2�CDc/C c:

This gives a contradiction by the choice of L. Thus, there exist the entry point x and
the exit point y of 
 in N�c .X/.

By the same argument one obtains

maxf`.Œ
�; x�
 /; `.Œy; 
C�
 /g � c.�C�c CDc/C c < L:

Since minfd.z; 
�/; d.z; 
C/g>L, we have z 2 Œx; y�
 . Then we obtain

minfd.x; z/; d.z; y/g � L� c.�C�c CDc/� c > R:

By definition of �c , we have Œx; z�
 �N�c .X/ and Œz; y�
 �N�c .X/. So z is .�c ; R/–
deep in X.
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Remark By the proof, we actually have �c > �c , where �c is uniform for every
X 2 P by Lemma 2.15.

In what follows, we take constants � and R as in Convention 2.17.

Convention 2.17 (about �c ; Rc ) When talking about .�c ; Rc ; L/–transitional c–
quasigeodesics, or .�c ; Rc/–transitional and .�c ; Rc/–deep points in a c–quasigeodesic,
we assume without explicitly specifying the quantifiers

(1) �c D �.c/>�c to satisfy Lemmas 2.9 and 2.16, where �c is given by Definition
2.14, and

(2) Rc >R.�/, where R is given by Lemma 2.15.

Besides the peripheral cosets (horospheres), transitional quasigeodesics provide another
source of contracting subsets.

Lemma 2.18 (transitional geodesic is contracting) For any numbers c; L� 0, every
.�c ; Rc ; L/–transitional c–quasigeodesic 
 is c–contracting.

Proof The argument we present below works for a general .�c ; Rc ; L/ c–quasi-
geodesic. For notational simplicity we consider only the case when c D 1 and drop the
index 1 in �1 and R1 correspondingly.

Let � D �.�; R/ given by Lemma 2.9 and � given by Lemma 2.6. By Lemma 2.6,
there exists D0 D �

�
1
4
�
�
> 0 such that for any v 2G, a geodesic segment outside the

ball B.v;D0/ has lv–Floyd length less than 1
4
� .

Let DD2.LC2D0C1/ and �D�
�
1
2
�
�
. Let ˇ be a geodesic such that ˇ\N�.
/D∅.

Let x; y 2 Proj
 .ˇ/ be such that d.x; y/D kProj
 .ˇ/k. We are going to prove that
d.x; y/�D. Suppose by contradiction that d.x; y/ > D.

Assume that x and y are projection points of zx; zy 2 ˇ , respectively. Observe that

(8) 2d.z; Œx; zx�/� d.z; x/; 2d.z; Œy; zy�/� d.z; y/

for any z2 Œx; y�
 . We only prove the first inequality; the second one is completely anal-
ogous. Let m2 Œx; zx� such that d.z;m/D d.z; Œx; zx�/. Note that d.m; z/Cd.m; zx/�
d.x; zx/ by the shortest point property. Since d.x; zx/D d.x;m/Cd.m; zx/, we obtain
d.m; z/� d.x;m/. Then d.z; x/� d.z;m/C d.m; x/� 2d.z;m/, implying (8).
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Since d.x; y/ > D, there exists z 2 Œx; y�
 such that

minfd.z; x/; d.z; y/g> 1
2
D D LC 2D0C 1:

Since 
 is .�; R;L/–transitional, one of the intervals Œx; z�
 or Œz; y�
 contains an
.�; R/–transitional point v such that minfd.x; v/; d.y; v/g > 2D0 . Hence, by (8),
minfd.v; Œx; zx�/; d.v; Œy; zy�/g>D0 . By the choice of D0 D �

�
1
4
�
�
, we have

maxf�v.x; zx/; �v.y; zy/g< 1
4
�:

On the other hand, v is .�; R/–transitional, so �v.x; y/ � � by Lemma 2.9. Hence,
�v.zx; zy/ >

1
2
� and thus d.v; ˇ/� �, which is impossible.

For a c–quasigeodesic, we denote by �cD�.c/ and RcDR.�c/ any numbers satisfying
Convention 2.17 (in particular, �1 and R1 correspond to geodesics). In the following
proposition we will establish the “thinness” of a triangle whose two sides are transitional
geodesics.

Proposition 2.19 (transitional triangle is thin) For any L; c > 0 there exist constants
D DD.c/; M DM.L; c/; L0 D L0.L; c/ > 0 with the following properties:

Let ˛1 and ˛2 be .�1; R1; L/–transitional geodesic rays issuing at o and ending at
� ¤ �2ƒG, respectively. Then, for any c–quasigeodesic 
 with 
� 2 ˛1 and 
C 2 ˛2 ,
the following holds:

(1) 
 is .�c ; Rc ; L0/–transitional.

(2) If the length of 
 is sufficiently large then there exists an .�c ; Rc/–transitional
point z 2 
 such that d.z; ˛1[˛2/�D and d.z; ˛i /�M for i D 1; 2.

(3) Let d.o; Œ�; ��/ denote the distance from o to a geodesic between � and �. If
minfd.
�; o/; d.
C; o/g � 0. Then jd.o; Œ�; ��/� d.o; 
/j �M.
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Remark In (2) D is a uniform constant not depending on L; this will play a crucial
role in establishing Proposition 5.14 below.

The statement (2) could be deduced from a more general statement, Proposition 4.6(3)
of [28]. We provide a proof in our concrete setting for completeness and to illustrate
our methods.

Proof Let � D �.�c ; Rc/ be given by Lemma 2.9 and D D �
�
1
2
�
�
, where � is given

by Lemma 2.6. The constant L0 will be computed below.

(1) Given a point x in 
 , assume that x is .�c ; Rc/–deep in some X 2 P. Let x�
and xC be the entry and exit points of 
 in N�c .X/, respectively.

Observe first that x� and xC are .�c ; Rc/–transitional in 
 . Indeed, if not, there exists
Y 2 P such that x� is .�c ; Rc/–deep in Y . Then Y ¤X by the choice of x� as the
entry point of 
 in N�c .X/. Since d.x; x�/ � Rc , we have kN�c .X/\N�c .Y /k �
Rc >R.�c/ by Convention 2.17. This contradicts Lemma 2.15.

To find a constant L0 we will find the upper bound on L0 for which the opposite
inequality

(9) minf`.Œx; x��
 /; `.Œx; xC�
 /g>L0

is not valid. So suppose (9) is true; then `.Œx�; xC�
 / � 2L0. Since x� and xC are
.�c ; Rc/–transitional, by Lemma 2.9 we have

minf�x�.
�; 
C/; �xC.
�; 
C/g> �:

By the triangle inequality,

maxf�x�.
�; o/; �x�.o; 
C/g �
1
2
�;

and the same for �xC . Then maxfd.x�; ˛1[˛2/; d.xC; ˛1[˛2/g �DD �
�
1
2
�
�
. For

concreteness consider the case that

(10) d.x�; ˛1/; d.xC; ˛2/�DI

the other cases are similar and even easier.

Project x� and xC to x0�; x
0
C
2X such that d.x�; x0�/; d.xC; x

0
C
/� �c . So

d.x0�; ˛1/; d.x
0
C; ˛2/� �c CD

and NDC�c .X/\˛i ¤∅ for i D 1; 2.
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Let w 2X be a projection point of o to X. We claim that

(11) d.w; ˛i /�D2 WDmaxfDC �c CD1; �1CD1g for i D 1; 2;

where �1;D1 > 0 are given for a 1–contracting X 2 P such that (7) holds.

Indeed, if, first, o 2N�1.X/ then there is nothing to prove. If not, there are two more
cases; if ˛i \N�1.X/ D ∅, then by the contracting property we have d.w; ˛i / �
DC�cCD1 . If ˛i\N�1.X/¤∅ then the projection on X of the maximal connected
subcurve of ˛i , situated outside of N�1.X/ and containing o, gives d.w; ˛i / �
�1CD1 . So (11) follows.

Since �c CDCD2 > �1 , we consider the function L0 D L.�c CDCD2; R1CL/
coming from Lemma 2.16. Set

(12) L0 D 2c.D2CDCL0C 2�c/C c
2:

Since 
 is a c–quasigeodesic, we have

d.x0�; x
0
C/�

`.Œx�; xC�
 /

c
� c � 2�c �

2L0

c
� c � 2�c � 4.�c CDCD2CL0/:

Since maxfd.x0�; ˛1/; d.x
0
C
; ˛2/g � �c CD, we obtain, from (11),

k˛1\N�cCDCD2.X/k � d.x
0
�; w/; k˛2\N�cCDCD2.X/k � d.x

0
C; w/:

We have d.x0�; w/C d.x
0
C
; w/� d.x0�; x

0
C
/� 4.�c CDCD2CL0/. Thus,

max
iD1;2

k˛i \N�cCDCD2.X/k � 2.�c CDCD2CL0/:

Hence, ˛i contains a subcurve of length at least 2L0 such that its endpoints lie in
N�cCDCD2.X/. By the choice of L0 and Lemma 2.16, ˛i contains an .�1; R1CL/–
deep point in X. This gives a contradiction, as ˛i is .�1; R1; L/–transitional. So for
the value of L0 chosen in (12) the inequality (9) is not valid. The statement (1) is
proved.

(2) By the statement (1), 
 is .�c ; Rc ; L0/–transitional. Hence, Lemma 2.18 implies
that 
 is contracting. By the projection argument (used to prove (11)) we have a
constant D3 DD3.�c ; Rc ; L0/ > 0 such that for any projection point v of o to 
 we
have d.v; ˛i /�D3 for i D 1; 2.

Remark We need a new constant D3 (and not D2 used above) since we project now
on 
 and not on a horosphere.

Geometry & Topology, Volume 23 (2019)



1802 Leonid Potyagailo and Wen-yuan Yang

Recall that D D �
�
1
2
�
�
. By Lemma 2.6, for any z 2 G, a geodesic segment outside

B.z;D/ has lz –Floyd length less than 1
2
� .

The curve 
 is quasigeodesic and its length is sufficiently large. So, by continuity of
the distance function d.v; x/ for x 2 
 we find a point z0 2 
 such that DCD3CL0�
d.v; z0/�DCD3CL

0C 1. Since 
 is .�c ; Rc ; L0/–transitional, by Definition 2.10
there exists an .�c ; Rc/–transitional point z 2 
 for which d.z0; z/� l.Œz; z0�
 /� L0.
We obtain

(13) DCD3 � d.v; z/�DCD3C 2L
0
C 1:

Then
d.z; ˛i /� d.z; v/C d.v; ˛i /�M

with M D 2L0C 2D3CDC 1 for i D 1; 2.

To prove the first claim of (2) assume for definiteness that z 2 Œv; 
C�. Lemma 2.9
yields �z.v; 
C/� � .

Let z2 2 ˛2 be such that d.v; z2/�D3 . We have d.z; Œv; z2�/� d.z; v/�d.z2; v/�
DCD3�D3 DD. By Lemma 2.6, �z.v; z2/ < 1

2
� and so

�z.z2; 
C/� �z.v; 
C/� �z.v; z2/�
1
2
�:

Lemma 2.6 gives
d.z; ˛2/�D:

The statement (2) is proved.

(3) Since � and � are distinct, by Lemma 2.6 there exist n0Dn0.�; �/; rD r.�; �/>0
such that if

minfd.
�; o/; d.
C; o/g> n0;

then d.o; 
/� r . In the proof of (2), we projected o to a point v in 
 , and found an
.�c ; Rc/–transitional point z 2 
 such that d.v; z/�M.

Since d.o; z/�M C r (and these constants do not depend on 
 ) up to increasing n0 ,
by Lemma 2.6 we have

maxfx�z.�; 
�/; x�z.�; 
C/g � 1
4
�:

The point z 2 
 is .�c ; Rc/–transitional; thus, x�z.
�; 
C/� � , and so x�z.�; �/� 1
2
� .

Consequently, d.z; Œ�; ��/�D, which yields

d.o; Œ�; ��/� d.o; z/Cd.z; Œ�; ��/� d.o; 
/CM Cd.z; Œ�; ��/� d.o; 
/CM CD:
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The statement (2) holds for the geodesic Œ�; �� as well, so the above argument works for
Œ�; �� and an .�c ; Rc/–transitional point z 2 Œ�; �� correspondingly. As a consequence,
d.z; 
/�D. Thus, d.o; 
/� d.o; z/C d.z; 
/� d.o; Œ�; ��/CM CD.

Since D is a uniform constant not depending on L, we put M WDM CD. Then the
statements of (2) and (3) are both valid for the same constant M. The proposition is
proved.

Claim (3) of the proposition and Lemma 2.11 imply:

Corollary 2.20 Suppose .G;P/ is a relatively hyperbolic pair. Then, for any c � 1
and L> 0, there exists M DM.c;L/ such that for any �; � 2ƒuc

L;oG or �; � 2 @uc
L;oG,

we have jd.o; Œ�; ��/�d.o; 
/j �M, where 
 is a c–quasigeodesic with the endpoints
on the corresponding geodesic rays converging to � and �.

3 Patterson–Sullivan measures on ends of a geodesic tree

In this section, we shall construct an iterated transitional tree having several nice
properties which will allow us to carry out the Patterson construction on this tree. The
space of ends of the tree equipped with the Patterson–Sullivan measure will give rise
to an Ahlfors regular subset of the boundary.

3.1 Iterated transitional trees

Let .G;P/ be a relatively hyperbolic pair and G .G; S/ the Cayley graph of G with
respect to S. The existence of large transitional trees is established in [36, Theorem 5.9].
The main difference of the construction below is that these trees will be equipped with
certain periodicity. For this reason we call them iterated transitional trees. We start by
recalling several results from [36].

Definition 3.1 (partial cone) For �; R� 0, the partial cone ��;R.g/ at g 2G is the
set of elements h 2 G such that there exists a geodesic 
 D Œ1; h� containing g and
one of the following holds:

(1) d.1; h/� d.1; g/C 2R .

(2) 
 contains an .�; R/–transitional point v such that d.v; g/� 2R .
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For �� 0; n� 0, define

A.g; n;�/D fh 2G W n��� d.1; h/� d.1; g/ < nC�g

for any g 2 G. For simplicity we write A.n;�/ WD A.1; n;�/. For r; �; R;� > 0,
define

��;R.g; n;�/D��;R.g/\A.g; n;�/

for any g 2G and n� 0.

For fixed �; R > 0, two partial cones ��;R.g/ and ��;R.g0/ are of the same type if

g0g�1 ���;R.g/D��;R.g
0/:

By abuse of language, we say that g and g0 have the same partial cone types.

The following result generalizes the result of Cannon [4] for hyperbolic groups:

Lemma 3.2 (finiteness of partial cone types [36, Lemma B.1]) There exist �; R0 >0
such that for any R > R0 , there are at most M DM.�;R/ types among all .�; R/–
partial cones f��;R.g/ W g 2Gg.

The following is a key technical result of [36, Lemma 5.8]:

Lemma 3.3 There exist �; R;�; �; L0 > 0 with the following property:

For any L> L0 there exists a subset yG of G such that

(14) #.��;R.g; L;�/\ yG/ > � � exp.L � ıG;S /; 1 2 yG

for any g 2 yG.

Convention 3.4 (�; R;�) Until the end of Section 3, the constants �; R;� > 0 are
given by Lemmas 3.2 and 3.3, and satisfy Convention 2.17.

The following terminology comes from [1], which was certainly very motivating for us:

Definition 3.5 (iterated tree set) For given L> 0, an L–iterated tree set T in G is
a union of a sequence of sets Ti for i � 0 in G defined inductively as follows:

Let T0D f1g. Assume that Ti is defined for i � 0. The set of children T .x/ of x 2 Ti
is a subset in ��;R.x; L;�/. Then TiC1 is the union of children of all x 2 Ti .
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Recall that a subset Z of a metric space .X; d/ is called C –separated if d.z1; z2/�C
for every pair of distinct points fz1; z2g �Z . The following fact is elementary:

Lemma 3.6 Let .X; d/ be a proper metric space on which a group G � Isom.X/
acts properly. For any orbit Go with o 2 X and C > 0, there exists a constant
� D �.Go; C / > 0 with the following property:

For any finite set Y in Go, there exists a C –separated subset Z � Y such that
#Z � � � #Y .

Proof Let Z be a maximal C –separated set in Y . We have Y �NC .Z/. Since the
action of G on .X; d/ is proper, any ball of radius C contains at most N points of Go.
The result follows for � WD 1=N.

An .�; R;L/–transitional geodesic tree T rooted at o in G .G; S/ is a tree subgraph
with a distinguished vertex o such that every branch in T originating at o is a .�; R;L/–
transitional geodesic in G .G; S/.

In order to obtain a useful theory of Patterson–Sullivan measures, certain symmetry on
the iterated tree set is required. This is the content of the following key result:

Lemma 3.7 (existence of iterated transitional trees) There exist constants L0 , C0 , t0 ,
n0 >0 such that for L>L0 and C >C0 there are � D �.C / > 0 and L0DL0.L/ > 0
and an iterated tree set T parametrized by .�; R;L/ with the following properties:

(1) x�1T .x/D y�1T .y/ for any x 2 Tt , y 2 TtCn0 and t � t0 .

(2) x�1T .x/D y�1T .y/ for any x; y 2 Tt and t � t0 .

(3) #T .x/� � � exp.ıG;SL/ for any x 2 T .

(4) T .x/ is C –separated for any x 2 T .

(5) There exists an .�; R;L0/–transitional geodesic tree T rooted at 1 in G .G; S/

such that the vertex set T 0 contains T and lies in NL0.T /.

(6) Any two distinct infinite branches originating at 1 terminate at distinct endpoints
in ƒG.

Proof Set L0 D�, and all other constants will be defined in the proof. We divide
the proof into three steps for the reader’s convenience.

Step 1 At this step we construct the iterated tree set T with properties (1)–(3). The
construction proceeds by an induction argument. Set T0 D f1g to start.
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Let M be the number of .�; R/–partial cone types in G given by Lemma 3.2, and yG
the set given by Lemma 3.3. Then there exists T1���;R.1; L;�/\ yG such that every
element in T1 has the same partial cone type and the inequality (14) holds for g D 1,
where the constant � is divided by M. By Lemma 3.6, we can also arrange that T1 is
C –separated, where � is further decreased and depends on C (given in Step 3 below).

Fix some x1 2 T1 . Up to dividing � by M again, we choose Y to be a subset of
��;R.x1; L;�/ \ yG such that the inequality (14) holds for Y and every element
in Y has the same partial cone type. By the same reason, we can choose Y to be
C –separated. Since all x 2 T1 are of same type as x1 , we could define

T .x/ WD xx�11 Y ���;R.x; L;�/:

Then all elements in the union T2 WD
S
x2T1

T .x/ have the same partial cone types.
We note that Y is chosen to be contained in yG, but T2 may not be in yG.

We repeat the same argument to construct Ti for i � 3, with a sequence of divisions
of � . By construction, all elements in the constructed Ti are of the same partial
cone type. Since there are at most M partial cone types, we obtain that there are
1 � t0; n0 �M such that all elements in Tt0 and Tt0Cn0 have the same cone type.
It follows that the set of levels fTigi becomes periodic for i � t0 with the period of
length n0 : the levels between Tt0Ckn0 and Tt0C.kC1/n0 repeat those between Tt0 and
Tt0Cn0 for all k � 1. So we obtain x�1T .x/D y�1T .y/ for any x 2 Tt , y 2 TtCn0
and t � t0 . This also implies that we need to divide � by M at most n0 times, so � in
the inequality (14) can be chosen uniformly for all T .x/ for x 2 Ti and i � 1. Thus,
the set T satisfies the properties (1)–(3).

Step 2 Using the iterated tree set T , we will now construct a geodesic graph T .

Without loss of generality assume that � < 1. The root of T is T0 D f1g. Assume
that Ti is defined for i � 0 and for each terminal vertex x 2 Ti , denote by 
x the
geodesic Œ1; x� in Ti . Since Ti .x/ is a subset of ��;R.x; L;�/\ yG, by definition of
a partial cone for L0 > R and for every y 2 T .x/ we can choose a geodesic Œx; y�
so that Œ1; y�D 
x � Œx; y� is a geodesic in G .G; S/ containing an .�; R/–transitional
point v which is 2R–close to x .

We set

(15) TiC1 D
[
x2Ti

[
y2T.x/


x � Œx; y�:
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Let T D limi!1 Ti . By construction, each geodesic ray originating at 1 is .�; R;L0/–
transitional, and T � T 0 �NL0.T /.

Remark A priori, the geodesic Œ1; y� is not unique but any choice gives rise to the
same constants. Indeed, suppose we have two such geodesics 
y and 
 0y both passing
through x and such that 
y contains an .�; R/–transitional point v 2R–close to x .
Then, by Lemmas 2.9 and 2.6, the geodesic 
 0y also contains an .�; R/–transitional
point which has a uniform distance from v only depending on � and R . Up to
increasing R by this uniform amount, the geodesic 
 0y is .�; R;L0/–transitional for
L0 WD LC 2RC�.

Step 3 We now prove that T is a geodesic tree rooted at 1 in G .G; S/.

Indeed, if it is not a tree, there exist two distinct geodesics ˛1 and ˛2 in T with the
same endpoints x;w 2 T such that the length of ˛1 and ˛2 is minimal among all such
choices. Assume that x is closer to 1 than w . Consider two points yi 2 ˛i \ T .x/
for i D 1; 2. By the choice of ˛1 and ˛2 , we have y1 ¤ y2 . Then, by construction,
d.yi ; x/ � L�� for i D 1; 2. Moreover, there exists an .�; R/–transitional point
z1 2 ˛1 such that d.y1; z1/� 2R .

Let D0D�.�/, where � is given by Lemma 2.6 and �D�.�; R/ by Lemma 2.9. There
exists z2 2˛2 such that d.z1; z2/�D0 and then d.y1; z2/� 2RCD0 . We can choose
zy2 2 ˛2 such that d.x; zy2/D d.x; y1/. Hence, d.z2; zy2/D jd.x; z2/� d.x; zy2/j D
jd.x; z2/� d.x; y1/j � 2RCD0 . It follows that d.y1; zy2/� 2.2RCD0/.

Since y1 and y2 lie in the annulus A.x;L;�/, we get jd.x; y1/�d.x; y2/j�2�, then
d.y2; zy2/D jd.x; zy2/�d.x; y2/j � 2�. It follows that d.y1; y2/� 2.2RCD0C�/.
Choosing now the constant C to be greater than

(16) C0 WD 2.2RC�
�
1
2
�
�
C�/;

we obtain that T .x/ is C –separated in ��;R.x; L;�/, and

d.y1; y2/� C0 > 2.2RCD0C�/;

which is a contradiction. Thus, T is a rooted geodesic tree, satisfying assertion (5).

To prove (6), we argue by contradiction. Assume that two distinct geodesic rays ˛1
and ˛2 in T terminate at the same boundary point � 2 ƒG. Since ˛1 is .�; R;L0/–
transitional, we proceed by the same argument as above in proving that T contains no
loop, and arrive at a contradiction with the assumption that T .x/ is C –separated. The
proof of the lemma is thus complete.
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Remarks (1) By Lemma 2.11 the boundary of the tree T (in ƒG or in @�G )
constructed above consists of uniformly conical points.

(2) The constant C0 in (16) is bigger than we really need in the above proof (it is
enough to replace �

�
1
2
�
�

by the smaller term D0 D �.�/) but we do need such
a constant in the next lemma.

In the next two lemmas, we shall derive more properties of the sets T and T constructed
in Lemma 3.7. To this end, we recall the notion of Poincaré series.

For a subset X �G and a point o 2G, set

‚X .s; o/D
X
g2X

exp.�sd.o; g//; s � 0:

Define the critical exponent of ‚X .s; o/ to be

(17) ıX;S D lim sup
n!1

log #.B.o; n/\X/
n

;

where S is a fixed finite symmetric generating set of G, and B.o; n/ is the ball in the
word metric of radius n centered at o.

It is an elementary fact that ‚X .s; o/ converges for s > ıX;S and diverges for s < ıX;S .

Recall that the bilipschitz equivalence �const between two functions means that they
are comparable up to a constant (see Section 2). We have the following:

Lemma 3.8 Under the same assumptions as in Lemma 3.7, we have

‚T .s; x/�L ‚T .s; y/

for any x; y 2 T and s � 0 whenever one of the series converges.

Proof Let �.x/ be a cone at x 2 T , which is the union of all points y 2 T such that
the unique geodesic Œ1; y� in the geodesic tree T contains x .

Claim The Poincaré series of T is bilipschitz equivalent to that of any cone at a vertex
in T :

(18) ‚T .s; 1/�L ‚�.x/.s; x/

for any x 2 T .
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Proof of the claim Let Sn.o/ denote the sphere of radius n centered at o in G. We
have

‚X .s; o/D
X
n�0

#.Sn.o/\X/ � exp.�ns/; s � 0:

Hence, to compare ‚T .s; 1/ with ‚�.x/.s; x/, it is enough to show that the numbers
#.Sn.1/\T / and #.Sn.x/\�.x// are uniformly bilipschitz equivalent for all x 2 T .
Recall that by Lemma 3.7(1), after a finite time t0 , the set T is periodic with a fixed
period n0 . So it is enough to show (18) for x 2 T such that t0 � d.1; x/ � n0C t0 .
Obviously we have

#.Sn.x/\�.x//� #.SnCd.1;x/.1/\T /:

Furthermore, by Lemma 3.7(2), the cones based at all points of Tt have the same type
for every fixed t . So if C denotes the cardinality of Tn0Ct0 , then

#.SnCd.1;x/.1/\T /� C � #.Sn.x/\�.x//:

Hence,
#.Sn.1/\T /� #.Sn.x/\�.x//

for all x in T . The claim follows.

To complete the proof of the lemma, by (18), it suffices to establish

(19) ‚T .s; 1/�L ‚T n�.x/.s; x/ .x ¤ 1/;

as (18) and (19) would imply ‚T .s; 1/�L ‚T .s; x/ for all x 2 T .

For y 2 T n�.x/, let o be the farthest point from 1 such that o 2 T and Œ1; o� �
Œ1; x�\ Œ1; y�, where the geodesics Œ1; x� and Œ1; y� are in the geodesic tree T . The
point o will be referred to as the branch point of Œ1; x� and Œ1; y�.

By construction of the tree T the geodesic rays Œ1; x�; Œ1; y� are parts of distinct infinite
.�; R;L0/–transitional geodesics (where L0 D L0.L/), which by Lemma 3.7(6) end at
distinct boundary points. By Proposition 2.19, Œx; y� is transitional and so is contracting
by Lemma 2.18.

Claim There exists a uniform constant D DD.L/ > 0 such that d.o; Œx; y�/�D.

Proof of the claim Let z 2 Œx; y� be the projection of o to a geodesic Œx; y� in
the Cayley graph G .G; S/. By the contracting property of Œx; y� it follows from the
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inequality (11) that there exists D1 DD1.�; R;L0/ such that

maxfd.z; Œo; x�/; d.z; Œo; y�/g �D1:

So, let x1 2 Œo; x� and y1 2 Œo; y� be such that d.z; x1/�D1 and d.z; y1/�D1 .

Set d.o; z/D d ; then

(20) minfd.o; x1/; d.o; y1/g � d �D1:

Let w 2 Œo; x1�\ T .o/, where T .o/ ���;R.o; L;�/. Then d.o;w/ < LC�. Fur-
thermore, since x 2 T there exists an .�; R/–transitional point x2 2 Œo; x� such that
d.w; x2/� 2R , and so d.o; x2/� LC�C 2R . Using (20) we deduce

(21) d.x2; Œx1; y1�/� d.x1; o/� d.x2; o/� 2D1 �K;

where K D d � 3D1�L��� 2R .

We assert that

(22) K � �
�
1
2
�
�
;

where � and �
�
1
2
�
�

are universal constants given by Lemmas 2.9 and 2.6, respectively.
Indeed, suppose (22) is not true; then d.x2; Œx1; y1�/ � �

�
1
2
�
�
. By Lemma 2.6 we

have �x2.x1; y1/�
1
2
� . Since x2 is transitional, Lemma 2.9 yields �x2.o; x1/� � . It

follows that �x2.o; y1/ �
1
2
� , and thus d.x2; Œo; y�/D d.x2; zx2/ � �

�
1
2
�
�

for some
zx2 2 Œo; y�.

Following the argument of Step 3 of Lemma 3.7 we choose a vertex w0 2 Œo; y� such that
d.o;w0/D d.o;w/. Then d.zx2; w0/Djd.o; zx2/�d.o;w/j � d.zx2; w/� 2RC�

�
1
2
�
�
.

Then d.w0; w/ � d.w0; zx2/C d.zx2; w/ � 2
�
2RC �

�
1
2
�
��

. Let w00 2 T .o/\ Œo; y�.
Since w 2��;R.o; L;�/, we have d.w00; w0/� jd.o;w0/� d.o;w00/j � 2�. Indeed
j.d.o; w0/Dd.o;w//�Lj�� and also jd.o;w00/�Lj��. Therefore, for the vertices
w00; w 2 T .o/ � T we have d.w;w00/ � 2

�
�
�
1
2
�
�
C 2RC�

�
. This is impossible

by (16). The obtained contradiction implies that K � �
�
1
2
�
�

and by definition of K
(see (21)), we have

d.o; z/D d �D D 3D1C�
�
1
2
�
�
CLC�C 2R:

The claim is proved.

The second claim implies

(23) d.o; x/C d.o; y/� d.x; y/� d.o; x/C d.o; y/� 2D:
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Given o 2 Œ1; x/\ T , we denote by Yo the set of elements y 2 T n�.x/ such that
o 2 Œ1; x� is the branch point of Œ1; y� and Œ1; x� in T . The argument of the first claim
also yields

‚�.o/.s; o/�L ‚Yo.s; o/:

Then (18) and (23) implyX
y2Yo

exp.�sd.x; y//�L exp.�sd.o; x// �‚T .s; 1/

for every o 2 Œ1; x/\T . By construction of T in Lemma 3.7 the sequence of points
Œ1; x/\ T has the property that any two consecutive points have distance between
L�� and LC�. Summing up over all o 2 Œ1; x/\T , we getX

y2T n�.x/

exp.�sd.x; y//�L
X

0�k<d.1;x/

exp.�sk/ �‚T .s; 1/�L ‚T .s; 1/;

which proves (19). The lemma is proved.

Lemma 3.9 Under the same assumptions as in Lemma 3.7, the Poincaré series
‚T .s; 1/ is divergent at s D ıT;S . Furthermore, limL!1 ıT;S D ıG;S .

Proof This is inspired by the proof of Proposition 4.1 in [7]. Consider the annulus set
in T ,

AT .g; n; 3�0/ WD A.g; n; 3�0/\T;
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where �0 WD�CLC 2R and n� 0. Observe that there exists c > 1 such that

(24) c�1 � #AT .g0; n; 3�0/� #AT .g; n; 3�0/� c � #AT .g0; n; 3�0/

for any g; g0 2 T and n� 0. Indeed, it is a direct consequence of Lemma 3.7 that T
has certain periodicity. Moreover, we claim that:

Claim The following inequality holds:

#AT .1; nCm; 3�0/� c � #AT .1; n; 3�0/ � #AT .1;m; 3�0/

for n;m� 0.

Proof of the claim For h2AT .nCm; 3�0/, we connect 1 and h by a geodesic Œ1; h�
in T . Assume that d.1; h/DmCnC3�1 for some j�1j ��0 . Let z 2 Œ1; h� be such
that d.1; z/D nC 3

2
��1 . Note that z might not be in T . However, by Lemma 3.7(5),

there exists w 2 T such that d.z; w/�L0 where L0 was fixed to be �0D�CLC2R
(see Step 2 in the proof of Lemma 3.7). Then d.w; h/�mC 3�0 . This implies that
w 2A.1; n; 3�0/ and h 2AT .w;m; 3�0/. The conclusion thus follows from (24).

Define an D c � #AT .1; n; 3�0/. The above claim implies that anCm � anam . So the
sequence .log an/n is subadditive. Then, by Fekete’s lemma, limn!1.log an/=nD
inff.log an/=n Wn�1g. Since .an/n is nondecreasing we have an�

P
0�i�n ai �nan .

So

ıT;S D lim sup
n!1

log
P
0�i�n ai

n
D lim
n!1

log an
n
D inf

�
log an
n
W n� 1

�
:

It follows that #AT .1; n;�0/� c�1 exp.nıT;S / for n� 1. Observe that

‚T .s; 1/�L;�
X
n�0

#AT .1; n;�0/ � exp.�sn/; s � 0;

whenever both parts are finite. Thus, ‚T .s; 1/ is divergent at s D ıT;S .

To prove the second statement we estimate the lower bound of ıT;S . By Lemma 3.7,
we notice that

#.B.1; i.LC�//\T /� � i � exp.i � ıG;S �L/

for i � 0. This implies that

ıT;S �
log #BT .1; i.LC�//\T

i.LC�/
�
L � ıG;S C log �

LC�
:

We obtain limL!1 ıT;S � ıG;S . Since ıT;S � ıG;S for all L, the lemma follows.
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3.2 Patterson–Sullivan measures on the space of ends of an iterated
transitional tree

In this and the next subsections, for any L� 0, let T and T be the iterated tree set
and transitional tree, respectively, given by Lemma 3.7. At the same time, assume that
they satisfy Lemmas 3.8 and 3.9.

We denote by the common notation @T the limit set of T in either the Bowditch
boundary ƒG or in the Floyd boundary @�G. In this subsection, we shall construct a
Patterson–Sullivan measure on @T .

Consider the set M. zT / of finite Borel measures on the compact space zT WD T [ @T ,
which is endowed with the weak-convergence topology. Then �n!� for �n 2M. zT /

if and only if lim infn!1 �n.U /� �.U / for any open set U � zT . Note that a set of
uniformly bounded measures in M. zT / is relatively compact.

We first construct a family of measures f�svgv2T �M. zT / supported on T . Set

(25) �sv D
1

‚T .s; 1/

X
g2T

exp.�sd.v; g// �Dirac.g/;

where s > ıT;S and v 2 T . By Lemma 3.8, the measures f�svgv2T are bounded by a
uniform constant depending on L.

By Lemma 3.9, ‚T .s; v/ is divergent at sD ıT;S for any v2T . Choose si! ıT;S such
that �siv converge in M. zT /. The limit measures �v D lim�

si
v are called Patterson–

Sullivan measures at v . Clearly, f�vgv2G are absolutely continuous with respect to
each other.

In the sequel, we will write “PS measures” as shorthand for Patterson–Sullivan measures.

A horofunction cocycle B� W G �G! R at conical points � 2ƒG or � 2 @�G was
studied in [36]. The precise definition is not relevant here, but we have the following
estimation:

Lemma 3.10 [36, Lemma 2.20] For any L> 0 there exists C DC.L/ > 0 such that
the following holds:

Fix � 2 @T . For any x; y 2G, there is a neighborhood V of � in G� or G [ƒG such
that

jB�.x; y/�Bz.x; y/j< C for all z 2 V \G;

where Bz.x; y/ WD d.z; x/� d.z; y/.
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Remarks (on the proof) The above statement is proved in [36, Lemma 2.20] for
a conical point of the Bowditch boundary, where the constant C is universal (not
depending on L). In our setting, by Lemma 3.7 there exists an .�; R;L0/–transitional
ray in the tree T ending at � in @T . Then by Lemma 2.11 the constant R is uniform
for every � 2 @T . So the same proof as [36, Lemma 2.20] works to produce a constant
C D C.L/.

We have to warn the reader that the constant C > 0 cannot be made uniform for all
conical points for the action G Õ @�G on the Floyd boundary as the action is not
necessarily geometrically finite (see the discussion after Lemma 2.11).

With the help of Lemma 3.10, the following can be proven exactly as [5, Théorème 5.4]:

Lemma 3.11 PS measures f�ggg2T on @T satisfy the property

(26)
d�g

d�h
.�/�L exp.�ıT;SB�.g; h//

for �h–ae points � 2 @T and any g; h 2 T .

3.3 Shadow lemma

We shall establish a shadow lemma for f�ggg2T on @T . We first introduce two notions
of shadows in the Floyd boundary and Bowditch boundary. In this subsection, we are
actually interested in (the part of) shadows in @T , ie the intersection with @T .

By abuse of notation, the following notions of (strong) shadows belonging to which
boundary should be clear in the context.

Definition 3.12 (shadow) The shadow …r.g/ is the set of points � 2 ƒG (or
� 2 @�G ) such that for some geodesic Œ1; �� we have Œ1; �� \ B.g; r/ ¤ ∅. The
strong shadow ˘r.g/ is the set of points � 2 ƒG (or � 2 @�G ) such that for any
geodesic Œ1; �� we have Œ1; ��\B.g; r/¤∅.

Lemma 3.13 (shadow lemma) There exists r0 > 0 such that

exp.�ıT;Sd.1; g//� �1.…r.g/\ @T /�r exp.�ıT;Sd.1; g//

for any r > r0 and g 2 T .

Remark In [36] the shadow lemma was proved for the whole group G. The current
lemma describes the shadows of the points g 2 T in terms of ıT;S .
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Proof By Lemmas 3.10 and 3.11, there exist C1DC1.L/; C2DC2.L/ > 0 such that

(27) C1 exp.�ıT;Sd.1; g//�
d�1

d�g
.�/� C2 exp.�ıT;Sd.1; g//

for �1–ae points � 2 @T . So in order to estimate �1.…r.g/\ @T / we can do it for
�g.…r.g/\ @T /.

Claim Given any � > 0, there is a constant r0 > 0 such that

�g.@T n…r.g// < �

for all g 2 T and r > r0 .

Proof of the claim Note that …r.g/ is a closed set. We consider the convex cone
C.@T n…r.g// of @T n…r.g/, which consists of all geodesic rays in T originating
at 1 and terminating at a point in @T n…r.g/. Let V be the set of vertices of T in
C.@T n…r.g//.

For any x 2 V , consider the branch point o of Œ1; x� and Œ1; g� in T (defined in the
proof of Lemma 3.8). Since x …C.…r.g//, we have d.g; o/>r . By a similar argument
to that of Lemma 3.8, we get

‚V .s; g/D
X
x2V

exp.�sd.x; g//�
X

r�k�d.1;g/

exp.�sk/ �‚T .s; 1/:

So,
�sg.V /D

‚V .s; g/

‚T .s; 1/
�

X
r�k�d.1;g/

exp.�sk/;

which tends to 0 when r!1 and s > ıT;S .

Thus, the �sg –measure of the open set V [ .@T n…r.g// can be arbitrarily small for
r large enough, and so is �g.@T n…r.g//. This proves the claim.

By Lemma 3.8, f�g.@T /gg2T are bounded above and below by uniform constants de-
pending on L. Let �1D 1

2
inff�g.@T / Wg2T g>0 and �2D supf�g.@T / Wg2T g<1.

By the above claim, there is a constant r0 > 0 such that

(28) �1 < �g.…r.g/\ @T / < �2 for all r > r0

for all g 2 T . So (27) implies that

�1C1 exp.�ıT;Sd.1; g//� �1.…r.g/\ @T /� �2C2 exp.�ıT;Sd.1; g//

for all g 2G. The lemma is proved.
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The above shadow lemma allows one to estimate the PS measure of shadows. Our
goal is now to express the latter one in terms of the PS measure of balls on the
boundary @T . Below, we use the symbol bsc to denote the integer part of s 2 R.
Denote by B��;1.�; t/ (resp. Bx��;1.�; t/) the ball in @T around � 2 @T of radius t
with respect to the metric ��;1 (resp. x��;1 ).

Until the end of this subsection let us fix �0 2 .0; 1/ given by Proposition 2.3. For any
� 2 Œ�0; 1/, we consider the family of Floyd metrics f��;vgv2G and the corresponding
shortcut metrics fx��;vgv2G . The following two lemmas are general facts without
involving the @T :

Lemma 3.14 (shadows� balls) For any r > 0, � 2 Œ�0; 1/ and � 2ƒG, there exists
C D C.r; �/ such that

…r.g/� Bx��;1.�; C t/

for any 0 < t < �, where g 2 Œ1; �� is chosen so that d.1; g/ D blog� tc. The same
conclusion holds for ��;1 with � 2 @�G.

Proof Let � 2 …r.g/ so that d.g; Œ1; ��/ � r for some geodesic Œ1; ��. Conse-
quently, there exists w 2 Œ1; �� such that d.1;w/ D d.1; g/ and d.g;w/ � 2r .
By Lemma 5.1, any segment of Œ1; �� is a Floyd geodesic with respect to ��;1 , so
��;1.�; g/D �

d.1;g/=.1��/. Let ˛ be a word geodesic between w and g . Every edge
of ˛ is in the word distance at least d.1; g/� 2r from 1. So the Floyd length of ˛ is
at least 2r ��d.1;g/�2r . We obtain

x��;1.�; �/� ��;1.�; �/� ��;1.g; �/C ��;1.w; �/C ��;1.g; w/

� 2

�
1

1��
C

r

�2r

�
��d.g;1/:

Setting C D 2��1.1=.1��/C r=�2r/, we see that x��;1.�; �/� ��;1.�; �/�Ct . This
completes the proof.

The following lemma deals with the strong shadow ˘r.g/, which makes the statement
stronger:

Lemma 3.15 (transitional balls � shadows) For any � 2 Œ�0; 1/ and �; R;L > 0,
there exist constants C D C.�; �; R;L/ > 0 and r D r.�; �; R;L/ > 0 with the
following property:
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Given � 2 @�G, let g 2 Œ1; �� be a point within L–distance of an .�; R/–transition
point on Œ1; ��. Then

B��;1.�; C t/�˘r.g/

for t WD �d.1;g/ . The same conclusion holds for x��;1 with � 2ƒG.

Proof Let � D �.�; �; R/ be the constant given by Lemma 2.9(1). Let z be the
.�; R/–transition point of Œ1; �� which is L–close to g . Then x��;z.1; �/� � , and by
property (2), ��;g.1; �/� x��;g.1; �/� � ��L .

Define 2C D � � �L and r D ��.C /. Let � 2 B��;1.�; C t/. Using property (2)
again, it follows that ��;g.�; �/� ��d.g;1/��;1.�; �/� C. Thus, ��;g.1; �/� C, and
d.g; Œ1; ��/� r by Lemma 2.6. Hence, B��;1.�; C t/�˘r.g/, proving the lemma.

From the previous two lemmas, one easily derives the following:

Lemma 3.16 (shadows� balls) Let r0 given by Lemma 3.13. For any � 2 Œ�0; 1/
and L > 0, there exist r D r.L; �/ > r0 and C D C.L; �/ > 1 with the following
property:

For any � 2 @T and 0 < t < �,

(29) B��;1.�; C
�1t /�…r.g/� B��;1.�; C t/

and

(30) Bx��;1.�; C
�1t /�…r.g/� Bx��;1.�; C t/;

where g 2 Œ1; �� is chosen so that d.1; g/D blog� tc.

Proof For any 0 < t < �, let g 2 Œ1; �� be such that d.1; g/D blog� tc. Thus,

�d.1;g/C1 < t � �d.1;g/:

By construction of T (see Lemma 3.7(5)), we know that Œ1; �� is .�; R;L/–transitional.

Let C1 D C.�; �; R;L/ and r D r.�; �; R;L/ > r0 be given by Lemma 3.15. Then
Bx��;1.�; C1t /�…r.g/. This proves the first inclusions of (29) and (30) for C D C1 .

Let C2 D C.r; �/ be given by Lemma 3.14. Then …r.g/� Bx��;1.�; C2t /, and so the
second inclusions of (29) and (30) follow.

Setting C DmaxfC�11 ; C2g, we complete the proof of the lemma.

Geometry & Topology, Volume 23 (2019)



1818 Leonid Potyagailo and Wen-yuan Yang

3.4 Proof of Theorem 1.4

We recapitulate the main results of the previous subsections in the following:

Proposition 3.17 There exists �0 > 0 such that for every � 2 Œ�0; 1/ and L� 0,
there exist an L–iterated tree set T and a PS measure �1 on @T satisfying

(31) �1.B��;o.�; t/\ @T /��;L t
�ıT;S=log�;

for any � 2 @T and 0 < t < �.

Proof The existence of the tree T is proved in Lemma 3.7. Lemmas 3.13 and 3.16
and direct calculations imply that @T is Alhfors Q–regular for QD�ıT;S=log� (see
the definition in the introduction). Hence, (31) follows.

By Lemma 2.11, @T consists of uniformly conical points, so Proposition 3.17 implies
the first claim of the theorem. The statement limi!1Qi D�ıG;S=log� is proved in
Lemma 3.9. Theorem 1.4 is proved.

4 Proofs of Theorems 1.1 and 1.2

We consider the Floyd metric on @�G and shortcut metric on ƒG, where the corre-
sponding Theorems 1.1 and 1.2 are proved with the same argument.

The following lemma giving the upper bound for the Hausdorff dimension is due to
Marc Bourdon. We notice that it is a general fact which is true for a finitely generated
group G without assuming that it is relatively hyperbolic.

Lemma 4.1 (Bourdon, private communication) For every � 2 .0; 1/, the Hausdorff
dimension Hdim��;1 of @�G (resp. Hdimx��;1 of ƒG ) with respect to the Floyd
metric ��;1 (resp. to the shortcut metric x��;1 ) is bounded above by �ıG;S=log�.

Proof To give an upper bound, it suffices to prove that Hs.@�G/D 0 for any fixed
s > �ıG;S=log�.

Define Sn D fg 2 G W d.1; g/ D ng. For any g 2 Sn , define the cone �g WD
f� 2 @�G W g 2 Œ1; ��g, where Œ1; �� is a geodesic between 1 and � .

For any � 2 @�G, consider the point x 2 Œ1; �� \ Sn . By Lemma 2.7, the subray
Œx; �/ is a ��;1–Floyd geodesic. So ��;1.x; �/D �n=.1��/ for any � 2 @�G. Thus,
f�g W g 2 Sng is an "–covering of @�G, where " WD 2�n=.1��/.
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For any t 2 .�ıG;S=log�; s/, we have �t log�> ıG;S and so #Sn �t ��tn for n� 1.
We obtain, for all n� 1,

Hs.@�G/�
X
g2Sn

"s � �.s�t/n;

which then tends 0 as n!1. Thus, Hs.@�G/D 0 for any s > �ıG;S=log�. The
lemma is proved.

So the upper bound on the Hausdorff dimension of @�G and ƒG in Theorems 1.1
and 1.2 is proved. In the remainder of the proofs, we aim to establish the lower bound
for the Hausdorff dimension.

Taking into account Proposition 3.17, there exists a universal �0 > 0 such that for each
L� 0, there exist an L–iterated tree T and a PS measure �1 on @T such that (31)
holds and ıT;S ! ıG;S as L!1.

The following lemma shows that the PS measures constructed in Section 3 are actually
the Hausdorff measures on @T with respect to the Floyd metric ��;1 restricted on @T .
Modulo Proposition 3.17, this result is standard (see [20, Exercise 8.11]). We provide
a proof for the reader’s convenience.

Lemma 4.2 Let �1 be a PS measure on @T in ƒG or @�G. Let � D �ıT;S=log�.
Then

H� .A/�L �1.A/:
for any subset A� @T .

Proof In the proof, we assume that @T is a subset of the Bowditch boundary. The
proof for @T � @�G is similar.

Let B be an "–covering of A for " > 0. Then �1.A/�
P
B2B �1.B/. Let "! 0. By

Proposition 3.17, we obtain that �1.A/�L H� .A/.

For the other inequality, we need to make use of the following well-known covering
result. Let B be a metric ball of radius rad.B/ in a proper metric space X. Denote by
5B the union of all balls of radius 2 �rad.B/ intersecting B , so that k5Bk� 10 �rad.B/.
Then, by [24, Theorem 2.1], for a family of balls B in X with uniformly bounded radii
there exists a subfamily B0 � B of pairwise disjoint balls such that

(32)
[
B2B

B �
[
B2B0

5B:
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Note that �1 and H� are Radon measures. Then for any � > 0 there exists a compact
set K and an open set U such that K�A�U with H� .U nK/<� and �1.U nK/<� .

Set �0 WD �1.K;ƒG nU/ > 0. For any 0 < � < �0 , let B be an "–covering of K . By
(32) and Proposition 3.17, there exists a pairwise disjoint subfamily B0 of B such that

H� .K/�
X
B2B0

.k5Bk/� �
X
B2B0

.10 � rad.B//� �L �1.U /:

The condition � ! 0 yields H� .A/� �1.A/.

Remark The measure �1 is unique in the following sense: if �1 and �01 are two PS
measures, then d�1=d�01 is bounded from above and below.

Lemma 4.2 proves that the Hausdorff dimension of @T is equal to � . Since @T
is a subset of the set of uniformly conical points in @�G and ƒG, the dimension
�D�ıT;S=log� of @T gives a lower bound of Hdim��;1.@

uc
�
G/ and Hdimx��;1.ƒ

ucG/.

Letting L!1, we have ıT;S ! ıG;S by Proposition 3.17. So,

Hdim��;1.@
uc
� G/� �

ıG;S

log�
and

Hdim��;1.ƒ
ucG/� �

ıG;S

log�
:

The proofs of Theorems 1.1 and 1.2 are complete.

4.1 Box-counting dimension

As an application of Theorems 1.1 and 1.2, we are able to identify the box-counting
dimension with Hausdorff dimension. In the proof, we need the help of a class of
Patterson–Sullivan measures defined on the whole Bowditch boundary ƒG. This
contrasts with the ones constructed on the ends of iterated trees.

For notational simplicity, we still denote by f�v Wv2Gg the PS measures on ƒG which
were constructed in [36] using the action of G on the Cayley graph G .G; S/. There
it was proved that the PS measures are ıG;S –dimensional quasiconformal measures
without atoms. As a consequence, a shadow lemma is derived in this setting (see
Lemma 4.3 below).

In the same way, we can apply the construction of PS measures for the Floyd compactifi-
cation @�G[G .G; S/. By Proposition 2.4, there exists a surjective map F W @�G!ƒG,
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where the preimage of a parabolic point coincides with the limit set of the corresponding
parabolic subgroup in @�G. The proof that PS measures on ƒG have no atom at a
parabolic point p 2ƒG [36, Lemma 4.10] actually establishes that �1.F�1.p//D 0.
This implies that PS measures on @�G have no atoms either. Following the proof of
[36, Lemmas 4.1 and 4.2] the shadow lemma also holds for PS measures on @�G.

Summarizing the above discussion, the following shadow lemma holds for PS measures
f�v W v 2Gg on the Bowditch boundary ƒG and the Floyd boundary @�G :

Lemma 4.3 There exists r0 > 0 such that

�1.…r.g//�r exp.�ıG;Sd.1; g//�r �1.˘r.g//

for any g 2G and r > r0 .

We are ready to identify the box-counting dimension.

Proof of Theorem 1.6 We only consider the Floyd boundary below. The case of a
shortcut metric on ƒG is similar. It is a well-known fact that the Hausdorff dimension
is a lower bound of the box-counting dimension (see [9, formulas 3.17]). Thus,
Bdim��;1.@�G/�Q WD ıG;S=.�log�/ by Theorem 1.1.

For the upper bound, consider a maximal collection P.�/ of pairwise disjoint balls with
radius � contained in @�G. Let r > 0 be a constant satisfying Lemma 4.3, and C > 0
given by Lemma 3.14. Thus, each ball B of radius � centered at � 2 @�G contains
a shadow …r.g/, where g is an element on Œ1; �� such that d.1; g/D blog�.�=C /c.
Noting the relation

exp.�ıG;Sd.1; g//�
�
�

C

�ıG;S=.�log�/
;

we obtain from Lemma 4.3 that �1.B/� �Q and, thus,

1D �1.@�G/�
X

B2P.�/

�1.B/� #P.�/ � �Q:

This implies that the box-counting dimension

Bdim��;1.@�G/D lim
�!0

log #P.�/
log 1=�

is bounded above by Q . The result is proved.
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5 Tight paths and Floyd metrics

In this section, we shall develop a detailed understanding of shortcut geodesics via a
class of well-controlled paths called (generalized) tight paths. We start by recalling the
approximation of the Floyd geodesic through the tight paths introduced by Gerasimov
and Potyagailo in [15].

5.1 Tight paths and Floyd geodesic

We note that a Floyd geodesic between � and � does not necessarily belong to the graph
(eg an example of such situation is given by the Floyd geodesic Œn;C1�[ Œ�1;�n�
between �n and n for the group ZCZ/. A method to overcome this problem was
proposed in [15]. It consists in introducing a special type of paths called tight paths
(see Definition 5.2 below) situated in the Cayley graph which will well approximate
the Floyd geodesics.

This notion is actually motivated by the following result:

Lemma 5.1 [15, Lemma 7.2] For any l > 0, there exists 0 < �0 < 1 such that the
following property holds for any � 2 Œ�0; 1/:

Let x; y 2 G .G; S/ such that d.x; y/ � l , and p be a path with ˛� D x such that
`.˛/ � d.x; y/C 1. Then l�;o.˛/ > ��;o.x; y/. In particular, the ��;o–geodesic
between x; y is a geodesic in G .G; S/

The class of tight paths is defined as follows:

Definition 5.2 For c � 1; l > 0, a path 
 is called .c; l/–tight path if, for any two
points x; y 2 
 with d.x; y/� l , the subpath Œx; y�
 is a c–quasigeodesic.

Remark This definition is a partial case of [15, Definition 6.1], where a local quasi-
geodesicity is requested outside of the horospheres only and an additional condition
is assumed for the horospheres. So, if a path is tight in the sense of Definition 5.2,
it is also tight in the sense of [15, Definition 6.1], but not necessarily vice versa. In
particular, we can use all results proven in [15]. In addition, the above definition implies
that every subpath of a tight path is a tight path itself, which is not always true in the
general case. This stability of the tightness for subpaths will be used often below.

We also stress that the above definition does not coincide with the standard notion of
local (quasi)geodesicity, where the assumption that the length of a subpath (and not its
diameter) is small implies its (quasi)geodesicity.
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We consider the following shortening procedure, implicitly introduced in Lemma 7.4
of [15]: Consider two points x; y 2G� ; we take a sequence of paths 
n in G .G; S/

such that .
n/�! x , .
n/C! y and

l�;o.
n/! ��;o.x; y/:

For every l > 0 we can choose �0 2 .0; 1/ such that 
n is an l –local geodesic. Indeed,
if a segment between two points of 
n at distance at most l is not a geodesic, then it can
be replaced by a geodesic. Applying this procedure several times, we obtain an l –local
geodesic, still denoted by 
n , whose Floyd length is not increased by Lemma 5.1 (see
Lemma 5.3 for more details).

Recall that a Floyd geodesic in the Floyd completion does not in general belong to
the Cayley graph and the shortening procedure as above allows one to approximate
them by local geodesics in the graph. Furthermore, the following lemma shows that
this approximation can be done using the tight paths:

Lemma 5.3 [15, Corollary 7.5] For any l > 0 there exists �0 2 .0; 1/ such that
for every � 2 .�0; 1/, if the Floyd geodesic 
 �G� (with respect to the metric ��;o )
joining two distinct points x and y in G� does not belong to the Cayley graph G .G; S/,
then for " > 0 there exists a tight path z
 � G .G; S/ such that jl�;o.z
/� l�;o.
/j< ".

In what follows, to reduce cumbersome quantifiers, we continue to use Convention 2.17
without explicit mention of the constants � and R , which depend on the parameter
c > 0 in tight paths.

5.2 Truncation of tight paths

We shall introduce a truncation of a tight path so that it becomes as a quasigeodesic.
Before doing so, we recall another result about tight paths from [15].

It is well known that in hyperbolic spaces, a sufficiently “long” local geodesic becomes
globally a quasigeodesic. This property in general fails for the Cayley graph of a
relatively hyperbolic group. The next result shows that a tight path is a generalization
of local geodesics in the relative setting.

Lemma 5.4 For any c � 1, there exist � D �.c/; l0 D l0.c/ > 0 with the following
property:

Let 
 be a .c; l/–tight path for l � l0 . Then �v.
�; 
C/�� for any .�; R/–transitional
point v 2 
 .
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Comments on the proof The statement that �v.
�; 
C/ � � is first established in
[15, Proposition 6.7] for a special subsequence of transitional vertices v WD vn 2 
 .
Then it is shown in the proof of [15, Theorem B] that the tightness of a path implies that
the statement of the lemma is true for every transitional vertex of 
 (up to decreasing
the constant � ).

We call below a sequence of points zi D 
.ti / of a length-parametrized path 
 well
ordered if ti > ti�1 for ti 2 Z.

The following lemma is an intermediate step in the proof of Lemma 5.8 below, which
is the main result of this subsection.

Lemma 5.5 (transitional tight path is quasigeodesic) For any c; L � 0, there exist
l0 D l0.L/; c

0 D c0.c/� 1 with the following property:

Let 
 be a .c; l/–tight path for l � l0 . Assume that 
 is an .�; R;L/–transitional path,
where � and R satisfy Convention 2.17. Then 
 is a c0–quasigeodesic.

Proof By Lemma 5.4, there exists � D �.c/� 0 such that �x.
�; 
C/� � for every
.�; R/–transitional point x 2 
 . Set D0 D �

�
1
2
�
�
. Choose l0 � 2.LCD0/.

Since any subpath of 
 is .c; l/–tight, it is enough to prove that there exists a linear
bound for `.
/ with respect to d.
�; 
C/. Let ˛ be a geodesic with the same endpoints
as 
 . The idea of the proof is to find two sequences of well-ordered points in 
 and ˛ ,
respectively, which are uniformly close.

Since 
 is .�; R;L/–transitional, there exists a maximal set of .�; R/–transitional
well-ordered points fzi W 1� i � ng in 
 such that

`.Œzi ; zj �
 /� 2cD0C c

for i ¤ j and

`.Œzi ; ziC1�
 /� 2.LC cD0/C c

for 1� i < n. Indeed, let z1 be the first .�; R/–transitional point in 
 . Suppose zi is
chosen for i � 1 with `.Œzi ; 
C�
 /� 2cD0Cc . If `.Œzi ; 
C�/� 2.LCcD0/Cc then
ziC1 D 
C . Consider the point z in Œzi ; 
C�
 such that `.Œzi ; z�
 /D LC 2cD0C c .
If z is .�; R/–transitional in 
 , then set ziC1 D z . Otherwise, there exists an .�; R/–
transitional point ziC1 such that `.Œz; ziC1�
 /�L and `.Œzi ; ziC1�
 /�2.LCcD0/Cc .
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By Lemma 5.4, there exists � > 0 such that

�ziC1.zi ; 
C/� �

for any 1� i < n . By Lemma 2.6, there exists w1 2 ˛ such that d.z1; w1/�D0 . We
now choose other wi inductively for i � 1.

Suppose wi 2 ˛ is chosen so that d.zi ; wi /�D0 . We borrow the following argument
that the points wi are well ordered on ˛ from [15, Lemma 7.2].

Recall that Œzi ; zj �
 is c–quasigeodesic, so d.ziC1; zi / � 2D0 . Thus, we obtain
Œzi ; wi �\B.ziC1;D0/ D ∅. By the choice of D0 D �

�
1
2
�
�
, we know that for any

v 2G, any geodesic outside B.v;D0/ has lv–length at most 1
2
� . So �ziC1.wi ; zi /�

1
2
� and then �ziC1.wi ; 
C/ �

1
2
� . Thus, there exists wiC1 2 Œwi ; ˛C�˛ such that

d.ziC1; wiC1/�D0 . Up to increasing D0 by 1, we can assume that d.wi ; wiC1/� 1.
Hence, the obtained points wi are well ordered on ˛ .

As l0 > 2.LCD0/, Œzi ; ziC1�
 is a c–quasigeodesic by the tightness property. Since
wi are well ordered on ˛ , we see that 
 is a c0–quasigeodesic for c0 WD 2cC 2D0 .
Indeed,

`.
/� `.Œ
�; z1�
 /C

n�1X
iD1

`.Œzi ; ziC1�
 /C `.Œzn; 
C�
 /

� c � .`.Œ˛�; w1�˛/CD0/C cC

n�1X
iD1

�
c � .`.Œwi ; wiC1�˛/C 2D0/C c

�
C c � .`.Œwn; ˛C�˛/CD0/C c

� .2cC 2D0/`.˛/� c
0
� d.
�; 
C/;

where nC 1� `.˛/ is used. The proof is complete.

The following lemma will be used often later:

Lemma 5.6 (bounded overlap) For c � 1 and .�; R/ given by Convention 2.17,
there exist K0; l0 > 0 with the following property:

Let 
 be a .c; l/–tight path for l � l0 . Assume that ˇ1 and ˇ2 are two maximal
connected segments of 
 such that .ˇi /�; .ˇi /C 2 N�.Xi / for some Xi 2 P for
i D 1; 2. Then `.ˇ1 \ ˇ2/ � K0 . In particular, the endpoints of ˇi are .�; R/–
transitional for i D 1; 2.
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Proof By Definition 5.2, a subpath of a tight path is itself tight. Then, by [15,
Proposition 7.6], it follows that there exists l0 > 0 such that for all l � l0 the el-
ements of P are uniformly quasiconvex with respect to the system of .c; l/–tight
paths. This implies that there exists a uniform constant " D ".�; c/ > 0 such that
ˇi �N".Xi / for i D 1; 2. By Lemma 2.15 we find a constant R0DR."/ > 0 such that
kN".X/\N".X

0/k�R0 for every distinct X;X 02P. Assume that l0>cR0Cc . Since
ˇi are l –local c–quasigeodesics for l > l0 , it follows that `.ˇ1\ˇ2/�K0 WD cR0C c .
By Convention 2.17 we have R >R0 , so the endpoints of ˇi are transitional for both
curves ˇ1 and ˇ2 . Indeed, if eg x 2 @ˇ1\ˇ2 then x is .�; R/–transitional for ˇ2 as
d.x; @ˇ2/�R0 <R ; furthermore, it is automatically .�; R/–transitional with respect
to ˇ1 being one of its endpoints.

Remark By the bounded intersection of P, this lemma holds trivially if 
 is a
quasigeodesic. However, the tight path 
 above is a local quasigeodesic only.

Let 
 be a .c; l/–tight path. Let � D �.c/ given by Convention 2.17 and K0 given
by Lemma 5.6. For K >K0 , we consider all maximal connected segments ˇi in 

for 1 � i � m such that `.ˇi / � K and .ˇi /�; .ˇi /C 2 N�.Xi / for some Xi 2 P.
Consequently, Xi ¤ Xj for i ¤ j . These .ˇi ; Xi / shall be referred to as .�;K/–
components of 
 .

We stress that by the argument of Lemma 5.6 the segment ˇi belongs to N�.Xi / for a
uniform � > 0 and unique Xi .

We now introduce a modification of a tight path to make the obtained path a quasi-
geodesic.

Definition 5.7 (truncation of a tight path) Let 
 be a .c; l/–tight path for c � 1 and
l > 0. Consider all .�;K/–components .ˇi ; Xi / for 1� i �m for a fixed K > 2K0 ,
where K0 > 0 is given by Lemma 5.6.

Set y1 D .ˇ1/� and x2 D .ˇ1/C . If ˇi \ ˇi�1 D ∅ for i � 2, let yi D .ˇi /� and
xiC1 D .ˇi /C ; otherwise, set yi D xi�1 and xiC1 D .ˇi /C . Replace Œyi ; xiC1�
 by
a geodesic segment Œyi ; xiC1� for each i � 1.

The path x
 obtained in this way is called a K–truncation of 
 .

Remark The following observation is elementary and useful: Every ˇi produces
an
�
�; 1
2
K
�
–deep point in Xi in the truncation path x
 . Consequently, if x
 does not

contain an .�; R/–deep point, then d..ˇi /�; .ˇi /C/� 2R for all ˇi .
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The following lemma is the main result of this subsection. It provides a further
generalization of Lemma 5.5 to the truncated tight paths.

Lemma 5.8 (truncation is quasigeodesic) For any c � 1, there exist l0 D l0.c/,
KDK.c/, c0D c0.c/>0 with the following property: for any l � l0 , the K–truncation
of a .c; l/–tight path is a c0–quasigeodesic.

Proof Let K > 2K0 be a fixed integer, where K0 is given by Lemma 5.6. Let x
 be
the K–truncation of a .c; l/–tight path 
 . Keeping the notation as in Definition 5.7,
we have by Lemma 5.6 that yi and xiC1 for 1� i �m are .�; R/–transitional points
in 
 . Furthermore, since Œxi ; yi �
 contains no .�;K/–components for 1� i < m, we
see that Œxi ; yi �
 is an .�; R;L/–transitional path for L WD 1

2
K . By Lemma 5.5, there

exist l0 D l0.L/, c0 D c0.c/� 1 such that Œxi ; yi �
 is a c0–quasigeodesic.

Before proving the full generality, we first prove that a subpath of x
 is quasigeodesic.
Let ˇ be a geodesic between the point xi with an arbitrary point z 2 Œyi ; xiC1�. We
show below that Œxi ; z�x
 is a quasigeodesic.

Since yi is .�; R/–transitional, �yi .xi ; xiC1/ � � , where � is given by Lemma 5.4.
Hence, d.yi ; Œxi ; xiC1�/�D0 WD �.�/, where � is the function given by Lemma 2.6.
By the triangle inequality we have d.xi ; yi /Cd.yi ; xiC1/�d.xi ; xiC1/C2D0 . Since
d.yi ; z/C d.z; xiC1/D d.yi ; xiC1/, we obtain

d.xi ; yi /C d.yi ; z/� d.xi ; xiC1/� d.z; xiC1/C 2D0 � d.xi ; z/C 2D0:

Finally,

`Œxi ; z�x
D`Œxi ; yi �
C`Œyi ; z��c0d.xi ; yi /Cc0Cd.yi ; z/�c0d.xi ; z/Cc0C2c0D0:

So Œxi ; z�x
 is a c1–quasigeodesic for c1 WD c0.2D0C 1/. The same argument also
shows the c1–quasigeodesicity of Œz; yiC1�x
 .

We have that any subpath z
 of the truncated path x
 is the union of three types of
c1–quasigeodesic subpaths: (a) 
i D Œxi ; yi �
 , (b) ˇi D Œyi ; xiC1�, and (c) ıD Œxi ; z�x

or ı D Œz; yiC1�x
 . Both vertices of the intervals of types (a) and (b) are transitional on
the corresponding tight path 
 , and every 
i is .�; R;L/–transitional whereas ˇi is
a geodesic segment replacing the corresponding .�;K/–component. The path z
 can
contain at most two intervals ı of type (c) such that one of the endpoints of ı coincides
with an endpoint of z
 and is an interior point of a geodesic truncation of x
 .
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Repeating the argument of Lemma 5.5, consider a maximal well-ordered subset V
of the transitional vertices fvj 2 z
g in the set W WD z
 \ fyi ; xiC1 W 1 � i � mg
such that d.vj ; vjC1/ � 2D0 . We connect the endpoints of z
 by a geodesic ˛ .
Then, for each vj 2 V , there exists v0j 2 ˛ such that d.vj ; v0j / � D0 and by the
argument of Lemma 5.5 we have v0j 2 Œv

0
j�1; v

0
jC1�˛ . Since V is maximal in W ,

for any w 2 W there exists v 2 V such that d.v;w/ � 2D0 . So, for the well-
ordered collection W D fw1; w2; : : : ; wng � z
 , there exists another well-ordered set
W 0Dfw01; w

0
2; : : : ; w

0
ng�˛ such that d.wi ; w0i /�3D0 . Then Œz
�; w1�z
 , Œwi ; wiC1�


and Œwn; z
C�z
 are all c1–quasigeodesics by the above argument. Due to the well-
orderedness of W 0, we have d.w0i ; w

0
iC1/� 1, so nC 1� `.˛/.

We have

`.z
/� c1

�
d.z
�; w1/C

n�1X
iD1

d.wi ; wiC1/Cd.wn; z
C/

�
Cc1

� c1

�
3D0Cd.z
�; w

0
1/C

n�1X
iD1

.d.w0i ; w
0
iC1/C3D0/Cd.w

0
n; z
C/C3D0

�
Cc1

� 3D0.nC1/c1C l.˛/Cc1 � c1.3D0C1/l.˛/Cc1 � c
0d.z
�; z
C/Cc

0;

where c0 WD .1C 3D0/c1 . The lemma is proved.

Convention 5.9 For any c � 1, we will assume further on that l0; K > 0 satisfy both
Lemmas 5.4 and 5.6.

5.3 Shortcut metrics and generalized tight paths

The goal of this subsection is to extend Lemma 5.3 for Floyd geodesics to the setting
of shortcut geodesics with respect to the shortcut metrics fx��;ogo2G on ƒG (see
Section 2.2). For this purpose we generalize the notion of a tight path as follows:

Definition 5.10 (generalized tight paths and truncations) Let 
 be a finite sequence
of .c; l/–tight paths 
i in G .G; S/ for 1� i � n such that .
i /C; .
iC1/� 2N�.Xi /
for some Xi 2 P , where Xi ¤Xj for 1� i ¤ j < n.

We say that 
 is a .c; l/–generalized tight path if for each pair of entry and exit points
yi and xiC1 of 
i and 
iC1 , respectively, in N�.Xi / we have d.yi ; xiC1/ � l for
1� i < n.
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Fix K > 0. For n > 1, consider the K–truncation x
i of Œxi ; yi �
i , where 1 � i � n
(see Definition 5.7). The path

z
 D x
1 � Œy1; x2� � x
2 � � � Œyn�1; xn� � x
n

is called the K–truncation of a generalized .c; l/–tight path 
 .

Remark A generalized tight path is possibly not connected. If it is connected, then it
is a tight path in Definition 5.2.

Lemma 5.11 (generalized truncation is quasigeodesic) For any c � 1, there exist
l0; K;M; c

0 � 1 such that for any l > l0 , the K–truncation z
 of a .c; l/–generalized
tight path 
 is a c0–quasigeodesic. Moreover, any .�c0 ; Rc0/–transition point of z
 lies
in the M –neighborhood of 
 .

Proof Let K D K.c/ be given by Lemma 5.8. Let z
 be the K–truncation of a
generalized .c; l/–tight path 
 . We keep the notation of Definition 5.10. If nD 1, the
proof is finished by Lemma 5.8. Assume that n� 2.

By Lemma 5.8, there exists c1 > 0 such that each x
i is a c1–quasigeodesic for each
1 � i < n. We prove below that x
i and x
iC1 have bounded projection to N�.Xi /,
where Xi 2 P.

By Lemma 2.15, X 2 P is c1–contracting and there exist �c1 ;Dc1 > 0 such that (7)
holds. Let z be the entry point of x
i in N�c1 .Xi /.

Claim There exists a constant C > 0 such that d.z; yi /� C.

Proof of the claim We choose a point w depending on the position of z on x
i : if
z 2 
i then we set w D z ; otherwise, z belongs to a geodesic segment ˇ coming
from an .�;K/–component of 
i and then we set wD ˇC . The goal of the proof is to
bound d.z; w/ and d.w; yi /.

Consider the tight subpath Œw; yi �
i and its K–truncation ˇ1 . By the argument of
Lemma 5.8, the path Œz; w� �ˇ1 is a c2–quasigeodesic for some c2 > 0.

Since Xi is quasiconvex, there exists "D ".�; c2/ > 0 such that any c2–quasigeodesic
with two endpoints in N�.Xi / lies in N".Xi /. This implies that Œz; w� �ˇ1 �N".Xi /.
We first show that Œw; yi �
i contains no .�;K/–components. Indeed, if not, there
exists an .�;K/–component ˇ0 in ŒˇC; yi �
i and Y 2 P such that ˇ0

˙
2N�.Y / and

d.ˇ0�; ˇ
0
C
/ > K > l0 . Since yi is the entry point of 
i in N�.Xi /, we have Y ¤Xi .
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Since ˇ0
˙
2N".Xi /, we get d.ˇ0�; ˇ

0
C
/�R0 WDR.maxf�; "g/ by Lemma 2.15. This

is a contradiction as l0 >R.maxf�; "g/.

Since Œz; w��N".Xi /, we can have d.z; w/¤ 0 only if Œz; w�
i contains an .�;K/–
component, which, by the above reasoning, would imply that d.z; w/�R0 .

It remains to bound d.w; yi /. Since Œw; yi �
i contains no .�;K/–components, we
have ˇ1 D Œw; yi �
i . Let LD L.";R0/ be given by Lemma 2.16, then we affirm that
Œw; yi �
i is of length at most l0 for any l0 > c.2LCR0/�c . Indeed, suppose it is not
true. We have ˇ1 D Œw; yi �
i �N".Xi / and 
i is l0–local c–quasigeodesic. Hence,
ˇ1 contains a subpath ˛ which is a c–quasigeodesic of length l0 contained in N".Xi /.
Thus, d.˛�; ˛C/ > 2LCR0 , and by Lemma 2.16, there exists an interior point in
Œw; yi �
i which is .�c ; R0/–deep in Xi . This is impossible as yi is the entry point of

i in N�.Xi / and � � �c by Convention 2.17. Hence, d.w; yi /�C WD 2LCR0 . The
claim is proved.

By the contracting property, Lemma 2.15, we see that

kProjXi x
ik � kProjXi Œ.x
i /�; z�x
ikC d.z;Xi /C d.z; yi /C d.yi ; Xi /

� � WDDc1 C�c1 CC C �:

The same is true for ProjXi .x
iC1/. Then z
 satisfies the following properties:

(1) Each x
i is a c1–quasigeodesic.

(2) maxfProjXi .x
i /;ProjXi .x
iC1/g � � .

(3) d.xi ; yiC1/ > l .

These properties imply that z
 is .l; c1; c1; �/–admissible in the sense of [37, Section 3].
Therefore, by Corollary 3.2 in [37], there exist l0; c0 > 0 depending on c1 and � such
that for any l > l0 the truncation z
 is a c0–quasigeodesic.

It remains only to prove the “Moreover” statement of the lemma. Let M D L.�c ; Rc0/
be given by Lemma 2.16, where �c0 � �c � �1 and they all satisfy Convention 2.17.
Assume further that l0 � 2M. Let z be an .�c0 ; Rc0/–transition point of z
 . We shall
prove that d.z; 
/�M according to the following two cases:

Case 1 The point z lies in a geodesic segment coming from some .�c ; K/–component
ˇ of a .c; l/–tight path 
i . Then minfd.ˇ�; z/; d.ˇC; z/g�M. Indeed, if not, then by
applying Lemma 2.16 for the geodesic ˇ , we obtain a point z 2 z
 which is .�1; Rc0/–
deep in Xj . This is a contradiction, as z is an .�c0 ; Rc0/–transitional point in z
 .
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Case 2 The point z lies in Œyj ; xjC1� for some j , where Œyj ; xjC1� is given in
Definition 5.10 of a generalized tight path. By the same reasoning as above, we apply
Lemma 2.16 for the geodesic Œyj ; xjC1�. Then minfd.z; yj /; d.z; xjC1/g � L1 .

In both cases, we have proved that z is M –close to a point of 
 , so the lemma follows.

Remark An alternative way to prove the above lemma is to use the arguments of
Proposition 6.1 in [16] to prove that z
 is a curve whose distortion is a quadratic
polynomial; then it follows from Proposition 7.8 in [16] that z
 is linearly distorted.

Proposition 5.12 (approximation by generalized tight paths) For any l � 0, there
exists 0 < �0 < 1 such that the following property holds for any � 2 Œ�0; 1/:

For any � ¤ � 2ƒG, there exists a sequence of generalized .1; l/–tight paths 
n with
.
n/� 2 Œo; �� and .
n/C 2 Œo; �� such that

lim
n!1

d.o; .
n/�/D lim
n!1

d.o; .
n/C/D1

and
lim
n!1

l�;o.
n/D x��;o.�; �/:

Proof By definition of the shortcut metric (3), for any " > 0, there are finitely many
pairs .�i ; �iC1/ 2 ! where 1� i < m such that

(33) x��;o.�; �/�
X

1�i�m

��;o.�i ; �i /�
1
3
";

where �1 WD �; �m WD �. If mD 1, the proof is completed by Lemma 5.3. Assume that
m� 2.

Let � Dminfx��;o.�i ; �iC1/ W 1� i <mg> 0. For each 1� i <m, there exists Xi 2 P

such that �i ; �iC1 2 @�.Xi /, where @�.Xi / is the topological boundary of Xi in @�G.

First we claim that one can choose z�1 , z�m and z�i ; z�iC1 2Xi for each 1� i < m such
that the following two conditions hold:

(1) maxfx��;o.z�i ; �i /; x��;o.z�i ; �i /g �min
˚
1
4
�; "=6m

	
for 1� i �m.

(2) If there exists a path ˛ between z�i and z�iC1 for 1� i <m such that `.˛/� 3l ,
then it has lo–length at most 1

4
� .

Indeed, (1) is true for z�i and z�i sufficiently close to �i and �i , respectively. To
prove (2), let RDminfd.1; z�i /; d.1; z�i / W 1� i �mg. We have d.1; ˛/�R� 3l . So
for sufficiently large R the statement (2) follows from the visibility lemma, Lemma 2.6.
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By Lemma 5.3, we can connect z�i and z�i by a .1; l/–tight path 
i for 1� i �m such
that .
i /� D z�i and .
i /C D z�i and

(34) j��;o.z�i ; z�i /� l�;o.
i /j �
"

6m
:

By the condition (1) above, (33) and (34),

(35) x��;o.�; �/�
X

1�i�m

l�;o.
i /�
5
6
":

Let yi and xiC1 be the entry and exit points of 
i and 
iC1 in N�.Xi /, respectively.
If d.yi ; xiC1/ � l for all 1 � i < m, then we are done: f
ig gives the generalized
tight path. Otherwise, assume that d.xjC1; yj /� l for some 1� j < m.

Observe that maxfd.z�j ; yj /; d.z�jC1; xjC1/g � lC1. Indeed, if not, it follows that z�j
and z�jC1 are connected by a path of length at most 3l . By the above condition (2), we
have �o.z�j ; z�jC1/� 1

4
� . By condition (1), we have �o.�j ; �jC1/� 3

4
� . We arrive at

a contradiction with the definition of � . Thus, we have proved that

maxfd.z�j ; yj /; d.z�jC1; xjC1/g � l C 1:

By Lemma 5.1, we obtain

l�;o.Œyj ; z�j �
j /C l�;o.Œz�jC1; xjC1�
jC1/� l�;o.Œyj ; xjC1�/;

which yields

l�;o.
j /C l�;o.
jC1/� l�;o.Œz�j ; yj �
j /C l�;o.Œyj ; xjC1�/C l�;o.ŒxjC1; z�jC1�
jC1/

� ��;o.z�j ; z�jC1/:

This implies that we can drop the pair .�j ; �jC1/ in (33) such that the corresponding
inequality in (35) still holds. Precisely, choose a .1; l/–tight path j̨ between z�j ; z�jC1
such that

jl�;o. j̨ /� ��;o.z�j ; z�jC1/j �
"

6m
:

So l�;o.
j /C l�;o.
jC1/� l�;o. j̨ /� "=.6m/. It follows, by (35), that

x��;o.�; �/�
X

1�i�m
i¤j;jC1

l�;o.
i /C l�;o. j̨ /�
5"

6
�

"

6m
:

Consider the new set of .1; c/–tight paths 
i for i ¤ j; j C 1 and j̨ . Repeat the
above argument for those j for which d.xjC1; yj / � l . Since m is finite, for every
" > 0 we obtain a generalized tight path 
 such that x��;o.�; �/� l�;o.
/� � .
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5.4 Floyd and shortcut metrics on uniformly conical points

A priori, the shortcut metrics as quotient of the Floyd metrics might be distorted in an
unexpected way. The main result of this subsection is to show that this distortion is not
severe for uniformly conical points.

Fix a basepoint o 2G. Recall that, in Section 2.4, ƒuc
L;oG denotes the set of uniformly

conical points � 2 ƒG for which there exists an .�; R;L/–transitional geodesic ray
between o and � . Similarly, denote by @uc

L;oG the set of uniformly conical points
in @�G based at o. By Proposition 2.4, there exists a one-to-one correspondence
between ƒuc

L;oG and @uc
L;oG.

The following is a version of Proposition 2.19 for generalized tight paths:

Proposition 5.13 There exist l0;D > 0 such that for any L > 0, there exists M D
M.L/ > 0 with the following property:

Let ˛1 D Œo; �� and ˛2 D Œo; ��, where � and � are two distinct points of ƒuc
L;oG

(or @uc
L;oG, respectively). Let 
 be a generalized .1; l/–tight path for some l � l0

with 
� 2˛1 and 
C 2˛2 . If d.o; 
�/; d.o; 
C/� 0, then there exists z 2 
 such that
d.z; ˛1[˛2/�D and d.z; ˛i /�M for iD1; 2. Moreover, jd.o; z/�d.o; Œ�; ��/j�M.

Proof Let l0; c0�c and M;K>0 be given by Lemma 5.11 such that the K–truncation
z
 of a generalized .c; l/–tight 
 for l � l0 is a c0–quasigeodesic. By Proposition 2.19,
there exists an .�c0 ; Rc0/–transitional point z in z
 such that the conclusion of this
proposition holds. If the point z lies on 
 , then we are done. Otherwise, by the
“Moreover” statement of Lemma 5.11, we have d.z; 
/ �M. The proposition now
follows from Proposition 2.19.

The main result of this subsection is the following:

Proposition 5.14 (visual Floyd/shortcut metric) There exists 0 < �0 < 1 such that
the following holds for any L> 0 and � 2 Œ�0; 1/:

We have
��;o.�; �/�L �

n for all � ¤ � 2 @uc
L;oG

and
x��;o.�; �/�L �

n for all � ¤ � 2ƒuc
L;oG;

where nD d.o; Œ�; ��/.
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Proof Let us consider the shortcut metric case only. The Floyd metric case is similar
and even easier.

Let ˛1 and ˛2 be two .�1; R1; L/–transitional geodesic rays originating at o and
terminating at � and �, respectively.

Let l0;D > 0 be given by Proposition 5.13, and we choose �0 2 .0; 1/ verifying
Proposition 5.12 for l D l0 . Then, by Propositions 5.13 and 5.12, there exists M D
M.L/ > 0 such that the following holds:

(1) For each k > 0, there exists a sequence of generalized .1; l0/–tight paths 
k
with .
k/� 2 ˛1; .
k/C 2 ˛2 and such that .
k/�! � , .
k/C! � and

(36) jl�;o.
k/� x��;o.�; �/j � 1=k:

(2) There exists zk 2 
k such that d.zk; ˛1 [ ˛2/ � D and d.zk; ˛i / � M for
i D 1; 2. Moreover, jd.o; zk/� d.o; Œ�; ��/j �M.

Let uk WD .
k/� and vk WD .
k/C .

Upper bound Choose xk 2˛1 and yk 2˛2 such that maxfd.zk; xk/; d.zk; yk/g�M.
Then for every point t 2 Œxk; zk�[ Œzk; yk� we have

d.o; t/� d.o; zk/�M � n� 2M:

Hence,
maxfl�;o.Œxk; zk�/; l�;o.Œyk; zk�/g �M ��

n�2M :

We also have

maxfl�;o.Œxk; ��˛1/; l�;o.Œyk; ��˛2/g �
�minfd.o;xk/;d.o;yk/g

1��
�
�n�2M

1��
:

It follows that

(37) x��;o.�; �/� l�;o.Œxk; ��˛1/C l�;o.Œyk; ��˛2/C l�;o.Œxk; zk�/C l�;o.Œyk; zk�/

� 2�n�2M
�
1

1��
CM

�
:

Let C1 WD 2��2M .1=.1��/CM/. Then x��;o.�; �/� C1�n .

Lower bound Since d.zk; ˛1 [ ˛2/ � D, there exists wk 2 ˛1 [ ˛2 such that
d.zk; wk/�D. Assume that wk 2 ˛2 for concreteness.

By Lemma 2.7, any segment of ˛2 is a Floyd geodesic. Since vk! � and d.o;wk/�
nCD, we can assume that wk 2 Œo; vk�˛2 for all k� 0. So

��;o.vk; wk/D l�;o.Œwk; vk�˛2/D
�d.o;wk/

1��
�
�d.o;vk/

1��
�
�d.o;zk/CD

1��
�
�d.o;vk/

1��
:
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We have
��;o.vk; wk/� l�;o.
k/C l�;o.Œwk; zk�/:

Since d.zk; wk/�D, we have

l�;o.Œwk; zk�/�D ��
d.o;zk/�D:

Thus,

(38) l�;o.
k/� ��;o.vk; wk/� l�;o.Œwk; zk�/

� l�;o.Œvk; wk�˛2/� l�;o.Œwk; zk�/

�

� �D

1��
�
D

�D

�
�d.o;zk/�

�d.o;vk/

1��

�

� �D

1��
�
D

�D

�
��M ��n�

�d.o;vk/

1��
:

Since D does not depend on L by Proposition 5.13, there exists 1 > �0 > 0 such that

(39)
�D

1��
�
D

�D
�

�D0
1��0

�
D

�D0
> 0

for any �2 Œ�0; 1/. Let C2 WD .�D0 =.1��0/�.D/=�
D
0 /��

M >0. Note that d.o; vk/!
1 as k!1. By (36) and (38), passing to the limit when k!1, we obtain

x��;o.�; �/� C2�
n

for any � ¤ � 2ƒuc
L;oG and any L> 0. The proof is then complete.

Remarks (1) The fact that the constant D does not depend on L is crucial for the
choice of �0 in (39).

(2) This lemma gives an asymptotic formula for two uniformly conical points with
respect to the Floyd metric and shortcut metric. This could be used to give
an alternative proof of Lemma 3.16, but cannot be derived from (the proof of)
Lemma 3.16.

Appendix Visual metrics and Floyd metrics are bilipschitz
equivalent

The aim of the appendix is to give a short proof that the visual Gromov metric �a;o
and the Floyd metric ��;o on the boundary @X of a ı–hyperbolic graph .X; d/ are
bilipschitz equivalent for some choice of parameters a and �. This fact, mentioned in
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the introduction, is often considered as folklore; however, we have not found a complete
proof of it in the literature — see eg [19, Lemma 7.2.M] and the key inequality after it,
or [5, formula (1.3)]; in both cases the fact is stated without proof.

Recall the definition of the Gromov visual metric � on @X. For a real parameter a > 0
set ıa;o.�; �/D e�a.�j�/ , where .� j�/ denotes the Gromov product for the basepoint o.
Let

(40) �a;o.�; �/D inf
� nX
iD0

ıa;o.ci�1; ci / W fcig 2 C�;�
�
;

where C�;� is the set of chains of points in @X such that c0 D � and cn D �. If a <
.ln 2/=.6ı/ then �a;o is a metric on @X satisfying the inequality [18, Proposition 7.10]

(41) .3� 2eaı/ � ıa;o.�; �/� �a;o.�; �/� ıa;o.�; �/:

Remark An inequality similar to (41) where the metric � is replaced by the Floyd
metric (which is our goal now) is formally stated in [27, page 5] but unclear justification
is given.

For the Gromov product the following inequality is true [6, Lemma 2.7]:

(42) e�4aı � ıa;o.�; �/� e
�ad.o;Œ�;��/

� ıa;o.�; �/;

where d.o; Œ�; ��/ is the distance in X from o to the union of all geodesics between �
and �. The inequalities (41) and (42) imply

(43) �a;o.�; �/.�; �/�C1 e
�a�d.o;Œ�;��/

for the constant C1 Dmaxfe4aı ; .3� 2eaı/�1g.

The following proposition provides the bilipschitz equivalence between the visual
metric and the Floyd metric on the boundary of X.

Proposition A.1 Let .X; d/ be a ı–hyperbolic graph. There exists a constant a0
such that for any a 2 .0; a0� there exists a constant C for which

(44) �a;o.�; �/�C ��;o.�; �/ for all �; � 2 @X;

where �D e�a .

Proof Similarly to (40), we introduce the metric z�a;o.x; y/ defined with the chains
formed by the graph vertices. Then the boundary @X equipped with the metric (40)
can be seen as the remainder yX n X, where yX is the Cauchy completion of the

Geometry & Topology, Volume 23 (2019)



Hausdorff dimension of boundaries of relatively hyperbolic groups 1837

graph X equipped with the distance z�a;o.x; y/ (see eg [35, Section IV.22]). So
z�a;o.�; �/D limx!�; y!� z�a;o.x; y/, where

.400/ z�a;o.x; y/D inf
� nX
iD0

ıa;o.xi�1; xi / W x0 D x; xn D y; xi 2X

�
:

Similarly, the formulas (42)–(44) are still true if we replace the boundary points �
and � by vertices x and y in the graph X and use the distance d.o; Œx; y�/ between o
and a geodesic Œx; y��X. Thus, we obtain

(45) z�a;o.x; y/� inf
� nX
iD0

C1 ��
d.o;Œxi�1;xi �/ W x0 D x; xn D y; xi 2X

�
:

The chains used in .400/ are more general than those in the definition of the Floyd
distance, for which the distance between neighboring vertices must be 1. Therefore,
we obtain the upper bound z�a;o.x; y/� C1 � ��;o.x; y/. Passing to the limit we have
z�a;o.�; �/� C1 � ��;o.�; �/ for �; � 2 @X.

Since the metric z�a;o is also bilipschitz equivalent to the right-hand side of (43) (see
eg [35, Proposition 22.8]) the metrics z�a;o and �a;o are bilipschitz equivalent on @X,
so, up to changing the constant, we have

�a;o.�; �/� C � ��;o.�; �/; �; � 2 @X:

To prove the opposite inequality, we need to use the ı–thin triangle property. Consider
a geodesic triangle with vertices o, x , y in X. There exists a ı–center c on Œx; y�
such that d.c; Œo; x�/ � ı and d.c; Œo; y�/ � ı . For notational simplicity we ignore
a small uniform difference between different hyperbolicity constants (see eg [18,
Proposition 2.21]), and denote all of them by ı > 0. Since jd.o; c/� d.o; Œx; y�/j is
uniformly bounded above, to simplify the notation again we assume that d.o; c/ D
d.o; Œx; y�/.

Choose x0 2 Œo; x� and y0 2 Œo; y� so that maxfd.c; x0/; d.c; y0/g � ı . We have
minfd.o; Œx0; c�/; d.o; Œy0; c�/� d.o; Œx; y�/� ı . Hence, the Floyd length l�;o.Œx

0; c�/

of Œx0; c� is at most
ı ��d.o;Œx

0;c�/
�ı ��d.o;Œx;y�/�ı ;

and similarly for l�;o.Œy0; c�/. Since Œx0; x� and Œy0; y� are the Floyd ��;o–geodesics
(Lemma 2.7), we have

l�;o.Œx
0; x�/D

�d.o;x
0/

1��
�
�d.o;Œx;y�/�ı

1��
;
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and the same for l�;o.Œy0; y�/. Summing all up we obtain the following estimation for
the Floyd length of Œx; y�:

��;o.x; y/� l�;o.Œx
0; x�/C l�;o.Œx

0; c�/C l�;o.Œy
0; c�/C l�;o.Œy

0; y�/

� 2
�d.o;Œx;y�/�ı

1��
C 2ı ��d.o;Œx;y�/�ı

� C2 ��
d.o;Œx;y�/

for the constant C2Dmaxf2=.�ı.1��//; 2ı=�ıg. Passing to the limits when x! � 2

@X and y! �2 @X and using (43), we obtain (44) for the constant C DmaxfC1; C2g.
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