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Holomorphic curves in exploded manifolds
Virtual fundamental class

BRETT PARKER

We define Gromov–Witten invariants of exploded manifolds. The technical heart
of this paper is a construction of a virtual fundamental class ŒK� of any Kuranishi
category K (which is a simplified, more general version of an embedded Kuranishi
structure). We also show how to integrate differential forms over ŒK� to obtain
numerical invariants, and push forward such differential forms over suitable maps.
We show that such invariants are independent of any choices, and are compatible with
pullbacks, products and tropical completion of Kuranishi categories.

In the case of a compact symplectic manifold, this gives an alternative construction
of Gromov–Witten invariants, including gravitational descendants.
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1 Introduction

We construct Gromov–Witten invariants of exploded manifolds1 using embedded
Kuranishi structures, which we defined and constructed in [26]. As smooth manifolds
are a full subcategory of the category of exploded manifolds, this paper gives an
alternative construction — and proof of the invariance of — all descendant Gromov–
Witten invariants of any compact symplectic manifold.

1Definitions for exploded manifolds can be found in our [24]. For a short introduction to exploded
manifolds, see our [29].
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Our construction also provides Gromov–Witten invariants relative normal-crossing
divisors. Given a Kähler manifold with normal-crossing divisors, we can explode it,
then construct Gromov–Witten invariants of the resulting exploded manifold. There is a
similar construction for symplectic manifolds with normal-crossing symplectic divisors;
however, we must be more careful here: If we take Definition 2.1 from Tehrani, McLean
and Zinger [35], then a simple crossing symplectic divisor is a finite transverse collection
of closed, codimension-2, symplectic submanifolds whose intersection is symplectic,
with symplectic orientation agreeing with the intersection orientation. After deforming
the symplectic structure in such a configuration, it admits a contractible choice of x@–log
compatible almost complex structure as in our [25, Section 14], and we can then apply
the explosion functor to get an exploded manifold and define relative Gromov–Witten
invariants. The isotopy class of the x@–log compatible almost complex structure only
depends on the isotopy class of the simple crossing symplectic divisor, so again we
may define relative Gromov–Witten invariants in this setting as the Gromov–Witten
invariants of the associated exploded manifold.

In some cases, the Gromov–Witten invariants defined in this paper coincide with
previously defined Gromov–Witten invariants of symplectic manifolds, defined by
Fukaya and Ono [10], McDuff [17], Ruan [33], Liu and Tian [16], Siebert [34] and
Li and Tian [15]. I expect that in the algebraic case, the definition of Gromov–Witten
invariants given here will agree with the algebraic definition given by Behrend and
Fantechi [3], and also log Gromov–Witten invariants defined by Gross and Siebert [11]
and Abramovich and Chen [5; 1].

The technical heart of this paper is a construction of a virtual fundamental class
associated to an embedded Kuranishi structure. As well as the original work of Fukaya
and Ono [10] and Li and Tian [15], there has been much recent work on constructing
virtual fundamental cycles from various kinds of Kuranishi structures; see Fukaya, Oh,
Ohta and Ono [8], McDuff and Wehrheim [19; 21; 22; 20], Pardon [23], Chen, Li and
Wang [4] and Joyce [12; 13]. In the case of smooth manifolds, this paper provides an
alternative construction of a virtual fundamental cycle from an embedded Kuranishi
structure (constructed in [26]).

An embedded Kuranishi structure consists of a collection of compatible charts . yf ;G;V /
where yf is a family of curves, G is a group of automorphisms of yf and V is some
G –equivariant obstruction bundle over yf with a natural G –invariant section x@ yf . The
adjective “embedded” indicates that yf is a family of curves in some moduli stack Mst

�
,

V is defined on a neighborhood of yf in Mst
�

as a finite-rank subbundle of some natural
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obstruction bundle with a natural section x@, and yf =G represents the substack x@�1V .
We also require compatibility of Kuranishi charts — . yf ;G;V / is compatible with
. yf 0;G0;V 0/ if V is a subbundle of V 0 (or vice versa) on their common domain of
definition. So, we have a kind of transition map between charts

yf  yf �Mst
�

yf 0! yf 0;

where the leftward arrow is a G–equivariant G0–fold cover of an open subfamily
of yf and the rightward arrow is a G0–equivariant, G–fold cover of the subfamily
.x@ yf 0/�1V � yf 0.

We shall often want to construct a global section of some sheaf over our Kuranishi
charts. (For example, we might want to perturb x@ to be transverse to 0, or construct
a smooth function, or use the Chern–Weil construction to obtain the Chern class of a
vectorbundle.) To present a simple and unified construction of such global sections, we
introduce the notion of a K–category in Section 2: a K–category is obtained from an
embedded Kuranishi structure by discarding all information apart from the charts yf =G

and their transition maps. In Proposition 2.3, we prove that, at the expense of shrinking
the charts in a K–category a little, we can construct a global section of any sheaf
satisfying three basic axioms, called “patching”, “extension” and “averaging”.

Proposition 2.3 serves well to construct most of our global sections, but there is one
important exception: the sheaf of transverse perturbations of the x@ equation does not
satisfy the averaging axiom. In Section 3.3 we construct a weighted branched cover I

of a Kuranishi category as a “sheaf” of finite measure spaces and define a weighted
branched section of a sheaf S to be a natural transformation I ! S. We then prove
that the corresponding sheaf of weighted branched sections SI satisfies the patching,
extension and averaging axioms if S satisfies the patching and extension axioms. We
can then use Proposition 2.3 to construct global sections of SI.

By the end of Section 4, we construct the virtual fundamental class ŒM�� of the moduli
stack of holomorphic curves — where � indicates choices such as specifying the genus,
number of marked points and homology class of the curves under study. This virtual
fundamental class ŒM�� is some weighted branched thingy in the moduli stack Mst

�
,

but in Section 5 we show how to integrate differential forms over ŒM��, and also how
to push forward differential forms along natural evaluation maps to finite-dimensional
exploded manifolds or orbifolds. Such differential forms on Mst

�
may be obtained by

pulling back differential forms from manifolds or orbifolds under natural evaluation
maps, or obtained as Chern classes of any naturally defined complex vectorbundle
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over Mst
�

, so we can define descendant Gromov–Witten invariants using Chern classes
of tautological vectorbundles.

To simplify and emphasize the main points of our construction, we introduce the notion
of a Kuranishi category, K , and construct a virtual fundamental class ŒK� for any such
Kuranishi category. Let us describe our results in terms of ŒK�.

If � is a differential form on K and K is compact2 and oriented, then
R
ŒK� � is defined

in Section 5. What type of differential form is � ? Unlike in the case of smooth
manifolds, there are several different types of differential forms that are useful on an
exploded manifold B :

r
fg�
�.B/ ,! r��.B/ - ��.B/:

All three types coincide with smooth differential forms in the case that B is a smooth
manifold. De Rham cohomology defined using ��.B/ is much the same as usual coho-
mology; see our [31, Definition 1.2 and Corollary 4.2]. Refined cohomology, rH�.B/,
defined using refined differential forms in r��.B/ is usually infinite-dimensional,
but admits pushforwards, and acts as expected with fiber-products of exploded man-
ifolds; see [31, Definition 9.1, Theorem 9.2, Lemma 9.3 and Lemma 9.5]. The
cohomology r

fgH.B/, defined using refined differential forms generated by func-
tions, r

fg�.B/, is also compatible with pushforwards and fiber products, but unlike
rH�.B/ and H�.B/, is invariant only in families parametrized by connected smooth
manifolds, rather than families parametrized by connected exploded manifolds. See
Definition 5.4 for r

fg�
� . The advantage of differential forms generated by functions

is that they are compatible with tropical completion — this is important for defining
the contribution of a tropical curve to Gromov–Witten invariants, and for the tropical
gluing formula for Gromow–Witten invariants, equation (1) of our [30].

The integral
R
K � makes sense for � 2 r��.K/, and therefore makes sense for any of

the above types of differential forms. If K is complete3 (Definition 3.5) and d� D 0,
then

R
ŒK� � is independent of all choices in the construction of K , and depends only on

the cohomology class represented by � . The same holds with the weaker assumption
that K is compact, and the stronger assumption that � 2 r

fg�
�K .

2A compact Kuranishi category is one in which the subset consisting of holomorphic curves is compact;
see Definition 3.5.

3If K is an embedded Kuranishi structure for the moduli space of holomorphic curve in some complete
exploded manifold, it is complete if and only if the corresponding moduli space of curves is compact. See
our [28] for cases in which such compactness holds.
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Given a complete, relatively oriented map � W K ! A to an exploded manifold or
orbifold A , we can integrate forms along the fiber of � to define a map

�!W
r��.K/! r��.A/;

inducing a map on cohomology independent of all choices involved in the construction
of ŒK� or �! ,

�!W
rH�.K/! rH�.A/ and �!W

r
fgH�.K/! r

fgH�.A/:

As usual, in the case that K is complete,Z
ŒK�
��� D

Z
A

� ^�!.1/

for any closed differential form � 2 r��.A/.

The following theorem gives that, on the level of cohomology, �! only depends on the
cobordism class of K :

Theorem 1.1 If K0 and K1 are cobordant within a stack X with a map � W X !A ,
then, given any construction of ŒKj �, the two composite maps

rH�.X /! rH�.Kj /
�!
�!

rH�A

are equal, and the same holds for the analogous maps

r
fgH�.X /! r

fgH�.Kj /
�!
�!

r
fgH�A:

We also prove that Gromov–Witten invariants do not change in families of exploded
manifolds, because they are compatible with pullbacks. Given a complete submersion
K!Z to an exploded manifold, we can pull back K over a map Z 0!Z to obtain
another Kuranishi category K0!Z 0. (For example, K might come from holomorphic
curves in a family of exploded manifolds parametrized by Z. Then K0 is the Kuranishi
category associated to holomorphic curves in the corresponding pulled-back family of
exploded manifolds over Z 0.) When the map K!Z factors through a map K!A ,
we get the following diagram of maps:

K0 K

A�Z Z 0 A

Z 0 Z

� 0 �

y
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Theorem 1.2 The following diagrams commute:

rH�.K0/ rH�.K/ r
fgH�.K0/ r

fgH�.K/

rH�.A�Z Z 0/ rH�.A/ r
fgH�.A�Z Z 0/ r

fgH�.A/

� 0
!

�! � 0
!

�!

y� y�

To prove gluing theorems, we also need fiber products of Kuranishi categories as
well as pullbacks. However, the (fiber) product of Kuranishi categories usually has
incompatible charts. In Section 6, this problem is solved by shrinking charts in the
product of Kuranishi categories to obtain a “weak” product of Kuranishi categories.

Theorem 1.3 Suppose that K is a weak product of some finite collection of complete,
oriented Kuranishi categories Kv with maps �vW Kv ! Av , and let � W K!

Q
v Av

be the induced map. Then the following diagrams commute:

rH�.K/ rH�
�Q

v Av
�

r
fgH�.K/ r

fgH�
�Q

v Av
�

Q
v

rH�.Kv/
Q
v

r
fgH�.Kv/

�! �!

Q
v.�v/!

Q
v.�v/!

Theorem 1.3 combines with Theorem 1.2 to show that integration over virtual funda-
mental classes acts as expected under fiber products. Theorems 1.1, 1.2 and 1.3 follow
immediately from Theorems 5.20, 5.22 and 6.2.

Each exploded manifold B has a tropical part, B, which describes the (infinitely)
large-scale structure of B ; the fiber, B jp , of B!B over any point p 2B is a smooth
manifold. The integral of a differential form � over an exploded manifold B is defined
as
P

p2B

R
B jp

� . (Although B is generally uncountable, only finitely many terms in
this sum are nonzero when the integral of � is defined.) Moreover, if � 2 r

fg�
�.B/ is

closed, then
R

B jp
� only depends on the homology class of � in r

fgH�.B/. In Section 7
we prove analogous results for integration over ŒK�.

One issue is that B jp is usually not compact or complete, even when B is complete.
We deal with this issue using the tropical completion BLjp of B at p , defined at the
start of Section 7. This tropical completion BLjp always contains B jp as a dense
subset, and is complete if B is compact. We can apply tropical completion to maps,
differential forms, and Kuranishi categories. If � 2 r

fg�
�.B/, then �Ljp 2

r
fg�
�.BLjp/

and
R

B jp
� D

R
BLjp

�Ljp .
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Lemma 7.10 states that the integral of a closed form � 2 r
fg�
�.K/ breaks up into

invariantly defined contributions for each point p in the tropical part of K , and in
particular, Z

ŒK�
� D

X
p2K

Z
ŒKLjp�

�Ljp:

Similarly, Lemma 7.10 states that, for a complete, relatively oriented map � W K!A ,
cohomology class � 2 r

fgH�K and p0 2A ,

�!.�/Ljp0 D
X

p2��1.p0/

.�Ljp/!.�
Ljp/:

This paper concludes with Section 8, which summarizes our construction of Gromov–
Witten invariants.
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2 Constructing sections of sheaves on K –categories

Throughout this paper, we will be using exploded manifolds with the regularity C1;1 ,
defined in Section 7 of [24]. For all practical purposes, C1;1 maps are as good
as smooth. Let Mst

�
indicate some decorated moduli stack of C1;1 families of not

necessarily holomorphic stable curves; see Section 11 of [24] for basic definitions, and
Section 2 of [26] for further treatment, including Definition 2.11 of Mst

�
. By a sheaf

(of sets) on Mst
�

, we mean a contravariant functor S from Mst
�

(to the category of
sets), so that S is a sheaf when restricted to the category of open subfamilies of any
family in Mst

�
. We shall also be interested in sheaves with more restricted domains.

A stack X over the category of C1;1 exploded manifolds is a category X along with a
“nice” functor F from X to the category of C1;1 exploded manifolds; see [7] for an
approachable introduction to stacks, and see Section 2 of [26] for a study of the stack of
C1;1 curves. In this paper, “stack” without further qualification will generally mean
a stack over the category of C1;1 exploded manifolds. The “nice” properties of F

are loosely paraphrased as follows: families (parametrized by exploded manifolds)
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glue and pull back as we expect bundles (parametrized by exploded manifolds) to glue
and pull back. Moreover, morphisms between families also restrict, pull back and
glue as expected for fiberwise isomorphisms. We use yf to indicate an object in X,
and call yf a family parametrized by F . yf /— this can also be thought of as a map
F . yf /! X. The case we are most interested in is when X is a stack of curves, so yf
can be thought of as a family of curves, and any f ! yf with F .f / a point can be
thought of as a curve f in yf . As in Section 2 of [26], by a substack U � X, we mean
a full subcategory such that yf is in U if and only if every f in yf is in U . Then, for
any family yf in X, there is a corresponding subset U. yf /� F . yf / such that for any
yg! yf , yg is in U if and only if F .yg/ has image in U. yf /. We call U an open substack
if U. yf / � F . yf / is open for all yf in X. It is proved in Lemma 2.7 of [26] that this
topology on the moduli stack of C1;1 curves matches the topology used in [28] to
prove compactness results for the moduli stack of holomorphic curves.

When we take an embedded Kuranishi structure, and throw away all information apart
from charts and their embedding into a stack, we obtain a K–category, defined below.
See also Remark 7.6 for a definition of a K–category using charts not embedded in a
stack.

Definition 2.1 A K–category is a full subcategory K of a stack Kst and a collection
of charts yfi=Gi such that the following holds:

(i) Each yfi is a family in Kst , and Gi is a finite group of automorphisms of yfi .

(ii) yfi=Gi represents a substack of Kst .

(iii) Each family yfi has some fixed dimension, and whenever dim yfi � dim yfj ,

yfi �Kst yfj !
yfi

is a Gj –fold cover of an open subfamily of yfi , and

yfi �Kst yfj !
yfj

is a Gi –fold cover of a subfamily of yfj — locally defined by the transverse
vanishing of some R–valued C1;1 functions on F . yfj /.

(iv) The families yfi cover Kst .

(v) The set of charts is countable and locally finite — for each i , there are only
finitely many j such that yfi �Kst yfj is nonempty.
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(vi) K is the full subcategory of Kst consisting of families locally isomorphic to
some yfi .

Given another K–category K] with charts yf ]i =Gi , use the notation K � K] if

� Kst is a substack of .K]/st ,

� K is a subcategory of K] , and

� yfi is a Gi –equivariant open subfamily of yf ]i .

Moreover, say that K] is an extension of K and use the notation K �e K] if K � K]

and the closure of yfi �
yf
]

i is closed in .K]/st — equivalently, if yf 0i indicates the
closure of yfi �

yf
]

i , then, for all j , yf 0i �.K]/st yf
]

j has closed image in yf ]j .

Say that K is extendable if there exist extensions K �e K0 �e K] .4

Definition 2.2 A sheaf (of sets) on a K–category, K , is a contravariant functor, S,
from K (to the category of sets) such that S is a sheaf whenever restricted to the
category of open subfamilies of a given family in K .

A sheaf on an extendable K–category is a sheaf defined on some extension K0 e� K .

Extendability is an important property for constructing sections of sheaves on K . Any
extendable K has a partition of unity, and Proposition 2.3 gives a way of constructing
global sections of sheaves on K . For example, if K is extendable, each Gi is trivial
and each F . yfi/ is an n–dimensional manifold, then the yfi provide coordinate charts
on an n–dimensional manifold M, and Kst is the moduli stack of maps into M. If we
drop the condition that Gi be trivial, then yfi=Gi give charts on an orbifold, M (and
depending on your position on orbifolds, Kst is either that orbifold, or is the category
of maps into M ). If, however, K is not extendable, M may not be Hausdorff.

Global sections of a sheaf on K can be constructed using the patching, extension and
averaging axioms below. To construct Gromov–Witten invariants, we shall use the
sheaf S from Definition 3.12 below. This sheaf obeys the patching and extension
axioms, but not the averaging axiom. Accordingly, global sections of this sheaf S

may not exist, so we shall use weighted branched sections of S, which we regard as a
natural transformation I ! S, where I is a “sheaf”5 of finite measure spaces.

The following axioms allow the global construction of sections of a sheaf S over an
extendable K–category K :

4We require two extensions so that any extendable K –category K will have an extendable extension —
if K�e K0 �e K] , then we can obtain an extendable extension of K by shrinking K0 appropriately.

5This “sheaf” requires scare quotes because it has a restricted domain of definition.
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� Patching Given an open cover fOkg of yf , and section �k 2 S.Ok/ for all k ,
there exists a patched-together section � 2 S. yf / that agrees with �k wherever
all �k agree.

So, given any morphism yg! yf in K and section � 0 2 S.yg/, the pullback of �
to S.yg/ is � 0 if the following condition is satisfied for all k : � 0 and �k pull
back to the same section under the diagram

yg� yf Ok Ok

yg yf

� Extension S. yf / is nonempty. Moreover, if yg! yf is a morphism in K , then
given any � 2 S.yg/ and f in yg , there exists some � 0 2 S. yf / such that the
pullback of � 0 to S.yg/ agrees with � in a neighborhood of f 2 yg .

� Averaging Given any � 2 S. yf / and a finite G–action on yf , there is a G–
invariant section � 0 agreeing with � wherever � was already G –invariant — so,
given any G –equivariant map yf 0! yf pulling � back to a G –invariant section,
the pullback of � agrees with the pullback of � 0 over yf 0! yf .

For example, if S. yf / is the set of C1;1 real-valued functions on F . yf /, then S obeys
the above axioms. The extension axiom for S follows from Definition 2.1(iii): given
any morphism yg! yf in K , the corresponding map F .yg/! F . yf / is always locally
an isomorphism onto an exploded submanifold of F . yf /. Patching can be achieved
using partitions of unity, and averaging achieved by averaging over the action of G.

Proposition 2.3 Let S be a sheaf on an extendable K–category, K]
2

, and suppose
that S satisfies the patching, extension and averaging axioms. Given the inclusions and
extensions of K–categories

K1 K]
1

K2 K]
2

�e

�e

and a global section � of S defined on K]
1

, there exists a global section of S defined
on K2 and agreeing with � when restricted to K1 .
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Proof Use notation yfi;Kj =Gi �
yfi;K]

j
=Gi for charts on Kj and K]j , respectively, and

index these charts by the natural numbers. We shall construct our section inductively,
but at each step we must shrink the domain of definition a little. Accordingly, for
each .i; j / where j is a nonnegative integer, choose Gi –invariant open subfamilies
yfi;j �

yf
i;K]

2

so that

(i) if j � i , then yfi;K2
� yfi;j ;

(ii) if j < i , then yfi;K1
� yfi;j �

yf
i;K]

2

, and yfi;j contains every curve in the closure
of yfi;K1

within K]
2

;

(iii) if j ¤ i , then yfi;j �
yfi;j�1 , and yfi;j�1 contains every curve in the closure

of yfi;j within K]
2

.

Such families can be constructed as follows. Because K]
2

is extendable, there exists a
family yf ]i containing yfi;K]

2
as an open subfamily, so that the closure of yfi;K]

2
within yf ]i

contains the closure of yfi;K]
2

within K]
2

(or any of our other K–categories). The same
will then hold for the open subfamilies yfi;j �

yfi;K]
2

. Choose yfi;0D
yfi;K]

1
. Then, choose

a continuous function, � , on yf ]i that restricts to be 1 on yfi;K1
� yfi;0 , and 0 outside

yfi;0 �
yf
]

i . With this � , we then define yfi;j WD �
�1.j= i; 1� for j < i . Next, define

yfi;i WD
yfi;K]

2
, and choose another continuous function � on yf ]i , equal to 0 on yfi;K2

,
and 1 outside yfi;i �

yf
]

i . Finally, define fi;iCn WD �
�1Œ0; 2�n/ for positive integers n.

Let us construct our section using the following inductive step:

Claim 2.4 Suppose that a section �j�1 of S. yfi;j�1/ has been chosen for all i , and
that these sections are compatible — so, given any pair of morphisms �1W yf ! yfi;j�1

and �2W yf ! yfi0;j�1 , we have ��
1
�j�1D �

�
2
�j�1 . Suppose moreover that the restriction

of �j�1 to yfi;K1
agrees with our original section � .

Then there exists a compatible choice of sections �j of S. yfi;j / for all i , such that
�j 2 S. yfi;j / is the restriction of �j�1 2 S. yfi;j�1/ for all i ¤ j , and such that the
restrictions of �j and � to S. yfi;K1

/ are equal.

To prove Claim 2.4, we need only define �j on yfj ;j . Let us first construct a local
candidate, � 0, for �j . For a curve f in yfj ;j , let i be such that f 2 yfi;j�1 , and yfi;j�1

has the maximal dimension6 of all such yfk;j�1 containing f . (If there is no yfi;j�1

containing f , we are free to choose any section of S on a neighborhood of f that does
not intersect any yfi;j for i ¤ j .) By using the extension axiom (or by pulling back
� from yfi;j�1 ), there exists a section � 0 of S on a neighborhood Uf of f in yfj ;j

6Recall, from Definition 2.1(v), that f can only be contained in finitely many yfi .
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such that, given any pair of morphisms �1W yf ! Uf and �2W yf ! yfi;j�1 , we have
��
1
� 0 D ��

2
�j�1 .

Let us check that � 0 locally satisfies the required compatibility conditions. Because
yfi has maximal dimension, we may choose Uf small enough that Definition 2.1(ii)

implies that, if yf is contained in both Uf and yfi0;j=Gi0 for any other i 0 ¤ j , then
yf is contained in yfi;j�1=Gi . It follows that � 0 2 S.Uf / is compatible with �j D
�j�1 2 S. yfi0;j / for all i 0 ¤ j . We should also ensure that � 0 is compatible with �
on yfj ;K1

. Because yfi;j has maximal dimension, if yfj ;j has larger dimension, f is
not in yfj ;K1

. Therefore, we may also choose Uf small enough that if yf is contained
in Uf and yfj ;K1

, then yf is contained in yfi;j=Gi , ensuring that � 0 2 S.Uf / is also
compatible with � 2 S. yfj ;K1

/.

The patching axiom allows us to patch together these sections to a section, � 0 2S. yfj ;j /,
still compatible with �j on yfi;j for i ¤ j and � on yfj ;K1

. Then the averaging axiom
gives a Gj –equivariant section �j still compatible with �j on yfi;j and � on yfj ;K1

.
Definition 2.1(ii) ensures that any Gj –equivariant section of S. yfj ;j / has the required
compatibility property that its pullback does not depend on the choice of morphism.

This completes the proof of Claim 2.4.

Using Claim 2.4 inductively, we can construct �i for all i . Any family yf in K2 is
everywhere locally isomorphic to some subfamily of yfi;K2

� yfi;i . We may define
� 2 S. yf / to be the pullback of �i . This defines the required global section of S

over K2 .

Remark 2.5 Proposition 2.3 may also be used to construct global sections of sheaves
S on Kst because any global section of S on K automatically pulls back to give a
global section of S on Kst .

Lemma 2.6 Consider an extension K �e K] of extendable K–categories, and a
corresponding pair of charts yfi=Gi �

yf
]

i =Gi . Then any (continuous or C1;1 ) function

�W yfi=Gi!R

admitting an extension to yf ]i =Gi also extends to all of K .

Moreover, if O � K] is any open subset such that the support of � on yf ]i has closure
(within K] ) contained in O, then we may choose the corresponding extension �W K!R

also to have support with closure contained in O, and if � is nonnegative, we can choose
its extension to also be nonnegative.
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Proof We shall construct the required function using Proposition 2.3. Define

� K1 � K to be the category of families locally isomorphic to an open subset
of yfi ,

� K]
1
� K] to be the category of families locally isomorphic to an open subset

of yf ]i ,

� K2 D K ,

� K]
2
D K] .

Let S be the sheaf with S. yf / the set of C1;1 functions on F . yf / whose support has
closure (in K] ) contained in O. The patching axiom for S is proved using a partition
of unity, and the averaging axiom holds, because it is possible to average a C1;1

function to obtain a G –invariant function. To apply Proposition 2.3, we only need to
prove that S satisfies the extension axiom.

The extension axiom follows from Definition 2.1(iii) — every morphism yf ! yg is
locally an isomorphism onto an exploded submanifold (which must be locally closed
because K] is extendable). In particular, this implies that any (continuous or C1;1 )
function defined on F . yf / locally extends to a (continuous or C1;1 ) function on F .yg/.
If our original function had support with closure contained in O, our local extension
may also be chosen to have support with closure contained in O. Therefore, S obeys
the extension axiom, and Proposition 2.3 tells us that � extends to a global section
of S, which is a map

�W K!R:

The fact that the support of � has closure contained in O follows from the analogous
fact for each of the individual functions yfk=Gk!R, and the local-finiteness condition
for K] from Definition 2.1(v).

The proof in the case that � is nonnegative is identical, except we use a sheaf with S. yf /

the set of nonnegative C1;1 functions on F . yf / whose support has closure contained
in O.

Remark 2.7 We can use Lemma 2.6 to construct a nonnegative C1;1 function on K
with zero set any given closed substack C of K] e� K .

In particular, Lemma 2.6 implies that any nonnegative C1;1 bump function on yf ]i =Gi

whose support has closure contained in the complement of C extends to a nonnegative
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C1;1 function � on K , vanishing on C. As yf ]i =Gi nC is covered by the support of a
countable collection of such bump functions, and K has a countable number of charts,
there exists a sequence, �k , of nonnegative functions on K , vanishing on C and with
support covering K nC. Then there exists a sequence, �k , of positive numbers such
that

P
k �k�k converges to a C1;1 function � on K . (As with smooth functions on

smooth manifolds, convergence to a C1;1 function is equivalent to convergence in
a countable sequence of norms, so we can always ensure convergence of a sum by
multiplying each term by a suitably small constant. See Definition 7.5 of [24].) Such a
� is nonnegative and has zero set C, as required.

3 Kuranishi categories

Embedded Kuranishi structures are defined in Section 2.9 of [26]. Each Kuranishi chart
.U ;V; yf =G/ consists of some open substack U �Mst

�
, an obstruction bundle V over U

and a family of curves yf in U with automorphism group G. The obstruction bundle,
V , is a finite-rank complex vectorbundle over U , and also a nice7 subbundle of the
sheaf Y that is the codomain of the x@ equation. Moreover, yf =G represents the moduli
stack x@�1V � U , so x@ yf defines a G –equivariant section of the restriction, V . yf /, of
V to yf . Kuranishi charts in an embedded Kuranishi structure have to be compatible in
the sense that on Ui \Uj , either Vi is a subbundle of Vj or vice versa. Moreover, our
Kuranishi charts have compatible extensions, so we can define an extendable Kuranishi
category by taking the charts yfi=Gi .

Definition 3.1 Given an embedded Kuranishi structure f.Ui ;Vi ; yfi=Gi/g on Mst
�

, de-
fine its associated Kuranishi category, K , to be the (full) subcategory of Mst

�
consisting

of families locally isomorphic to an open subfamily of some yfi , and define Kst to be
the substack of Mst

�
consisting of curves isomorphic to curves in some yfi ; so, a family

of curves yf in Mst
�

is in Kst if each curve f in yf is isomorphic to a curve in some yfi .
This category K comes with the following extra structure:

� the open substacks Ui \Kst , with the vectorbundles Vi ;

� the charts yfi=Gi ;

� the section x@ of Vi. yfi/ over F . yfi/.

In the next definition, we specify the essential properties of this extra structure on K .

7Technically, V satisfies Definitions 2.23, 2.24 and 2.25 of [26].
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Definition 3.2 A Kuranishi category is an extendable K–category K with charts
yfi=Gi (Definition 2.1) along with:

� open substacks Ui � Kst containing yfi=Gi such that each Ui only intersects
finitely many other Uj ;

� constant-rank complex vectorbundles Vi on Ui and, on Ui \Uj , an inclusion of
one of Vi or Vj as a subbundle of the other; and

� sections x@ yfi W F . yfi/! Vi. yfi/

satisfying the following conditions:

(i) The sections x@ yfi determine a global section, x@, of the sheaf with sections over yf
the sections of a vectorbundle, V . yf /, equal to Vi. yf / wherever yf is locally
isomorphic to yfi , and with pullbacks induced by the inclusions of vectorbundles
above. So, V is a covariant functor, with V . yf /!F . yf / a complex vectorbundle,
and x@ is a natural transformation from F to V , with x@ yf a section of V . yf /.

(ii) x@ yf is transverse to Vj . yf / � V . yf / when Vj . yf / is defined and dim Vj �

dim V . yf /; moreover, the intersection of x@ yf with Vj is locally isomorphic
to yfj (and therefore contained in K).

(iii) On the other hand, if V . yf /�Vi. yf / — so yf 2Ui and dim V . yf /� dim Vj . yf / —
then yf is in the substack represented by yfi=Gi — so, in K , there is a map of
a Gi –fold cover of yf to yfi .

Remark 3.3 A Kuranishi category, K , contains more information than a choice of
good coordinate system from [8]. In particular, the vectorbundles Vi on open subsets Ui

do not appear there, and the transversality condition (ii) is only required to hold at the
intersection of x@ with 0 — without the extensions of our vectorbundles Vi from our
definition, this condition only makes sense at the intersection of x@ with 0. We also
explicitly require that K be extendable — I think that this condition may be obtained by
shrinking a good coordinate system as in [9], and expect the extra data of Definition 3.2
to be definable from a good coordinate system after shrinking and making choices
using Proposition 2.3.

Definition 3.4 For a Kuranishi category, K , define Khol � Kst to be the substack
of Kst consisting of all holomorphic curves — those f in yf such that x@ yf vanishes
at f . Use the induced topology from Kst on Khol , so define an open substack of Khol

to be the intersection of an open substack of Kst with Khol .

Geometry & Topology, Volume 23 (2019)



1892 Brett Parker

Note that Definition 3.2(ii)–(iii) imply that the intersection of Khol with Ui is the
quotient of fx@ yfi D 0g by Gi , so each yfi=Gi covers an open substack of Khol .

We need the notion of a Kuranishi category over an exploded manifold or orbifold — by
exploded orbifold, we mean a Deligne–Mumford stack over the category of exploded
manifolds: a stack Z with proper diagonal Z ! Z �Z, and locally represented
by A=G, where A is an exploded manifold and G is a finite group acting on A ; see
Remark 2.3 of [26].

Definition 3.5 A Kuranishi category over an exploded manifold or orbifold Z is a
Kuranishi category K along with a submersion � W K!Z. Say that K is proper over
Z if � restricted to Khol is proper — so, given a map B ! Z from an exploded
manifold B with a compact subset C, the stack Khol �Z C is compact.

Say that K is complete over Z if it is proper over Z and, for every family yf in K ,
the map of integral affine spaces F . yf /!Z is complete — so, the inverse image of
any complete subset of Z (with its integral affine connection) is a complete subset
of F . yf /.

Say that K is compact or complete if it is proper or complete, respectively, over a point.

Note that K may be complete without Khol being complete (in the sense of Defini-
tion 3.15 of [24]). For example consider K with a single chart yf , where F . yf /DT 1

Œ0;1/
,

V . yf /DC �T 1
Œ0;1/

and x@ yf .zz/D .dzze; zz/ (using notation from Example 3.5 of [24]).
Then Khol is the stack represented by T 1

.0;1/
, which is compact but not complete. On

the other hand, K is complete by Definition 3.5 because the tropical part of T 1
Œ0;1/

is
the complete polytope Œ0;1/. If we perturb x@ yf to be transverse to the zero section,
its intersection with the zero section will be complete, so Khol wants to be complete.

If K is the Kuranishi category associated to an embedded Kuranishi structure in some
collection of connected components of Mst. yB/, then Lemma 4.2 and Theorem 6.1
of [28] give conditions under which Khol is proper over B0 . Whenever such a K is
proper over B0 , it is also complete over B0 , because connected families yf in K either
consist of curves with domain T , and are parametrized by (a cover of) the quotient of
some open subset of yB by some T –action, or are families of curves in yB !B0 with
universal tropical structure. Universal tropical structure is defined in Definition 4.1
and Theorem 3.1 of [27]; see also Remark 3.3 of [27]. The yf in the Kuranishi charts
from [26] are constructed to have universal tropical structure. In fact, Theorem 5.3 and
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Proposition 5.9 of [26] imply that if yf =G locally represents a closed substack of the
moduli stack of curves (and the curves in yf don’t have domain T ), then yf must have
universal tropical structure.

3.1 Orienting Kuranishi charts

We orient our Kuranishi charts using a canonical homotopy of Dx@ to a complex-linear
operator. At holomorphic curves f , TfMst

�
.B/ has a canonical complex structure,

described in Section 2.7 of [26]. In the more general case of curves in a family of targets
yB ! B0 , TfMst

�
. yB/#B0

has a canonical complex structure.8 In this section, we
discuss a canonical orientation of our Kuranishi charts relative to B0 . This orientation
is only defined in a neighborhood of the homomorphic curves, so we construct Gromov–
Witten invariants in this neighborhood, where the orientation is defined.

For a Kuranishi chart .U ;V; yf =G/, V is a complex vectorbundle over U , and at each
holomorphic curve f in yf , a canonical linear homotopy of Dx@ to a complex operator
is transverse to V . As explained in [26], this homotopy gives us a canonical homotopy
of TfF . yf /#B0

to a complex subspace of TfMst
�
. yB/#B0

. In particular, there is a
canonical homotopy class of almost complex structures on TfF . yf /#B0

. Section 8
of [26] constructs a complex structure on TfF . yf

]
i /#B0

at all holomorphic curves f ,
so that the following holds:

� The complex structure extends to the vectorbundle T F . yf
]

i /#B0
on a neighbor-

hood of the holomorphic curves in yf ]i .

� Given an open neighborhood yf of a holomorphic f in yf ]i and a map yf ! yf
]

j ,
the short exact sequence

0! TfF . yf
]

i /#B0
D TfF . yf /#B0

! TfF . yfj /#B0

Dx@
�! Vj=Vi! 0

is complex.

� The R–nil vectors in TfF . yf
]

i /#B0
(ie those that act as the zero derivation on

R–valued functions) are given the canonical complex structure.

Such a complex structure on TfF . yf
]

i /#B0
was constructed in Proposition 8.10 of [26]

by choosing a connection on the inverse image of Vi under the homotopy of Dx@ to its
complex-linear part. In fact, an appropriate sheaf of such choices obeys the patching,
extension and averaging axioms.

8Given a submersion � W A!B0 , we use the notation T A#B0
to indicate the vertical tangent bundle

of A — ie the kernel of T� ; see Section 2.7.2 of [26] for a discussion of TfMst
�
. yB/#B0

.
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Does such a complex structure at holomorphic curves f induce an orientation of
T F . yf

]
i /#B0

elsewhere? To prove it does, we construct a global 2–form, ˛ , so that at
holomorphic curves f , ˛ is positive on complex planes within TfF . yf

]
i /#B0

.

Definition 3.6 (orienting 2–form) Let the sheaf of orienting 2–forms on yf be the
sheaf of 2–forms, ˛ , on F . yf / such that ˛ is positive on holomorphic planes within
TfF . yf /#B0

for all holomorphic curves f in yf .

An orienting 2–form is a global section, ˛ , of the sheaf of orienting 2–forms (over the
K–category associated to our embedded Kuranishi structure). Say that ˛ is orienting
at a curve f if the following holds:

� Whenever yfi contains f , some wedge power of ˛ is a volume form on
TfF . yfi/#B0

.

� Whenever f is contained in yfi and yfj , and Vi � Vj , the short exact sequence

0! TfF . yfi/#B0
! TfF . yfj /#B0

Dx@
�! Vj=Vi! 0

is oriented when the first two terms are given the orientation from ˛ , and the
last term is oriented by its complex structure.

To make such a global choice of ˛ , use Proposition 2.3. Note that 2–forms may be
averaged or patched together using a partition of unity, and still satisfy this positivity
condition at holomorphic curves. Accordingly, the sheaf of orienting 2–forms satisfies
the patching and averaging axioms. Such 2–forms can also be extended to satisfy
the positivity condition; therefore, this sheaf also satisfies the extension axiom. By
reducing the size of our extensions yf ]i if necessary, Proposition 2.3 constructs a global
section ˛ of the above sheaf of orienting 2–forms.

Note that ˛ is always orienting at every holomorphic curve. Because the closure of yfi

is contained in yf ]i , ˛ is orienting on an open neighborhood of each holomorphic curve
in yfi .

Definition 3.7 An orientation of a Kuranishi category K is, for all yf in K , an
orientation of F . yf / such that for all morphisms yf ! yg and curves f 2 yf , the
following short exact sequence is oriented:

TfF . yf /! TfF .yg/
Dx@yg
��! V .yg/=V . yf /:
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Given a Kuranishi category K over Z, an orientation of K relative to Z is, for all
yf in K , an orientation of T F . yf /#Z such that the following short exact sequence is

oriented:
TfF . yf /#Z ! TfF .yg/#Z

Dx@yg
��! V .yg/=V . yf /:

Remark 3.8 Given an embedded Kuranishi structure on Mst
�
. yB/, we may construct

an orienting 2–form ˛ , and then restrict the associated Kuranishi category to a neigh-
borhood of Khol where ˛ is orienting to obtain an extendable Kuranishi category K
that is oriented relative to B0 .

3.2 The sheaf S on a Kuranishi category

We shall need the following information to specify the sheaf, S, we use to define
Gromov–Witten invariants.

Definition 3.9 (K� and KC ) Given a Kuranishi category K , proper and oriented
over Z, choose continuous functions �i W K! Œ�1; 1� with the following properties:

(i) At any holomorphic curve, �i >
1
2

for some i .

(ii) For each i , there is some Ui and associated vectorbundle Vi and chart yfi=Gi

from Definition 3.2 such that the set where �i � 0 is in Ui . (We don’t require
that the map from the indexing set for �i to the indexing set for charts on K be
injective or surjective.)

(iii) The subset of F . yfi/ where �i � 0 is compact in the case that Z is a single
point, and more generally, the map from this subset to Z is proper.

(iv) Over any compact subset of Z, there are only finitely many i such that �i is
somewhere positive.

Let KC be the substack of Kst comprising all curves f in some yfi where �i.f /�
1
2

and where x@f 2 Vj wherever any �j > 0.

For any 0 < � < 1
2

, define K� � K to be the (full) subcategory of K consisting of
families yf such that for some i , yf is locally isomorphic to an open subfamily of yfi

where �i > � .

Remark 3.10 Our virtual moduli space shall be contained in KC . As well as KC!Z

being proper, KC has the virtue that any family in K� covers an open substack of KC .
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We can construct functions �i satisfying Definition 3.9 using Lemma 2.6: Given any
holomorphic curve f in yfi , we can choose some Gi –equivariant �i W F . yf

]
i /! Œ�1; 1�

so that the closure of the support of �iC1 is in Ui , and so that �i.f /> 0 and the subset
of F . yfi/ where �i � 0 is compact. Such a �i can be extended to satisfy condition (ii)
by applying Lemma 2.6 to �iC1. Note that condition (iii) only applies to f�i � 0g on
F . yfi/, and not F . yfj /, so this extension of �i automatically satisfies condition (iii).
When Z is compact, a finite collection of such �i will satisfy condition (i), and
therefore all conditions of Definition 3.9. When Z is not compact, we can choose
an exhaustion of Z by compact subsets Zk , and construct each �i to be greater
than �1 only on some ZkC1 nZk�1 . Then, because the inverse image of Zk in Khol

is compact, there is a collection of such �i satisfying conditions (i) and (iv) such that
only finitely many �i are greater than �1 over ZkC1 nZk�1 .

Note that although we can construct �i so that f�i � 0g � F . yfi/ is always compact,
we only require this subset to be proper over Z so that Definition 3.9 is compatible
with pullbacks; see Definition 4.2.

We shall define Gromov–Witten invariants using a sheaf of sections of V . yf / over yf .
We need some notion (condition (ii) of Definition 3.12 below) of when these sections
are “close enough” to the canonical section defined by x@ yf . This notion is provided by
compatibly choosing metrics on these Vi with the property that, where jx@ yf j � 1, some
�j from Definition 3.9 is greater than 1

2
. Such a choice ensures that sections that are

sufficiently close to x@ have their zero sets contained where these �j >
1
2

.

Lemma 3.11 On K� consider the sheaf Met, where Met. yf / is the set of metrics on
the vectorbundle V . yf / with the property that

(1) on the subset where jx@ yf j � 1; some �j >
1
2
:

Then Met obeys the extension, patching and averaging axioms, so Proposition 2.3
implies that there exists a globally defined metric that is a global section of Met.

Proof As such metrics may be averaged using a partition of unity, Met clearly satisfies
the averaging and patching axioms. A section of Met locally exists around any curve
f 2 yfi , because either x@f > 0 and we can just choose a metric in which jx@f j > 1,
or f is holomorphic, and some �j >

1
2

around f . Now suppose that Vi � Vj , and a
section of Met on yfi has been chosen. Because yfi is locally equal to the transversely
cut-out subset of yfj where x@ yfj 2 Vi , a metric on Vi over yfi can be locally extended
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to a metric on Vj over yfj . Because our condition (1) is always satisfied on an open
subset, any such extension will locally meet condition (1), so Met also satisfies the
extension axiom.

Definition 3.12 (the sheaf S ) For a choice of K� from Definition 3.9 and metric
from Lemma 3.11, define a sheaf S over K� as follows: For yf in K� , define S. yf / to
be the set of C1;1 sections � of V . yf / satisfying the following:

(i) On an open neighborhood of where �i � 0 on yf , ��x@ yf is a section of Vi. yf /.

(ii) When using the metric from Lemma 3.11,

jx@� �j< 1I

so, in particular, wherever � D 0, some �i >
1
2

.

(iii) � is transverse to the zero section of V . yf /.

To understand the purpose of item (i) above, note that Vi. yf / is defined on an open
neighborhood of where �i � 0, but even here, whenever the dimension of yf is greater
than the dimension of yfi , Vi. yf /¨ V . yf /, and x@ yf is transverse to this subbundle.

Given any section � of S. yf /, the intersection of � with 0 defines a closed, C1;1

exploded submanifold ��1.0/ � F . yf /. There is a canonical orientation of ��1.0/

relative to Z given by the relative orientation of yf and the complex orientation
of V . yf /. Intersection with 0 provides a natural transformation from S to a sheaf, E,
defined as follows:

Definition 3.13 Define a sheaf of sets, E, on K� as follows: Let E. yf / be the set of
C1;1 exploded submanifolds, X � F . yf /, satisfying the following conditions:

(i) X � F . yf / is closed, and locally defined by the transverse vanishing of some
collection of C1;1 functions.

(ii) X is contained in KC (from Definition 3.9).

(iii) Wherever �i > 0, X is contained in x@ yf �1.Vi. yf //.

(iv) X is oriented relative to Z.

Pullbacks in E are naturally defined as inverse images: the pullback of X under �W yg!
yf is the inverse image, F .�/�1.X /, of X under the induced map F .�/W F .yg/!F . yf /.

Geometry & Topology, Volume 23 (2019)



1898 Brett Parker

Is F .�/�1.X / really in E? Remark 3.10 and the second condition above ensure
that the image of F .�/ always intersects X in an open subset. As F .�/ is locally an
isomorphism onto a subset defined by the transverse vanishing of some C1;1 functions,
F .�/�1.X / has all the required properties.

We show below that S satisfies the patching and extension axioms, but not the averaging
axiom, so global sections of S may not exist. Instead, we will construct a weighted
branched section of S whose intersection with 0 is a weighted branched section of E.

Lemma 3.14 The sheaf S from Definition 3.12 obeys the patching axiom.

Proof Consider a collection of sections �k defined on open subsets Uk of yf . Using a
partition of unity hk subordinate to Uk , these sections �k may be averaged to produce a
section � WD

P
hk�k of V . yf /. Such a section � automatically obeys all the conditions

to be a section of S. yf /, except that � may not be transverse to 0. Our section � also
obeys the condition required by the patching axiom: given any yg! yf , and �0 2 S.yg/

agreeing with the pullback of all �k (where defined), the pullback of � is �0. Let X

be the closure of the image of all yg! yf with some �0 2 S.yg/ satisfying the above
condition.

Claim 3.15 On X � yf , � is transverse to the zero section of V . yf /.

Suppose that � D 0 at f 2 X � yf , as otherwise our claim follows trivially. Let Vj

have the minimal dimension such that �j .f /� 0. On a neighborhood of where �j � 0,
�Dx@ mod Vj . Therefore, x@f 2Vj , and mod Vj , the derivative of � at f is also equal
to the derivative of x@ at f . Definition 3.2(ii) states that x@ yf at such an f is transverse
to Vj , so we need only check that the derivative of � at f surjects onto Vj .

Suppose that Uk contains f . Then � D �k at the image of our yg! yf . It follows
that T � D T �k when restricted to the closure of the image of T F .yg/! T F . yf /.
At f , this closure must include Tf x@

�1.Vj . yf //, which equals .Tf �/�1.Vj .f // and
.Tf �k/

�1.Vj . yf //. As �k is transverse to 0, Tf �k restricted to this subspace surjects
onto Vj ; therefore, Tf � surjects onto Vj , so � is transverse to 0 at f , as required.
This completes the proof of Claim 3.15.

To complete our proof of Lemma 3.14, we need the following:

Claim 3.16 We can perturb � by a small section v of V . yf / so that �Cv is in S and
v vanishes on a neighborhood of X � yf .
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In particular, the section �C v of S satisfies the conditions required by the patching
axiom.

To prove Claim 3.16, consider a curve f 2 yf nX. Let Vi.f / have the smallest dimension
such that �i.f /.f /� 0. Let Of be an open neighborhood of f such that

� Vi.f / is defined on a neighborhood of the closure of Of , and

� the closure of Of does not intersect X, and also does not intersect the set where
�j � 0 for any j with dim Vj < dim Vi.f / .

Then Vi.f / is defined on Of , and on Of we can add a small section of Vi.f / to �
and still satisfy all conditions of Definition 3.12 apart from possibly (iii). Condition (i)
implies that � is equal to x@ mod Vi.f / on Of , so condition (ii) of Definition 3.2
implies that � is transverse to Vi.f / on Of , so we can achieve transversality in Of by
adding a small section of Vi.f /. We can now complete the proof of Claim 3.16 using
a standard transversality argument, given below.

Choose an exhaustion of F . yf / by compact subsets, Ck . So, F . yf /D
S

k Ck where
for all k , Ck is compact and contained in the interior of CkC1 . Suppose that we have
constructed a vk so that vk vanishes on a neighborhood of X and �C vk satisfies
conditions (i) and (ii) of Definition 3.12 and is transverse to 0 on a neighborhood of Ck .
Let us construct vkC1 satisfying these requirements and equal to vk when restricted
to Ck�1 . Cover CkC1 by the open set where �C vk is transverse to 0 — this open
set contains X and Ck — and a finite collection of open subsets Of satisfying the
conditions above, and also contained in CkC2 nCk . Then choose a finite collection of
sections w1; : : : ; wN of V . yf /, each with support in some Of and with image in Vi.f / ,
so that the map

z�W RN
�F . yf /! V . yf /

defined by

z�.t1; : : : ; tN ; f / WD �.f /C vk.f /C

NX
iD1

tiwi.f /

is transverse to the zero section of V , at least when restricted to an open neighborhood O

of RN �CkC1 . To achieve such transversality, it suffices that, restricted to each Of ,
the sections w1; : : : ; wN generate Vi.f / . A finite collection of such sections exists
because the closure of Of is compact and contained in the domain of definition of Vi .
Then z��1.0/\O is a C1;1 exploded manifold. The projection � W z��1.0/\O!RN

factors through a smooth map from a manifold on each stratum, so Sard’s theorem
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applies and the critical locus of � in RN has measure 0. Therefore, there exists a
regular point of � , .t1; : : : ; tn/ 2RN, arbitrarily close to 0. For any such regular point,
�C vk C

P
i tiwi is transverse to 0 on some neighborhood of CkC1 .

Because the wi are compactly supported, condition (ii) of Definition 3.12 is still satisfied
by � C vk C

P
i tiwi so long as .t1; : : : ; tN / is small enough. Condition (i) holds

because each wi is a section of Vi.f / on some Of . Moreover, vkC1 WD vk C
P

i tiwi

agrees with vk on Ck�1 , and vanishes on a neighborhood of X because each wi is
supported in some Of .

The section vD limk!1 vk agrees with vk on Ck�1 for all k . So, �Cv is transverse
to 0, and is a section of S. Moreover, v vanishes on a neighborhood of X, so v
satisfies the requirements of Claim 3.16. This completes the proof of Claim 3.16 and
Lemma 3.14.

Lemma 3.17 The sheaf S from Definition 3.12 obeys the extension axiom.

Proof As S obeys the patching axiom, we need only verify the local existence of
extensions, and the local existence of sections of S.

Sections of S locally exist around any f 2 yf . Let Vi have the smallest dimension such
that �i.f /� 0. If x@f ¤ 0, then in a neighborhood of f , x@ is a section of S. If x@f D 0,
then Tf x@ yf is transverse to Vi , so x@ plus some small section of Vi will be transverse
to the zero section at f , and also obey all the other conditions of Definition 3.12 on a
neighborhood of f .

Now suppose that we have a curve f in yg and a morphism yg! yf in K� . Again, let
Vi have the smallest dimension such that �i.f / � 0. Given a section � 2 S.yg/, we
must construct an extension of � to �0 around f in yf . As specified by Definitions 2.1
and 3.2, an open neighborhood of f in yg is isomorphic to an open subset of yfj ,
and an open neighborhood of f in yf is isomorphic to an open subset of yfk , where
Vi � Vj � Vk on a neighborhood of f in yfk . Moreover, the morphism yg! yf is
locally an isomorphism onto the transverse intersection of x@ yf with Vj . Note that
x@� � is a section of Vi � Vj � Vk . We may therefore extend x@� � to a section x@� �0

of Vi on a neighborhood of f within yf . At f , the resulting section �0 is transverse
to Vj , and transverse to the zero section of Vj restricted to .�0/�1Vj . It is therefore
transverse to the zero section of Vk. yf /D V . yf / at f . Therefore, �0 is the required
local extension of � and S obeys the extension axiom.
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Remark 3.18 We may impose any extra transversality condition satisfied by a generic
section of S, and the patching axiom and extension axiom will still hold, with an
identical proof, so long as the required notion of transversality is independent of
extensions. For example, given a submersion � W K!X, we could impose the extra
condition that � restricted to the intersection of � with 0 must be transverse to a given
map of another compact exploded manifold to X.

3.3 Weighted branched sections of sheaves on K –categories

The sheaf S from Definition 3.12 obeys the patching and extension axioms; however,
it does not obey the averaging axiom, and G –equivariant sections of S may not even
exist, so global sections of S can’t be constructed. Instead, we construct weighted
branched sections of S. Our approach is essentially that originally taken by Fukaya
and Ono [10]; however, we use weighted branched sections with a particular branching
structure. Our fixed branching structure deals with complications that arise when
patching weighted branched sections together. (Even without specifying a particular
branching structure, our version of weighted branched sections is subtly different from
the definition given by Cieliebak, Mundet i Rivera and Salamon [6] or the intrinsic
definition given by McDuff [18].)

In the formalism below, weighted branched sections of a sheaf S over O are labeled
by a finite measure space, .I.O/; �/, so each i 2 I.O/ labels a section, �.i/, of S

with a weight �.i/. Given a map O 0!O, we want to pull back weighted branched
sections to O 0, which requires a measure-preserving map I.O/! I.O 0/. Sometimes
this map will send some i and j to the same point, in which case we require that �.i/
and �.j / coincide on a neighborhood of the image of O 0 ; our formalism includes an
equivalence relation, �, on I.O/ to keep track of such requirements.

Definition 3.19 A weighted branched cover of a K–category, K (Definition 2.1), is a
contravariant functor I with the following domain and target:

� The domain of I is a full subcategory OI � Kst such that the following holds:

– All O in OI are connected.

– If O1 in Kst is connected and there is a morphism �W O1! O2 such that
O2 2OI , then O1 2OI .

– For every family yf in K , there is an open cover of yf contained in OI .
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� The target of I is the category with objects triples .I.O/; �;�/ where

– I.O/ is a finite set (thought of as a set of sections),

– � is a probability measure on I.O/ such that every point in I.O/ has
positive rational measure,

– � is an equivalence relation on I.O/ (thought of as a warning that our
sections are related through needing to be glued somewhere),

and morphisms

��W .I.O2/; �;�/! .I.O1/; �;�/

consisting of measure-preserving maps ��W I.O2/! I.O1/ such that for any
i; j 2 I.O2/, i � j if ��i � ��j .

We make the additional assumption that, for any curve f and morphism f !O in OI ,
there exists a neighborhood U �O of f such that .I.U /; �;�/! .I.f /; �;�/ is
an isomorphism.

Say that i and j in I.O/ are separated at f if their images in I.f / are not equivalent.

Say that I has trivial stabilizers if, whenever  W yf ! yf is a nontrivial automorphism
in K\OI that fixes df e 2 dF . yf /e, then for all i 2 I. yf /, i and  �i are separated
at f .

For example, given a finite group G and a G –fold cover of a manifold (in other words,
a principal G –bundle), a weighted branched cover I could be defined as follows. Let
OI be the category of maps from connected manifolds O into our space pulling back
our G –fold cover to a trivial cover. Then define I.O/ to be the set of sections of this
trivial G–fold cover over O with the discrete equivalence relation and the counting
measure divided by jGj. The curious reader is invited to think about what goes wrong
if we try to define I.O/ for disconnected O.

We can create another weighted branched cover from the above one by gluing together
branches outside some closed set C. Define OI as above, but now let I.O/ have a
single point if O does not intersect C, and let I.O/ be the set of sections over O

if O intersects C. Give such an I.O/ the G–invariant probability measure; use the
discrete equivalence relation if O is contained in the interior of C, and use the trivial
indiscrete equivalence relation otherwise, so distinct sections of I.O/ are separated on
the interior of C.
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We can build up more complicated examples by taking products of weighted branched
covers.

If yf is in OI \K , define SI . yf / to be the set of maps �W I. yf /! S. yf / satisfying
the following condition: if two sections, i and j , of I are not separated at f 2 yf ,
then �.i/ and �.j / agree on some neighborhood of f . (Equivalently, for any such � ,
there exists an open cover fU g of yf such that if i � j in U, then �.i/D �.j / on U.)
Given any morphism �W yg! yf in OI , the map ��W I. yf /! I.yg/ is surjective, and
if ��i D ��j , then i and j are not separated anywhere on the image of yg , so �.i/
and �.j / agree on the image of yg . It follows that there is a unique pullback map
��W SI . yf /! SI .yg/ fitting into the commutative diagram

I.yg/ I. yf /

S.yg/ S. yf /

���

��

�

��

Extend the definition of SI to be a sheaf on K as follows:

Definition 3.20 Given a weighted branched cover I of K and a sheaf S on K , define
the sheaf SI as follows:

� For a given family yf in K , let O
I; yf

be the category of families in OI \K with
a given map to yf .

� Define I yf as the composition of I with the functor O
I; yf
! OI that forgets

the map to yf , and define S yf as the composition of S with the functor O
I; yf
!K .

� Define SI . yf / to be the set of natural transformations9 �W I yf ! S yf such that
for any given O in O

I; yf
, and i; j 2 I.O/ not separated at f , �.i/D �.j / on

a neighborhood of f .

� Given �W yg! yf , define ��� to be the pullback of � using the obvious functor
OI;yg!O

I; yf
.

If yf is in OI \K , SI . yf / coincides with our easier definition above. This SI is a
sheaf because S is a sheaf. Moreover, we prove below that SI obeys the patching,
extension and averaging axioms if S obeys the patching and extension axioms and I

has trivial stabilizers.
9For the purposes of saying what a natural transformation is, consider the codomain of I yf

and S yf
to

be the category of sets.
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Lemma 3.21 If S obeys the patching axiom, then SI does too.

Proof We must prove the patching axiom for SI. In particular, we must show that
given an open cover fUkg of yf and sections �k 2 SI .Uk/ for all k , there exists a
section � 2 SI . yf / satisfying the following property:

Given any morphism yg! yf in K and section �0 2 SI .yg/ agreeing with the pullback
of �k (where defined) for all k , the pullback of � is �0.

We shall show that the patching axiom for SI follows from the following special case:

Claim 3.22 The patching axiom holds in the case when the cover fUkg has two
elements, fU1;U2g, and U2 is in OI .

To prove Claim 3.22, consider a connected component O of U1 \U2 . As O 2 OI ,
the �i determine maps

�i W I.O/! S.O/:

Below, we shall construct � on O using the patching axiom for S on the individual
sections �i.k/, while ensuring that � extends as �1 on U1 nU2 , and �2 on U2 nU1 .
Repeating the construction for every connected component of U1\U2 , we obtain a
section � of SI on U1[U2 that agrees with �i where only �i is defined. To check
the patching axiom for such a section, it suffices to check the patching axiom on O

(and the other connected components of Ui \Uj ) individually.

Identify I.O/ with the set f1; : : : ; ng. Use the patching axiom for S to patch together
�1.1/ and �2.1/ to create a �.1/ 2 S.O/ agreeing with �i.1/ on a neighborhood of
the boundary of O within Ui . Such a �.1/ obeys the requirements of the patching
axiom for SI on O because it obeys the requirements of the patching axiom for S ;
in particular, if �W yg!O pulls back �1 and �2 to �0 (and yg is connected and hence
in OI ), then the patching axiom for S implies that ���i.1/D �

0.��.1//.

On some neighborhood O1�2 of the set where the sections 1 and 2 of I.O/ are not
separated, �1.1/D �1.2/ and �2.1/D �2.2/. We can cover O by open subsets O2I1 ,
O2I2 and O1�2 so that (see Figure 1)

� the closure of O2Ii does not intersect the set where 1 and 2 are not separated,

� the closure of O2I1 within U2 does not intersect the boundary of O within U2 ,
and

� the closure of O2I2 within U1 does not intersect the boundary of O within U1 .
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O2I1

O2I2
O1�2

U1
U2

Figure 1

Such a covering exists because the set where the sections 1 and 2 of I.O/ are not
separated is closed. Now use the patching axiom for S to patch together �1.2/jO2I1

,
�2.2/jO2I2

and �.1/jO1�2
to create �.2/. Our �.2/ obeys the requirements of the

patching axiom on O, agrees with �.1/ on a neighborhood of where 1 and 2 are not
separated, and agrees with �i.2/ on a neighborhood of the boundary of O within Ui .

Inductively continuing this construction gives sections �.k/ 2 S.O/, obeying the
requirements of the patching axiom on O, and agreeing with �i.j / on a neighborhood
of the boundary of O within Ui , so that �.j /D �.k/ on a neighborhood of the set
where the sections j and k of I.O/ are not separated. In particular, after constructing
�.j / for all j < k , we can cover O by open subsets

� Oj�k for j < k , where �1.k/ D �1.j / and �2.k/ D �2.j /, covering the set
where j and k are not separated;

� OkI1 with closure in O not intersecting the set where any j < k is not sepa-
rated from k , and with closure within U2 not intersecting the boundary of O

within U2 ; and

� OkI2 with closure in O not intersecting the set where any j < k is not sepa-
rated from k , and with closure within U1 not intersecting the boundary of O

within U1 .

We can then construct �.k/ satisfying the required conditions using the patching axiom
with �.j /jOj�k

and �i.k/jOkIi
. After completing this construction for all k 2 I.O/,
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we have constructed a section � 2 SI .O/ agreeing with �i on a neighborhood of the
boundary of O within Ui , and obeying the requirements of the patching axiom on O :
for any map �W yg!O with connected domain pulling back �i to �0, ���.k/D �0.��k/,
so ��� D �0. As SI is a sheaf, there is a section � 2 SI . yf / which agrees with our
already constructed � in O, is similarly defined on every other component of U1\U2

and which agrees with �i elsewhere. As the requirements of the patching axiom are
local, and such a � satisfies the requirements of the patching axiom locally, � satisfies
the requirements of the patching axiom. This completes the proof of Claim 3.22.

Now consider an arbitrary open cover of yf . This arbitrary open cover may be replaced
by a countable, locally finite cover fUig consisting of sets in OI contained in one of the
open sets of the original cover. Then apply Claim 3.22 inductively to patch together some
patched-together section on

Sn
iD1 Ui and �nC1 on UnC1 . This procedure constructs

a global section � of SI . yf / obeying the requirements of the patching axiom.

Lemma 3.23 If S satisfies the patching and extension axioms then SI obeys the
patching and extension axioms.

Proof In light of Lemma 3.21, we just need to prove that SI obeys the extension
axiom. As SI obeys the patching axiom, the extension axiom follows from the local
existence of sections of SI, and the local existence of extensions.

The local existence of sections of SI is easy: For any O in OI , S.O/ is nonempty
because S obeys the extension axiom. A constant map I.O/! S.O/ suffices to
define a section of SI .O/.

Given a morphism �W yg ! yf in K and f 2 yg , can we locally extend � 2 SI .yg/?
This local question can be answered without losing generality by shrinking yg and
yf until yg is in OI , � agrees on sections of I.yg/ not separated at f , and sections

of I. yf / separated at f are separated everywhere. Then, for each section i of I. yf /,
the extension axiom for S provides an extension �0.i/ of �.��i/. If i and j are
not separated at f , we can choose �0.i/ D �0.j /, because ��.i/ and ��.j / are not
separated at f , so �.��i/D �.��j /. As all other pairs of sections of I. yf / are separated
everywhere, this �0 defines a section in SI . yf /.

Lemma 3.24 If I is a weighted branched cover of K with trivial stabilizers and S is
a sheaf on K satisfying the patching axiom, then SI satisfies the patching and averaging
axioms.
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Proof Lemma 3.21 implies that SI satisfies the patching axiom, so we need only
verify the averaging axiom. The idea is to take a given section � and patch together
pieces of � to create a G –equivariant section �0.

Claim 3.25 Suppose that the following holds:

� fU1;U2g form a G –invariant open cover of yf .

� �i 2 SI .Ui/.

� �1 is G –equivariant.

� Each connected component of U2 is in OI .

� For each connected component O of U2 , there exists a subset I0 � I.O/ such
that

– if i 2 I0 � I.O/ and j � i , then j 2 I0 ;

– the G –orbit of I0 contains I.O/;

– if the action of some g 2G sends an element of I0 to another element of I0 ,
then g acts trivially on O.

Then, there exists a G –equivariant section �0 of SI . yf /, agreeing with �1 on U1 nU2

and agreeing with �2 where �2 is G –equivariant and the same as �1 . More precisely,
given any G –equivariant map �W yh! yf with image in U2 , ���0D ���2 so long as ���2

is G –equivariant and equals ���1 on the pullback of U1 .

To prove Claim 3.25, we shall first define �0 on a connected component O of U2 .
For j 2 I0 , patch together10 �1.j / and �2.j / to obtain �0.j / 2 S.O/ agreeing with
�1.j / on a neighborhood of the closure of O \U1 within U1 . Similarly to the proof
of Claim 3.22, choose these �0.j / so that �0.j /D �0.k/ on a neighborhood of the set
where j and k are not separated, and so that the requirements of the patching axiom
are satisfied by these �0.k/.

For any morphism g in G and j 2 I0 , we can then define �0.g�j / to be g��0.j /.
Whenever g acts nontrivially on O, g�j is separated from all i 2 I0 , and the property
of being separated is preserved under the action of G, so there are no further conditions
required of our sections �0.g�j /, and the resulting �0 defines a G –equivariant section
of SI on the orbit of O. Because �1 is equivariant, �0 agrees with �1 on an open

10Here we have abused notation slightly: �2 is defined on some open subset of O ; by �2.j / we mean
the section which, on connected components, is �2.j

0/ , where j 0 is the restriction of j .
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neighborhood of the closure of the G –orbit of O \U1 within U1 . Therefore, �0 may
be extended to a G –equivariant section on the union of the G –orbit of O with U1 by
setting �0 D �1 everywhere else. We may similarly extend the definition of �0 to all
other components of U2 .

As our �0.j / for j 2 I0 obeyed the requirements of the patching axiom, �0 satisfies
the required G –equivariant version of the patching axiom. This completes the proof of
Claim 3.25.

Construct a G–equivariant �0 inductively using Claim 3.25 as follows. Every curve
in yf has a G –invariant open neighborhood Uf satisfying the requirements of U2 in
Claim 3.25; in particular, Uf can be the G–orbit of a connected open neighborhood
O of f such that the following holds:

� O is invariant under the subgroup H � G which is the weak stabilizer of f
(consisting of elements fixing the image of f in dF . yf /e).

� For g 2G nH, g.O/\O D∅.

� O is in OI and is small enough that I.O/! I.f / is an isomorphism.

For any i 2 I.O/, i and g�i are separated for any g 2H acting nontrivially on O

(because I has trivial stabilizers). As � is a G –invariant equivalence relation on I.O/,
there is a subset I0 � I.O/ satisfying the requirements of Claim 3.25.

Choose a countable, locally finite open cover fOig of yf using sets satisfying the above
conditions on Uf . Use Claim 3.25 with U1D∅, U2DO1 and �2D� to construct a G –
equivariant section �0 on O1 . Then inductively apply Claim 3.25 with U1 D

Sn
iD1 Oi

and �1 the already constructed �0, and U2 DOnC1 and �2 D � . Claim 3.25 implies
that the resulting patched together �0 on

SnC1
iD1 Oi is G –equivariant and satisfies the

condition required by the averaging axiom. As the cover fOig is locally finite, our
sequence of choices �0 converge to a section �0 2S. yf / obeying the conditions required
by the averaging axiom.

4 Construction of ŒK�

In this section we construct a virtual fundamental class ŒK� for a Kuranishi category K ,
and show that all choices are cobordant. To state what it means for a choice to be
cobordant, we need the notion of a pullback of a Kuranishi category introduced below.
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4.1 Pullbacks of Kuranishi categories

Recall that we are considering Kuranishi categories K over Z, where Z is an exploded
orbifold — a Deligne–Mumford stack over the category of exploded manifolds. The
following is a standard definition of a representable map of stacks:

Definition 4.1 A map
Z 0!Z

of Deligne–Mumford stacks over the category of exploded manifolds is representable
if, given any submersion A! Z from an exploded manifold A , the fiber product
A�Z Z 0 is represented by an exploded manifold.

For more general stacks, say that a submersion X 0! X of stacks is representable if
given any map A! X from an exploded manifold A , the fiber product X 0 �X A is
also represented by an exploded manifold.

In the language of orbifolds, a representable map is one that is injective on stabilizers.
For example, if Z 0 is an exploded manifold, Z 0 ! Z is always representable. In
the definition of pullback of K over Z 0 ! Z below, we require that Z 0 ! Z is
representable, so that yfi �Z Z 0 is a family of curves parametrized by an exploded
manifold, rather than a more general Deligne–Mumford stack. A notion of pullback for
nonrepresentable maps Z 0!Z exists, but there would either be some extra choices,
or we would need arbitrary Deligne–Mumford stacks to take the place of yf =G.

Definition 4.2 Given any Kuranishi category K over Z and representable map
Z 0!Z, the pullback of K is a Kuranishi category K0 over Z 0

K0 K

Z 0 Z

where:

� .K0/st is defined to be Kst �Z Z 0.

� yf 0i is yfi �Z Z 0 and G0i DGi . (For the purposes of defining K0, we discard the
indices i for which yfi �Z Z 0 is empty.)

� U 0i and V 0i are the pullbacks of Ui and Vi under the map .K0/st! Kst .
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� V 0 is defined as in Definition 3.2(i), so V 0. yf /DV 0i .
yf / if yf is locally isomorphic

to yf 0i . In particular, V 0. yf �Z Z 0/ is the pullback of V . yf /.
� x@0. yf �Z Z 0/ is the pullback of x@ yf under the natural map yf �Z Z 0! yf .

Similarly, given a map Kst! X and a representable submersion X 0! X, define the
pullback K0 of K as above with X taking the place of Z.

For example, X might be the moduli stack of C1;1 curves in B, and X 0 might be the
moduli stack of C1;1 curves in some refinement of B, or the moduli stack of C1;1

curves in B with an extra choice of marked point.

Remark 4.3 Pullback of Kuranishi categories is compatible with many notions:

(i) Any extension (Definition 2.1) of K also pulls back to an extension of K0.
(ii) An orientation of K over Z (Definition 3.7) pulls back to an orientation of K0

over Z 0. Similarly, if the fibers of X 0! X are oriented, an orientation of K
pulls back to an orientation of K0.

(iii) K0 is proper or complete over Z 0 (Definition 3.5) if K is proper or complete
over Z. Similarly, if X 0! X is proper or complete, K0 is proper or complete
if K is.

(iv) All choices involved in defining K� (Definition 3.9) pull back to define K0� ,
which happens to coincide with the pullback of K� in the above sense. (When
we pull back K� , we drop the indices j for which the pullback of �j is negative.)
Also K0

C
is the pullback of KC .

(v) Any sheaf S defined on Kst pulls back to a sheaf defined on .K0/st , and any
global section of such an S over K pulls back to a global section over K0.

(vi) Any weighted branched cover I of K� (Definition 3.19) pulls back to a weighted
branched cover I 0 of K0� .

(vii) For S the sheaf from Definition 3.12, if Z 0!Z is a submersion, any global
section of SI over K� pulls back to a global section of S 0I

0

over K0� . Similarly,
given any representable submersion X 0! X, any global section of SI over K�
pulls back to a global section of S 0I

0

over K0�

Definition 4.4 Say that two Kuranishi categories K0 and K1 that are proper (or
complete) and oriented over Z are cobordant over Z if there exists a Kuranishi
category K proper (or complete) and oriented over Z � R such that Ki (with its
orientation relative to Z ) is the pullback of K under the inclusion of Z over i �R.
Call K a cobordism between Ki .
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If Kst
i are substacks of a stack X with a map to Z, say that Ki are cobordant within

X if Kst is a substack of X �R and the map K!Z �R is the restriction of the map
X �R!Z �R.

4.2 Construction of ŒK�

Lemma 4.5 Suppose that a Kuranishi category K is proper and oriented over Z.
Then there exists a K� and a weighted branched cover I of K� with trivial stabilizers,
satisfying the conditions of Definitions 3.9 and 3.19.

Moreover, any two choices of K� and I are cobordant in the following sense: Suppose
that K0 and K1 are cobordant (within X ) over Z. Then, given any two choices of Ki;�

and weighted branched covers Ii , there is some cobordism K (within X ) between Ki ,
along with a construction of K� and a weighted branched cover I such that Ki , Ki;�

and Ii are the pullback of K , K� and I, respectively, under the inclusions of Z over
i 2R.

Proof To construct K� , we must choose functions �i as in Definition 3.9. As discussed
after Definition 3.9, such functions exist because of Lemma 2.6, the fact that Kuranishi
categories are extendable, our assumption that Khol!Z is proper, and the fact that
each chart yfi=Gi covers an open substack of Khol .

Definition 2.1(ii) states that yfi=Gi represents a substack of Kst . Suppose that yfi

has the largest dimension of any family in K containing f . Then some G–invariant
neighborhood of f in yfi covers an open substack U of Kst

� �Kst . Moreover, because
Kuranishi categories are, by definition, extendable, there is a neighborhood U 0 of f
with closure contained in U.

Define a weighted branched cover If of K� as follows: Define OIf to be the full
subcategory of Kst

� with objects all connected families O such that either

� O does not intersect the closure of U 0 — in this case If .O/ is the probability
space with a unique element — or

� O intersects the closure of U 0, is contained entirely inside U, and the corre-
sponding G –fold cover O� yfi=Gi

yfi of O defined by the following fiber product
diagram is trivial:

O � yfi=Gi

yfi
yfi

O yfi=Gi
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In this case, define If .O/ to be the set of sections of the above Gi –fold cover
of O with the Gi –invariant probability measure. If O is contained in U 0,
then use the discrete equivalence relation on If .O/, otherwise, use the trivial
indiscrete equivalence relation on If .O/.

Given any morphism �W O 0 ! O in OIf , �� is either uniquely determined because
If .O

0/ has a unique point, or �� is induced by the natural map between Gi –fold covers.
To check that If defines a weighted branched cover, we must still check that, given
any morphism g! O from a curve in OIf , there exists a neighborhood O 0 of the
image of g such that the induced map If .O

0/! If .g/ is an isomorphism. If g is in
the boundary of U 0, then the corresponding map If .O/! If .g/ is an isomorphism;
if g is not in the boundary of U 0, then If .O/! If .g/ is an isomorphism so long as
O is small enough not to intersect the boundary of U 0. Therefore, If obeys the final
condition we required of weighted branched covers.

Because yfi=Gi represents a substack of Kst , If is separating at any curve in U 0.

Now, make corresponding choices of Ifi
, Ui and U 0i so that fU 0i g is a cover of K�

and so that each Ui intersects Uj for only finitely many j . Then define I WD
Q

i Ifi

as follows:

� OI WD
T

i OIfi
. In particular, O is in OI if it is connected and is contained in

Ui whenever it intersects U 0i . As each curve has a neighborhood that intersects
only finitely many U 0i , each family in K� still has an open cover contained
in OI .

� For O 2OI ,
I.O/ WD

Y
i

Ifi
.O/:

As O is in only finitely many Ui , Ifi
is a probability space with a unique

element for all but finitely many i , so
Q

i Ifi
.O/ is still a finite probability

space.

Sections in I.O/ are separated if and only if their image is separated in some Ifi
.O/.

Because Ifi
has trivial stabilizers on U 0i , I has trivial stabilizers on U 0i for each i , so

I has trivial stabilizers on all of K� .

It remains to prove that any two choices of Ki;� and Ii are cobordant. We may
reparametrize the original cobordism between Ki to obtain a Kuranishi category K
over Z �R with the extra property that, for i 2 f0; 1g, there exist neighborhoods Ni of
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i 2R such that the pullback of K to Z �Ni is the pullback of Ki under the projection
Z �Ni!Z. Using Z �Ni!Ki , pull back the functions used to define Ki;� . Then,
extend these functions by taking the minimum of each function and a smooth function
on R equal to 1 at i and �1 outside of Ni . Following this, use Lemma 2.6 to construct
the other functions required to define K� , as discussed following Definition 3.9, and
choose these other functions to be �1 on the inverse image of f0; 1g. This construction
of K� pulls back to the construction of Ki;� , as required.

Now define I. Use the pullbacks of Ii over Ni to define weighted branched covers I 0i
as follows: Choose open neighborhoods N 0i � Ni of 0 or 1, respectively, so that
xN 0i �Ni . Let O in Kst be in OI 0

i
in the following two cases:

� If O is connected and does not intersect the pullback of xN 0i , define I 0i .O/ to be
the probability space with a unique element.

� If O is contained in the inverse image of Ni , and projects to O 0 within Kst
i such

that O 0 2OIi
,

– define I 0i .O/ to be the probability space with a unique element if O does
not intersect the pullback of xN 0i ;

– define I 0i .O/ to be Ii.O
0/ with the same measure, but the trivial indiscrete

equivalence relation if O intersects the pullback of the boundary of N 0i ;
– define I 0i .O/ to be Ii.O

0/ with the same measure and equivalence relation
if O is contained in the pullback of N 0i .

Now I 0
0
� I 0

1
is a weighted branched cover of K� , and the pullback of I 0

0
� I 0

1
under

the inclusion of Z over i is Ii .

I 0
0
� I 0

1
has trivial stabilizers restricted to the pullback of N 0i , but may not have

trivial stabilizers elsewhere. We can make our weighted branched cover I have trivial
stabilizers by multiplying I 0

0
� I 0

1
by other weighted branched covers If as above. We

can achieve this while choosing If to be trivial when restricted the inverse image of
i 2R, so that I pulls back to give Ii , as required.

Remark 4.6 Similarly, there exists a weighted branched cover of any extendable
K–category, and as above, any two such weighted branched covers are cobordant.

Definition 4.7 Given a Kuranishi category K , proper and oriented over Z, construct
the virtual class ŒK� as follows:

(i) Choose K� as in Definition 3.9.

(ii) Choose a separating weighted branched cover I of K� as in Lemma 4.5.

Geometry & Topology, Volume 23 (2019)



1914 Brett Parker

(iii) Consider the sheaf SI of weighted branched sections of S from Definition 3.12.
We have proved that SI satisfies the patching, extension and averaging axioms.
Choose a global section of SI over K� , as allowed by Proposition 2.3. (This
may involve increasing � slightly.)

(iv) Recall that intersection with 0 defines a natural transformation S !E, where
E is the sheaf of oriented subfamilies from Definition 3.13. Intersection with 0

therefore defines a natural transformation SI !EI , so the intersection with 0

of our weighted branched section of S defines a weighted branched section of E.
Use the notation ŒK� for such a section.

Lemma 4.5 along with Proposition 2.3 and the fact that SI obeys the patching, extension
and averaging axioms imply that any two weighted branched sections of E defined
using the above procedure are cobordant.

5 Representing Gromov–Witten invariants using de Rham
cohomology

5.1 Differential forms and de Rham cohomologies on stacks and
Kuranishi categories

Differential forms on a stack (over the category of smooth manifolds or exploded
manifolds) form a sheaf — to each family yf , we associate the differential forms
on F . yf /. Any notion for differential forms commuting with pullbacks (such as
exterior differentiation, wedge products, sums) also makes sense for such differential
forms on stacks. In particular, it is possible to do de Rham cohomology with differential
forms on a stack. In the case of a stack (over the category of manifolds) with infinite
stabilizers, the resulting cohomology will be smaller than the “correct” cohomology,
explained in [2]; however, I do not know how to imitate the constructions of [2] in
the infinite-dimensional setting of Mst

�
. For exploded manifolds, we use restricted

types of differential forms for defining cohomology theories; see [31]. We need several
species of differential forms, all of which are just smooth differential forms on smooth
manifolds.

Definition 5.1 (��.B/) Let �k.B/ be the space of C1;1 differential k –forms �
on an exploded manifold B such that for all integral vectors v , the differential form �

vanishes on v , and for all maps f W T 1
.0;1/

!B, the differential form � vanishes on
all vectors in the image of df .
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Similarly, a differential form on a stack X is in ��.X / if it is in ��.F . yf // for all yf
in X.

Denote by �k
c .B/��

k.B/ the subspace of forms with complete support.11 Denote
the homology of .��.B/; d/ or .��.X /; d/, by H�.B/ or H�.X /, respectively.

Remark 5.2 Given a complex vectorbundle W over an extension K] of K , we
may represent the Chern classes of W in H�.K/ as closed differential forms. As
unitary metrics and connections may be constructed as sections of sheaves satisfying
the patching, extension and averaging axioms, they may be constructed on K using
Proposition 2.3, then we may construct the Chern classes of V over K using the
Chern–Weil construction.

We use �� instead of all C1;1 differential forms in order to use a version of Stokes’
theorem, Theorem 3.4 in [31]. We shall also wish to use integration along the fiber.
For this we shall need the following more general types of differential forms. (For
integration along the fiber, see Theorem 9.2 of [31].)

Definition 5.3 (refined forms) A refined form � 2 r��.B/ is a choice �p 2
V

T �p .B/

for all p 2B satisfying the following condition: given any point p 2B, there exists
an open neighborhood U of p , a complete, surjective, equidimensional submersion

r W U 0! U

and a form � 0 2��.U 0/ which is the pullback of � . In other words, if v is any vector
on U 0 such that Tr.v/ is a vector based at p , then

� 0.v/D �p.Tr.v//:

As refined forms pull back to refined forms, there is an analogous notion of refined forms
on any Kuranishi category or stack over the category of C1;1 exploded manifolds.

A refined form � 2 r��.B/ is completely supported if there exists some complete
subset V of an exploded manifold C with a map C !B such that �p D 0 for all p

outside the image of V . Use the notation r��c for completely supported refined forms.
(There is no analogous notion on Mst

�
.)

11A form has complete support if the set where it is nonzero is contained inside a complete subset
of B — in other words, a compact subset with tropical part consisting only of complete polytopes.

Because completely supported forms do not always pull back to be completely supported, there is no
analogous notion of forms with complete support on Mst

�
. See [2] for a version of compactly supported

forms on finite-dimensional differential stacks.
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Denote the homology of .r��.B/; d/ by rH�.B/ and .r��c .B/; d/ by rH�c .B/.

The Poincaré dual to a map C !B is correctly viewed as a refined differential form
in rH�.B/; see Lemma 9.5 of [31]. As with all types of forms considered in this
paper, refined forms admit the usual operations of wedge product, pullbacks, exterior
derivatives and contraction with any C1;1 vectorfield — for a discussion of wedge
products, see Section 9 of [31]; contraction with any C1;1 vectorfield is defined
because any equidimensional submersion lifts any such vectorfield uniquely to a C1;1

vectorfield.

In the coming sections, we will define integration and pushforwards of differential
forms using ŒK�. If K is complete (Definition 3.5) and contained in the stack X, then
integration over ŒK� defines a map

H�.X /
R
ŒK�
��!R

or more generally a map
rH�.X /

R
ŒK�
��!R:

The first map factors through H�! rH� , so the second map contains more information
than the first. Given a complex vectorbundle V over X, we may define more maps
rH�.X /!R by taking the product with Chern classes of V before integrating.

If K is complete over Z and contained in a stack X, integration along the fiber of the
map ŒK�!Z defines a map

rH�.X /! rH�.Z /:

These maps are compatible with base changes

X 0 X

Z 0 Z

in the sense that the following diagram commutes:

(2)

rH�.X 0/ rH�.X /

rH�.Z 0/ rH�.Z /

In the case that K is not complete, we need to use the following, more restrictive, types
of differential forms to define invariants:
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Definition 5.4 (differential forms generated by functions) A differential form is
generated by functions if it is locally equal to a form constructed from C1;1 functions
using the operations of exterior differentiation and wedge products. Use the notation
r

fg�
� � r�� for the set of refined forms with differential forms generated by functions

playing the role of �� in Definition 5.3.

Use r
fgH� to denote the homology of . r

fg�
�; d/.

Examples of differential forms generated by functions are the Poincaré dual to a point,
the Chern class defined using the Chern–Weil construction, and any smooth differential
form on a smooth manifold.

Remark 5.5 Differential forms generated by functions could equivalently be defined
as C1;1 differential forms that vanish on all R–nil vectors.12 This follows from the
proof of Lemma 4.1 in [31].

In the case that K�X is compact but not complete, integration over ŒK� defines a map

r
fgH�.X /

R
ŒK�
��!R:

If K is complete, then the above map factorizes through the map r
fgH�! rH� . In the

case that K is not complete, these invariants only behave well in families parametrized
by smooth (not exploded) manifolds. In particular, if yB !B0 is a family of targets
parametrized by a smooth manifold B0 , then Gromov–Witten invariants give a map
r

fgH�.Mst
�
. yB//!H�.B0/. These Gromov–Witten invariants are invariant under base

changes in the sense that a diagram analogous to diagram (2) commutes.

5.2 Integrating over ŒK� for compact K

Recall that ŒK� is a section of EI, where E is as defined in Definition 3.13 and I is a
weighted branched cover of K� (Definition 3.19). So ŒK� is a natural transformation
I!E. In particular, given any family O in K�\OI , we have a finite probability space
.I.O/; �/ and a map from I.O/ to the set of complete subfamilies of O contained
in KC . Each such family ŒK�.i/ has a canonical orientation relative to Z, so in the
case that Z is a point or oriented, ŒK�.i/ is oriented.

We need two different notions of a partition of unity. By a partition of unity subordinate
to a given covering of Kst by open substacks we mean a collection of C1;1 functions �i

12An R–nil vector is a vector v for which df .v/D 0 for all differentiable R–valued functions.
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on Kst with support contained in these open substacks such that
P
�i D 1. Remark 2.7

implies that we may construct such partitions of unity as usual (under the assumption
that K is extendable). For integrating differential forms over ŒK�, we need a different
notion of partition of unity on KC . When K is compact in the sense of Definition 3.5,
KC from Definition 3.9 is compact and has a finite open cover consisting of families
in K� \OI . The partition of unity on KC defined below has functions living on such
an open cover. This definition is similar to the notion of a partition of unity on an étale
proper groupoid given in Definition 22 of [2].

Definition 5.6 A partition of unity on KC is a family O in K and a C1;1 function

r W O!R

such that the support of r on any connected component Ok of O is compact and
such that, for any family F in KC , the pullback of r to O �Kst F has proper support
over F , and has pushforward to F equal to 1:

O �Kst F F

O Kst

�2

�1
.�2/!�

�
1 r D 1:

Say that this partition of unity is compatible with a weighted branched cover I of K� if
each connected component Ok of O is in OI \K� . If ŒK� is a natural transformation
ŒK�W I ! E, say that a partition of unity is compatible with ŒK� if it is compatible
with I.

Lemma 5.7 Given any weighted branched cover I of K� , there exists a partition of
unity on KC compatible with I. Moreover, given any curve f 2 KC , there exists
an open neighborhood N of f within KC and a partition of unity r W

`
k Ok ! R

satisfying the following:

� There is a group G1 of automorphisms of O1 such that O1=G1 represents a
substack of Kst .

� On the intersection of O1 with N , r D 1=jG1j.

� On the intersection of Ok with N for k ¤ 1, r D 0.

Proof Choose a locally finite cover of KC by families Ok 2 K� \OI with automor-
phism groups Gk so that Ok=Gk represents a substack of Kst . We can do this so that
O1=G1 compactly contains a neighborhood N of the given curve f 2 KC .
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Using Lemma 2.6, we may choose C1;1 functions rk W K� ! Œ0; 1� satisfying the
following conditions:

� The support of rk intersected with KC is compactly contained within Ok=Gk .

� The support of rk intersects the support of rj for only finitely many j .

�
P

k rk > 0 on KC .

� The support of r1 contains N , and all other rj vanish on N .

As KC is a closed substack, Remark 2.7 implies that there exists a C1;1 function
RW K�! Œ0; 1� with zero set KC .

Then set
r D

rk

jGk j
�
RC

P
k rk

� on Ok :

Given a curve f in KC , the fiber product of f with Ok consists of jGk j points if f
is also contained in Ok , and is otherwise empty, soZ

f�Kst Ok

r D
rk.f /P
k rk.f /

and Z
f�Kst O

r D

P
k rk.f /P
k rk.f /

D 1;

as required.

Definition 5.8 Given � 2 r��.K/, for K oriented and compact (Definition 3.5),
define the integral of � over ŒK� as follows: Choose a partition of unity r W

`
k Ok!R

compatible with ŒK�. Then defineZ
ŒK�
� WD

X
k

X
i2I.Ok/

�.i/

Z
ŒK�.i/

r�;

where ŒK�.i/ is the closed, oriented, exploded submanifold of Ok that is the image
of i under the map ŒK�W I.Ok/! E.Ok/, and � is the probability measure on the
indexing set I.Ok/. Note that r� has compact support on ŒK�.i/, so the integral of r�

is defined as in [31]. Note also that the above sum is finite.

As r�� contains �� and r
fg�
� , the above definition also works for � in �� or r

fg�.

Lemma 5.9
R
ŒK� � does not depend on the choice of partition of unity.
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Proof Let r W
`

k Ok ! R and r 0W O 0 ! R be two partitions of unity compatible
with ŒK�. We have Z

ŒK�
� WD

X
k

X
i2I.Ok/

�.i/

Z
ŒK�.i/

r�

and, because r 0 is a partition of unity,Z
O 0�Kst ŒK�.i/

r 0r� D

Z
ŒK�.i/

r�:

We need to examine O 0 �Kst ŒK�.i/. Let O be a connected component of O 0 �Kst Ok ,
so O 2OI \K� , and comes with a morphism �W O!Ok . For any j 2 ��i , ŒK�.j /D
��1.ŒK�.i//, and therefore ŒK�.j / is some collection of connected components of
O 0 �Kst ŒK�.i/. If ��i always had a unique element j , the union of all such ŒK�.j /
would be O 0 �Kst ŒK�.i/. In the general case, ��i is some finite set with measure �.i/,
so we get

�.i/

Z
ŒK�.i/

r� D
X

j2��i

�.j /

Z
ŒK�.j/

r 0r�;

where the sum is over all connected components O of O 0�ŒKst�Ok and j in the inverse
image of i within I.O/. Taking the sum of this expression over all Ok and i 2 I.Ok/

gives Z
ŒK�
� D

X
O

X
j2I.O/

�.j /

Z
ŒK�.j/

r 0r�;

where the above sum now is over all connected components O of O 0�Kst
`

k Ok . The
above expression is symmetric in the two partitions of unity; therefore, the integral is
independent of the choice of partition of unity.

Lemma 5.10 If � 2 r��.K/ and K is complete, thenZ
ŒK�

d� D 0:

Proof The fact that K is complete implies that the support of each r on each connected
component of O is complete. Because exterior differentiation and integration are linear
we may use a partition of unity on Kst to reduce to the case that � has small support.
In particular, we can assume that the support of � is small enough that Lemma 5.7
gives a partition of unity r W

`
k Ok!R such that r� has support contained in O1 on
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a subset where r is equal to 1=jGj. ThenZ
ŒK�

d� D
X

i2I.O1/

�.i/

jGj

Z
ŒK�.i/

d� D 0

because � 2 r��c .ŒK�.i//, and such forms satisfy Stokes’ theorem; see [31].

Lemma 5.11 If � 2 r
fg�
�.K/ and K is compact but not necessarily complete, thenZ

ŒK�
d� D 0:

Proof As in the proof of Lemma 5.10, this lemma reduces to the case of proving thatR
ŒK�.i/ d� D 0 for any compactly supported � 2 r

fg�
�ŒK�.i/. By using a partition of

unity on ŒK�.i/, we may reduce to the case that � is supported on an open subset U

of ŒK�.i/, and pulls back under a refinement map U 0! U to a compactly supported
form generated by functions on U 0. We may use a partition of unity on U 0 to reduce to
the case that � is compactly supported within a single coordinate chart V on U 0. The
fact that � is generated by functions implies that � is pulled back from a differential
form on Rn under an embedding dV e!Rn . Then, the usual Stokes’ theorem implies
that

R
V d� D 0.

Corollary 5.12 If K is complete, then integration over ŒK� defines a map

rH�.K/!R:

If K is compact, integration over ŒK� defines a map

r
fgH�.K/!R:

If K is contained in a stack X, we shall show that the resulting maps rH�.X /! R

and r
fgH.X /!R only depend on the cobordism class of K within X, and in particular

are independent of the choices involved in the construction of ŒK�.

5.3 Pushing forward cohomology classes

To define pushforwards of differential forms along maps ŒK�!X, we need integration
along the fiber, constructed in Theorem 9.2 of [31]. Given any oriented submersion of
exploded manifolds,  W X ! Y , there exists a linear chain map

 !W
r��c .X/!

r��
0

c .Y /
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uniquely determined by the usual property of integration along the fiber, namely,Z
X

 �˛^ˇ D

Z
Y

˛^ !ˇ:

Above, the notation �0 emphasizes that  ! does not preserve degree — it shifts it by
dim Y � dim X. Later, in Lemma 7.3, we show that  ! sends r

fg�
�.X/ into r

fg�
�.Y /.

We only need that X is oriented relative to Y ; when Y is not oriented, the above
expression should either be interpreted locally in Y with a choice of orientation, or ˛
needs to be a form twisted by the orientation line bundle of Y . For integration along
the fiber to work, we require our forms to have complete support (or at least complete
support relative to the target Y ).

Remark 5.13 This pushforward is also defined in the case that X and Y are exploded
orbifolds (ie Deligne–Mumford stacks in the category of exploded manifolds). In
particular, we can define  ! so that given any pullback diagram

X 0 Y 0

X Y

 0

 

where X 0 and Y 0 are exploded manifolds, the following diagram commutes:

r��.X 0/ r��.Y 0/

r��.X/ r��.Y /

 0
!

 !

If all that can be guaranteed is compact (but not complete) support, integration along
the fiber will not give a well-behaved form on the target Y . For example, consider the
proper but incomplete map given by the inclusion of T 1

.0;1/
into T . Integrating the

constant function 1 along the fiber of this map gives a discontinuous function on T .
To get around this problem, we may use differential forms generated by functions, and
restrict to the case that the target of our map is a manifold.

Lemma 5.14 Given any oriented submersion from an exploded manifold to a smooth
manifold,

 W X !M;
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and a compactly supported form ˇ 2 r
fg�
�X, integration along the fiber of  gives a

form  !ˇ 2�
�
c M uniquely determined by the property that, for any differential form ˛

on M (twisted by the orientation line bundle if necessary),Z
X

 �˛^ˇ D

Z
M

˛^ !ˇ:

As usual, integration along the fiber is a chain map, so d !˛ D  !d˛ .

Proof Forms on smooth manifolds are uniquely determined by their integrals against
all other forms, so if there exists a form  !ˇ satisfying the required property, it is
unique. As the required property is linear, we can use a partition of unity to reduce to
the case that ˇ is compactly contained in a single coordinate chart. As ˇ is a refined
form, we may need to refine this coordinate chart and use a further partition of unity to
reduce to the case that ˇ is an (unrefined) form compactly supported on some standard
coordinate chart isomorphic to Rk�Rn�T m

P
, where the submersion to M is modeled

on the projection to Rk . Integrating along the fiber, and any integral on this coordinate
chart, involves a contribution from each 0–dimensional stratum of P, and no other
strata contribute.

For each 0–dimensional stratum i of P, let Pi be the union of all strata in P with
closure intersecting i 2 P. We may construct a tropical completion13 LPi of Pi as
the union of all rays that start at i 2 P and intersect P in more than one point.
There is a natural inclusion of T m

Pi
into T m

LPi

, and any compactly supported form ˇ

on RkCn �T m
Pi

extends uniquely to a completely supported form ˇi in RkCn �T m
LPi

.
As the submersion to M is constant on the T m

P
fibers, it also extends uniquely to

a submersion  i W RnCk � T m
LPi

!M. As integration along the fiber is defined and
satisfies the required properties on completely supported forms, we may define

 !ˇ WD
X

i

 i
! ˇi :

Then Z
M

˛^ !ˇ D
X

i

Z
. i/�˛^ˇi

but the integral of  �˛^ˇ has contributions from each 0–dimensional stratum i of P,
each equal to the integral of . i/�˛^ˇi , soZ

M

˛^ !ˇ D

Z
 �˛^ˇ;

13 See Section 7 for a more thorough discussion of tropical completion.
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as required. The fact that  ! commutes with exterior differentiation follows from the
analogous fact for  i

!
.

Let A ! Z be some family of exploded manifolds or orbifolds over Z, oriented
relative to Z. For example, in the case of a Kuranishi category describing families
of curves in yB ! B0 , Z D B0 , and A might be B0 , or the n–fold fiber product
of yB over B0 , or the product of B0 with a component of (the explosion of) Deligne–
Mumford space. In this section, we shall consider pushing forward cohomology classes
from rH�.K/ along a map,14 � W K! A , compatible with a complete submersion
K!Z :

K A

Z

�

Definition 5.15 Given a map � compatible with a submersion

K A

Z

�

in the case that K is complete and oriented over Z, define a pushforward map

�!W
r��.K/! r��

0

.A/

and in the case where K is proper over Z but A is a manifold, define

�!W
r

fg�
�.K/!��

0

.A/:

In either case, �! is defined as follows:

(i) Choose an oriented vectorbundle W !A along with a map

xW W !A

so that x restricted to the zero section is the identity, and satisfies an extra
transversality condition described below.

(ii) Choose a partition of unity r W
`

k Ok !R compatible with ŒK�.

14By a map from a K –category or Kuranishi category to A , we mean a map Kst!A — this entails
a compatible choice of C1;1 map F . yf /!A for every family yf in Kst .
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(iii) For any i 2 I.Ok/, the natural transformation ŒK�W I ! E gives a complete
subfamily ŒK�.i/�Ok . Use the notation �.i/ for � restricted to ŒK�.i/. Define
a map y�.i/W �.i/�W !A by the composition

�.i/�W W A

ŒK�.i/ A

y�.i/

x

�.i/

The extra transversality assumption we require of x is that these maps y�.i/ are
submersions. This condition is always satisfied in the case that x is a submersion
restricted to each fiber.

(iv) Given any � in r��.��W / or r
fg�
�.��W /, respectively, with compact support

on fibers of ��W ! K , define

y�!.�/ WD
X
Ok

X
i2I.Ok/

�.i/y�.i/!.r�/:

Note that integration along the fiber of y�.i/ requires an orientation relative to A .
Both A and the family ŒK�.i/ are canonically oriented relative to Z, and W is
an oriented vectorbundle, so y�.i/ has a canonical relative orientation.

(v) Choose a closed form e 2 ��W with fiberwise compact support so that e

represents the Thom class of W !A .

(vi) For any � in r��.K/ or r
fg�
�.K/, respectively, consider � and e as forms

on ��W , then define
�!.�/ WD y�!.� ^ e/:

Because the Thom form e is generated by functions, Lemma 7.3 implies that �! sends
forms in r

fg�
�.K/ to r

fg�
�.A/.

Lemma 5.16 The map y�! from Definition 5.15 is independent of choice of partition
of unity.

Proof The proof is identical to the proof of Lemma 5.9, except integration over ŒK�.i/
is replaced by pushing forward via y�.i/! .

Lemma 5.17 The map y�! from Definition 5.15 commutes with exterior differentiation.
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Proof As d and y�! are linear, we may assume that the support of � is small enough
that Lemma 5.7 gives a compatible partition of unity r W

`
k Ok!R such that r� has

support where r D 1=jGj in O1 . Then

y�!.d�/D
1

jGj

X
i2I.O1/

�.i/y�.i/! d� D d

�
1

jGj

X
i2I.O1/

�.i/y�.i/!�

�
D d y�!.�/:

As an immediate corollary, �! induces maps

�!W
rH�.K/! rH�.A/ and �!W

r
fgH�.K/! r

fgH�.A/

in the case that K is complete over Z, and a map

�!W
r

fgH�.K/!H�.A/

in the case that A is a smooth manifold and K is proper over Z. Of course, if K is
contained in a stack X, we are usually interested in the precomposition of the above
maps with H�.X /!H�.K/.

Lemma 5.18 On the level of cohomology, the map �! does not depend on the choice
of W , x or e in Definition 5.15.

Proof For a given W , any two different choices of e differ by d˛ , where ˛ is some
fiberwise compactly supported differential form on W . The difference between �!.�/

defined using these two choices of e is therefore y�!.� ^ d��˛/, which vanishes in
cohomology whenever � is closed because of Lemma 5.17.

Suppose that we have two homotopic choices of x for a given W . We then have a
homotopy y�t between y� defined using each choice of x . If � is closed, .y�t /!.�^�

�e/

then gives a closed form on A� Œ0; 1� restricting to A� f0; 1g to give �!.�/ defined
using the two different choices of x . It follows that the cohomology class of �!.�/ is
independent of choice of homotopic x .

Given two choices .W1;x1; e1/ and .W2;x2; e2/, consider W WDW1˚W2 with x

defined by the projection to W1 followed by x1 , and e given by the wedge product of
the pullback of e1 and e2 to W1˚W2 . We may then factorize y�.i/ as

�.i/�W1˚W2 �.i/�W1 A
p.i/

y�.i/

y�1.i/
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so y�.i/! factorizes as y�1.i/! ıp.i/! . The fact that e2 is a Thom class implies that

p.i/!.p.i/
�� ^ e2/D �;

so if we abuse notation as in Definition 5.15 and regard the form � on K as also living
on ��W1 and ��W1˚W2 , then

y�.i/!.� ^ e1 ^ e2/D y�1.i/!.� ^ e1/:

It follows that �!.�/ defined using y� and y�1 is identical. The projection to W1

followed by x1 is homotopic to the projection to W2 followed by x2 ; therefore, the
same argument identifies the cohomology class of �!.�/ defined using W1˚W2 with
that defined using W2 . We have now shown that on the level of cohomology, �! does
not depend on W , x or e .

Lemma 5.19 If K is complete, the following equation holds when � is any closed
differential form in r��.A/: Z

ŒK�
��� D

Z
A

� ^�!.1/:

In the case that K is compact and A is a smooth manifold, the above equation holds
for � any closed differential form on A .

Proof Because e represents the Thom class for W ,Z
ŒK�.i/

r��� D

Z
�.i/�W

r��� ^ e;

where we have abused notation a little to indicate the lift of ��� to ��W simply
as ��� . This is not to be confused with the pullback of � to ��W using y� . The
definition of integration along the fiber gives thatZ

�.i/�W

y��� ^ re D

Z
A

� ^ y�.i/!.re/:

Therefore,Z
ŒK�
��� �

Z
A

� ^�!.1/D
X
Ok

X
i2I.Ok/

�.i/

Z
�.i/�W

r.��� � y���/^ e:

As the vectorbundle map W !A and the map xW W !A are homotopic, there is a
differential form ˛ in ��W such that d˛ is the difference between x�� and the lift
of � using the vectorbundle map W !A .
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In particular, on ��W ,
d��˛ D y��� ����:

The same argument as the proof of Lemma 5.10 gives that the integral of d.��˛^ e/

over the pullback of W to ŒK� vanishes, soX
Ok

X
i2I.Ok/

�.i/

Z
�.i/�W

r.��� � y���/^��e D 0:

Therefore, we get the required equality,Z
ŒK�
��� D

Z
A

� ^�!.1/:

Theorem 5.20 If K0 and K1 , complete and oriented over Z, are cobordant within
a stack X with a map � W X ! A , then, given any construction of ŒKj �, the two
composite maps

rH�.X /
��
j
�!

rH�.Kj /
�!
�!

rH�A

are equal, and the same holds for the analogous maps

r
fgH�.X /

��
j
�!

r
fgH�.Kj /

�!
�!

r
fgH�A:

Moreover given any complex vectorbundle W over X, and construction of any charac-
teristic class c.W / on Kj as in Remark 5.2, the maps

� 7! �!.c.W //^ ��j �

are equal on the level of cohomology for j D 0; 1, in both rH� and r
fgH� .

If Kj are only proper over Z, and A is a manifold, the corresponding maps

r
fgH�.X /!H�.A/

are equal.

Proof This theorem follows from the fact that any two choices of ŒKj � and c.W / are
cobordant.

More precisely, Lemma 4.5 gives that we can choose a cobordism K � X �R be-
tween Kj , and construct K� and I on K restricting to the given Kj ;� and Ij . By
reparametrizing R if necessary, we may also assume that there are connected open
neighborhoods U0 of 0 and U1 of 1 such that, on each of these neighborhoods, Kj ;�

and Ij are pullbacks of the respective choices under the maps X �Uj ! X.
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Proposition 2.3 then implies that by possibly shrinking Ui , and by increasing � to
�0 < 1

2
, we may choose a global section � of SI over K�0 so that � restricted to Uj is

the pullback of the corresponding section �j under the maps K�0 jUj ! Kj . (Note that
increasing �0 < 1

2
does not affect ŒK� at all, because ŒK� has image inside KC � K�0 .)

Similarly, as the sheaves of unitary metrics and connections on W satisfy the patching,
extension and averaging axioms, we may choose a unitary metric and connection
on W over K�0 that restricted to Uj is the pullback of the corresponding choices
used to define c.W /. It follows that defining c.W / 2 r

fg�
�K�0 using the Chern–Weil

construction on K�0 , we obtain a form that, restricted to Uj , is the pullback of the
corresponding forms on Kj ;�0 .

As allowed by Lemma 5.18, we may assume that the auxiliary choices of .W;x; e/

from Definition 5.15 used to define our two choices of �! are the same, and we
may also assume that W D W 0 � R and that x factors through W � R ! W 0

and is a submersion restricted to fibers. If we pull back these choices to define
� 0

!
W r��.K�0/! r��.A�R/ as in Definition 5.15, the pulled-back x may not satisfy

the transversality from condition (iii) of Definition 5.15 outside of A � Uj . After
possibly shrinking Uj , we can modify this pulled-back x outside of A�Uj to satisfy
this condition (by changing x in the R direction so that it becomes a submersion
restricted to fibers where necessary).

Restricting attention to Uj �R, we may consider ŒK� on families of the form O �Uj .
Here I.O �Uj / may be identified with I.O/ from the corresponding construction
of ŒKj �. Moreover, for all i 2 I.O �Uj /D I.O/, ŒK�.i/D ŒKj �.i/�Uj .

It follows that given any � in r��.X / or r
fg�
�.X /, respectively, and 1–form �0

supported inside Uj �R,

� 0! .� ^ �0/D �!.�/^ �0;

where we abuse notation to think of � also on X�R, and �0 as also in both r
fg�

1.X�R/

and r
fg�

1.A � R/. The above equality holds for the two different choices of �! ,
depending on the choice of Uj . The fact that � 0

!
commutes with d then implies that

on the level of cohomology, �! does not depend on these choices. With an even more
egregious abuse of notation, it also follows that

� 0! .� ^ c.W /^ �0/D �!.� ^ c.W //^ �0;

so on the level of cohomology, the two different maps � 7! �!.c.W /^ �/ are equal
for j D 0; 1.
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Proposition 5.21 Suppose that K is complete over Z . Given a representable sub-
mersion Z 0 ! Z (Definition 4.1), let K0 be the pullback of K . Let � and � 0 be
compatible maps

K0 K

A�Z Z 0 A

Z 0 Z

� 0 �

y

Then the following diagrams commute:

rH�.K0/ rH�.K/ r
fgH�.K0/ r

fgH�.K/

rH�.A�Z Z 0/ rH�.A/ r
fgH�.A�Z Z 0/ r

fgH�.A/

� 0
!

�! � 0
!

�!

y� y�

Proof Every step of the construction of ŒK� pulls back under representable submersions.
(In general, sections of S from Definition 3.12 may not pull back to transverse sections,
but this is not a problem in the case that Z 0!Z is a submersion.) Therefore, we may
take ŒK0� to be the pullback of ŒK�.

Explicitly, if I 0 is the pullback of the weighted branched cover I used to define ŒK�,
for any O 2 OI , there is a map ��W I.O/! I 0.O �Z Z 0/ (so long as O �Z Z 0 is
connected) and given any i 2 I.O/,

ŒK0�.��i/D ŒK�.i/�Z Z 0:

When O �Z Z 0 is not connected, the left-hand side of the above expression must be
replaced with

`
�ŒK0�.��i/, where the � are the maps from each connected component

of O �Z Z 0 to O. For notational convenience, we shall continue with the case that
O �Z Z 0 is connected, and simply use i to indicate ��i .

The choices of W , x and e from Definition 5.15 are more problematic to pull back.
Choose an oriented vectorbundle W over A and map xW W ! A satisfying the
conditions of Definition 5.15. Then consider the pullback y�W of W to A �Z Z 0.
If Z 0!Z is not proper, then the map x may not correspond compatibly to a map
x0W y�W !A�Z Z 0. On the other hand, the fact that Z 0!Z is a submersion implies
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that we may choose x0W y�W !A�Z Z 0 so that, restricted to some neighborhood of
the zero section in y�W , the outer circuit of the following diagram commutes:

y�W W

A�Z Z 0 A

x0
x

y

If we also choose x0 to be a fiber-preserving, submersive reparametrization of the
pullback of x , then x0 will still satisfy all conditions of Definition 5.15, including
the transversality condition from part (iii). Because the outer circuit of the above
diagram commutes on a neighborhood of the zero section, there is a natural map of
this neighborhood into a different fiber product, W x�y .A�Z Z 0/, that uses the map
xW W !A instead of the vectorbundle projection. Because x and x0 coincide with the
vectorbundle projections when restricted to the zero section, restricted to a sufficiently
small neighborhood N of the zero section, this natural map is an isomorphism onto an
open subset of W x�y .A�Z Z 0/.

Given any compactly contained open subset O of A�Z Z 0, by modifying x0 out of
the neighborhood N if necessary, we may assume that there exists a neighborhood U

of the zero section in W such that y�U \ .x0/�1O �N , so we can consider U x�y O

to be an open subset of N � y�W .

Recall from Definition 5.15 that �! is defined using pushforward along the maps y�.i/
defined using the diagram

�.i/�W W A

ŒK�.i/ A

y�.i/

x

�.i/

Similarly, define y� 0.i/ using the diagram

.y ı� 0.i//�W y�W A�Z Z 0

ŒK0�.i/ A�Z Z 0

y� 0.i/

x0

� 0.i/
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Now, consider the diagram

.y ı� 0.i//�W .yy/ �.i/�W

y�W W

A�Z Z 0 A

y� 0.i/ y�.i/

x0 x

y

The top square above is a fiber product diagram, and the bottom square is isomorphic
to a fiber product diagram when W is restricted to U, A�Z Z 0 is restricted to O

and y�W is restricted accordingly. Therefore, the outer circuit of the above diagram
is a fiber product diagram when A�Z Z 0 is restricted to O, �.i/�W is restricted to
�.i/�U and .y ı� 0.i//�W is restricted accordingly.

Lemma 9.3 from [31] implies that the following diagram commutes:

r�.�.i/�U y�.i/�y O/ r�.�.i/�U /

r�.O/ r�.A/

y� 0.i/!

yy�

y�.i/!

y�

Therefore, the following diagram obeys the restricted commutativity condition described
below:

r�..y ı� 0.i//�W / r�.�.i/�W /

r�.A�Z Z 0/ r�.A/

y� 0.i/!

yy�

y�.i/!

y�

If � 2 r�.�.i/�W / has support compactly contained in �.i/�U, then y� 0.i/! yy��
restricted to O is equal to y�y�.i/!� .

Define �! as in Definition 5.15 using W , x and a Thom form e supported in U. If
we define � 0

!
analogously using the pullback of W , x0 and the pullback of e , then the

following diagram commutes:

r��.K0�/ r��.K�/

r��.A�Z Z 0/ r��.O/ r��.A/

� 0
! �!

y�
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As integration along the fiber and pullbacks preserve the subspace of refined differential
forms generated by functions, the same diagram commutes with r

fg�
� replacing r�� .

If we can choose O � A �Z Z 0 to be a smooth retraction of A �Z Z 0 so that the
restriction maps rH�.A �Z Z 0/! rH�.O/ and r

fgH�.A �Z Z 0/! rH�.O/ are
isomorphisms, it follows the required diagrams commute:

rH�.K0�/ rH�.K�/ r
fgH�.K0�/ r

fgH�.K�/

rH�.A�Z Z 0/ rH�.A/ r
fgH�.A�Z Z 0/ r

fgH�.A/

� 0
!

�! � 0
!

�!

y� y�

More generally, rH�.A�A Z 0/ is the inverse limit of the system rH�.O/ for all open
O � A �A Z 0 with compact closure, and the same holds for r

fgH� . (It is obvious
that r��.A�A Z 0/ is the inverse limit of r��.O/, and the system r��.O/ satisfies
the Mittag-Leffler condition, so taking homology is compatible with inverse limits;
the same holds for refined forms generated by functions.) It follows that the above
diagrams always commute.

Theorem 5.22 Suppose that K is complete over Z. Let K0 be the pullback of K over
a representable map Z 0!Z (Definition 4.1). Given compatible maps

K0 K

A�Z Z 0 A

Z 0 Z

� 0 �

y

the following diagrams commute:

rH�.K0/ rH�.K/ r
fgH�.K0/ r

fgH�.K/

rH�.A�Z Z 0/ rH�.A/ r
fgH�.A�Z Z 0/ r

fgH�.A/

� 0
!

�! � 0
!

�!

y� y�

Proof Extend Z 0!Z to a map X !Z where

� X is a vectorbundle over Z 0,
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� restricted to some tubular neighborhood O1 of the zero section, the map X!Z

factors through X !Z 0!Z,

� restricted to some other open set O2 � X, X ! Z is a submersion with
nonempty convex fibers.

Because X is a vectorbundle over Z 0, and Z 0!Z is representable, our extension
X !Z is also representable. Use KX and KOi

to denote the respective pullbacks
of K . Proposition 5.21 implies that all inner loops in the following diagram commute:

(3)

rH�.KO1
/ rH�.KX /

rH�.KO2
/ rH�.K/

rH�.O1 �Z A/ rH�.X �Z A/ rH�.O2 �Z A/ rH�A

and the same holds with r
fgH� replacing rH� . Because the restriction maps

rH�.X �Z A/! rH�.Oi �Z A/

are isomorphisms, every loop in the above diagram commutes, and the same holds with
r

fgH� replacing rH� . Proposition 5.21 also implies the commutativity of the inner
square of the diagram

(4)

rH�.KO1
/ rH�.K0/

rH�.O1 �Z A/ rH�.Z 0 �Z A/

and the analogous diagram with r
fgH� replacing rH� . The horizontal maps in the

above diagram are defined using the projection O1! Z 0 and inclusion Z 0! O1 .
We shall now show that each pair of horizontal maps in the diagram above are inverse
isomorphisms, proving that the above diagram commutes. In each case, the leftward
map followed by the rightward is the identity on forms, so it remains to prove that the
other composition is the identity on the level of cohomology.
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Let ‰t W O1!O1 for t 2 Œ0; 1� be any fiber-preserving smooth homotopy that is the
identity at t D 0 and the projection onto Z 0 � O1 at t D 1. Then, given a form
� 2 r��O1 , define

K� D

Z 1

0

‰�t i@‰t=@t� dt:

Then
.dKCKd/� D‰�1� �‰

�
0�:

It follows that if � is closed, it represents the same cohomology class as ‰�
1
� . As the

homotopy preserves the fibers of the map to Z, it induces a smooth homotopy from
the identity on O1 �Z A to the projection to Z 0 �Z A . Making the above argument
with this new homotopy gives that the composition of the lower pair of horizontal
maps in the above diagram is the identity on the level of cohomology. The same holds
with r

fgH� replacing rH� because K preserves the subspace of forms generated by
functions. It remains to show the same for the upper pair of maps.

Let us consider the homotopy induced by  t on KO1
, and define an operator analogous

to the above K . Start with a family of curves yf in KO1
. The map Kst

O1
! .K0/st

applied to yf gives a family of curves yf0 with F . yf0/ D F . yf /. We may then pull
this family yf0 back to get a bigger family of curves yf0 �Z O1 in Kst

O1
with domain

F . yf /�Z 0 O1 . Alternatively, using the inclusion yB 0 � yO1 , we can consider yf0 as
a family of curves in Kst

O1
. As the homotopy ‰t W O1! O1 preserves fibers of the

map O1!Z 0, it induces a homotopy of F . yf0 �Z 0 O1/ that is the identity at t D 0,
and the projection onto F . yf0/ at t D 1. Again call this homotopy ‰t , and define
KW r��F . yf0�Z 0O1/!

r���1F . yf0�Z 0O1/ as in the above equation. Then, given
any � 2 rH�.K yO1

/, we can define K� on F . yf / by defining K� on F . yf0�Z 0O1/ as
above, then pulling back this K� to F . yf / via the natural inclusion yf ! yf0 �Z 0 O1 .
Such a K� gives a well-defined form in r��.KO1

/ because given any map of curves
yg! yf , the corresponding diagram

F .yg0 �Z 0 O1/ F . yf0 �Z 0 O1/

F .yg0 �Z 0 O1/ F . yf0 �Z 0 O1/

‰t ‰t

commutes. Now, dK� is the difference between � and the composition of the topmost
pair of maps in diagram (4) applied to � , so this topmost pair of maps are inverse
isomorphisms on the level of cohomology. As all our maps preserve r

fg�
� � r�� , the

same holds with r
fgH� replacing rH� .
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As the horizontal maps in diagram (4) are inverse isomorphisms, diagram (4) commutes,
and combines with the outermost loop of diagram (3) to give our required commutative
diagram:

rH�.K0/ rH�.K/

rH�.A�Z Z 0/ rH�.A/

� 0
!

�!

y�

The same argument applies to the analogous diagram replacing rH� with r
fgH� .

6 Weak products of Kuranishi categories

In order to discuss gluing theorems for Gromov–Witten invariants, it is useful to
have a notion of fiber products of Kuranishi structures or Kuranishi categories. The
tropical gluing formula for Gromov–Witten invariants, equation (1) of [30], is proved by
expressing a Kuranishi category associated to some tropical curve 
 as a (weak) fiber
product of Kuranishi categories associated to the vertices, v , of 
 . We can decompose
such a (weak) fiber product as a pullback, dealt with in Theorem 5.22, and a (weak)
product, defined below and dealt with in Theorem 6.2.

Because of our choice that all Kuranishi charts in an embedded Kuranishi structure
should be compatible, and the related part (iii) of Definition 2.1, and part (iii) of
Definition 3.2, the product of Kuranishi categories is no longer a Kuranishi category,
because the obvious candidates for charts on the product will no longer be compatible.15

Nevertheless, we can construct a weak product of Kuranishi categories by taking
the product of charts, and then shrinking these charts appropriately to make them
compatible.

Definition 6.1 Say that K is a weak product of some finite collection Kv of Kuranishi
categories if the following holds:

(i) Kst �
Q
v Kst

v .

(ii) Khol D
Q
v Khol .

(iii) For each chart .Ui ;Vi ; yfi=Gi/ on K , there are corresponding charts

.Uiv ;Viv ;
yfiv=Giv /

15Most other authors work with a version of Kuranishi structures that avoid this problem. Our
embedded Kuranishi structure could be regarded as akin to a choice of good coordinate charts in Fukaya,
Oh, Ohta and Ono’s approach [8].
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on Kv such that
� Ui �

Q
v Uiv ,

� Vi D
L
v Viv on Ui ,

� Gi D
Q
v Giv ,

� yfi is a Gi –equivariant open subfamily of
Q
v
yfiv ,

� x@ yfi is equal to
Q
v
x@ yfiv restricted to F . yfi/�

Q
v F . yfiv /.

Note that if Kv are proper or complete and oriented over Zv , then K is proper or
complete and oriented over

Q
v Zv . Given maps Kv!Av , there is an obvious induced

map K!
Q
v Av .

Theorem 6.2 Suppose that K is a weak product of some finite collection of complete,
oriented Kuranishi categories Kv with maps �vW Kv!Av ; let � W K!

Q
v Av be the

induced map. Then the following diagrams commute:

rH�.K/ rH�
�Q

v Av
�

r
fgH�.K/ r

fgH�
�Q

v Av
�

Q
v

rH�.Kv/
Q
v

r
fgH�.Kv/

�! �!

Q
v.�v/!

Q
v.�v/!

Proof Using Lemma 2.6, and the fact that KholD
Q
v Khol

v , we may construct functions
�i;vW Kv!R satisfying the requirements of Definition 3.9 so that the corresponding
functions �i WDminv �i;v on K also satisfy the requirements of Definition 3.9, where the
chart yfi=Gi associated with �i is locally the product of the charts yfiv=Giv associated
with �i;v . Indeed, each holomorphic curve f D

Q
v fv in yfi �

Q
v
yfiv has some

(Gi –invariant) product neighborhood
Q

Uv � yfi ; we can choose Giv –invariant func-
tions �f;vW

Q
yfiv! Œ�1; 1� with �f;v.fv/ > 1

2
so that �f;vC1 is compactly supported

within Uv , then use Lemma 2.6 on �f;v C 1 to extend these functions to functions
satisfying Definition 3.9(ii). The corresponding continuous function �f WDminv �f;v
is also greater than 1

2
on f , and satisfies Definition 3.9(ii)–(iii). Our functions �i

and �i;v will be chosen from such functions �f and �f;v for holomorphic f . As we
have assumed that Kv are complete, Khol is covered by the sets where �i > 0 for a
finite number of such �i , so we can achieve Definition 3.9(i) and (iv) with this finite
collection of functions, �i and �i;v .

The corresponding Kst
� is a substack of

Q
v Kst

v;� , because the subset of yfi where �i >�

is equal to the product of the subsets of yfiv where �i;v > �
�
but

Q
v Kv;� contains
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more families than K� because it also includes the products of the relevant subsets
of yfiv , where i may depend on v

�
.

Choose separating weighted branched covers Iv of Kv;� , and let I be the weighted
branched cover of K� that is the product of the pullback of these Iv via the maps
Kst
� ! Kst

v;� . The fact that Iv are separating implies that I is also separating.

We must also choose metrics on V as in Lemma 3.11. We need to do this so that
“small enough” perturbations of x@ on Kv;� pull back to “small enough” perturbations
of x@ on K� . The required condition on K� is that wherever jx@ yfi j � 1, we have some
�j >

1
2

, and the corresponding condition on Kv;� is that wherever jx@ yfiv j � 1, we have
some �jv >

1
2

. If there are n indices v , we need to strengthen these latter conditions
so that wherever jx@ yfiv j � n for all v , there exists some j such that �jv >

1
2

for all v .
Essentially, we need that fjx@ yfiv j � ng is contained in some open neighborhood Uv

of Khol
v and that

Q
v Uv is covered by the sets where �jv >

1
2

for all v . This is possible
because

Q
v Khol

v is compact and the sets where all �jv >
1
2

form an open cover ofQ
v Khol

v �
Q
v Kst

v . Once such Uv have been chosen, the proof of Lemma 3.11 applies
to show that there exists a global choice of metric on Vv over Kv;� such that jx@ yfiv j � n

is contained in Uv .

If we use 1=n times the product of these metrics on V over K� , then this metric
satisfies the conditions of Lemma 3.11, and the pullback of any product of sections
of Vv that are smaller than 1 is a section of V that is smaller than 1.

We have now made all the choices to define the sheaves S and Sv so that any choice
of sections of Sv over yfiv for all v pull back to a section of S over yfi . Recall from
Definition 3.12 that a section of S over yfi is a section � of Vi such that the following
holds:

� x@ yfi � � is contained in Vj � Vi on a neighborhood of wherever �j � 0; a
stronger condition is satisfied by sections pulled back from yfiv . These pulled-
back sections will be contained in

L
v Vjv on some neighborhood of where

�jv � 0 for all v . This is stronger because jv is allowed to depend on v .

� � is close to x@ yfi in the sense that jx@ yfi � �j< 1; we have chosen our metrics so
that pullbacks of sections of

Q
v Sv satisfy this condition.

� � is transverse to 0; pullbacks of sections of
Q
v Sv also clearly satisfy this

condition.

Similarly, if a family yf in K� is a product of families yfv in Kv;� , any choice of section
of Sv over yfv for all v pulls back to a section of S over yf .
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As our weighted branched cover I of K� is the pullback of the corresponding weighted
branched covers Iv of K� , we may also pull back a choice of global section of S

Iv
v

over Kv;� for all v to give a global section of SI over K� . In particular, suppose
that yf in K� is a product of families yfv in K�;v \ OIv ; then yf is in OI , and
I. yf / D

Q
v Iv. yfv/. On yfv a section of S

Iv
v is a choice of section �v.i/ of Sv. yfv/

for all i 2 Iv such that if i and j are not separated at f 2 yfv , then �v.i/D �v.j / on
a neighborhood of f . Taking the product over v of such sections gives sections �.i/
of Sv. yf / for all i in I. yf /, where if i is the product of iv , then �.i/ is the product
of �v.iv/. Again, �.i/ will be equal to �.j / on a neighborhood of any curve f 2 yf
where i is not separated from j , so � defines a section of SI . yf /.

Any map yf ! yg in K� between families of curves that are products of families in Kv;�
corresponds to maps yfv! ygv . Global sections of S

Iv
v are compatible with pullbacks,

so the corresponding sections of SI . yf / and SI .yg/ are compatible with pullbacks. As
any family in K� is locally a product of families in Kv;� , it follows that pulling back
global sections of S

Iv
v gives global sections of SI .

Intersecting a global section of SI with the zero section gives the virtual class ŒK�;
�.i/ intersected with 0 gives ŒK�.i/, an oriented family in KC �Kst

� . Unfortunately, the
map Kst!

Q
v Kst

v does not pull back
Q
v Kv;C to be contained in KC , but, actually,

we have that these families ŒKv �.i/ are contained in the substack of K0
v;C
� Kv;C

where x@ < 1, and we have constructed our metrics so that
Q
v K
0
v;C

pulls back to be
contained in KC .

Make the auxiliary choices .W;x; e/ required by Definition 5.15 for defining �! and
.�v/! so that the diagram

(5)

r��.K/ r��
�Q

v Av
�

Q
v

r��.Kv/

�!

Q
v.�v/!

commutes. In particular, choose .Wv;xv; ev/ satisfying the requirements of Definition
5.15, so that xvW Wv !

Q
v Av is a submersion restricted to fibers. Then we can

take W D
Q
v Wv , x D

Q
v xvW W !

Q
v Av and e D

Q
v ev . As x is a submersion

restricted to fibers, .W;x; e/ also satisfies the requirements of Definition 5.15. To
avoid needing to think about orientation complications, we may also choose each Wv

to have even rank, so that the Thom forms ev are even-dimensional.
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We need to prove that diagram (5) commutes. As the maps in (5) are linear, we may use
partitions of unity (on Kst

v ) to reduce to the case of differential forms with small support
on KC and K0

v;C
. In particular, without losing generality, assume the following:

� � 2 r��K has support on KC compactly contained in yf =G.

� yf is in K� \OI and is a product of families yfv in Kv;� \OIv .

� yf =G and yfv=Gv represent substacks.

� G D
Q
v Gv .

� � is the product of the pullback of �v 2 r��.Kv/.

� �v has support on K0
v;C

compactly contained in yfv=Gv .

� There are partitions of unity (Definition 5.6) compatible with ŒK� and ŒKv � such
that one of the connected families O1 involved is yf (resp. yfv ), and such that the
corresponding function r is 1=jGj (resp. 1=jGvj) when restricted to the support
of � (resp. �v ) on yf (resp. yfv ).

Then I. yf / D
Q
v Iv. yfv/, and for i D

Q
v iv 2 I. yf /, we have ŒK�.i/ D

Q
v ŒKv �.iv/.

We have also chosen .W;x/ and .Wv;xv/ so that the map y�.i/W �.i/�W !
Q
v Av is

equal to the product of the maps y�v.iv/W �v.i/�Wv!
Q
v Av from Definition 5.15(iii).

It follows that y�.i/! is the product of y�v.iv/! . Then, for � and �v satisfying the
conditions listed above,

(6) �!.�/D
1

jGj

X
i2I. yf /

�.i/y�.i/!.� ^ e/

D

Y
v

1

jGvj

X
iv2Iv. yfv/

�.iv/y�v.iv/!.�v ^ ev/D
Y
v

.�v/!.�v/:

Note that �! does not depend on the choice of partition of unity, so diagram (5)
commutes on forms that are a sum of forms obeying the condition listed above and
hence satisfying equation (6). Any choice of form in

Q
v

r��.Kv/ may be expressed
as a sum of forms obeying the conditions listed above and forms that for some v
vanish on K0

v;C
. Both �! and

Q
v.�v/! vanish on such vanishing forms; therefore,

(5) commutes, as required.

On the level of cohomology, �! and
Q
v.�v/! are independent of any choices; therefore,

in general, the following diagrams commute:
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rH�.K/ rH�
�Q

v Av
�

r
fgH�.K/ r

fgH�
�Q

v Av
�

Q
v

rH�.Kv/
Q
v

r
fgH�.Kv/

�! �!

Q
v.�v/!

Q
v.�v/!

as required.

7 Tropical completion

Given a point p in the tropical part B of a compact exploded manifold B, the set of
points B jp �B with tropical part p is a possibly noncompact manifold. The tropical
completion BLjp of B at p is a canonical way of completing B jp to a complete
exploded manifold. It should be thought of as a minimal way of adding “structure
at infinity” to B jp in a way determined by B. In this section, we show that tropical
completion is compatible with our construction of virtual class ŒK�, as well as the
associated integration and pushforward of forms from K . This is used in the proof of
the tropical gluing formula, equation (1) of [30], where the contribution of a tropical
curve 
 is defined using tropical completion.

Definition 7.1 (tropical completion in a coordinate chart) The tropical completion
of a polytope P in Rm at a point p 2P is a polytope LPp �Rm which is the union of
all rays in Rm beginning at p and intersecting P in more than one point.

Given an open subset U �Rn �T m
P

and a point p 2 U, let Up indicate the closure
within U of all points with tropical part p . Note that Up is naturally contained in both
Rn �T m

P
and Rn �T m

LPp

. Define the tropical completion of the coordinate chart U at
p 2 U,

U Ljp �Rn
�T m

LPp

;

to be the smallest open subset of Rn �T m
LPp

that contains Up .

Similarly, given a countable collection of points X � U, define

U LjX WD
a

p2X

U Ljp:

Tropical completion in coordinate charts is functorial: given a map f W P !Q and
point p 2 P, there is a unique map f LjpW

LPp !
LQf .p/ that is equal to f on the
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restriction to P � LPp , and similarly, given a smooth or C1;1 map of coordinate charts

f W U ! U 0

and a point p in U, there is a unique map

f LjpW U
Ljp! U 0Ljf .p/

such that f Ljp is equal to f when restricted to the inverse image of p in U. Of
course, the tropical part of f Ljp is equal to the map f Ljp above. This map f Ljp is
smooth or C1;1 if f is, is an isomorphism onto an open subset of U 0Ljf .p/ if f is
an isomorphism onto an open subset of U 0, and is complete if f is proper. There is
therefore a functorial construction of the tropical completion BLjp of any exploded
manifold B at a point p 2B defined by applying tropical completion to coordinate
charts.

In particular, let O ! B be a cover of B by a collection of coordinate charts. We
can recover B by gluing together these coordinate charts using the transition maps,
encapsulated in O �B O�O — in other words, B is a pushout as in the following
diagram:

B O

O O �B O

t

s

For such a pushout to exist as an exploded manifold, we require that O and O�B O be
exploded manifolds, s and t be étale (or local isomorphisms) and that .s; t/W O�B O!

O �O be injective and proper. Such properties are preserved by tropical completion.

Definition 7.2 (tropical completion of an exploded manifold) Given p 2 B, the
tropical completion of B at p is defined as follows. Choose an open cover of B by
coordinate charts � W O ! B with transition maps encoded by s; t W O �B O � O.
Then BLjp is the pushout created using the tropical completion of s and t at the inverse
image of p — so BLjp has charts and transition maps the tropical completion of those
from B :

BLjp OLj��1p

OLj��1p .O �B O/Lj.�ıs/�1p
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If X �B is a countable set of points in the tropical part of B, the tropical completion
of B at X may be defined as above, with X replacing p . The resulting exploded
manifold BLjX is the disjoint union of BLjp for all p 2X.

Clearly, BLjp is well defined and independent of the particular collection of coordinate
charts chosen, because applying tropical completion to extra coordinate charts will just
give compatible coordinate charts on BLjp .

If B jp indicates the subset of B with tropical part p , note that BLjp always contains
B jp as a dense subset. If B is basic, then BLjp also contains a copy of the closure
of B jp in B. (In the case that B is not basic, a single point in the closure of B jp may
correspond to multiple points in BLjp .)

The construction of tropical completions is functorial in the sense that given a map

f W A!B

and a point p 2A , there exists a unique map

f LjpW A
Ljp!BLjf .p/

restricting to be f on Ajp �ALjp .

Note that BLjp is complete if B is compact, and f Ljp is complete if f is proper.

Because R is also an exploded manifold (with tropical part a single point, and tropical
completion at this point still R), the tropical completion of any R–valued function on
an exploded manifold is still a R–valued function. Moreover, given any tensor � on B,
such as an almost complex structure, metric, or differential form, there is a unique
tensor �Ljp on BLjp restricting to be � on B jp . If � is a refined differential form on B,
the restriction of �Ljp to B jp no longer uniquely specifies �Ljp ; in this case �Ljp is the
unique refined differential form on BLjp such that if � pulls back to an honest form � 0

under r W U 0 ! B, then �Ljp pulls back to � 0Ljp0 under rLjp0 W U
0Ljp0 ! BLjp , where

r.p0/ D p . Be warned that �Ljp may not be in ��BLjp , even if � 2 ��B, because
�Ljp may not vanish on the image of all T 1

.0;1/
. If, however, � 2 r

fg�
�B, then �Ljp is

in r
fg�
�BLjp , so differential forms generated by functions are more compatible with

tropical completion. In fact, Remark 5.5 implies that � 2 r��.B/ is in r
fg�
�.B/ if

and only if �Ljp 2
r��.B/ for all p 2B.
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Lemma 7.3 Given any submersion f W A ! B and form � 2 r
fg�
�
c .A/, the push-

forward of � is in r
fg�
�
c B , and for any p 2B,

.f!�/Ljp D
X

p02f �1p

.f Ljp0/!�
Ljp0 :

Proof As specified by Theorem 9.2 of [31], f!� is uniquely determined by the property
that Z

A

f �˛^ � D

Z
B

˛^f!�

for all ˛ 2 r��.B/. For any such ˛ supported only in B jp , the pullback of ˛ is
supported only over the inverse image of p , soZ

BLjp

˛Ljp^.f!�/LjpD
X

p02f �1p

Z
ALjp0

.f Ljp0/
�˛Ljp^�

Ljp0D

Z
BLjp

˛Ljp^
X

p02f �1p

.f Ljp0/!�
Ljp0 :

As any form on the smooth manifold B jp is determined by its integral against compactly
supported forms, and the restriction of f!� to BLjp uniquely determines .f!�/Ljp , it
follows that

.f!�/Ljp D
X

p02f �1p

.f Ljp0/!�
Ljp0 ;

as required. This equation then implies that .f!�/Ljp 2
r��.BLjp/ for all p 2 B, so

Remark 5.5 implies that f!� 2
r

fg�
�.B/.

We can define the tropical completion of an orbifold X similarly, by applying tropical
completion to an atlas. In particular, any surjective étale map from a (not necessarily
connected) exploded manifold U to X defines an étale proper16 groupoid X 0 with
objects parametrized by U, and morphisms parametrized by U �X U. We can recover X
from this étale proper groupoid X 0 by taking the stack of principal X 0–bundles. Taking
tropical completion preserves the structure equations of a groupoid and the property of
maps being étale or proper. So, we can apply tropical completion to U �X U � U to
obtain a new étale proper groupoid representing the tropical completion of our stack.

16An étale proper groupoid in the category of exploded manifolds is a groupoid with objects and
morphisms parametrized by exploded manifolds X0 and X1 , all structure maps morphisms in the category
of exploded manifolds, source and target maps s; t W X1! X0 étale (ie locally isomorphisms), and the
map .s; t/W X1!X 2

0
proper. The correct generalization of “proper” for exploded manifolds is usually

“complete”; however, if s and t are étale, then .s; t/ being proper is equivalent to it being complete.
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To define tropical completion of an orbifold, we need a notion of the tropical part of an
orbifold. The following defines the tropical part of a stack as a set. The tropical part of
a stack obviously has a bit more structure, but we shall not need it.

Definition 7.4 As a set, the tropical part X of a stack X over the category of exploded
manifolds is the set of path-connected components of X. Say that two given points
in X are connected by a path if there is a map of R into X that restricts to f0; 1g to
be (isomorphic to) the two given points.

Define the tropical part K of a K–category K to be equal to the tropical part of Kst .

The following definition formalizes the idea that tropical completion of an orbifold X
is achieved by applying tropical completion to coordinate charts on X.

Definition 7.5 (tropical completion of an orbifold) Given an exploded orbifold X,
and a countable subset A � X, the tropical completion X LjA of X at A is defined
as follows: Choose an étale surjection U ! X, and abuse notation a little to denote
by A the inverse image of A in U and within U �X U. Apply tropical completion
at A to obtain an étale proper groupoid with objects parametrized by U LjA , morphisms
parametrized by .U �X U /LjA , and groupoid structure maps the tropical completion
at A of the structure maps of the original groupoid representing X. Then X LjA is the
orbifold represented by this groupoid.

Again X LjA contains X jA as a dense suborbifold, and any map X!Y sending A to A0

induces a canonical map X LjA! YLjA that restricts to the original map on X jA . Any
(possibly refined) differential form � on X defines a differential form �LjA on X LjA .

To define the tropical completion of a K–category, we again use tropical completion
of charts. Here we run into a problem: Kst is not determined by these charts, just as
the smooth structure on the union of an open halfspace with a perpendicular line is not
determined by transition data. The problem is that there exist families in Kst such that
some points have no neighborhood sent inside a chart. This technical issue is resolved
using extensions of our charts, as families in Kst are always locally contained in some
extended chart. The following describes the structure we need:

Remark 7.6 The following information is sufficient to define an extendable Kuranishi
category:
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� a groupoid in the category of C1;1 exploded manifolds, and with objects
parametrized by a countable disjoint union of exploded manifolds

F
i F

]
i , where

each Fi has fixed dimension, and

� open subsets Fi � F 0i � F
]
i ,

satisfying the following conditions:

(i) The morphisms from F
]
i to itself are given by the action of a finite group Gi .

So,
F
]
ii D F

]
i �F

]

i
=Gi

F
]
i ;

where morphisms with source and target F
]
i are parametrized by F ]

ii . We
require the subsets Fi and F 0i to be Gi –equivariant open subsets of F

]
i .

(ii) The morphisms with source F
]
i and target F

]
j are parametrized by an exploded

manifold F
]
ij . For each i , we require that F

]
ij D∅ for all but finitely many j .

The source and target maps,

F
]
i

�ij
 � F

]
ij

�j i
�! F

]
j ;

must satisfy the following conditions:

(a) If xF 0j indicates the closure of F 0j within F
]

j , then �ij .�
�1
ji .
xF 0j //� F

]
i is a

closed subset of F
]
i . Moreover, F 0i contains the closure of Fi � F

]
i .

(b) If dim Fi � dim Fj , then �ij is a Gj –fold cover of an open subset of Fi ,
and �ji a Gi –fold cover of a exploded submanifold of Fj (locally defined
by the transverse vanishing of C1;1 functions).

Given a K–category K with extensions K �e K0 �e K] , we may obtain the above
data by setting F

]
i DF . yf

]
i /, F 0i DF . yf 0i /, Fi DF . yfi/ and F

]
ij DF . yf

]
i �.K]/st yf

]
j /.

The groupoid in question is the full subcategory of .K]/st with objects the individual
curves in these yf ]i .

Given the above data, we define a stack Kst as follows: A family yf in Kst parametrized
by F . yf / is

(i) a collection of Gi –fold covers Xi. yf /� X
]
i .
yf /! F . yf / of subsets of F . yf /

such that every point in F . yf / is in the image of some Xi. yf /, and in the interior
of the image of some X

]
i .
yf /;17

17 Xi. yf / is the fiber product of F . yf / with F . yfi/D Fi over Kst .
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(ii) Gi –equivariant maps
X
]
i .
yf /! F

]
i

that are C1;1 on the interior of X
]
i .
yf / and such that the inverse image of

Fi � F
]
i is Xi. yf /�Xi. yf /

] ;

(iii) maps X
]
i .
yf /�

F . yf /
X
]

j .
yf /!F

]
ij such that both squares below are fiber-product

diagrams (in the category of sets):

X
]
i .
yf / F

]
i

X
]
i .
yf /�

F . yf /
X
]

j .
yf / F

]
ij

X
]

j .
yf / F

]
j

and such that these maps define a map of groupoids (in the category of sets)`
i;j X

]
i .
yf /�

F . yf /
X
]

j .
yf /

`
i;j F

]
ij

`
i X

]
i .
yf /

`
i F

]
i

A morphism yf ! yg in Kst is

� a C1;1 map F . yf /! F .yg/, and

� Gi –equivariant maps X
]
i .
yf /!X

]
i .yg/ such that the following diagrams com-

mute:

X
]
i .
yf / X

]
i .yg/ X

]
i .
yf /�

F . yf /
X
]

j .
yf / X

]
i .yg/�F . yf /

X
]

j .yg/

F
]
i F

]
ij

and such that the following is a fiber-product diagram:

X
]
i .
yf / X

]
i .yg/

F . yf / F .yg/
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As defined above, Kst is a stack. Moreover, Kst is equivalent to the original Kst in the
case that K was defined as in Definition 2.1. Of course, when K is a subcategory of a
nice moduli stack of curves, it is better to think of Kst as a stack of curves rather than
use the above equivalent but ad hoc stack.

To see that Kst is a stack, let us verify Definition 4.3 of [7]. Note that Kst has essentially
unique pullbacks, so is a category fibered in groupoids over the category of C1;1

exploded manifolds. Isomorphisms in Kst form a sheaf because morphisms are defined
as maps satisfying local conditions. Each descent datum is effective because a descent
datum is sufficient to construct the Gi –fold covers X

]
i , and all other information is

locally determined, so further choices form a sheaf.

Example 7.7 Kst is an orbifold in the case that each Fi has the same dimension. Then
the data above may be thought of as an atlas for Kst , or an étale proper Lie groupoid
representing Kst . Condition (b) gives étale, and condition (a) implies properness.
Conversely, given any orbifold, we may obtain the above data from a choice of three
nested atlases, with the closure of the charts from a given atlas contained in the charts
from the next atlas.

Definition 7.8 (tropical completion of a K–category) Given an extendable K–
category K (Definition 2.1) and a countable subset A�K , define the tropical completion
KLjA of K at A as follows:

Choose extensions K] e�K0 e�K . Define Fi WDF . yfi/, F 0i WDF . yf 0i /, F
]
i WDF . yf

]
i /

and define F
]
ij WD F . yf

]
i �.K]/st yf

]
j / to obtain the data from Remark 7.6. Let KLjA be

the K–category with the data

Fi
LjA � F 0i

LjA � F
]
i
LjA; F

]
i
LjA F

]
ij
LjA! F

]
j
LjA

along with groupoid structure maps corresponding to the tropical completion of the
groupoid structures maps from K . As noted in Remark 7.6, this data is sufficient to
define an extendable K–category KLjA .

Any map  W K! X from K to an exploded orbifold or manifold X corresponds to a
map  LjAW KLjA! X Lj .A/ . Any differential form � on K corresponds to a differential
form �LjA on KLjA , any open substack U of Kst corresponds to an open substack ULjA
of .KLjA/st , any vectorbundle V on U corresponds to a vectorbundle V LjA on U LjA ,
and any section s of V corresponds to a section sLjA of V LjA .
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Definition 7.9 (tropical completion of a Kuranishi category) The tropical completion
of a Kuranishi category (Definition 3.2) K at a countable subset A � K is the K–
category KLjA along with the vectorbundles Vi

LjA on the open substacks Ui
LjA and

sections x@ yfi
LjAW F .

yfi
LjA/! Vi

LjA.
yf LjA/.

Note that if � W K!Z is proper (Definition 3.5), then �LjpW KLjp!ZLj�.p/ is complete.

Lemma 7.10 Given any proper, oriented Kuranishi category K and closed form
� 2 r

fg�
�K , Z

ŒK�
� D

X
p2K

Z
ŒKLjp�

�Ljp:

Similarly, if K is complete and oriented over Z, and � W K!A is a compatible map,
then given any closed � 2 r

fg�
�K and p0 2A ,

�!.�/Ljp0 D
X

p2��1.p0/

.�Ljp/!.�
Ljp/;

where the above equation holds exactly for some choices of construction of �! and
.�Ljp/, and otherwise holds on the level of cohomology.

Proof The construction of ŒK� is compatible with tropical completion. The tropical
completions of the functions �i used to define K� in Definition 3.9 are appropriate
for defining .KLjp/� . Tropical completion applied to the metric from Lemma 3.11 also
gives an appropriate metric on V over KLjp . With these choices, the sheaf S from
Definition 3.12 is compatible with tropical completion — if � is a section of S. yf /,
then �Ljp is a section of S. yf Ljp/.

Any weighted branched cover I of K gives a weighted branched cover ILjp of KLjp as
follows: A connected family O in Kst is in O

ILjp
if there exists a family O 02K\OI and

a map O!O 0Ljp . Note that given any two such families O 0i , a connected component
of O 0

1
�Kst O 0

2
satisfies the same conditions because tropical completion commutes with

fiber products. We can therefore define ILjp.O/ as the inverse limit of I.O 0/ over the
category of all such maps O!O 0Ljp . This ILjp is a functor because any map O1!O2

induces a corresponding map of inverse limits — simply compose O2! O 0Ljp with
O1 ! O2 . Because I.O 0/ only maps to a finite number of other finite probability
spaces, inverse limits are easy: there exists some O 0 with a map O!O 0Ljp such that
I.O 0/D ILjp.O/. This ILjp satisfies the requirements of Definition 3.19. Moreover,
ILjp is separated if I is, because, given any automorphism  of a family O in KLjp ,
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there exists a family O 0 in K with an automorphism  0 such that O is a connected
component of O 0Ljp and  D  0Ljp .

Any global section � of SI over K� corresponds to a global section �Ljp of SILjp over
.KLjp/� . In particular, given any O 2OILjp\.KLjp/� , there exists a family O 0 2OI \K�
with a map O!O 0Ljp such that ILjp.O/D I.O 0/. Then, for any i 2 ILjp.O/, we have
a section �.i/ of S.O 0/. The tropical completion of this section is a section �.i/Ljp of
S.O 0Ljp/, which pulls back under O ! O 0Ljp to define �Ljp.i/ as a section of S.O/.
This defines the section �Ljp of SILjp over O.

Let us check that �Ljp as defined above gives a well-defined global section of SILjp .
Given any map O2!O and map O2!O 0

2
Ljp with ILjp.O2/D I.O 0

2
/, there exists

some O 00
2

with maps such that the following diagram commutes:

O2 O

O 0
2
Ljp O 00

2
Ljp O 0Ljp

It follows that the section �Ljp of SILjp .O2/ pulled back from O 0
2

coincides with the
section pulled back from O 00

2
and the section pulled back from O 0 via O. Therefore,

�Ljp as defined above is a well-defined global section of SILjp .

The resulting ŒKLjp � is similarly related to ŒK�. In particular, for any O 2O
ILjp
\.KLjp/� ,

we can choose an O 0 with a map O!O 0Ljp such that ILjp.O/D I.O 0/. Then ŒKLjp �.i/
is the subfamily of O that is the pullback of ŒK�.i/Ljp �O 0Ljp under the map O!O 0Ljp .

Claim 7.11 If K is proper and oriented, and � 2 r
fg�
�.K/ is any (not necessarily

closed) form, then

(7)
Z
ŒK�
� D

X
p2K

Z
ŒKLjp�

�Ljp

when the above method is used to construct the virtual fundamental class ŒKLjp � of KLjp
from ŒK�.

Choose a partition of unity r W O!R compatible with ŒK�. ThenZ
ŒK�
� D

X
Ok�O

X
i2I.Ok/

�.i/

Z
ŒK�.i/

r�;
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where the sum is over connected components Ok of O. We may apply tropical
completion to r and obtain a partition of unity rLjpW O

Ljp!R compatible with KLjp ,
where we use p in O to mean the inverse image of p under the map O! K .

For any exploded manifold B, the integral of � over B is the sum of the integrals
of � over the manifolds B jp (if � has compact support, only a finite number of these
integrals will be nonzero). Furthermore, the integral of � over B jp is equal to the
integral of �Ljp over BLjp . Applying this to our situation, we getZ

ŒK�.i/
r� D

X
p2K

Z
ŒK�.i/Ljp

rLjp�
Ljp:

The tropical completion of Ok may not be connected. Each connected component
O 0 of Ok

Ljp is in O
ILjp

, and there is a corresponding map ��W I.Ok/! ILjp.O
0/ such

that ŒKLjp �.��i/ is the corresponding collection of connected components of ŒK�.i/Ljp .
Therefore, Z

ŒK�.i/Ljp
rLjp�
Ljp D

X
�

Z
ŒKLjp�.��i/

rLjp�
Ljp;

where the sum is over the different inclusions � of connected components of Ok
Ljp .

Noting that each �� is surjective and measure-preserving then givesX
Ok�O

X
i2I.Ok/

�.i/

Z
ŒK�.i/Ljp

rLjp�
Ljp D

X
O 0�OLjp

X
i02I.O 0/

�.i 0/

Z
ŒKLjp�.i0/

rLjp�
Ljp

D

Z
ŒKLjp�

�Ljp;

which implies Claim 7.11.

In the case that � is closed, (7) holds regardless of any choices made in the construction
of ŒK� and ŒKLjp � because these integrals do not depend on such choices. It remains to
prove the analogous statement for pushforwards:

Claim 7.12 If K is complete and oriented over Z, and � W K! A is a compatible
map, there exists a construction of �! and .�Ljp/! such that given any � 2 r

fg�
�K and

p0 2A ,
�!.�/Ljp0 D

X
p2��1.p0/

.�Ljp/!.�
Ljp/:

The proof of Claim 7.12 is very similar to the proof of Claim 7.11 except we must now
check that all choices in the construction of �! from Definition 5.15 are compatible
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with tropical completion. This is indeed the case: the choices of vectorbundle W !A ,
map xW W ! A and Thom form e on W all may be tropically completed at p0 to
give W Ljp!ALjp , xLjpW W

Ljp!ALjp and eLjp appropriate for defining Œ�Ljp �! for all
p 2 ��1p0.

Definition 5.15 gives that

�!.�/D
X

Ok�O

X
i2I.Ok/

�.i/y�.i/!.r� ^ e/;

where y�.i/ is defined by the composition

�.i/�W W A

ŒK�.i/ A

y�.i/

x

�.i/

Therefore,

�!.�/Ljp0 D
X

Ok�O

X
p2��1.p0/

X
i2I.Ok/

�.i/y�.i/Ljp.r
Ljp�
Ljp ^ eLjp/:

As in the proof of Claim 7.11, Ok
Ljp may have several connected components, �W O 0!

Ok
Ljp , and ŒK�.i/Ljp D

`
�ŒKLjp �.��i/, and we similarly have y�.i/Ljp D

`
� y�
Ljp.�
�i/.

The same argument as the proof of Claim 7.11 then gives the required result:

�!.�/Ljp0 D
X

p2��1.p/

.�Ljp/!.�
Ljp/

In the case that � is closed, both sides of the above equation are independent of all
choices; therefore, the above equation holds regardless of choices.

8 Construction of Gromov–Witten invariants

Let us summarize our construction of Gromov–Witten invariants. Start with a complete,
basic exploded manifold, B, with a x@–log compatible almost complex structure, J,
tamed by a symplectic form, ! , as described in Definitions 3.1 and 3.5 of [28] and
Definitions 3.15 and 4.6 of [24]. Also assume that the tropical part of B admits a
Z–affine immersion into some Œ0;1/N, so that Lemma 4.2 and Theorem 6.1 of [28]
imply that the moduli stack of J –holomorphic curves is compact when restricted to
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curves with bounded genus, energy and number of punctures or ends.18 Some examples
of .B ; !;J / satisfying these conditions include

� any compact symplectic manifold with a tamed almost complex structure J,

� the explosion19 of any compact Kähler manifold relative to simple normal
crossing divisors, and

� an exploded manifold corresponding to the singular fiber in any simple normal
crossing degeneration of a compact Kähler manifold.

Let Mst
g;n;ˇ

.B/ be the moduli stack of stable C1;1 curves in B with genus g ,
n labeled ends, and representing a homology class, ˇW H�.B/!R. As the moduli
stack of holomorphic curves within Mst

g;n;ˇ
.B/ is compact, Theorem 7.3 of [26]

provides a complete embedded Kuranishi structure covering the moduli stack of
holomorphic curves within Mst

g;n;ˇ
.B/. Next, construct an orienting 2–form ˛ on

the associated Kuranishi category, using Definition 3.1, then restrict the associated
Kuranishi category to a neighborhood of the holomorphic curves, so that ˛ is orienting.
Call this oriented Kuranishi category Kg;n;ˇ . As Kg;n;ˇ is complete, we can construct
a virtual fundamental class, ŒKg;n;ˇ �, for Kg;n;ˇ using Definition 4.7.

There are several distinct versions of “evaluation maps” from the moduli stack of curves
in exploded manifolds. Let

evWMst
g;n;ˇ.B/!X

be any C1;1 map to an exploded manifold or orbifold X. For example, if B is a
smooth manifold or an exploded manifold with bounded tropical part (such as any
exploded manifold in a connected family also containing a smooth manifold), then
each end of a curve is sent to a single point in B, so we could take ev as the usual
evaluation map at ends, with X D Bn . If B has unbounded tropical part, B, there

18An end of a holomorphic curve is a stratum of its domain, C , isomorphic to T 1
.0;1/

. The smooth
part dC e of C is a nodal curve with a marked point corresponding to each end of C . We can also achieve
compactness and construct Gromov–Witten invariants with weaker assumptions when we include more
discrete data about the curves at ends. For example, holomorphic curves in T n have tropical parts that are
tropical curves in Rn . Each end of such a curve corresponds to an end of the corresponding tropical curve,
which has some derivative ˛ in Zn . To achieve compactness for the moduli stack of holomorphic curves
in T n , we have to keep track of these derivatives ˛ at the ends of curves. See Lemma 4.2 of [28].

19See Section 5 of [24] for a discussion of the explosion functor, or see Section 4 of [25] for a discussion
of the explosion functor as a base change within log geometry. The tropical part of the explosion of
a manifold with a normal crossing divisor is the dual intersection complex with a canonical Z–affine
structure. To ensure that this tropical part immerses in some Œ0;1/N , we assume that it is simple, or a
union of transversely intersecting, compact, codimension-2 , complex submanifolds.
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are different possible “evaluation” maps which we could use. In this case, some ends
of holomorphic curves have unbounded image in B, and evaluation at such punctures
lands in a space 2 real dimensions smaller than B. In such an exploded manifold,
evaluation at an end lands in an associated exploded manifold, End B, constructed in
Section 3 of [30], so we can take X as .End B/n .

We can then define Gromov–Witten invariants as a map

rH�.X/!R

defined by
� 7!

Z
ŒKg;n;ˇ�

ev��

using the integration from Definition 5.8 and the homology from Definition 5.3. We
can encode finer information about ŒKg;n;ˇ � using Definition 5.15 to push forward this
virtual fundamental class to define

�g;n;ˇ WD ev!.1/ 2
r

fgH�.X/;

so Z
ŒKg;n;ˇ�

ev�� D
Z

X

� ^ �g;n;ˇ:

If 2gCn� 3, there is also a C1;1 map from Mst
g;n;ˇ

.B/ to Deligne–Mumford space,
Mg;n , or its explosion, Expl Mg;n — this stabilization map to Expl Mg;n is constructed
in Section 4 of [26], where it is also proved that Expl Mg;n represents the moduli stack
of stable exploded curves with genus g and n punctures. So, we could also define
Gromov–Witten invariants with the X above being .End B/n �Expl Mg;n , or a more
sophisticated version of this, Xg;n.B/, described in Section 5 of [30]. In the case that
B is a symplectic manifold, Gromov–Witten invariants defined using X WDBn�Mg;n

satisfy Kontsevich and Manin’s axioms for Gromov–Witten invariants from [14]; as
explained in [30], the splitting and genus-reduction axioms follow from Theorem 5.2
and Lemma 5.3 of [30].

We can also define descendant Gromov–Witten invariants incorporating Chern classes
of tautological line bundles, L�i , over Mst

g;n;ˇ
.B/. Let us describe these tautological

line bundles. Each of our labeled ends corresponds to a T 1
.0;1/

–bundle, Li , over
Mst

g;n;ˇ
.B/, with fiber over a curve f the stratum of the domain of f labeled by i ; so

over a family, yf , Li. yf /! F . yf / is a union of strata of the domain, C . yf /! F . yf /,
of yf . The moduli stack of T 1

.0;1/
–bundles is equivalent to the moduli stack of C�–

bundles or complex line bundles, so there is an associated complex line bundle Li
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on Mst
g;n;ˇ

.B/ — the relationship between the fibers of Li and Li is the relationship
between C and T 1

.0;1/
� T 1

Œ0;1/
D Expl.C; 0/. We can also think of the fiber of Li

over f as the tangent space of the smooth part20 of the domain of f at its i th marked
point: The smooth part of the domain of yf , dC . yf /e, is a family of nodal curves over
dF . yf /e, and the i th end corresponds to a marked point section si W dF . yf /e!dC . yf /e.
Our line bundle Li is the pullback of the vertical tangent bundle of dC . yf /e under
the composition F . yfi/! dF . yfi/e

si
�! dC . yfi/e. So, the dual line bundles, L�i , are

analogous to the usual tautological line bundles over the moduli stack of curves.

With the tautological line bundles L�i over Mst
g;n;ˇ

.B/ understood, we can construct
their Chern classes using Remark 5.2, and define  i 2

r
fgH�.Kg;n;ˇ/ as the first Chern

class of the line bundle L�i over K . We can then define the classes

(8) �g;fai g;ˇ WD ev!

�Y
i

 
ai

i

�
�

r
fgH�.X/

for nonnegative integers a1; : : : ; an , and define Gromov–Witten invariants as the
corresponding maps

(9) rH�.X/
� 7!

R
X �g;fai g;ˇ

^�

�������������!R:

In the case that B is bounded and X DBn , we can package Gromov–Witten invariants
into correlators without losing important information. When B is bounded, rH�.B/ is
isomorphic to H�.B/,21 so we can use H� in place of rH� without losing important
information about Gromov–Witten invariants. Moreover, unlike rH� and r

fgH� , Kün-
neth’s theorem applies to H� , so H�.Bn/DH�.B/˝n . Given classes �1; : : : ; �n in
H�.B/, we can define the numerical Gromov–Witten invariants

(10) h�a1
.�1/; : : : ; �an

.�n/ig;n;ˇ WD

Z
Bn

�g;fai g;ˇ ^
V

i�
�
i �i

D

Z
ŒKg;n;ˇ�

V
i 

ai

i ^ .�i ı ev/��i ;

where �i W B
n!B is projection onto the i th component. These �ai

.�i/ could also be
thought of as cohomology classes on B times the stack of complex line bundles, where

20Every exploded manifold B comes with a natural map B ! dBe to its smooth part; the smooth
part of an exploded curve C is a nodal curve dC e ; the smooth part of the explosion of a manifold with
normal crossing divisors is the original manifold.

21There is no written proof of this fact, but it can be proved by representing each cohomology class in
rH�.B/ by a closed form on a refinement of B ; when B is bounded and admits a Z–affine immersion
into RN , each refinement of B is cobordant to B, and hence has the same cohomology by [31, Section 11].
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our correlator “integrates the pullback” of these classes to ŒKg;n;E � using the evaluation
map recording the position of the i th puncture and the line bundle L�i ; however, our
machinery for differential forms on stacks with infinite isotropy groups is inadequate
for removing the above scare quotes.

Theorem 5.20 together with [26, Corollary 7.5] imply that �g;fai g;ˇ does not depend on
the choices involved in its construction. Theorem 7.3 of [26] together with Theorem 5.22
provide a kind of invariance in families for the Gromov–Witten invariants (9) and (10).

Let us describe how the correlators (10) are invariant in families. Let yB !B0 be a
connected family of exploded manifolds containing B, with a family of x@–log compat-
ible almost complex structures tamed by a family of taming forms, and suppose that
there is a Z–affine map yB ! Œ0;1/N that is injective when restricted to each stratum
of each fiber. (For example, the explosion of a simple normal crossing degeneration
satisfies this condition.) In this case, the moduli stack of curves in yB with bounded
genus, energy and number of punctures is proper over B0 .

Before describing Gromov–Witten invariants in our family, let us consider how the
cohomology of exploded manifolds varies in families. It is not true that r

fgH� is
invariant in families of exploded manifolds; however, Section 11 of [31] proves that
H� is invariant in connected families of exploded manifolds. More precisely, given
any long path22 
 in B0 , with inverse image in yB joining B to a fiber, B 0, of
yB!B0 , Definition 11.3 of [31] gives an isomorphism ‰
 W H

�.B/!H�.B 0/. This
isomorphism depends on the isotopy class of 
 . With ‰
 understood, we can write
the invariance of our correlators as

(11) h�a1
.�1/; : : : ; �an

.�n/ig;n;ˇ D h�a1
.‰
 .�1//; : : : ; �an

.‰
 .�n//ig;n;.‰�1

 /�ˇ:

Let us first prove (11) under the assumption that our long path 
 is contained in a
small neighborhood of B � yB , and that there exists a curve f in B representing the
homology class ˇW H�.B/!R. Proposition 5.9 of [26] implies that f locally extends
to a connected family of (not necessarily holomorphic) curves, yf , with F . yf /!B0

a submersion. Then, given any long path 
 in the image of F . yf / joining the image
of f with the image of f 0, the integral of f �� equals the integral of .f 0/�‰
 .�/.
So, the homology class, ˇW H�.B/!R, represented by f locally extends to a map
y̌W H�.B 0/! R for all fibers B 0 in a neighborhood of B such that for any long
path 
 in this neighborhood, y̌.�/D y̌.‰
 .�// (unlike the case of a family of smooth

22See Definition 11.1 of [31].
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manifolds, not all homology classes locally extend in this way). Let yB 0 ! B 0
0

be
such a neighborhood of B where y̌ exists, and let Mst

g;n; y̌
. yB 0/ be the moduli stack of

stable curves with genus g and n punctures representing y̌.

The moduli stack of holomorphic curves in Mst
g;n; y̌

. yB 0/ is complete over B 0
0
, so

using Theorem 7.3 of [26] we can construct an embedded Kuranishi structure with
an associated Kuranishi category, yK

g;n; y̌
, oriented and complete over B0 . Then,

Definition 4.7 gives us a virtual fundamental class ŒyK
g;n; y̌

�.

In this case, evaluation at punctures gives an evaluation map

�evWMst
g;n; y̌

. yB 0/! yX ;

where yX is the nth fiber product of yB 0 over B 0
0
. The line bundle Li still make sense

over Mst
g;n; y̌

. yB 0/, so we can define  i 2
r

fgH�.yK
g;n; y̌

/ as the first Chern class of L�i
using Remark 5.2. Because �evW yK

g;n; y̌
! yX is proper and relatively oriented, we can

define
y�

g;fai g; y̌
WD �ev!

�Y
i

 
ai

i

�
�

r
fgH�. yX/

using Definition 5.15. Then Theorem 5.22 implies that �g;fai g;ˇ is the pullback of
y�g;fai g; y̌ under the corresponding inclusion Bn � yX , and if 
 is a long path in
B 0

0
joining B to B 0, �g;fai g;.‰

�1

 /�ˇ is the pullback of y�

g;fai g; y̌
under the inclusion

.B 0/n � yX . In this case, (11) holds because ‰
 .�i/ is defined by extending �i to a
closed form y�i over the long path 
 , and ‰
 .�i/ is the restriction of y�i to B 0 ; so,
the integral of y�

g;fai g; y̌
^ y��i

y�i over fibers is constant, and in particular, its integral
over Bn equals its integral over .B 0/n .

So far, we have proved that (11) holds for long paths in B 0
0

starting at a fiber containing
a curve representing ˇ . Now we argue that (11) always holds. As with usual paths,
we can reparametrize a long path 
 into 
1 followed by 
2 such that 
1 starts at
the same point as 
 and ends at a chosen point in the middle of 
 , and 
2 starts at
this chosen point and ends where 
 ends. As usual, whenever 
1 followed by 
2 is
isotopic to a reparametrization of 
 , ‰
 D‰
2

ı‰
1
, and reversed paths induce inverse

isomorphisms. Let S be the set of points in the domain of 
 for which (11) holds —
so if 
1 ends at a point in S, (11) holds for 
1 . Let 
1 end at a point in the closure
of S, and let B 0 be the fiber over this point. If our Gromov–Witten invariant (10) is
nonzero, then B 0 must contain a holomorphic curve representing .‰�1


1
/�ˇ , because

the moduli stack of holomorphic curves with bounded energy, genus, and number
of ends is proper over B0 . Then, the above argument shows that (11) holds with ˇ
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replaced by .‰�1

1
/�ˇ , and 
 replaced by any sufficiently small long path starting

at B 0. As (11) holds for a path if and only if it holds for the reversed path, we can
reparametrize 
1 using two long paths for which (11) holds, so (11) holds for 
1 .
Similarly, (11) holds for any long path that can be reparametrized as 
1 followed by a
sufficiently small long path. It follows that the set S where (11) holds is both open
and closed, and therefore includes the entire domain of 
 . We have therefore shown
that (11) holds so long as our Gromov–Witten invariant is nonzero. If it were zero and
(11) failed to hold, then our Gromov–Witten invariant at the other end of 
 would be
nonzero, and therefore (11) would hold for the reversed long path, and therefore must
hold for 
 itself.
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