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Hyperbolicity as an obstruction to smoothability
for one-dimensional actions
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Ghys and Sergiescu proved in the 1980s that Thompson’s group T , and hence F ,
admits actions by C1 diffeomorphisms of the circle. They proved that the standard
actions of these groups are topologically conjugate to a group of C1 diffeomor-
phisms. Monod defined a family of groups of piecewise projective homeomor-
phisms, and Lodha and Moore defined finitely presentable groups of piecewise
projective homeomorphisms. These groups are of particular interest because they
are nonamenable and contain no free subgroup. In contrast to the result of Ghys
and Sergiescu, we prove that the groups of Monod and Lodha and Moore are not
topologically conjugate to a group of C 1 diffeomorphisms.

Furthermore, we show that the group of Lodha and Moore has no nonabelian
C 1 action on the interval. We also show that many of Monod’s groups H.A/ , for
instance when A is such that PSL.2; A/ contains a rational homothety x 7! p

q
x , do

not admit a C 1 action on the interval. The obstruction comes from the existence of
hyperbolic fixed points for C 1 actions. With slightly different techniques, we also
show that some groups of piecewise affine homeomorphisms of the interval or the
circle are not smoothable.
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1 Introduction

Few examples are known of groups that admit no sufficiently smooth action on a one-
dimensional manifold. Following the direction of the Zimmer program, typical examples
come from lattices in higher-rank Lie groups — see Burger and Monod [12], Witte [41]
and Ghys [21] — or more generally from groups with Kazhdan’s property .T /; see
Navas [32; 33]. Other interesting examples appear in Calegari [15; 16], Parwani [36],
Navas [34] and Baik, Kim and Koberda [5].

In this work we address the problem of the existence of smooth actions of groups of
piecewise projective homeomorphisms of the real line. Our principal interest comes
from the existence of groups of this kind which are negative solutions to the so-called
Day–von Neumann problem, as shown by Monod [31] and Lodha and Moore [27].
On the other hand, partially motivated by his work on Kazhdan groups acting on the
circle, Navas raised the problem of finding obstructions for a group of piecewise linear
homeomorphisms of the interval to admit smooth actions (see Navas [34] and Bonatti,
Monteverde, Navas and Rivas [10]). With this work, we illustrate relatively elementary
tools which apply to a large variety of examples of such groups. Our techniques rely
on some classical facts on one-dimensional dynamics and the recent work by Bonatti,
Navas, Rivas and Monteverde on actions of abelian-by-cyclic groups [10].

A classical obstruction to having C 1 actions on the interval is Thurston’s stability theo-
rem [39]: a group of C 1 diffeomorphisms of the interval is locally indicable, namely
every finitely generated subgroup has a nontrivial morphism to Z. This obstruction
does not apply in our setting: the group of piecewise projective homeomorphisms of
the real line is locally indicable. Therefore our results exhibit new examples of locally
indicable groups that have no C 1 action on the interval.

As an appetizer, even before introducing the notions and definitions which are necessary
for presenting our main results, we start with two results whose statements are very
easy to understand, and which illustrate the spirit of the paper. Fix � > 1 and consider

� the linear map f�W R!R defined as x 7! �x ,

� the map h�W R!R defined as

h�.x/D

�
x if x � 0;
�x if x > 0;

� the translation gW x 7! xC 1.

Let G� be the subgroup hf�; g; h�i � HomeoC.R/.
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Hyperbolicity as an obstruction to smoothability for one-dimensional actions 1843

Theorem 1.1 For any � > 1 which is rational (that is, � 2 Q\ .1;C1/) and any
morphism �W G�! Diff1C.Œ0; 1�/ one has:

The commutator Œg; h�gh�1� � belongs to the kernel of � .

In particular � cannot be injective.

The same holds for any morphism 'W G�! Diff1C.S
1/, where S1 is the circle.

In fact, we get the stronger conclusion that for any representation �W G�!Diff1C.Œ0; 1�/,
the image �.G�/ is a metabelian group (that is, a solvable group with abelian derived
subgroup).

The same occurs for a more general class of algebraic numbers, which we call Galois
hyperbolic (see Definition 2.4 and Theorem 2.5). We do not know if the same occurs
for � > 1 not Galois hyperbolic (see Remark 6.4). Nevertheless, consider the natural
realization �0W G�! HomeoC.S1/ defined as follows:

� one considers S1 as being the projective space RP1 ;

� �0.f�/ acts on S1 as the projective action of the matrix
�
�
0
0
1

�
;

� �0.g/ acts on S1 as the projective action of the matrix
�
1
0
1
1

�
;

� �0.h�/ coincides with �0.f�/ on the half circle Œ0;C1� and with the identity
map on the half circle Œ�1; 0�.

Theorem 1.2 Fix an arbitrary real number � > 1. With the notation as above, there
does not exist any homeomorphism �W S1! S1 such that ��0.f�/��1 , ��0.h�/��1

and ��0.g/��1 belong to Diff1C.S
1/.

In other words, the natural action of G� on S1 is not smoothable, and furthermore, if
� > 1 is Galois hyperbolic, then every C 1 action of G� on the circle or the interval
are (nonfaithful) metabelian actions.

For more precise statements, see Theorems 6.10 and 6.12.

The paper is organized as follows. In Section 2 we introduce the basic objects and
fix some notation. In Section 3 we roughly explain the different strategies that we
develop in this work, showing which are the main applications. In Section 4 we
illustrate the main motivation of our work, which is the recent construction by Monod
of nonamenable groups without free subgroups. In Section 5 we study the C 1 actions
of Monod’s groups and the finitely presentable group defined by Lodha and Moore.
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Section 6 contains the main part of this work, namely the study of C 1 actions of the
groups G� introduced above. Finally, in Section 7 we use different techniques that
work in C 2 regularity.

2 Some definitions and notation

Definition 2.1 Let M be a manifold and Homeo.M/ the group of homeomorphisms
of M. A subgroup G � Homeo.M/ is C r –smoothable (r � 1) if it is conjugate in
Homeo.M/ to a subgroup in Diffr.M/, the group of C r diffeomorphisms of M.

Remark 2.2 Even if a certain subgroup G � Homeo.M/ is not C r –smoothable, it
is still possible that the group G, as an abstract group, admits C r actions on the
manifold M.

Throughout this work we shall only be concerned with one-dimensional manifolds.
We restrict our discussion to orientation-preserving homeomorphisms, which form a
subgroup HomeoC.M/ of index two in Homeo.M/. We will not make much distinction
between the groups HomeoC.R/ and HomeoC.Œ0; 1�/. Notice however that the groups
DiffrC.R/ and DiffrC.Œ0; 1�/ are different and for this reason we sometimes identify
the interval Œ0; 1� to the compactified real line Œ�1;C1�. Choosing the affine chart
t 7! Œt W 1�, we consider R as the affine line in the projective space RP1 ŠR[f1g,
which is topologically the circle S1. The group HomeoC.R/ can be identified to a
subgroup of HomeoC.S1/, for instance as the stabilizer of the point 1 of S1 ŠRP1.

The projective special linear group PSL.2;R/D SL.2;R/=f˙idg naturally acts on the
projective real line RP1 by Möbius transformations; from now on, we shall always
suppose that PSL.2;R/ acts on the circle in this way.

Definition 2.3 A circle homeomorphism h 2 HomeoC.RP1/ is piecewise projective
if there exists a finite partition RP1 D I1 [ � � � [ Il of the circle into intervals such
that every restriction hjIk for k D 1; : : : ; l coincides with the restriction of a Möbius
transformation.

A breakpoint of h is a point b2RP1 such that the restriction of h to any neighbourhood
of b does not coincide with the restriction of a Möbius transformation.

The group of all orientation-preserving piecewise projective homeomorphisms of
the circle is denoted by PPC.RP1/. Similarly, we define the group of piecewise
projective homeomorphisms of the real line PPC.R/, identifying it to the stabilizer
of 1 inside PPC.RP1/.
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We recall that a fixed point p 2R for a diffeomorphism f 2 Diff1C.R/ is a hyperbolic
fixed point if f has derivative at p which is not 1. We shall say that a subgroup
G � Diff1C.R/ has hyperbolic fixed points if there exists an element f 2 G with
hyperbolic fixed points. This notion is related to the notion of hyperbolic elements
in PSL.2;R/. A nontrivial projective transformation in PSL.2;R/ has at most two fixed
points. If it has exactly two fixed points, it is called hyperbolic, and if it has only one
fixed point, it is called parabolic. A matrix M in SL.2;R/ is hyperbolic if jTr.M/j>2,
parabolic if jTr.M/jD 2 and elliptic if jTr.M/j<2. Then the corresponding projective
transformation is respectively hyperbolic, parabolic and elliptic.

Given a subgroup � � PSL.2;R/, we say that a real r 2R is a hyperbolic fixed point
for � if there is a 
 2 � such that 
 is hyperbolic and 
.r/ D r . Similarly, we
define the notion of a parabolic fixed point for � . We consider the sets H� and P�
of hyperbolic fixed points and parabolic fixed points of elements of � , respectively.
When � D PSL.2; A/D SL.2; A/=f˙idg, for some subring A�R, we simply write
HA and PA . Here SL.2; A/ is the group of invertible 2�2 matrices with determinant 1
and coefficients in A.

Let � 2R be an algebraic real number of degree d over Q, and let

p�.t/D
˛0

˛d
C
˛1

˛d
t C � � �C

˛d�1

˛d
td�1C td ; j̨ 2 Z;

denote the associated minimal polynomial. The field Q.�/ is a Q–vector space of
dimension d , for which we fix f1; �; : : : ; �d�1g as the preferred basis. With respect
to this basis, multiplication by � on Q.d/ is represented by the matrix

(1) C� D

0BBB@
0 � � � 0 �˛0=˛d

�˛1=˛d

Id�1
:::

�˛d�1=˛d

1CCCA ;
which is commonly named the Frobenius companion matrix of �. If � ¤ 0 then
˛0¤ 0, so that C� is an invertible d �d matrix with rational coefficients. The minimal
polynomial of C� is exactly p� , so the eigenvalues of C� are exactly the Galois
conjugates of �, that is, all (complex) roots of p� .

Definition 2.4 A nonzero real number � 2 R is Galois hyperbolic if it is algebraic
and the companion matrix C� has no eigenvalue of absolute value 1. Equivalently,
this means that all the Galois conjugates of � do not have absolute value 1.
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For instance, any rational �¤ 0;˙1 is Galois hyperbolic, as well as any quadratic inte-
ger
p
m¤0; 1 with m2N . However not every real number is Galois hyperbolic. As an

explicit nontrivial example [10, Section 5], the polynomial p.t/D1C4tC4t2C4t3Ct4

is irreducible over Q, has two positive real roots, � and 1=�, and two roots of absolute
value 1. Hence, � and 1=� are not Galois hyperbolic.

Theorem 1.1 holds for this more general class of numbers.

Theorem 2.5 For any Galois hyperbolic number � > 1 and any morphism �W G�!

Diff1C.Œ0; 1�/ one has:

The commutator Œg; h�gh�1� � belongs to the kernel of � .

In particular, � cannot be injective.

The same holds for any morphism 'W G�! Diff1C.S
1/, where S1 is the circle.

3 The mechanisms

The aim of this work is to present three different techniques which provide a variety
of examples of nonsmoothable groups in PPC.R/. The three techniques rely on the
rigid hyperbolicity of the actions: there are subgroups G � Diff1C.R/ that, no matter
how one (topologically) conjugates them inside Diff1C.R/, will always have hyperbolic
fixed points.

More precisely, suppose that in G � Diff1C.R/ there is an element f having a hyper-
bolic fixed point p 2 R. Consider another subgroup zG � Diff1C.R/ to which G is
topologically conjugate by some homeomorphism � , ie �G��1 D zG. The point �.p/
is a fixed point for �f ��1 , but since � is just a homeomorphism, we cannot ensure
that it is a hyperbolic fixed point. However, there are some topological mechanisms
that guarantee hyperbolicity.

The first one is when there are linked pairs of fixed points in G. We now define this
notion. Denote by Fix.g/ the set of fixed points of a homeomorphism g . A pair of
successive fixed points of G is a pair a; b 2R with a < b such that there is an element
g 2G for which .a; b/ is a connected component of RnFix.g/. A linked pair of fixed
points consists of pairs a , b and c , d such that

(i) there are elements f; g 2G such that a , b is a pair of successive fixed points
of f and c , d is a pair of successive fixed points of g ;

(ii) either fa; bg\ .c; d/ or .a; b/\fc; dg is a point.
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In this case hyperbolicity is obtained by a probabilistic argument. Some element h in
the semigroup generated by f and g will have a hyperbolic fixed point somewhere.
This is the so-called Sacksteder’s theorem, in its version for C 1–pseudogroups [19; 35].
This method applies to large groups of piecewise projective homeomorphisms, such as
Monod’s groups (see Definition 5.1):

Theorem 3.1 The following holds for Monod’s groups H.A/ and G.A/:

(i) For any subring A�R, Monod’s groups H.A/ and G.A/ are not C 1–smooth-
able.

(ii) If A contains
p
�˙1 for some Galois hyperbolic � > 1, then there exists no

injective morphism �W H.A/! Diff1C.Œ0; 1�/.

Remark 3.2 Condition (ii) on A is equivalent to the fact that the group PSL.2; A/

contains the homothety
f�W x 7! �x;

representing the matrix  p
� 0

0
p
��1

!
:

The second one is when there is an exponential growth of orbits. In this case we can
ensure that a specific point is always a hyperbolic fixed point. This applies for example
to the dyadic affine group ht 7! t C 1; t 7! 2ti, which is isomorphic to the solvable
Baumslag–Solitar group BS.1; 2/, as described in [10]. From this, it is easy to build
examples of finitely generated groups in PPC.R/ which are not C 1–smoothable. This
method applies to the finitely presentable Lodha–Moore group (see Section 5.2), for
which we do not only prove that its action is not C 1–smoothable, but also that it has
no nontrivial C 1 action on the interval:

Theorem 3.3 Every morphism from the Lodha–Moore group G0 to Diff1C.Œ0; 1�/ has
an abelian image.

The third one relies on the nature of stabilizers, and here we require that the regularity
of the group G is C 2 . If there exists a point x 2R such that the (right, for instance)
germs of elements g 2G fixing x define a group which is dense in R, then we can use
the Szekeres vector field to obtain a well-defined local differentiable structure, by means
of which we ensure that the hyperbolic nature of a fixed point cannot change after
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topological conjugacy to another C 2 action. This method applies to examples of groups
in PPC.R/ that are naturally in Diff1C.R/, eg the group generated by Thompson’s
group F (which is C 1 in PPC.R/) together with t 7! t C 1

2
, for which we establish

that their actions are not C 2–smoothable. It also applies to the Thompson–Stein groups
F.n1; : : : ; nk/ and T .n1; : : : ; nk/ (see Definition 4.7), extending previous work by
Liousse [26]:

Theorem 3.4 The Thompson–Stein groups F.n1; : : : ; nk/ for k � 2 are not C 2–
smoothable.

Corollary 3.5 (i) The Thompson–Stein groups T .2; n2; : : : ; nk/ for k � 2 have
no faithful C 2 action on S1.

(ii) Every C 2 action of T .2; 3; n3; : : : ; nk/ on S1 is trivial. This holds in particular
for T .2; 3/.

4 Historical motivations

4.1 Thompson’s groups F and T

In the 1950s, Richard J Thompson introduced three groups F , T and V , which have
many nice properties (see [17]). These groups are finitely presented and ŒF; F �, T
and V are simple. They were among the first known examples sharing these properties.
Since only F and T act by homeomorphisms on the circle, we restrict our attention to
them.

Definition 4.1 Thompson’s group T is the group of all piecewise linear homeo-
morphisms of the circle S1 ŠR=Z such that all derivatives are powers of 2 and the
breakpoints are dyadic rationals, ie points of the form p=2q with p; q 2N . Thompson’s
group F is the stabilizer of the point 0 in T .

It has been proved by Ghys and Sergiescu [22] that the piecewise linear action of T
(and hence of F ) on S1 is C1–smoothable. On the other side, it is “not difficult” to
find C1 faithful actions (a priori not topologically conjugate to the standard one) of
Thompson’s group.

We recall Thurston’s interpretation of T as a group of piecewise projective homeomor-
phisms of RP1 (see [17]).

Geometry & Topology, Volume 23 (2019)
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Definition 4.2 T is the group of piecewise PSL.2;Z/ homeomorphisms of RP1 with
breakpoints in PZ (which is the set of rational numbers together with the point at
infinity). T is generated by PSL.2;Z/ and an additional element c defined as

c.t/D

8̂̂̂<̂
ˆ̂:
t if t 2 Œ1; 0�;
t=.1� t / if 0� t � 1

2
;

3� 1=t if 1
2
� t � 1;

t C 1 if t 2 Œ1;1�:

It is particularly striking that the element c has continuous first derivative. As the
action of PSL.2;Z/ is even real-analytic, Thurston’s interpretation gives a natural
C 1–smoothing of T .1 In this model, F is the group of piecewise PSL.2;Z/ homeo-
morphisms of RP1, with breakpoints in PZ , that also fix infinity. So F is the stabilizer
of 1 in T . F is generated by t 7! t C 1 together with c from above. Recall that the
group PSL.2;Z/ is isomorphic to the free product Z2 �Z3 , freely generated by the
order-two element aW t 7! �1=t and the order-three element bW t 7! 1=.1� t /.

Now we sketch a proof that F admits a C1 action, inspired by [25] (see also [8]).
Note that this is weaker than proving it is C1–smoothable, which is a consequence of
the theorem of Ghys and Sergiescu.

Given any homeomorphism hW Œ0; 1�! Œ0; 2�, if we define the element

zc.t/D

8<:
t if t 2 Œ1; 0�;
h.t/ if t 2 Œ0; 1�;
t C 1 if t 2 Œ1;1�;

then the group generated by t 7! t C 1 and zc is isomorphic to F. If we choose h to
be C1 , infinitely tangent to the identity at 0 and to t 7! t C 1 at 1, then the modified
element zc is C1 . The algebraic properties of F guarantee that the group generated
by t 7! t C 1 and zc is isomorphic to F.2 However, it is not guaranteed that one can
choose h and hence zc such that the action of the group ht 7! t C 1; zci is actually
conjugate to the standard action of F .

A very important remark is that this strategy is morally possible because 0 and 1
are not hyperbolic fixed points (they are parabolic). This allows one to slow down

1Another way of seeing this is that C 1 continuity follows from the choice of PZ for the set of
breakpoints.

2To see this, first check that the relations of F are satisfied and conclude using the property F satisfies
that every proper quotient is abelian.
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the dynamics near these points and make c infinitely tangent to the identity. This
feature already appeared in the work of Ghys and Sergiescu. Hyperbolicity is a typical
obstruction for such modifications in differentiable dynamics.

4.2 One open problem: the Day–von Neumann problem for Diff2C.R/

One of the main motivations for our work is understanding amenable groups of diffeo-
morphisms of the circle. There are several equivalent definitions of amenability and an
extensive literature on the topic (see [18] for an elementary introduction). We provide
one definition:

Definition 4.3 A discrete group G is amenable if it admits a finitely additive, left-
translation-invariant probability measure.

Here is an equivalent definition, à la Krylov–Bogolyubov, which is more natural from
the viewpoint of dynamical systems:

Definition 4.4 A discrete group G is amenable if every continuous action on a compact
space has an invariant probability measure.

The class of amenable groups includes finite, abelian and solvable groups. Amenabil-
ity is closed under extensions, products, direct unions and quotients. Subgroups of
amenable groups are amenable. On the other hand, groups containing nonabelian free
subgroups are nonamenable. The so-called Day–von Neumann problem (popularized
by Day in the 1950s) is about the converse statement: does every nonamenable group
contain a nonabelian free subgroup? If one restricts the question to linear groups, then
the well-known Tits alternative gives a positive answer: any linear group that is not
virtually solvable contains nonabelian free subgroups.

The problem has been solved with negative answers and currently various negative
solutions are known. These include Tarski monsters, Burnside groups and Golod–
Shafarevich groups. In this article we are interested in a particular class of such
groups, discovered by Monod [31] and Lodha and Moore [27], which are subgroups
of PPC.R/. Among them, there are examples that are in Diff1C.R/. For instance, the
group generated by t ! t C 1

2
together with the element c from Definition 4.2 above

provides such an example.

Interestingly, no negative solution to the Day–von Neumann problem is known among
subgroups of Diff2C.R/. Motivated by this question, in this work we prove (Theorems
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5.8 and 5.9) that the natural actions of these groups are not C 2–smoothable. However,
we have to stress that a priori there could be smooth actions of such nonamenable
groups that are not topologically conjugate to the standard actions (see Remark 2.2).

The moral consequence of our results is that the Day–von Neumann problem in Diff2C.R/

is strictly harder than in Diff1C.R/. This is not so surprising, since there are important
differences between C 2 and C 1 diffeomorphisms in one-dimensional dynamics. We
end this section by recalling a couple of tantalizing longstanding open questions in this
direction.

Question 4.5 Is F amenable?

Question 4.6 Does the Tits alternative hold for the group of real-analytic diffeomor-
phisms of the real line?

4.3 A second open problem: higher-rank behaviour

Definition 4.7 Let 1 < n1 < � � � < nk be natural numbers such that the group ƒD
hni i � R�

C
is an abelian group of rank k . Denote by A the ring Z

�
1
m

�
, where m is

the least common multiple of the ni .

Thompson and Stein’s group T .n1; : : : ; nk/ is the group of all piecewise linear homeo-
morphisms of the circle S1ŠR=Z such that all derivatives are in ƒ and the breakpoints
are in A. Thompson and Stein’s group F.n1; : : : ; nk/ is the stabilizer of the point 0
in T .n1; : : : ; nk/.

With the above definition, the group T .2/ is the classical Thompson’s group T . It has
been proved by Stein [37] that these groups share many group-theoretical properties
with the classical Thompson’s groups, such as being finitely presentable (see [7]).

However, there are important differences from the dynamical viewpoint. In [29;
30], Minakawa discovers that PLC.S1/ contains “exotic circles”, namely topological
conjugates of SO.2/ that are not one-parameter groups inside PLC.S1/, in the sense
that they are not PL conjugates of SO.2/. In particular, Liousse shows in [26] that
T .n1; : : : ; nk/ contains an abelian group of rank k�1 that is contained in a topological
conjugate of SO.2/, but not in a PL conjugate of SO.2/. Whence, Navas suggested
the following:

Question 4.8 Does T .n1; : : : ; nk/, k � 2, satisfy Kazhdan’s property .T /?3

3We do not define property .T / here; we refer the reader to [6].
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On the other hand, Navas proved in [32] that the only groups of C r diffeomorphisms
with r > 3

2
that have property .T / are finite. Focussing our attention on one particular

example, Liousse [26] proves, among other things, that every action of T .2; 3/ on S1

by C 9 diffeomorphisms is trivial and with Corollary 3.5 we improve this result to C 2

regularity. It would be very interesting to prove that T .2; 3/ has no C 1 action on the
circle, as this would confirm that this group is a good candidate for finding an infinite
Kazhdan group of circle homeomorphisms.

Naturally, there could be also good candidates among groups of piecewise projective
homeomorphisms.

5 Nonamenable groups of piecewise projective
homeomorphisms

5.1 Monod’s groups

Generalizing a well-known result by Brin and Squier [11], Monod [31] showed that
PPC.R/ does not contain nonabelian free subgroups. One key feature is that given
any r 2R, the group of germs of elements in PPC.R/ fixing the point r is isomorphic
to the affine group.

Definition 5.1 (Monod’s groups) Let A be a subring of R. G.A/ is defined as the
group of all piecewise PSL.2; A/ homeomorphisms of the circle with breakpoints
in HA . The group H.A/ is the stabilizer of 1 inside G.A/.

Observe that the groups G.R/ and H.R/ coincide with PPC.RP1/ and PPC.R/,
respectively. Relying on the fact that for any A¤ Z, the group PSL.2; A/ contains
dense free subgroups, Monod proved in [31] that for any A¤ Z, the group H.A/ is
nonamenable. Therefore these groups give a negative answer to the Day–von Neumann
problem.

Remark 5.2 The previous definition can be generalized, considering any subgroup
� � PSL.2;R/. Elements in G.�/ are piecewise � and the breakpoints are in H� .
For any nondiscrete � � PSL.2;R/, the group H.�/ does not contain free subgroups
and is nonamenable. Theorem 3.1 can be extended to these groups as well.

We shall now demonstrate Theorem 3.1, namely that Monod’s examples are not C 1–
smoothable. For part (i), it is enough to prove the following:
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Theorem 5.3 Monod’s group H.Z/ is not C 1–smoothable.

On the other hand, part (ii) relies on Theorem 2.5.

Proof of Theorem 3.1 Let us first prove (i). Any subring A�R contains Z, therefore
PSL.2;Z/ is a subgroup of any PSL.2; A/. Therefore we have inclusions H.Z/ �
H.A/ � G.A/. As H.Z/ is not C 1–smoothable (Theorem 5.3), neither are H.A/
and G.A/.

Next, we demonstrate part (ii). Let � > 1 be a Galois hyperbolic number such that

f�W x 7! �x

belongs to PSL.2; A/. As Z� A, the translation gW x 7! xC 1 belongs to PSL.2; A/

as well. Moreover, f� being a hyperbolic element in PSL.2; A/, we have that HA
contains its fixed point 0. Therefore Monod’s group H.A/ contains the piecewise-
defined element

h�W x 7!

�
x if x � 0;
�x if x > 0:

We have just shown that G� D hf�; g; h�i is a subgroup of H.A/.

Let �W H.A/!Diff1C.Œ0; 1�/ be a representation. Theorem 2.5 implies that Œg; h�gh�1� �

is in the kernel of � . Therefore � cannot be injective, as desired.

The dynamical ingredient we need for Theorem 5.3 is the following Sacksteder-like
result, originally due to Deroin, Kleptsyn and Navas [19] (see [35, Proposition 3.2.10]
and also [9, Section 4.5] for a simplified proof).

Proposition 5.4 Let G D hf; gi be a group acting by orientation-preserving C 1

diffeomorphisms on a compact one-dimensional manifold. If fa; bg and fc; dg are
linked pairs of successive fixed points for f; g , then G contains an element with a
hyperbolic fixed point in .a; b/\ .c; d/.

Proof of Theorem 5.3 Let us assume by way of contradiction that there is a homeo-
morphism �W R!R such that G WD �H.Z/��1 is a group of C 1 diffeomorphisms
of R. First we observe that there are elements f; g 2H.Z/ that have linked pairs of
fixed points. For example, consider the hyperbolic element 
 defined as the projective
transformation


 D

�
2 �1

�1 1

�
;
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whose fixed points a and b satisfy that a < �3
2
< 1
2
< b . Now define

f .t/D

�
t if t … Œa; b�;

.t/ if t 2 Œa; b�;

g.t/D f .t � 1/C 1:

Note that the pairs a , b and c D aC 1, d D bC 1 are linked.4

Now the elements

f1 D �f �
�1; g1 D �g�

�1

in G have fixed points �.a/, �.b/ and �.c/, �.d/, respectively. This forms a linked
pair. By Proposition 5.4, there is an element g 2 G with a fixed point such that the
derivative of h at x is not equal to 1. Now let h1 D ��1h� be the corresponding
element in H.Z/. Note that h1 fixes y D ��1.x/.

We claim that y is a fixed point of a hyperbolic matrix in PSL.2;Z/. If y is a
breakpoint of h1 , then this is true because the set of breakpoints of elements in H.Z/
is exactly HZ . We consider the case when y is not a breakpoint of h1 , so there exists
an element 
1 2 PSL.2;Z/ whose restriction to a neighbourhood U of y coincides
with the restriction h1jU .

Observe that since x is a hyperbolic fixed point for h, the corresponding point y
must be a topological attractor or repellor for 
1 2 PSL.2;Z/ that acts locally like h1
around y , and hence h1 must be hyperbolic and y is hence a hyperbolic fixed point
for PSL.2;Z/.

Now consider an element h2 2 H.Z/ which is the identity on .�1; y/ and agrees
with h1 on Œy;1/. Then h3D �h2��1 2G has right derivative �¤ 1 at x and a left
derivative that equals 1 at x . This contradicts the assumption that h3 is C 1 . Hence
our original assumption that H.Z/ is C 1–smoothable must be false.

5.2 The Lodha–Moore example

Lodha and Moore constructed a finitely presented subgroup G0 of Monod’s group.
This example provides the first torsion-free, finitely presentable example solving the
Day–von Neumann problem. The group G0 is generated by t 7! t C 1 together with

4In general a linked pair may not look like it does in this situation, for instance such maps may have
components of support lying outside .a; b/ and .aC 1; bC 1/ , respectively.
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the following two homeomorphisms of R:

c.t/D

8̂̂̂<̂
ˆ̂:
t if t � 0;
t=.1� t / if 0� t � 1

2
;

3� 1=t if 1
2
� t � 1;

t C 1 if 1� t;

d.t/D

�
2t=.1C t / if 0� t � 1;
t if t … Œ0; 1�:

The following was proved in [27]:

Theorem 5.5 The group G0 is nonamenable and does not contain nonabelian free
subgroups. Moreover, it is finitely presentable with 3 generators and 9 relations.

In [27] a combinatorial model for G0 is constructed by means of a faithful action of G0
by homeomorphisms of the Cantor set f0; 1gN . This model was used to prove that
G0 is finitely presentable. Here f0; 1gN is the Cantor set of infinite binary sequences,
viewed as the boundary of the infinite rooted binary tree. We denote by f0; 1g<N the
set of all finite binary sequences, which are addresses of nodes in the infinite rooted
binary tree.

Consider the map ˆW f0; 1gN !R[f1g given by

11a00a11a2 � � � 7! a0C
1

a1C
1

a2C���

; 00a01a10a2 � � � 7! �
�
a0C

1

a1C
1

a2C���

�
:

This function is one-to-one except on sequences � which are eventually constant. On
sequences which are eventually constant, the map is two-to-one: ˆ.s011/Dˆ.s101/
and ˆ.01/Dˆ.11/D1.

It was shown in [27] that upon conjugating a , b and c by ˆ one obtains the following
combinatorial model. We start with the map xW f0; 1gN ! f0; 1gN given by

x.00�/D 0�;

x.01�/D 10�;

x.1�/D 11�

and also, recursively, the pair of mutually inverse maps y; y�1W f0; 1gN ! f0; 1gN as

y.00�/D 0y.�/; y�1.0�/D 00y�1.�/;

y.01�/D 10y�1.�/; y�1.10�/D 01y.�/;

y.1�/D 11y.�/; y�1.11�/D 1y�1.�/:
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From these functions, we define the functions xs; ysW f0; 1gN ! f0; 1gN for s 2
f0; 1g<N which act as x and y localized to binary sequences which extend s :

xs.�/D

�
sx.�/ if � D s�;
� otherwise;

ys.�/D

�
sy.�/ if � D s�;
� otherwise:

If s is the empty string, it will be omitted as a subscript. The group G0 is generated
by functions in the set

S D fxt ; ys j s; t 2 f0; 1g<N ; s ¤ 0k; s ¤ 1k; s ¤∅g

In fact, G0 is generated by x , x1 and y10 , which correspond respectively to conjugates
of the functions a , b and c , defined above, by ˆ. (See [27] for details.)

It is important to note that G0 acts on the boundary of the infinite-rooted binary tree,
but not on the tree itself.

Recall from the introduction that we are denoting by G2 the group generated by f2 , g
and h2 , where f2 is the scalar multiplication by 2, g is the translation by 1, and h2
is the element which agrees with f2 to the right of zero and is the identity elsewhere.
We obtain the following obstruction to smoothability of G0 .

Lemma 5.6 The three elements y�1100y101 , y101 and x10 generate an isomorphic copy
of G2 in the Lodha–Moore group G0 .

Proof It was demonstrated in [27] that the elements x and y�10 y1 are conjugate
respectively to t 7! t C 1 and t 7! 2t by ˆ. Hence they generate an isomorphic copy
of BS.1; 2/. In particular, y�10 y1 , y1 and x10 generate an isomorphic copy of G2 .

It is easy to see that the groups hy�1100y101; y101; x10i and hy�10 y1; y1; xi are isomorphic,
since their respective actions on boundaries of the binary trees, T1 rooted at the empty
sequence and T2 rooted at the sequence 10, are the same.

More explicitly, one can verify that the elements y�1100y101 , y101 and x10 correspond
via ˆ to the following piecewise projective transformations (see Figure 1):

x10 �

8̂̂̂<̂
ˆ̂:
�
1
�1

0
1

�
on
�
0; 1
3

�
;�

4
5
�1
�1

�
on
�
1
3
; 1
2

�
;�

0
�1

1
2

�
on
�
1
2
; 1
�
;

id on R n Œ0; 1�;

y101 �

��3
2
�1
0

�
on
�
1
2
; 1
�
;

id on R n
�
1
2
; 1
�
;

y�1100y101 �

8̂<̂
:
�
1
�2

0
2

�
on
�
0; 1
2

�
;�

3
2
�1
0

�
on
�
1
2
; 1
�
;

id on R n Œ0; 1�:
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y�1100y101

y�1101

x10

1

10

Figure 1: The generators y�1100y101 , y�1101 and x10 restricted to Œ0; 1�

Proof of Theorem 3.3 As a consequence of Lemma 5.6, the group G0 contains a
subgroup H isomorphic to G2 . Let �W G0!Diff1C.Œ0; 1�/ be a morphism. By a direct
application of Theorem 1.1, we obtain that the kernel of � contains some nontrivial
element of H. Thus � is not injective.

Now, it has been proven in [13] that every proper quotient of G0 is abelian, whence
we get our result: as we have just shown that the kernel is not trivial, the image must
be abelian, as we wanted to prove.

5.3 Further examples

An interesting family of nonamenable groups is obtained adding translations on top
of F (defined as in Definition 4.2). Mimicking Monod’s argument, it is not difficult to
prove the following:

Proposition 5.7 For any ˛ 2 .0; 1/, the group of piecewise projective homeomor-
phisms generated by F and the translation t 7! t C˛ is nonamenable.

Observe that the groups hF; t 7! t C˛i appearing in the above statement are naturally
of C 1 diffeomorphisms.

Theorem 5.8 For any irrational ˛ 2 .0; 1/, the action of the group of piecewise
projective homeomorphisms hF; t 7! t C˛i on the compactified real line Œ�1;C1�
is not C 2–smoothable.

Proof We denote by T˛ the translation by ˛ . If ˛ is irrational, then T1 and T˛
generate an abelian free group of rank 2 of C 2 (even real-analytic) diffeomorphisms
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of R. The maps f D T�1 and gD T�j˛j are contractions on R. Consider any element
h 2 hF; T˛i with a C 2 discontinuity point on R. Then Theorem 7.3 implies directly
that the action of hF; T˛i on Œ�1;C1� is not C 2–smoothable.

For rational translations T˛ , we can extend the previous argument and prove that even
the action on the noncompactified real line .�1;C1/ is not C 2–smoothable.

Theorem 5.9 For any rational ˛ 2 .0; 1/, the action of the group of piecewise projec-
tive homeomorphisms hF; t 7! t C˛i on R is not C 2–smoothable.

Proof We consider the conjugate of c by T˛ ,

T˛cT
�1
˛ .t/D

8̂̂̂<̂
ˆ̂:
t if t � ˛;
.t �˛/=.1� .t �˛//C˛ if ˛ � t � 1

2
C˛;

3� 1=.t �˛/C˛ if 1
2
C˛ � t � 1C˛;

t C 1 if 1C˛ � t:

When restricted to the interval
�
˛; 1
2
C ˛

�
, the element T˛cT �1˛ coincides with the

projective transformation �
1�˛ ˛2

�1 1C˛

�
;

which is a parabolic element in PSL.2;ZŒ˛�/ fixing ˛ . It is not in PSL.2;Z/.

Inside Thompson’s F we can find an element f such that

� f fixes ˛ ,

� the restriction of f to the interval
�
˛; 1
2
C˛

�
is C 2 ,

� f is a contraction of the interval
�
˛; 1
2
C˛

�
, namely f .t/ < t for any t in the

right neighbourhood
�
˛; 1
2
C˛

�
of ˛ .

Indeed, since ˛ is rational, there exists a parabolic element in PSL.2;Z/ with ˛ as
fixed point, and we can take for f any element of F which coincides with this element
(or its inverse) in restriction to

�
˛; 1
2
C˛

�
.

Finally, consider an element h2F which has a C 2 discontinuity point p on
�
˛; 1
2
C˛

�
,

with h.p/ 2
�
˛; 1
2
C˛

�
.

It is straightforward to verify that f , gD .T˛cT �1˛ /�1 and h satisfy the requirements
of Theorem 7.3 (when considering the interval

�
˛; 1
2
C˛

�
as the interval Œ0; a� in the

statement). Thus the theorem is proved.
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6 C 1 actions of affine and piecewise affine groups

6.1 Baumslag–Solitar groups and affine groups

Let n > 1 be an integer. The classical Baumslag–Solitar groups BS.1; n/ are defined
by the presentations

BS.1; n/D ha; b j aba�1 D bni:

They are naturally realized as subgroups of the affine group AffC.R/ � PSL.2;R/,
generated by the homothety a.x/D nx and the translation b.x/D xC 1.

Similarly, for any rational �Dp=q > 1 there is a morphism from the Bausmlag–Solitar
group

BS.q; p/D ha; b j abqa�1 D bpi

to the subgroup A� of AffC.R/ generated by a.x/D �x and b.x/D xC1. However,
when p=q>1 is not an integer, this morphism is not an isomorphism. For general �>1,
we define A� to be the subgroup of AffC.R/ generated by a.x/D�x and b.x/DxC1.
Observe that the conjugate aba�1 equals the translation x 7! x C �, and hence b
and aba�1 commute in A� (this is not true for nonsolvable Baumslag–Solitar groups
BS.q; p/ with p=q > 1 not an integer). The group A� is abelian-by-cyclic, abstractly
isomorphic to the semidirect product ZŒ�; ��1�ÌZ (where Z acts on ZŒ�; ��1� by mul-
tiplication by �). More precisely, for � transcendental, A� is isomorphic to the wreath
product Z oZŠZŒt; t�1�ÌZ, whereas if � is algebraic, the following properties hold:

Lemma 6.1 Let � > 1 be an algebraic real number of degree d , and let

p�.t/D
˛0

˛d
C
˛1

˛d
t C � � �C

˛d�1

˛d
td�1C td ; j̨ 2 Z;

denote the associated minimal polynomial.

(i) The group H DZŒ�; ��1� has Q–rank equal to d : it is an additive subgroup of
Q.�/ŠQd , and does not embed in a Q–vector space of lower dimension.

(ii) With respect to the basis f1; �; : : : ; �d�1g, the homothety a acts on H as
multiplication by the companion matrix C� , so that one has A� ŠH ÌC� Z.

(iii) The group A� is a quotient of the finitely presented group

(2) yA� D
˝
ya; b0; : : : ; bd�1 j bibj D bj bi for i; j D 0; : : : ; d � 1;

yabj ya
�1
D bjC1 for j D 0; : : : ; d � 2;

yab
˛d
d�1
ya�1 D b

�˛0
0 � � � b

�˛d�1
d�1

˛
;
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where generators bj are mapped to the translations x 7! xC�j in the standard
affine action , and ya to the homothety of factor �.

(iv) The abelianization of yA� is the abelian group Z�Z=.˛dp�.1/Z/, where the
factor Z is generated by the image of ya , and the finite factor Z=.˛dp�.1/Z/ is
generated by the image of any bj . In particular , any torsion-free abelian quotient
of A� is either trivial or infinite cyclic.

The proof being elementary, we omit it. For the last statement, observe that p� is the
minimal polynomial of � (which is a real algebraic number ¤ 1); hence, 1 cannot be
a root and therefore ˛dp�.1/ is always a nonzero integer.

6.2 C 1 actions of abelian-by-cyclic groups

In [20] Farb and Franks, relying on Kopell’s lemma, show that every C 2 action
of BS.q; p/ on one-dimensional manifolds quotients through an action of its image
ZŒp=q; q=p�Ì Z in AffC.R/. To the best of our knowledge, nothing appears in the
literature about actions in lower regularity.

The reason why actions of (solvable) Baumslag–Solitar groups are widely studied is
because of the simple presentation, given by just one relation, abma�1 D bn , which
has a dynamical meaning: a conjugates a power of b to another power. One of
the first relevant works in this subject is the aforementioned [20], where the authors
study general actions of BS.q; p/ on 1–manifolds. This was pursued by Burslem
and Wilkinson [14], where they study sufficiently regular actions of BS.1; n/ on the
circle. Later improvements are due to Guelman and Liousse [23], and finally to Bonatti,
Monteverde, Navas and Rivas [10]. For actions on higher-dimensional manifolds,
McCarthy [28] proved that C 1 perturbations of the trivial action of torsion-free, finitely
presented, abelian-by-cyclic groups are not faithful. Another example of a rigidity
result was obtained by Asaoka [3; 4] for standard actions of the same class of groups
on spheres and tori, and also by Wilkinson and Xue [40] for actions on tori. Finally,
planar actions of BS.1; n/ have been investigated by several authors [24; 2; 1].

In relation with our work, Bonatti, Monteverde, Navas and Rivas study the C 1 actions
on the interval of abelian-by-cyclic groups like A� . The following result appears in
[10, Section 4.3] (even if not explicitly stated for general � > 1, the arguments there
only use the condition � � 2, which is always guaranteed, up to taking an integer
power of a):
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Proposition 6.2 Fix an arbitrary � > 1 and let �W R!R be a homeomorphism such
that �A���1 is in Diff1C.Œ0; 1�/. Then �a��1 has derivative equal to � at its interior
fixed point �.0/.

For Galois hyperbolic � > 1, for instance � > 1 rational, we obtain from [10] a much
stronger statement:

Theorem 6.3 Let � > 1 be a Galois hyperbolic number and consider a C 1 action
�W A�!Diff1C.Œ0; 1�/ of the abelian-by-cyclic group A� on the closed interval, without
global fixed points in its interior. If �.A�/ is not abelian, then the action of A� is
topologically conjugate to the standard affine action.

Proof Lemma 6.1(i)–(ii) guarantees that the hypotheses of [10, Theorem 1.3] are
satisfied for the group A� , provided � > 1 is Galois hyperbolic. This gives that any
C 1 action of A� on the closed interval, without global fixed points in its interior,
is topological conjugate to a representation of A� into the affine group AffC.R/.
Representations  W A�! AffC.R/ are classified by [10, Proposition 2.1]: when the
image of  is nonabelian, (i) the generator a of A� (the homothety of factor �) is
mapped to itself, and (ii) the generator b of A� (the translation) is mapped to some
translation. Therefore  is conjugate to the standard affine action.

Remark 6.4 The statement above cannot be true if � > 1 is transcendental, because
A� Š Z o Z has many distinct actions on the interval. Moreover, as described in
[10, Section 5], if � > 1 is algebraic but not Galois hyperbolic, then A� has further
C 1 actions.

6.3 The groups G�

Inspired by the definition of Monod’s groups, we consider an analogous construction
starting from these affine groups. Here we repeat the definition already given in the
introduction:

Definition 6.5 For any �> 1, we define G� to be the subgroup of PPC.R/ generated
by the elements

a.x/D �x; aC.x/D

�
x if x � 0;
�x if x > 0;

b.x/D xC 1:

We also set a� D aa�1
C

, which agrees with a to the left of 0 and is the identity
elsewhere.
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Remark 6.6 In the introduction, we were denoting a , b and aC by f� , g and h� ,
respectively.

Lemma 6.7 Let � > 1 be an algebraic number. The image of the generator b 2G� is
trivial in any torsion-free abelian quotient of G� . Indeed, any such quotient is either
trivial, or infinite cyclic, or isomorphic to Z2 , generated by the images of a˙ .

Proof By Lemma 6.1(iv), every image of the generator b in an abelian group must be
of finite order.

Remark 6.8 The algebraic structure of G� is highly complicated. For instance, in
the case �D 2, inside the group G2 , the elements b and ŒaC; b� are the generators of
Thompson’s F, in its natural piecewise linear action on R. In fact, every group G�
contains a copy of F . To see this, let

f1 D b
�1aCb; f2 D ba�b

�1:

The (open) support of f1 is the half-line J1D .�1;C1/ whereas the support of f2 is
the half-line J2 D .�1; 1/. These supports form a chain .J1; J2/ in the sense of [25].
Then by [25, Theorem 3.1], there exists n 2N such that hf n1 ; f

n
2 i is isomorphic to

Thompson’s group F .

Example 6.9 There are two canonical standard affine actions of the group G� on
the real line that factor through the affine group A� . First, as every element in G�
fixes ˙1, we can consider the germs of elements of G� at these two points. This
gives us two surjective homomorphisms

�˙W G�! A�:

It is clear from the definition of G� that we have

�˙.a�/D id; �˙.a˙/D �.a/

for these two morphisms. More generally, every element of G� that is the identity
outside a compact interval belongs to the kernels of both morphisms �˙ . This is the
case for the commutator Œb; aCba�1C � that appears in the statement of Theorem 2.5.

On the other hand, as the abelianization of G� is not trivial, there are plenty of
abelian actions of G� on the real line. Recall that any group of orientation-preserving
homeomorphisms of the real line is torsion-free; therefore, as � > 1 is algebraic,
Lemma 6.7 implies that the generator b must be in the kernel of any abelian action. In
particular, as � > 1 is algebraic, the commutator Œb; aCba�1C � always acts trivially.
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6.4 C 1 actions of G�

The following result is essentially the one contained in Theorem 1.2:

Theorem 6.10 For any � > 1, the natural action of G� on the compactified real line
Œ�1;C1� is not C 1–smoothable.

Proof We argue by contradiction. After Proposition 6.2, if there existed a homeomor-
phism �W R!R such that �A���1 was in Diff1C.Œ�1;C1�/, then �a��1 would
have derivative equal to � at p D �.0/ and �aC��1 would not be C 1 at p . Hence
the group is not C 1–smoothable.

Remark 6.11 In the previous statement, it is fundamental to consider the action of G�
on the compactified line. Indeed, the statement is no longer true if one simply considers
the action on R (see [10, Remark 4.14]).

Our second result, more precise than the statement in Theorem 2.5, says that every
C 1 action of G� on the interval, for Galois hyperbolic � > 1, is always described by
combining the examples above.

Theorem 6.12 Let � > 1 be Galois hyperbolic and let �W G�! Diff1C.Œ0; 1�/ be a
nontrivial homomorphism. Then there exist finitely many pairwise disjoint subintervals
I1; : : : ; In � Œ0; 1� such that

(i) for any i D 1; : : : ; n, the image �.G�/ preserves the interval Ii ;

(ii) for any i D 1; : : : ; n, the restriction of �.G�/ to Ii is topologically conjugate to
one of the two canonical actions on R;

(iii) the restriction of �.G�/ to the complement Œ0; 1� n
Sn
iD1 Ii is abelian.

In particular , the group G� admits no faithful C 1 action on the closed interval.

Remark 6.13 Relying on [10, Theorem 1.10] (see also [23]), we could provide a
similar statement for C 1 actions of G� on the circle S1. Indeed, every nonabelian
action of A� has a global finite orbit, so, up to passing to a finite-index subgroup, every
nonabelian action of G� reduces to an action on the interval.

Remark 6.14 The proof of Theorem 6.12 would be much simpler for representations
�W G� ! Diff1C˛

C
.Œ0; 1�/ of the group G� into the group of C 1 diffeomorphisms

with ˛–Hölder continuous derivative. Indeed, it is classical that any C 1 element
commuting with a C 1C˛ hyperbolic contraction of an interval lies in a one-parameter
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flow (see Theorem 7.1; when the fixed point of the contraction is hyperbolic, Szekeres’
theorem requires only C 1C˛ regularity).

Let us sketch the proof under the assumption of C 1C˛ regularity. Assume that the image
�.G�/ is nonabelian. Then the image �.A�/ is also nonabelian (see Lemma 6.24).
From Theorem 6.3 and Proposition 6.2 we deduce that the element �.a/ behaves as the
corresponding scalar multiplication in restriction to some interval I � Œ0; 1� and has a
hyperbolic fixed point s 2 I. As the elements �.a˙/ commute with �.a/, we deduce
from Szekeres’ theorem that in restriction to the interval I, also these elements behave
like scalar multiplications (as the one-parameter flow containing a scalar multiplication
is exactly the one-parameter flow of all scalar multiplications). This implies that the
group �.G�/ acts like an affine group in restriction to the interval I.

The proof of Theorem 6.12 will occupy the rest of the section.

6.5 Elementary ingredients

When working with C 1 actions on the interval, hyperbolic fixed points do not often
give rigidity (one usually needs C 1C˛ regularity; see Remark 6.14). Indeed there are
only a few dynamical tools that work in C 1 regularity. For this reason our proof relies
mainly on very elementary arguments. A first tool is the following:

Lemma 6.15 Let ˛ 2 Diff1C.Œ0; 1�/ be a diffeomorphism. For any ı > 1, there are
only finitely many points s 2 Œ0; 1� that are fixed by ˛ and such that ˛0.s/ > ı .

Proof Suppose ˛ has infinitely many fixed points fsn j n 2 Ng in Œ0; 1� such that
˛0.sn/> ı for any n2N . Let s� 2 Œ0; 1� be an accumulation point of the sequence fsng.
By continuity of the derivative, we must have ˛0.s�/� ı . On the other hand, let fsnkg
be a subsequence converging to s� ; by the very definition of the derivative we must
have ˛0.s�/D 1. This is a contradiction.

Then we state and prove a second crucial elementary fact:

Lemma 6.16 Let ˛; ˇ 2 Diff1C.Œ0; 1�/ be two commuting C 1 diffeomorphisms. Let
s 2 Œ0; 1� be a hyperbolic fixed point of ˛ . Then ˇ fixes s .

Proof Let us assume by way of contradiction that ˇ does not fix s . For each n 2 Z

we have
˛.ˇn.s//D ˇn.˛.s//D ˇn.s/:

This means that ˛ fixes each point in the set S D fˇn.s/ j n 2 Zg.
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Claim Each t 2 S is a hyperbolic fixed point of ˛ and ˛0.t/D ˛0.s/ for all t 2 S.

Proof of Claim Let �n be the formal word ˇ�n˛ˇn . Using the chain rule, we find

�0n.s/D ˛
0.ˇn.s//:

However, since ˛ and ˇ commute, indeed �nD ˛ and hence �0n.s/D ˛
0.s/. It follows

that ˛0.s/D ˛0.ˇn.s// for each n 2N .

Since the set S is infinite, the claim is in contradiction with Lemma 6.15.

6.6 A particular case: no global fixed points for A�

Before dealing with a general statement as in Theorem 6.12, we study actions on
the interval without global fixed points. For the statement, recall that we denote by
A� �G� the subgroup generated by a and b .

Proposition 6.17 Let � > 1 be Galois hyperbolic and �W G� ! Diff1C.Œ0; 1�/ be a
morphism satisfying

(i) the image �.A�/ is nonabelian,

(ii) the action of �.A�/ has no global fixed point in .0; 1/.

Then �.G�/ is topological conjugate to one of the two canonical representations
�˙W G�! A� .

In the following, we let s0 denote the hyperbolic fixed point of �.a/ in .0; 1/ ensured
by Theorem 6.3 and Proposition 6.2 above. For simplicity of notation, we also write

�.a/D f; �.b/D g; �.a�/D h; �.aC/D k:

Lemma 6.18 With the notation as above, the elements h and k fix the point s0 and
we have

h0.s0/ � k
0.s0/D �:

Proof By Lemma 6.16, the two elements h and k fix the point s0 , as they commute
with f . Noticing that hk D f , applying the chain rule we deduce that

�D f 0.s0/D h
0.k.s0// � k

0.s0/D h
0.s0/ � k

0.s0/;

as wanted.

The previous lemma implies that s0 is a hyperbolic fixed point for at least one among h
and k . Without loss of generality, we assume h0.s0/ > 1. The following lemma says
that h behaves like a hyperbolic element on the whole interval Œ0; 1�:
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Lemma 6.19 With the notation as above, suppose h0.s0/ > 1. Then s0 is the only
point of .0; 1/ which is fixed by h.

Proof If h had a fixed point s different from s0 , since h and f commute the images
f �n.s/ would form a sequence of fixed points for h that converge to s0 . This would
imply that the derivative of h at s0 should be equal to 1. Contradiction.

Given r 2 ZŒ�; ��1�, we denote by gr the image by � of the translation by r when
thinking of A� as an affine group. We have g�r D g�1r . By Theorem 6.3 these
elements are actually topologically conjugate to the corresponding translations.

Lemma 6.20 Take a positive r 2 ZŒ�; ��1�. The conjugate grkg�1r commutes
with h.

Proof This is actually a statement about relations of the group G� : we prove the
relation looking at the standard action of G� on the real line. The support of aC
is Œ0;C1/; therefore, the support of the conjugate of aC by the translation by r is
Œr;C1/, which is disjoint from .�1; 0�, which is the support of a� .

Lemma 6.21 With the notation as above, the restriction of k to Œ0; s0� is the identity.

Proof The element kr D grkg
�1
r commutes with h by Lemma 6.20. As s0 is a

hyperbolic fixed point for h, Lemma 6.16 implies that kr fixes s0 for each r > 0. In
particular, it follows that k fixes g�r.s0/ for every positive r 2ZŒ�; ��1�. By density
of ZŒ�; ��1� in .0;C1/, we obtain the statement.

The end of the proof is inspired by [9]: in a centralizer of a hyperbolic element, like h,
there cannot be elements with hyperbolic fixed points (different from the fixed points
of the hyperbolic element), and therefore, by Proposition 5.4, there cannot be linked
pairs of successive fixed points.

Lemma 6.22 Suppose that k is not the identity and let s; t 2 Œs0; 1� be a pair of
successive fixed points of k . There exists a positive r 2 ZŒ�; ��1� such that the pair
gr.s/, gr.t/ together with s , t defines a linked pair of fixed points for grkg�1r and k .

Proof For any positive r 2ZŒ�; ��1�, the points gr.s/, gr.t/ define a pair of succes-
sive fixed points for the conjugate grkg�1r . An element gr , with r > 0, moves every
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point in .s0; 1/ to the right, and using the fact that gr is topologically conjugate to the
translation by r , we can choose r > 0 sufficiently small that

s < gr.s/ < t � gr.t/

(with equality t D gr.t/ if and only if t D 1).

Suppose that k is not the identity. Then, from Lemma 6.22 and Proposition 5.4, we
realize that the subgroup hgrkg�1r ; ki contains an element 
 with a hyperbolic fixed
point p in .s0; 1/. Since grkg�1r and k commute with h, it follows that 
 commutes
with h. So, by Lemma 6.16, h must fix the point p . This contradicts the conclusion
of Lemma 6.19.

Therefore we must have that k D �.aC/ is the identity, and so �.a�/D �.a/. Thus
the representation �W G�! Diff1C.Œ0; 1�/ is topologically conjugate to the canonical
representation ��W G�! A� . This finishes the proof of Proposition 6.17.

6.7 Equivalent properties

Now we consider almost the same statement as in Proposition 6.17, but we only make
assumptions on the global dynamics of G� , rather than on that of A� .

Proposition 6.23 Let � > 1 be Galois hyperbolic and �W G� ! Diff1C.Œ0; 1�/ be a
morphism satisfying

(i) the image �.G�/ is nonabelian,

(ii) the action of �.G�/ has no global fixed point in .0; 1/.

Then �.G�/ is topological conjugate to one of the two canonical representations
�˙W G�! A� .

The proof follows directly from the following two lemmas and from Proposition 6.17.

Lemma 6.24 Let �>1 be algebraic and �W G�!Diff1C.Œ0; 1�/ be a morphism. Then
the following properties are equivalent:

(i) The image �.G�/ is nonabelian.

(ii) The image �.A�/ is nonabelian.

Proof Clearly (ii) implies (i). On the other hand, if the image �.A�/ is abelian,
Lemma 6.1(iv) implies that the translation b is in the kernel of � , and as in Lemma 6.7,
�.G�/ itself is abelian.
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Lemma 6.25 Let � > 1 be Galois hyperbolic and �W G�! Diff1C.Œ0; 1�/ be a mor-
phism with nonabelian image. Then the following properties are equivalent:

(i) The action of �.G�/ has no global fixed point in .0; 1/.

(ii) The action of �.A�/ has no global fixed point in .0; 1/.

Proof Again, (ii) easily implies (i). Assume (i). Since the image �.G�/ is nonabelian,
by Lemma 6.24 also the image �.A�/ is nonabelian. Using Theorem 6.3, we find at
least one interval I D Œx; y�� Œ0; 1� such that

(i) I is preserved by �.A�/,

(ii) �.A�/ has no global fixed point in the interior of I,

(iii) the restriction �.A�/jI is nonabelian and therefore it is topologically conjugate
to the standard affine action on R.

Moreover, by Proposition 6.2, there exists a unique point s0 2 .x; y/ in the interior
of I which is a hyperbolic fixed point for �.a/, with derivative �.a/0.s0/D �.

Proceeding as in Lemma 6.18, the elements �.a˙/ must fix the point s0 and we can
suppose that s0 is a hyperbolic fixed point for �.a�/, with derivative �.a�/0.s0/ > 1.
Let s� be the first fixed point of �.a�/ which lies to the left of s0 .

If s� 2 .x; s0/, then f�.a/�n.s�/ j n 2Ng is a sequence of fixed points for �.a�/ that
converges to s0 as n!1. But this is not possible because the derivative of �.a�/
at s0 is not 1 (see Lemma 6.16).

Similarly, if s� 2 Œ0; x/, then f�.a�/�n.x/ j n 2 Ng is a sequence of fixed points
for �.a/ that converges to s0 as n!1. Again, this is not possible.

Thus s� D x and so x is a global fixed point for �.G�/. As we are assuming (i), this
implies x D 0. Similarly, denoting by sC the first fixed point of �.a�/ which lies
to the right of s0 , we obtain that sC D y and so y D 1. This is what we wanted to
prove.

Proof of Proposition 6.23 The statement follows directly from Lemmas 6.24 and 6.25,
and from Proposition 6.17.

6.8 General case

We proceed now to the proof of Theorem 6.12.
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Proof of Theorem 6.12 Let �W G�!Diff1C.Œ0; 1�/ be a homomorphism. If the image
�.G�/ is abelian, there is nothing to prove. Hence we can assume that �.G�/ is
nonabelian and by Lemma 6.24 this is equivalent to saying that �.A�/ is nonabelian,
where A� denotes the subgroup generated by a and b .

If �.A�/ is nonabelian, then, after Theorem 6.3, there exists at least an interval I � Œ0; 1�
which is preserved by �.A�/ and such that �.A�/ is topologically conjugate to the
standard affine action.

Claim There are only finitely many pairwise disjoint intervals I1; : : : ; In that are
preserved by �.A�/ and such that for any i D 1; : : : ; n the restriction �.A�/jIi is
nonabelian.

Proof of Claim Let I be an interval preserved by �.A�/ and such that �.A�/jI is
nonabelian. By Theorem 6.3, the action is topologically conjugate to the standard
action of A� and by Proposition 6.2 there exists a point s 2 I which is fixed by �.a/
and such that �.a/0.sn/ D � > 1. Then Lemma 6.15 implies that there can only be
finitely many such intervals, whence the first statement.

Claim Let I1; : : : ; In be the intervals provided by the previous claim. Then �.G�/
preserves Ii for any i D 1; : : : ; n.

Proof of Claim Let I be an interval as above. Let J � I be a interval which is
preserved by �.G�/ and such that �.G�/ has no global fixed point in its interior. By
Lemma 6.25, we must have the equality I D J.

After Proposition 6.23, we deduce that the restriction of the action of G� to any of the
intervals I1; : : : ; In is topologically conjugate to one of the two canonical affine actions
that filters through a quotient �˙W G�! A� . This is what we wanted to prove.

7 C 2 actions with locally nondiscrete stabilizers

7.1 Szekeres vector field

The method that we present in this section is inspired by [10, Proposition 4.17] and relies
on the following important result in one-dimensional dynamics, due to Szekeres [38].
Here we state it as in [35, Section 4.1.3]:
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Theorem 7.1 (Szekeres) Let f be a C 2 diffeomorphism of the half-open interval
Œ0; 1/ with no fixed point in .0; 1/. Then there exists a unique C 1 vector field X on
Œ0; 1/ with no singularities on .0; 1/ such that

(i) f is the time-1 map of the flow f�sX g generated by X,

(ii) the flow f�sX g coincides with the C 1 centralizer of f in Diff1C.Œ0; 1//.

7.2 An obstruction to C 2 smoothability

The criterion we provide holds in a framework that is far more general than that of
piecewise-projective dynamics. First we need a statement of differentiable rigidity for
the conjugacy of some particular actions.

Proposition 7.2 Take a 2 .0; 1/ and assume that two homeomorphisms f; g 2
HomeoC.Œ0; 1�/ satisfy the following properties:

(i) The restrictions of f and g to Œ0; a� are C 2 contractions, namely the restrictions
are C 2 diffeomorphisms onto their images such that

f .x/ < x and g.x/ < x for every x 2 .0; a�:

(ii) f and g commute in restriction to Œ0; a�, that is,

fg.x/D gf .x/ for every x 2 Œ0; a�:

(iii) The C 2 germs of f and g at 0 generate an abelian free group of rank 2.

Then, for every homeomorphism ' 2 HomeoC.Œ0; 1�/ such that 'f '�1 and 'g'�1

are C 2 in restriction to Œ0; '.a/�, one has that the restriction of ' to .0; a� is C 2 .

Before giving the proof of the proposition, which encloses the main arguments, we
present the main result of the section:

Theorem 7.3 Assume a 2 .0; 1/ and f; g 2 HomeoC.Œ0; 1�/ satisfy the properties of
Proposition 7.2 above. Moreover, assume that there exists h 2 HomeoC.Œ0; 1�/ such
that there exists t 2 .0; a/ which is a C 2 discontinuity point of h and h.t/ 2 .0; a/.

Then the natural action of hf; g; hi � HomeoC.Œ0; 1�/ on Œ0; 1� is not C 2–smoothable.

Proof We argue by contradiction. If there was a homeomorphism ' 2HomeoC.Œ0; 1�/

such that 'hf; g; hi'�1 is in Diff2C.Œ0; 1�/, then ' would satisfy the requirements of
Proposition 7.2, whence ' would be C 2 in restriction to .0; a�.
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However, h has a C 2 discontinuity point t 2 .0; a/ and hence the conjugate 'h'�1

would have '.t/ as a C 2 discontinuity point, against the assumption that 'h'�1

is C 2 .

Proof of Proposition 7.2 As f is a C 2 contraction when restricted to Œ0; a�, Szekeres’
Theorem 7.1 applies: we denote by X the Szekeres vector field of f , which is C 1 ,
defined on Œ0; a/ and with no singularities on .0; a/. We have the assumption (ii) that
f and g commute in restriction to Œ0; a�, so by Szekeres’ theorem g belongs to the
Szekeres flow f�sX g. Let � > 0 be such that g D ��X . Then by assumption (iii), the
subgroup A WD h1; �i �R is a dense abelian group of rank 2.

As f and g are contractions, we have that for any positive power n2N , the restrictions
of the iterates f n and gn to the interval Œ0; a� coincide with the times �nX and �n�X ,
respectively (however such a statement is in general not true for negative powers of f
and g ). More generally, we have the following:

Claim Denote by A the rank 2 abelian subgroup of R generated by 1 and �. For
every ˛ 2 A with ˛ > 0 there exists an element h˛ 2 hf; gi such that

h˛jŒ0;a�.x/D �
˛
X .x/ for any x 2 Œ0; a�:

Moreover, f and h˛ commute on Œ0; a�, ie Œf; h˛�jŒ0;a� D Œh˛; f �jŒ0;a� D idjŒ0;a� .
(Here we write Œ
1; 
2�D 
�11 
�12 
1
2 .)

Proof of Claim Let l; m 2Z be such that ˛ D lCm�. There exists y > 0 such that
the element f lgm is equal to �˛X on the right neighbourhood Œ0; y�. If y � a , then
we set h˛ D f lgm and we are done.

Otherwise, we have y<a . As f is a contraction on Œ0; a�, there exists a positive integer
N 2N such that f N .Œ0; a�/D Œ0; �NX .a/�� Œ0; y�. Define h˛Df �Nf lgmf N. Then
for any x 2 Œ0; a� we have

h˛jŒ0;a�.x/D f
�Nf lgmf N jŒ0;a�.x/

D f �Nf lgmjŒ0;�NX .a/�
.�NX .x//

D f �N j
Œ0;�

˛CN
X .a/�

.�˛CNX .x//:

The element f �N equals ��NX on the interval Œ0; �NX .a/�. Here ˛ > 0; hence,
Œ0; �˛CNX .a/�� Œ0; �NX .a/�. We conclude that for any x 2 Œ0; a� we have

h˛jŒ0;a�.x/D �
�N
X �˛X�

N
X .x/D �

˛
X .x/;

as desired.
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The claim implies that the group generated by f and g contains a one-parameter flow
in its local C 0–closure. Suppose that ' is a homeomorphism such that 'hf; g; hi'�1

is in Diff2C.Œ0; 1�/.

The element 'f '�1 is a C 2 contraction on the right neighbourhood Œ0; '.a/� of 0;
thus, Szekeres’ theorem applies again. Let Y denote the Szekeres vector field of 'f '�1

and let f�sYg be the associated one-parameter flow defined on Œ0; '.a/�.

Claim The restriction of ' to .0; a� is C 1 and takes the Szekeres vector field X of f ,
defined on Œ0; a�, to Y :

'�X D Y:

Proof of Claim The elements 'h˛'�1 for ˛2A with ˛>0 commute with 'f '�1 on
Œ0; '.a/�; hence, by Szekeres’ theorem, we must have that their restrictions to Œ0; '.a/�
are contained in the flow f�sYgs�0 . Moreover, they are densely contained because A is
dense in R.

Therefore, there exists a reparametrization t W A \ .0;C1/ ! .0;C1/ such that
'h˛'

�1jŒ0;'.a/� D �
t.˛/
Y , which defines a continuous injective homomorphism of

semigroups. By density of A � R, t must be multiplication by a constant. This
constant is readily seen to equal 1, as we have t .1/D 1 after the definition of Y as a
vector field of 'f '�1 (locally equal to 'h1'�1 ).

As a consequence, for any x 2 Œ0; a� and ˛ 2 A with ˛ > 0, we have

(3) �˛Y.'.x//D '.�
˛
X .x//:

Now, �˛X .x/¤ x for any ˛ > 0 and x 2 .0; a�. Thus, for any x 2 .0; a� and ˛ 2 A
with ˛ > 0, we have

�˛Y.'.x//�'.x/

˛
D
'.�˛X .x//�'.x/

˛
D
'.�˛X .x//�'.x/

�˛X .x/� x
�
�˛X .x/� x

˛
:

Hence,
'.�˛X .x//�'.x/

�˛X .x/� x
D
�˛Y.'.x//�'.x/

˛
�

�
�˛X .x/� x

˛

��1
:

Let us take the limits on both sides as ˛ 2 A, with ˛ > 0, goes to 0 (recall that A
is dense in R). On the right-hand side we obtain the ratio Y.'.x//=X .x/ (here we
identify X and Y to C 1 functions). Observe that the ratio Y.'.x//=X .x/ is well
defined because X has no singularities on .0; a/, and is C 0 on .0; a�. Thus the limit
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on the left-hand side defines the derivative '0.x/, which is C 0 because the limit
Y.'.x//=X .x/ on the right-hand side is so. Hence, ' is C 1 on .0; a�. Moreover,
taking X .x/ to the left-hand side, we get

'0.x/ �X .x/D Y.'.x// for any x 2 Œ0; a�;

that is, '�X D Y, as wanted.

Now we can conclude the proof. From the previous claim, we write

'0.x/D
Y.'.x//
X .x/

for every x 2 .0; a�:

Moreover, the previous claim gives that the right-hand side in the last expression is
at least C 1 on .0; a� and therefore the same holds for '0. This implies that ' is C 2

on .0; a�, as desired.

7.3 Thompson–Stein groups

We finally apply the previous result to prove that the Thompson–Stein groups are not
C 2–smoothable.

Proof of Theorem 3.4 In the group F.n1; : : : ; nk/ with k � 2 it is possible to find
two elements f and g fixing 0 such that f 0.0/ D 1=n1 and g0.0/ D 1=n2 . Let
a 2 .0; 1/ be such that f and g are linear contractions in restriction to Œ0; a�. Consider
any element h which is the identity in restriction to

�
0; 1
2
a
�

but not in restriction
to Œ0; a�. Then there exists t 2

�
1
2
a; a

�
which is a C 1 discontinuity point of h with

h.t/ 2
�
1
2
a; a

�
(actually we may take for t the leftmost point in the support of h).

Thus we apply Theorem 7.3 and conclude that the natural action on Œ0; 1� of the group
generated by f , g and h is not C 2–smoothable. In particular, the natural action of
F.n1; : : : ; nk/ on Œ0; 1� is not C 2–smoothable.

Proof of Corollary 3.5 From Theorem 3.A of [26], every faithful C 2 action of
T .2; n2; : : : ; nk/ on S1 is topologically conjugate to its standard piecewise linear
action. However, T .2; n2; : : : ; nk/ contains F.2; n2; : : : ; nk/ as a subgroup, whose
standard action on S1 cannot be conjugate to a C 2 action, after our Theorem 3.4.
Therefore a C 2 action of T .2; n2; : : : ; nk/ cannot be faithful.

As in [26, Theorem 3.B 0 ], if we assume furthermore n2 D 3, the simplicity of
T .2; 3; n3; : : : ; nk/ allows us to conclude that every C 2 action of such a group is
trivial.
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