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Klt varieties with trivial canonical class:
holonomy, differential forms, and fundamental groups
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We investigate the holonomy group of singular Kähler–Einstein metrics on klt vari-
eties with numerically trivial canonical divisor. Finiteness of the number of connected
components, a Bochner principle for holomorphic tensors, and a connection between
irreducibility of holonomy representations and stability of the tangent sheaf are es-
tablished. As a consequence, known decompositions for tangent sheaves of varieties
with trivial canonical divisor are refined. In particular, we show that up to finite
quasi-étale covers, varieties with strongly stable tangent sheaf are either Calabi–Yau
or irreducible holomorphic symplectic. These results form one building block for
Höring and Peternell’s recent proof of a singular version of the Beauville–Bogomolov
decomposition theorem.
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1 Introduction

The structure of compact Kähler manifolds with vanishing first Chern class is encapsu-
lated in the following fundamental result.

Theorem 1.1 (Beauville–Bogomolov decomposition theorem [4]) Let X be a com-
pact Kähler manifold with c1.X / D 0 2 H 2.X;R/. Then there exists a finite étale
cover zX !X such that zX decomposes as a Kähler manifold as follows:

zX D T �
Y

i
Yi �

Y
j

Zj ;

where T is a complex torus, and where the Yi (resp. Zj ) are irreducible and simply
connected Calabi–Yau manifolds (resp. holomorphic symplectic manifolds).

In view of a desired birational classification of varieties with Kodaira dimension zero
and in view of the recent progress in the minimal model program, it is important
to extend the decomposition theorem, mutatis mutandis, to the setting of varieties
with mild singularities. This turns out to be a very difficult challenge. Indeed, the
strategy of the proof of Theorem 1.1 consists in first using Yau’s solution to the Calabi
conjecture in order to equip X with a Ricci-flat Kähler metric, and then applying the
deep theorems of de Rham and Cheeger–Gromoll to split a finite étale cover of X

according to its holonomy decomposition. The identification of the factors then follows
from the Berger–Simons classification of holonomy groups combined with the Bochner
principle, which states that holomorphic tensors are parallel.

Now, if X is a singular projective variety with klt singularities and numerically trivial
canonical divisor, one can still achieve the first step. More precisely, Eyssidieux, Guedj,
and Zeriahi [20] constructed “natural” Ricci-flat Kähler metrics ! on the regular
locus Xreg of X; see Section 3 for further references. However, as we will see in
Proposition 4.2, the Kähler manifold .Xreg; !/ is not geodesically complete unless X
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is smooth. The incompleteness of ! is a major obstacle to using the splitting theorems
mentioned above or the Bochner principle directly in our setup. Consequently, it is
highly challenging to analyse the geometry of .Xreg; !/ using differential-geometric
techniques alone.

In this paper, we use recent advances in higher-dimensional algebraic geometry to study
the geometry of the Kähler manifold .Xreg; !/ and its relation to the global algebraic
geometry of the projective variety X. More precisely, we will investigate the following:

� the holonomy group G D Hol.Xreg;g/, where g is the Riemannian metric
on Xreg induced by ! ,

� the algebra of global holomorphic forms AD
L

p H 0.Xreg; �
p
Xreg

/,

� the fundamental group �1.Xreg/.

Motivated by a decomposition theorem for tangent sheaves of klt varieties with nu-
merically trivial canonical divisor established by Greb, Kebekus, and Peternell [29]
and building on Bost’s criteria for algebraic integrability of foliations, Druel [19]
recently obtained the singular version of the decomposition theorem for such varieties
of dimension dim X � 5. Using Druel’s strategy as well as the results presented
in this paper, in particular Proposition D and Theorem E, Höring and Peternell [36]
very recently gave a proof of the singular version of the decomposition theorem, thus
completing the long quest for such a result in the singular category.

1.1 The Bochner principle

There exist strong connections between the three objects listed above. First of all, it
is in general significantly simpler to compute the neutral component Gı of G, as Gı

is invariant under finite étale covers, and since all possible isomorphism classes were
classified by Berger and Simons. The group of connected components, G=Gı , is
then controlled by the fundamental group of the variety via the canonical surjection
�1.Xreg/� G=Gı . Finally, the link between G and A is provided in the smooth
case by the Bochner principle, which is a straightforward application of the maximum
principle to Bochner’s formula. One of our main results consists in the following
generalisation of the Bochner principle to the singular setting.

Theorem A (Bochner principle, Theorem 8.2) Let X be a projective klt variety
with KX numerically trivial. Let H be an ample divisor on X, and let !H 2 c1.H / be
the singular Ricci-flat Kähler metric constructed by Eyssidieux, Guedj, and Zeriahi [20],
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with associated Riemannian metric gH on Xreg . Then every holomorphic tensor
on Xreg is parallel with respect to gH .

The proof of this result is much more involved than in the smooth case. We first establish
a Bochner principle for subbundles of tensor bundles, Theorem 8.1, using the analysis
developed by Guenancia [33]. To obtain Theorem A, this is subsequently combined
with group-theoretic arguments and with the existence of a certain “holonomy cover”,
which we explain in Theorem B.

1.2 The holonomy cover

As we explained above, it is difficult in general to compute the full holonomy group,
but rather easy to get our hands on its neutral component Gı ; see Proposition 5.3.
In the smooth setup, the passage from this component to the full holonomy group is
facilitated by the a priori control over the fundamental group of Ricci-flat manifolds
given by the Cheeger–Gromoll theorem. In our setup, we have the following major
potential problem: even if the (restricted) holonomy of the metric on Xreg has no flat
factors, the fundamental group �1.Xreg/ might be infinite, and it is therefore not clear
that we can make the holonomy group connected by taking a finite étale cover of Xreg .

However, we can overcome this potential topological obstruction by relying on recent
progress in higher-dimensional algebraic geometry. Our two main technical ingredients
for this part are the integrability theorem of Druel [19, Theorem 1.4] and the theorem
on the existence of maximally quasi-étale covers of klt varieties of Greb, Kebekus,
and Peternell [27, Theorem 1.5]. Combining these results with more elementary
differential-geometric considerations, we get the following.

Theorem B (holonomy cover, Theorem and Notation 7.1 and Proposition 7.6) Setting
as in Theorem A. Then there exist normal projective varieties A and Z , and a quasi-
étale cover 
 W A�Z!X such that the following properties hold:

(B.1) The variety A is abelian, of dimension dim AD zq.X /, the augmented irregu-
larity of X.

(B.2) The variety Z has canonical singularities, linearly trivial canonical divisor, and
augmented irregularity zq.Z/D 0.

(B.3) There exist a flat Kähler form !A on A and a singular Ricci-flat Kähler met-
ric !Z on Z such that 
 �!H Š pr�

1
!AC pr�

2
!Z and such that the holonomy

group of the corresponding Riemannian metric on A�Zreg is connected.
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Reminder 1.2 The augmented irregularity of X is defined by Kawamata to be the
maximal irregularity of any quasi-étale cover of X; see Section 2.7.

The singular Kähler–Einstein metric !H constructed in [20] does depend on the choice
of the ample divisor H. However, using Theorems A and B to relate holonomy, restricted
holonomy, and holomorphic differential forms, we will show that the isomorphism
class of the restricted holonomy group Gı is in fact independent of H, allowing us to
speak of the restricted holonomy. The following proposition makes this precise.

Proposition C (restricted holonomy is independent of polarisation, Corollary 8.7)
Setting as in Theorem A. Then the isomorphism class of the restricted holonomy group
Hol.Xreg;gH /

ı does not depend on the ample polarisation H.

We will see in Section 3.2 that the construction of Ricci-flat Kähler metrics in [20]
is well-behaved under quasi-étale cover, and then so is the restricted holonomy. In
contrast, Section 14.1 shows by way of example that the restricted holonomy changes
dramatically under birational modifications, even under crepant blowing up.

1.3 Decomposition of the tangent sheaf

Using the holonomy principle as well as the classification of Ricci-flat restricted
holonomy groups, and comparing with the decomposition of the tangent sheaf of
varieties with trivial canonical divisor established in [29], we can obtain more precise
information about the tangent sheaf of Z , which splits according to the restricted
holonomy representation of X.

Proposition D (decomposition of the tangent sheaf, Proposition 7.9) Setup and
notation as in Theorem B. Then the cover 
 W A�Z ! X can be chosen such that
in addition to properties (B.1)–(B.3), there exists a direct sum decomposition of the
tangent sheaf of Z ,

TZ D

M
i2I

Ei ˚

M
j2J

Fj ;

where the reflexive sheaves Ei (resp. Fj ) satisfy the following properties:

(D.1) The subsheaves Ei �TZ (resp. Fj �TZ ) are foliations with trivial determi-
nant, of rank ni � 3 (resp. of even rank 2mj � 2). Moreover, they are strongly
stable in the sense of [29, Definition 7.2].
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(D.2) On Zreg , the Ei (resp. Fj ) are locally free and correspond to holomorphic
subbundles Ei (resp. Fj ) of T Zreg that are parallel with respect to the Levi-
Civita connection of gZ , the Riemannian metric on Zreg induced by !Z .
Moreover, their holonomy groups are SU.ni/ and Sp.mj /, respectively.

(D.3) If x 2Xreg and .a; z/ 2 
�1.x/, then the splitting

TxX Š T.a;z/.A�Z/D TaA˚
M

i2I
Ei;z˚

M
j2J

Fj ;z

corresponds to the decomposition of TxX into irreducible representations under
the action of the restricted holonomy group Hol.Xreg;gH / at x .

Proposition D is a significant refinement of the decompositions obtained in [29] and [33]
and, as already mentioned above, is one of the ingredients in the proof by Höring
and Peternell [36] for the singular analogue of the decomposition theorem in any
dimension. The irreducible pieces appearing in their result are the ones described
in [29, Section 8.B]. We will discuss these in the next section.

1.4 Irreducible pieces of the decomposition

Smooth Calabi–Yau manifolds and irreducible holomorphic symplectic manifolds are
defined by two conditions: one is algebraic, expressed in terms of the algebra of
holomorphic forms, and the other one is topological, namely simple connectedness.
In particular, their holonomy group is connected and their algebra of holomorphic
forms cannot be made any larger by taking finite étale covers. In the singular setting,
Greb, Kebekus, and Peternell [29, Definition 8.16] proposed the following purely
algebrogeometric definition.

Definition 1.3 (CY and IHS) Let X be a normal projective variety with OX Š !X

of dimension at least two, having at worst canonical singularities.

(1.3.1) We call X Calabi–Yau (CY) if H 0.Y; �
Œp�
Y
/D f0g for all numbers p such

that 0< p < dim X and all finite, quasi-étale covers Y !X.

(1.3.2) We call X irreducible holomorphic symplectic (IHS) if there exists a holomor-
phic symplectic two-form � 2H 0.X; �

Œ2�
X
/ such that for all finite, quasi-étale

covers 
 W Y ! X, in particular for X itself, the exterior algebra of global
reflexive forms is generated by 
 Œ��� .

The combination of Theorems A and B answers the natural question posed in [29]
concerning the characterisation of these two classes of varieties in terms of the strong
stability of their tangent sheaf.
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Theorem E (strongly stable varieties, Corollary 12.7) Let X be a projective klt
variety of dimension at least two, with numerically trivial canonical divisor. Assume
that TX is strongly stable in the sense of [29, Definition 7.2]. Then there exists a
quasi-étale cover 
 W Y ! X such that Y is Calabi–Yau or irreducible holomorphic
symplectic.

In conclusion, a variety with klt singularities and numerically trivial canonical class
admits a quasi-étale cover which is a CY or IHS variety if and only if its tangent
bundle is strongly stable. Example 14.9 discusses a variety with canonical singularities,
trivial canonical bundle, and no reflexive forms of intermediate degree that admits a
quasi-étale cover which is an IHS variety.

In light of these results, one would like to propose an alternative definition of Calabi–
Yau and irreducible holomorphic symplectic varieties that does not involve looking
at quasi-étale covers. In other words, one would like to replace the assumption on
simple connectedness. We want to emphasise that there does not seem to be an easy
topological condition that would play its role in the singular setting:

� The assumption �1.X / D f1g is not the right one. Example 14.1 discusses a
singular Kummer surface that is simply connected and has the same algebra
of reflexive forms as a smooth K3. However, the example is a quotient of an
abelian variety.

� The assumption �1.Xreg/D f1g might seem like a good condition, but even in
the IHS case, we do not know that �1.Xreg/ is actually finite. Even worse, in
the CY case �1.Xreg/ could a priori be infinite with infinite completion for all
we know.

However, due to the finiteness statement for G=Gı contained in Theorem B, a good
condition to impose in place of simple connectedness is holonomy connectedness. This
leads to the following characterisation, proven in Section 12.3.

Proposition F (characterisation of CY and IHS by holonomy, Proposition 12.10)
Setting as in Theorem A. Then the following conditions are equivalent:

(F.1) X is a Calabi–Yau variety.

(F.2) Hol.Xreg;gH / is connected and H 0.X; �
Œp�
X
/D f0g for all 0< p < n.

(F.3) Hol.Xreg;gH / is isomorphic to SU.n/.
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Analogously, the following conditions are equivalent:

(F.4) X is an irreducible holomorphic symplectic variety.

(F.5) Hol.Xreg;gH / is connected, and there exists a holomorphic symplectic two-form
� 2H 0.X; �

Œ2�
X
/ such that

Ln
pD0 H 0.X; �

Œp�
X
/DCŒ� �.

(F.6) Hol.Xreg;gH / is isomorphic to Sp.n=2/.

We refer to Section 14 where lots of examples are given that compare our notions of
CY and IHS varieties to some other ones existing in the literature and that emphasise
the subtlety of the dichotomy question once singularities are allowed.

1.5 Stability and irreducible (restricted) holonomy

Theorem B and the methods of its proof also establish correspondences between the
algebrogeometric notion of stability and irreducibility of the differential-geometric
holonomy representation.

Proposition G (stability and irreducibility, Corollaries 6.8 and 7.4) Setting as in
Theorem A. Let x 2 Xreg , let G (resp. Gı ) be the holonomy group (resp. restricted
holonomy group) of .Xreg;gH / at x , and let V WD TxX. Then TX is stable with
respect to any ample polarisation (resp. strongly stable) if and only if the representation
G 	 V (resp. Gı 	 V ) is irreducible.

The second result provides an algebrogeometric criterion for the vanishing of the
augmented irregularity of a variety X in terms of properties of holomorphic tensors
on X itself. This is achieved by considering invariants of the restricted holonomy
representation.

Theorem H (augmented regularity and symmetric differentials, Theorem 11.1) Set-
ting as in Theorem A. Let x 2 Xreg , let Gı be the restricted holonomy group of
.Xreg;gH / at x , and let V WD TxX. Then the following are equivalent:

(H.1) H 0.X;SymŒm��1
X
/D f0g for all m 2NC .

(H.2) The augmented irregularity of X vanishes, that is, zq.X /D 0.

(H.3) The set of Gı–invariant vectors in V is trivial, that is, V Gı D f0g.
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1.6 Fundamental groups

In the smooth case, Theorem 1.1 shows that the fundamental group of X is virtually
abelian, that is, an extension of Zr by a finite group. In particular, if the augmented
irregularity of X vanishes (zq.X / D 0), then �1.X / is actually finite. The proof of
this fundamental result relies on the Cheeger–Gromoll theorem, which says that once a
Euclidean space of maximal dimension is split off the universal cover of a complete
Ricci-flat manifold X, the remaining factor is compact. As already mentioned above,
the proof of the Cheeger–Gromoll theorem uses completeness X in a fundamental way,
so none of these methods apply to the noncomplete Riemannian manifolds .Xreg;gH /

considered here.

Fortunately, the algebraicity of X opens the door to alternative techniques, which allow
us to prove the following finiteness result.

Theorem I (finiteness of �1 , Theorems 13.1 and 13.6 and Corollaries 13.2, 13.3, and
13.10) Let X be a projective klt variety with numerically trivial canonical divisor.

(I.1) If TX is strongly stable and if dim X is even, then �1.X / and y�1.Xreg/ are
finite. If X is IHS or an even-dimensional CY, then X is simply connected.

(I.2) If zq.X /D 0, then �1.Xreg/ does not admit any finite-dimensional representation
with infinite image (over any field). Moreover, for each n 2N , the fundamental
group �1.Xreg/ admits only finitely many n–dimensional complex representa-
tions up to conjugation.

Remark 1.4 Under the assumption that zq.X /D 0, the conclusions of (I.2) remain
valid for �1.X / as well, given the surjection �1.Xreg/� �1.X / induced by the open
immersion Xreg ,!X ; see Fulton and Lazarsfeld [23, 0.7.B on page 33].

About (I.1): the proof of finiteness of �1.X / strongly relies on the Bochner principle,
and on methods introduced by Campana [13], which connect positivity properties of
cotangent bundles to the size of fundamental groups. To pass from X to Xreg , we
consider a maximally quasi-étale cover.

As for (I.2), the key point is a result of Brunebarbe, Klingler, and Totaro [10], which
links the existence of representations with infinite image to the existence of symmetric
differentials. This, in turn, can be interpreted via the Bochner principle in terms of
invariant vectors in the symmetric power of the standard representation of SU.n/
or Sp.n/; see Theorem H.
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Outline of the paper

The core of the paper consists in proving Theorems A and B. Interestingly enough, and
unlike the strategy executed in the smooth case, the proof of Theorem A relies on the
conclusions of Theorem B, which is proved in Part II. Part III is devoted to proving
Theorem A using the results achieved in the earlier parts. More precisely, the content
of the individual sections can be summarised as follows:

Part I We recall the definitions and basic properties of the fundamental differential-
geometric objects that will be used throughout the paper, namely the holonomy groups
of a Kähler manifold and singular Kähler–Einstein metrics. We also analyse the
behaviour of these objects with respect to quasi-étale covers.

Part II This part is mostly taken up by the proof of Theorem and Notation 7.1. The
starting point is the classification of restricted holonomy, Proposition 5.3, which shows
that the usual dichotomy SU vs Sp continues to hold in the singular setting.

Part III We prove Theorem 8.1 stating that TX or more generally any of its reflexive
tensor powers is the direct orthogonal sum of stable parallel subbundles; the arguments
follows [33] closely. Capitalising on this and on the results of Part II, we establish
the Bochner principle for forms and unfold a first list of applications in connection
with augmented irregularity and characterisations of quotients of abelian varieties;
see Theorem 11.1 as well as Corollaries 8.5 and 11.4.

Part IV We investigate the strongly stable case. Corollary 12.7 explains the relation
to CY and IHS varieties in more detail. Section 12.4 relates our results to the algebraic
holonomy group introduced by Balaji and Kollár. A number of examples illustrate the
complexity of the situation. Finally, we study finiteness properties for the fundamental
groups (resp. algebraic fundamental groups) of X and Xreg .

Acknowledgements

We would like to thank Stéphane Druel, Jochen Heinloth, Mihai Păun, Wolfgang Soergel,
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Part I Preparations

2 Notation and conventions

The main motivation to study varieties with klt singularities comes from minimal
model theory. On the other hand, many of our techniques originate in differential
geometry. Hence, to make the paper more accessible for algebraic geometers, this
chapter carefully sets up notation and gives very quick explanations of the terminology
and of the fundamental principles used later.

2.1 Global conventions

Throughout the present paper, all varieties will be defined over the complex numbers.
We will freely switch between the algebraic and analytic context if no confusion is
likely to arise. If extra care is warranted, we denote the analytic space associated
with an algebraic variety X by X an . We follow the notation used in the standard
reference books [35; 46]. In particular, varieties are always assumed to be irreducible
and reduced.

2.2 Differential-geometric notions

2.2.1 Differentials and vector fields Throughout this paper, we will clearly distin-
guish between bundles and their associated sheaves of smooth (resp. holomorphic)
sections.

Notation 2.1 (tangent bundle) Given a connected complex manifold X of complex
dimension n, denote the holomorphic tangent bundle by TX, the holomorphic tangent
sheaf by TX , and the sheaf of C1–sections of TX as TX . If x 2 X is any point,
let TxX be the associated tangent space, so that dimC TxX D n. The complexified
tangent bundle decomposes as TX C D T 1;0X ˚T 0;1X, where TX and T 1;0X are
naturally isomorphic as complex vector bundles.

Notation 2.2 (C1–functions and forms) Given a connected complex manifold X,
let AX denote the sheaf of complex-valued C1–functions on X. The symbols Ap

X

denote the sheaves of complex, C1–differential p–forms. Likewise, Ap;q
X

are the
sheaves of complex, C1–differentials of type .p; q/. The sheaves of holomorphic
differentials are denoted by �p

X
. There are a few standard variants of the notation
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that we will also use. If E is a complex vector bundle, we denote the vector space
of global, smooth, E–valued .p; q/–forms by Ap;q.X;E/. If E is equipped with a
Hermitian metric h, we write Ap;q.X;End.E; h// for the space of forms with values
in Hermitian endomorphisms. Vector spaces of real forms will be denoted as Ap;q

R . � /.

Notation 2.3 (Chern connections) Let .X; !/ be a connected Kähler manifold of
dimension n WDdimC X. Let h be the associated Hermitian metric on T 1;0X and g the
associated Riemannian metric on X. Owing to the Kähler property, the Levi-Civita con-
nection of g coincides with the Chern connection of h after identifying TX and T 1;0X.
We obtain induced complex connections on all tensor bundles TX˝p˝T �X˝q , which
by minor abuse of notation we all denote by D.

2.2.2 Holonomy The holonomy group of a Riemannian manifold is the core notion
of this paper.

Notation 2.4 Let .M;g/ be a connected Riemannian manifold. Given a point m2M,
we view .TmM;gm/ as a Euclidean vector space and denote the associated Riemannian
holonomy group by Hol.M;g/m , which we view as a subgroup of the orthogonal
group O.TmM;gm/. Its identity component, the restricted holonomy group, will be
denoted by Hol.M;g/ım .

The following relation between the holonomy group and the topology of the underlying
manifold is crucial for our arguments.

Reminder 2.5 (holonomy and fundamental group [38, Proposition 2.3.4]) Let .M;g/

be a connected Riemannian manifold. Then, for any point m 2M, as the restricted
holonomy group coincides with those elements in Hol.M;g/m that arise via parallel
transport along contractible paths, we have a surjective group homomorphism

(2.5.1) �1.M;m/� Hol.M;g/m=Hol.M;g/ım:

In the arXiv version of this paper, we recall some standard facts about holonomy, includ-
ing the holonomy of a Kähler manifold, the holonomy principle and the correspondence
between holonomy invariant subspaces and parallel subbundles.

The symplectic group appears prominently in the classification of holonomy groups.
We use the following convention.

Geometry & Topology, Volume 23 (2019)
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Notation 2.6 (symplectic groups) Let n 2NC and let � WD
Pn

kD1 dzk ^ dznCk be
the standard complex symplectic form on C2n . We denote by Sp.n;C/ the complex
symplectic group, that is, the subgroup of GL.2n;C/ consisting of transformations
preserving � . We denote by Sp.n/ its compact real form, Sp.n/ WD Sp.n;C/\U.2n/,
the unitary symplectic group.

2.3 Local decomposition of Kähler manifolds

The relation between holonomy groups and stability properties of the tangent sheaves
will be established by using the following folklore result, which we include here for
lack of a reference, and which we furthermore prove in the arXiv version of this paper.

Proposition 2.7 (local decomposition of Kähler manifolds) Let .X; !/ be a simply
connected Kähler manifold (not necessarily compact or complete) and x 2X a point.
Then there exists an open neighbourhood U DU.x/, Kähler manifolds .Ui ; !i/iD0;:::;m

and an isomorphism of Kähler manifolds

(2.7.1) 'W .U; !/!

�
m

�
iD0

Ui ;

mX
iD0

��i !i

�
such that the following hold when we write .x0; : : : ;xm/ for '.x/ and g and gi for
the associated Riemannian metrics on X and on the Ui , respectively:

(2.7.2) The action of the holonomy group H WD Hol.X;g/x on TxX respects the
orthogonal decomposition TxX D

Lm
iD0 Txi

Ui induced by ' .

(2.7.3) The holonomy group is a direct product H D�m
iD1

Hi , where each factor Hi

acts irreducibly on the summand Txi
Ui and trivially on all the other sum-

mands.

Remark 2.8 The summand Tx0
U0 is precisely the set of H–fixed vectors.

Definition 2.9 (totally decomposed actions) If V is a Hermitian vector space and
G � U.V / any group, we call the action G 	 V totally decomposed if there exists
a G–invariant orthogonal decomposition V D V0 ˚ V1 ˚ � � � ˚ Vm and a product
decomposition GDG1�� � ��Gm , where each factor Gi acts nontrivially and irreducibly
on Vi and trivially on all the other summands.

Remark 2.10 (uniqueness of decompositions) If V is a unitary vector space and
G � U.V / any group, there are usually many G–invariant orthogonal decompositions
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of V into complex vector spaces, V D V0˚ V1˚ � � � ˚ Vm , where G acts trivially
on V0 and nontrivially and irreducibly on the remaining summands. If the G–action is
totally decomposed, then the decomposition is unique up to permutation of the .Vi/i>0 .
For a proof, observe that the product structure of G implies that a vector Ev 2 V is
contained in one of the Vi if and only if the linear span of its G–orbit is an irreducible
representation space (and then equal to Vi ). The product structure of G is also unique,
as Gi D

T
j¤i Fix.Vj /.

2.4 Varieties and sets

Normal varieties are S2 , which implies that regular functions can be extended across
sets of codimension two. The following notation will be used.

Notation 2.11 (big and small subsets) Let X be a normal, quasiprojective variety. A
Zariski-closed subset Z �X is called small if codimX Z � 2. A Zariski-open subset
U �X is called big if X nU is small.

2.5 Morphisms

Galois morphisms appear prominently in the literature, but their precise definition is not
consistent. We will use the following definition, which does not ask Galois morphisms
to be étale.

Definition 2.12 (covers and covering maps, Galois morphisms) A cover or covering
map is a finite, surjective morphism 
 W Y !X of normal, quasiprojective varieties.
The covering map 
 is called Galois if there exists a finite group G � Aut.Y / such
that X is isomorphic to the quotient map Y ! Y=G.

Definition 2.13 (quasi-étale morphisms) A morphism 
 W Y !X between normal
varieties is called quasi-étale if 
 is of relative dimension zero and étale in codimension
one. In other words, 
 is quasi-étale if dim Y D dim X and if there exists a closed
subset Z � Y of codimension codimY Z � 2 such that 
 jY nZ W Y nZ!X is étale.

Reminder 2.14 (klt is invariant under quasi-étale covers) Let 
 W Y ! X be a
quasi-étale cover. By definition, 
 is then quasi-étale, finite and surjective. If KX is
Q–Cartier, then KY D 


�KX is Q–Cartier as well. If there exists a Q–divisor D

on X that makes .X;D/ klt, then .Y; 
 �D/ is klt as well [46, Proposition 5.20].
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Remark 2.15 (quasi-étale covers vs étale covers of Xreg ) If 
 W Y !X is any quasi-
étale cover, purity of the branch locus implies that 
 is étale over Xreg . Conversely, if

 ıW Y ı!X an

reg is a finite and locally biholomorphic morphism of complex manifolds,
recall from [31, Section XII.5] that 
 ı and Y ı are algebraic, and can be compactified
to a quasi-étale cover 
 W Y !X; see also [18, Theorem 3.4]. Consequently, we obtain
obvious equivalences between the categories of quasi-étale covers of X, of finite and
étale covers of Xreg , and of finite sets with transitive action of �1.X

an
reg/.

Quasi-étale morphisms appear naturally in the context considered in this paper, as
exemplified by the following important result.

Proposition 2.16 (global index-one cover) Let X be a projective klt variety with
numerically trivial canonical divisor, KX � 0. Then there exists a quasi-étale cover

 W Y !X such that Y has canonical singularities and linearly trivial canonical divisor,
KY � 0.

Proof By Nakayama’s partial solution of the abundance conjecture [50, Corollary 4.9],
there exists a number m 2 NC such that m �KY is linearly equivalent to zero. Let

 W Y ! X be the associated global index-one cover [46, Definition 5.19], which is
quasi-étale. By Reminder 2.14, the variety Y is then klt. Moreover, by construction
KY � 0, and the singularities of Y are hence canonical.

2.6 Sheaves

Reflexive sheaves are in many ways easier to handle than arbitrary coherent sheaves, and
we will therefore frequently take reflexive hulls. The following notation will be used.

Notation 2.17 (reflexive hull) Given a normal, quasiprojective variety X and a
coherent sheaf E on X of rank r , write

�
Œp�
X
WD .�

p
X
/��; E Œm� WD .E˝m/��; SymŒm� E WD .Symm E /��

and det E WD
�VrE

��� . Given any morphism f W Y !X, write f Œ��E WD .f �E /�� .

2.7 Augmented irregularity

The irregularity of normal, projective varieties is generally not invariant under quasi-
étale maps, even if the varieties in question are klt. The notion of “augmented irregu-
larity” addresses this issue.
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Definition 2.18 (augmented irregularity) Let X be a normal, projective variety.
We denote the irregularity of X by q.X / WD h1.X;OX / and define the augmented
irregularity as

zq.X / WD supfq.Y / j Y a quasi-étale cover of X g 2N [f1g:

Lemma 2.19 (augmented irregularity and quasi-étale covers) Let X be a normal,
projective variety. Then the following hold:

(2.19.1) The augmented irregularity is invariant under quasi-étale covers. More pre-
cisely, if Y !X is quasi-étale, then zq.Y /D zq.X /.

(2.19.2) If X is a projective klt variety with numerically trivial canonical class, then
zq.X /� dim X. In particular, the augmented irregularity is finite in this case.

(2.19.3) If zX ! X is a birational morphism of projective varieties with canonical
singularities, and if K zX is numerically trivial, then zq. zX /� zq.X /.

Proof To prove (2.19.1), recall from [48, Lemma 4.1.14 (injectivity lemma)] that
the irregularity increases in covers and observe that any two quasi-étale covers are
dominated by a common third. Item (2.19.3) is shown in [19, Lemma 4.4]. To
prove (2.19.2), let 
 W Y !X be a global index-one cover, whose existence is guaranteed
by Proposition 2.16. We may then apply [29, Remark 3.4] and (2.19.1) to conclude.

3 Singular Kähler–Einstein metrics

In this section, we recall the construction of Eyssidieux, Guedj, and Zeriahi [20] (the
EGZ construction),1 which produces so-called singular Kähler–Einstein metrics on
certain singular varieties such as projective klt varieties with torsion canonical bundle.
These objects induce genuine Kähler–Einstein metrics on the regular locus of the
variety, and we will study the resulting holonomy groups.

3.1 Existence of Ricci-flat Kähler metrics

Let X be a projective klt variety whose canonical class KX is numerically trivial.
In this setting, Eyssidieux, Guedj, and Zeriahi have shown that each Kähler class
˛ 2H 2.X;R/ contains a unique Ricci-flat Kähler metric !˛ that is smooth on Xreg ,
satisfies Ric!˛ D 0 there, and has bounded potentials near the singularities. To give a
precise account of their construction, we need to specify notation first. We refer the
reader to [20, Section 7.1] and [8, Section 4.6.2] for proofs and further details.

1But see also [62; 15; 61; 64; 57; 17] for further contributions.
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Notation 3.1 Let X be a projective klt variety whose canonical class KX is numer-
ically trivial. By Proposition 2.16 there exists a positive number m 2 NC such
that m � KX is linearly trivial. Choose one such m, choose a global generator
� 2 H 0.X;OX .m � KX //, choose a constant Hermitian metric k � k on the trivial
bundle OX .m �KX / and consider the following volume form on Xreg :

(3.1.1) in
� .�1/

1
2

n.nC1/
�

�
� ^ x�

k�k2

�1=m

; where n WD dim X:

Finally, let �X be the associated positive measure on X obtained as the trivial extension
of the measure on Xreg associated with the volume form in (3.1.1).

Remark 3.2 (independence on choices) The volume form in (3.1.1) and the mea-
sure �X are easily seen to be independent of the choice of m and � . The measure
�X .X /

�1 ��X is independent of the number m, the form � , and the choice of the
constant Hermitian metric k � k.

Theorem 3.3 (existence of Ricci-flat Kähler metrics; see [20, Theorem 7.5]) Let X

be a projective klt variety whose canonical class KX is numerically trivial. Given any
ample H 2 Div.X / with class ŒH � 2H 2.X;R/, there exists a unique closed positive
current !H on X such that the following hold:

(3.3.1) Denoting the de Rham cohomology class of the current !H by Œ!H �, we have
an equality of cohomology classes, Œ!H �D ŒH � 2H 2.X;R/.

(3.3.2) The current !H has bounded potentials.

(3.3.3) Using Notation 3.1, the positive measure .!H /
dim X obtained as the top inter-

section of !H puts no mass on proper analytic subsets and satisfies

.!H /
dim X

D ŒH �dim X
��X .X /

�1
��X :

Furthermore, the current !H is smooth on Xreg and induces a genuine Ricci-flat Kähler
metric there.

The arXiv version of this paper explains Theorem 3.3 in more detail.

Remark 3.4 (klt versus canonical singularities in Theorem 3.3) The statement
[20, Theorem 7.5] assumes that X has canonical singularities. The proof does not use
this assumption and works verbatim for klt spaces in the case where �D 0; compare
with [20, Theorem 7.12].
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3.2 Universal property of the EGZ construction

The construction of Theorem 3.3 has the following universal property.

Proposition 3.5 (universal property of the EGZ construction) Let X be projective
klt variety whose canonical class KX is numerically trivial. Let H 2Div.X / be ample.
Given a quasi-étale cover 
 W Y ! X, then HY WD 


�H is ample. Recalling from
Reminder 2.14 that Y is klt and that KY D 


�KX is numerically trivial, Theorem 3.3
applies both to .X;H / and to .Y;HY /, and defines genuine Ricci-flat Kähler metrics
!H and !HY

on Xreg and Yreg , respectively. These metrics agree on the smooth, open
set Y ı WD 
�1.Xreg/. In other words, !HY

jY ı D .
 jY ı/
�!H .

Proof of Proposition 3.5 Choose a global generator � 2H 0.X;OX .m �KX // and
a constant Hermitian metric k � k on the trivial bundle OX .m �KX /. We obtain a
positive measure �X on X, as in Notation 3.1. Consider the pullback form 
 �� ,
which generates OY .m �KY /, as well as the constant pullback metric k � k on this
trivial bundle. We obtain the associated measure �Y on Y . Write n WD dim X and
consider the positive numbers

C WD ŒH �n ��X .X /
�1 > 0 and CY WD ŒHY �

n
��Y .Y /

�1 > 0:

We claim that 
 �!H D !HY
, from which Proposition 3.5 would follow. For this,

it suffices check that the pullback current 
 �!H satisfies properties (3.3.1)–(3.3.3),
which uniquely characterise !HY

. Since 
 �!H clearly lives in ŒHY � and has bounded
potentials, it only remains to show that its top intersection .
 �!H /

n equals zC ��Y .
Pulling back the relation !n

H
D C ��X by 
 , we obtain an equality of measures on

Y ı D 
�1.Xreg/,

(3.5.1) .
 �!H /
n
D C � in.�1/

1
2

n.nC1/

�

 �� ^ 
 ��

k
 ��k2

�1=m

:

Over Y ı , where 
 is étale, the section 
 �� trivialises OY .

�.m�KX //DOY .m�KY /.

We hence conclude from Remark 3.2 that the following measures coincide on Y ı :

(3.5.2) �Y D in.�1/
1
2

n.nC1/

�

 �� ^ 
 ��

k
 ��k2

�1=m

on Y ı:

Combining (3.5.1) and (3.5.2), we get that

(3.5.3) .
 �!H /
n
D C ��Y on Y ı:
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But none of the two measures in (3.5.3) charges pluripolar sets: for the left-hand side,
this is because 
 �!H has bounded potentials; for the right-hand side this is almost by
definition. On the other hand, Y nY ı is a proper analytic subset of Y , hence pluripolar.
We conclude that the two measures coincide, and that the equality .
 �!H /

n D C ��Y

holds globally on Y . Finally, observe that

�Y .Y /D �Y .Y
ı/D .deg 
 / ��X .Xreg/D

.deg 
 / � ŒH �n

C
D
ŒHY �

n

C
:

This proves the desired equality C D ŒHY �
n ��Y .Y /

�1 D CY .

Remark 3.6 It follows from the above result that the current 
 �!H is smooth and
Kähler on the open set Yreg � 


�1.Xreg/ although 
 may not be étale there. For a
typical example, consider a situation where X has quotient singularities and admits a
global, smooth, quasi-étale cover 
 W Y !X.

3.3 Product situations

Another straightforward though useful property of the EGZ construction is its compati-
bility with product structures.

Proposition 3.7 (EGZ construction in product situation) Let X1 and X2 be projec-
tive klt varieties whose canonical classes KX� are numerically trivial. Let H� 2

Div.X�/ be ample. Then X D X1 � X2 is klt, with trivial canonical class, and
H WD .pr1/

�H1 � .pr2/
�H2 2 Div.X / is ample. Theorem 3.3 applies to .X�;H�/ and

to .X;H /, and defines genuine Ricci-flat Kähler metrics .!H�/ and !H on .X�/reg

and on Xreg , respectively. With this notation, the Ricci-flat Kähler manifold .Xreg; !H /

is isomorphic to the product ..X1/reg; !H1
/� ..X2/reg; !H2

/.

Proof The current ! WD pr�
1
!H1
Cpr�

2
!H2

on X has bounded potentials and satisfies
Œ!�D ŒH �. In order to prove the identity of currents ! D !H on X from which the
proposition follows, it will therefore suffice to check property (3.3.3) of Theorem 3.3.
To this end, observe that if m 2N is divisible enough, one has a natural isomorphism

H 0.X;OX .m �KX //ŠH 0.X1;OX1
.m �KX1

//˝H 0.X2;OX2
.m �KX2

//:

It follows that the product measure �X1
˝�X2

coincides with �X up to a constant. In
particular,

�X

�X .X /
D

�X1
˝�X2

�X1
.X1/ ��X2

.X2/
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and therefore

ŒH �dim X ��X

�X .X /
D
ŒH1�

dim X1 � ŒH2�
dim X2 ��X1

˝�X2

�X1
.X1/ ��X2

.X2/
:

The product current ! therefore satisfies property (3.3.3), as desired.

4 The standard setting

The goal of this section is to set up the framework for the rest of the article. In addition,
we recollect some results about holonomy that we will use repeatedly later on. This
includes locality of restricted holonomy, relation with parallel transport and behaviour
under quasi-étale covers.

4.1 The standard setting

Throughout the present paper we will be working in the setup of Theorem 3.3, and
use the metrics produced there in order to compute holonomy groups. We will use the
following notation.

Setup and Notation 4.1 (standard setting) Let X be a projective klt variety with
numerically trivial canonical class KX . Write n WD dimC X and assume that n � 2.
Fix an ample Cartier divisor H on X and a smooth point x 2Xreg . Let !H denote
the singular, Ricci-flat Kähler metric constructed in Theorem 3.3. Write gH for the
associated Riemannian metric on Xreg , and hH for the associated Hermitian metric
on TXreg . We consider the complex, Hermitian vector space V WDTxX with Hermitian
form hH ;x and write

G WD Hol.Xreg;gH /x � U.V; hH ;x/ and Gı WD Hol.Xreg;gH /
ı
x � SU.V; hH ;x/

for the (restricted) holonomy.

4.2 Geodesic incompleteness

The following result implies that many of the standard arguments used in the study of
manifolds with vanishing first Chern class are not at our disposal.

Proposition 4.2 (geodesic incompleteness in the standard setting) In the standard
setting (Setup and Notation 4.1), assume that Xreg¤X. In other words, assume that X

does have nontrivial singularities. Then .Xreg;gH / is not geodesically complete.
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Proof The current TH has bounded potentials. The volume of Xreg is therefore
computed as

Vol.Xreg;gH /D

Z
Xreg

!n
H D ŒH �n:

In particular, the volume is finite. Using that .Xreg;gH / has nonnegative Ricci curvature,
a result of Yau then asserts that .Xreg;gH / cannot be geodesically complete unless Xreg

is compact [58, Corollary on page 25].

4.3 Real analytic structure

Since .Xreg;gH / is Einstein as a Riemannian manifold, a theorem of DeTurck and
Kazdan implies that Xreg admits a smooth atlas with real analytic transition functions
such that gH is real analytic in each coordinate chart; see [6, Theorem 5.26]. This has
the following consequence.

Proposition 4.3 (behaviour of restricted holonomy under restriction) In the standard
setting (Setup and Notation 4.1), if U D U.x/�Xreg is any (analytically) open neigh-
bourhood of x , then the restricted holonomy groups Gı and Hol.U;gH jU /

ı
x agree.

Proof Since .Xreg;gH / is real analytic, both groups in question equal the local
holonomy group at x [44, Theorem 10.8 on page 101].

4.4 Quasi-étale covers in the standard setting

Working in the standard setting, we will frequently try to simplify geometry by passing
to a suitable quasi-étale cover — this could be an index-one cover, which simplifies the
singularities, or the holonomy cover that will be introduced in Section 7. The present
section introduces notation and recalls a number of basic facts that will later be used.

4.4.1 Standard notation for quasi-étale covers Given a quasi-étale cover 
 W Y!X,
we may use Theorem 3.3 to construct a Ricci-flat Kähler metric Yreg . The universal
property of the EGZ construction, Proposition 3.5, will then allow to compare this
metric to the one that we have on X. The following notation will be used consistently
throughout the paper.

Notation 4.4 (standard notation for quasi-étale covers) In the standard setting (Setup
and Notation 4.1), let 
 W Y ! X be a quasi-étale cover and y 2 
�1.x/ be a point
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lying over x . Writing Y ı WD 
�1.Xreg/, the commutative diagram

fyg
� � //

��

Y ı
� � //


ı, étale
��

Yreg
� � // Y


 , quasi-étale
��

fxg
� � // Xreg

� � // X

summarises the situation.

Recalling from Reminder 2.14 that Y is klt and that KY D 

�KX is numerically

trivial, Theorem 3.3 applies to .Y;HY /, where HY WD 

�H, and defines a Ricci-flat

Kähler metric on Yreg , which we write as !HY
. The associated Riemannian metric

on Yreg will be written as gHY
, the associated Hermitian metric hHY

. We consider
the complex, Hermitian vector space VY WD TyY with Hermitian form hHY ;y , as well
as the following subgroups of U.VY ; hHY ;y/:

I WD Hol.Y ı;gHY
/y � Hol.Yreg;gHY

/y DWGY ;(4.4.1)

Iı WD Hol.Y ı;gHY
/ıy � Hol.Yreg;gHY

/ıy DWG
ı
Y :(4.4.2)

The universal property of the EGZ construction, Proposition 3.5, asserts that

gHY
jY ı D .


ı/�gH and !HY
jY ı D .


ı/�!H :

In particular, we may use the isomorphism d
 ıjy to identify the Hermitian vector
spaces VY and V , and to view I, GY , Iı and Gı

Y
as subgroups of U.V; hH ;x/.

4.4.2 Behaviour of holonomy under covers We conclude the present section by
pointing out a few relations between the groups introduced in Notation 4.4. The proof
of the following elementary fact is left to the reader.

Fact 4.5 (behaviour of holonomy under covers, I) In the setting of Notation 4.4, the
following diagram is commutative:

(4.5.1)

�
loops in Y ı starting

and ending in y

�
parallel transport

//

� _


ıı . � / injective
��

U.VY /

.d
ıjy/ ı . � / ı .d

ıjy/
�1Š

��
�

loops in Xreg starting
and ending in x

�
parallel transport

// U.V /
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Remark 4.6 (behaviour of holonomy under covers, II) In the setting of Notation 4.4,
identifying U.VY / with U.V / using the isomorphism of (4.5.1), the diagram allows
to view I as a subgroup of G. More precisely,

I D fg 2G j g is parallel transport along a loop in Xreg

with homotopy class in .
 ı/� �1.Y
ı;y/g:

This description together with Reminder 2.5 presents I as a union of connected
components of G and therefore shows that the maximal connected subgroups agree,
that is, Iı DGı .

Lemma 4.7 (behaviour of holonomy under quasi-étale coverings, I) In the setting of
Notation 4.4, the natural inclusions (4.4.1) and (4.4.2) are equalities. In other words,
Iı DGı

Y
and I DGY .

Proof The equality Iı D Gı
Y

has been shown in Proposition 4.3. To prove that
I D GY , observe that Y ı is a big subset of Yreg . The corresponding fundamental
groups therefore agree. We obtain a commutative diagram

�1.Y
ı/ // // I=Iı

˛

��

�1.Yreg/ // // GY =Gı
Y

which implies that ˛ is surjective. Using that Iı D Gı
Y

, an application of the snake
lemma then yields the desired equality I DGY .

Corollary 4.8 (behaviour of holonomy under quasi-étale coverings, II) In the setting
of Notation 4.4, viewing GY as a subgroup of U.V; hH ;x/, we have the equality
Gı DGı

Y
and an inclusion GY �G that is given as follows:

(4.8.1) GY D fg 2G j g is parallel transport along a loop in Xreg

with homotopy class in .
 ı/� �1.Y
ı;y/g:

Proof Consider the groups Iı and I. Remark 4.6 immediately identifies Gı with Iı ,
and the right-hand side of (4.8.1) with I. The identifications of Lemma 4.7 thus end
the proof.
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Part II Holonomy

5 The classification of restricted holonomy

After fixing our notation regarding the restricted holonomy decomposition, we apply the
standard classification of irreducible restricted holonomy groups appearing in our setup.

5.1 Notation

The following construction and notation will be used throughout.

Construction and Notation 5.1 (decomposition induced by restricted holonomy)
Assume the standard setting (Setup and Notation 4.1) and recall [6, Corollary 10.41]
that the action Gı 	 V is totally decomposed. That is, there exist decompositions

(5.1.1) V D V0˚V1˚ � � �˚Vm and Gı DGı1 � � � � �Gım;

where each factor Gıi acts nontrivially and irreducibly on Vi and trivially on all the other
summands. We refer to (5.1.1) as the canonical decomposition of the Hermitian Gı–
space V . The induced decomposition of the dual space V � D T �x X will analogously
be called the canonical decomposition of the Hermitian Gı–space V �.

Remark 5.2 (behaviour under quasi-étale covers) If 
 W Y ! X is a quasi-étale
cover, and y 2 
�1.x/ is any point, recall from Corollary 4.8 that V D TxX and
VY D TyY are canonically identified, and that the restricted holonomy groups agree,
that is, Gı D Gı

Y
. In this sense, the canonical decomposition of Construction and

Notation 5.1 is invariant under passing to quasi-étale covers.

The action Gı	 V carries algebrogeometric information: We will see in Corollary 7.2
that the dimension of V0 equals the augmented irregularity zq.X /. Furthermore, we
will see in Corollary 7.4 that TX is strongly stable if and only if the action Gı 	 V

is irreducible.

5.2 Classification

Using Proposition 2.7, Proposition 4.3, and Berger’s classification [6, Theorem 10.108],
one easily obtains the following result, a full proof of which is given in the arXiv version
of this paper.

Proposition 5.3 (classification of restricted holonomy) Setting and notation as in
Construction and Notation 5.1. Given any index 1� i �m and writing ni WD dim Vi ,
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one of the following holds true:

(5.3.1) The group Gıi is isomorphic to SU.ni/.

(5.3.2) The number ni is even, and the group Gı is isomorphic to Sp.ni=2/.

The action Gıi 	 Vi is isomorphic to the standard action of the respective group.

6 The canonical decomposition of the tangent sheaf

In this section, we use standard holonomy considerations to obtain a canonical decom-
position of the tangent sheaf. This decomposition generalises both [29, Theorem 1.3]
and [33, Theorem A], and yields a differential-geometric characterisation of stability
for the tangent bundle, Corollary 6.8.

6.1 Construction of the decomposition

Just like the action of the restricted holonomy, the action of the full holonomy group
G 	 V is totally decomposed and induces a canonical decomposition of V .

Construction and Notation 6.1 (decomposition induced by holonomy) Assume the
standard setting (Setup and Notation 4.1) and recall from [6, Corollary 10.38] that the
action G 	 V is totally decomposed. That is, there exist decompositions

(6.1.1) V DW0˚W1˚ � � �˚Wk and G DG1 � � � � �Gk ;

where each factor Gi acts nontrivially and irreducibly on Wi and trivially on all the
other summands. As before, we abuse notation and refer to (6.1.1) as the canonical
decomposition of the Hermitian G–space V . We denote the associated smooth, parallel
bundles by �Wj � TXreg .

We have seen in Remark 2.10 that decomposition (6.1.1) is unique up to permutation
of the Wj and Gj of positive index. We now fix one choice of indices.

Observation and Notation 6.2 (comparison of the canonical decompositions) As-
sume the standard setting (Setup and Notation 4.1) and recall that Gı is a normal sub-
group of G. This implies that elements of G map Gı–orbits to Gı–orbits. The descrip-
tion of the Vi found in Construction and Notation 5.1 therefore implies that any element
of G stabilises V0 , and permutes the remaining .Vi/i>0 . Renumbering the Vi and Wj ,
if necessary, we may therefore assume without loss of generality that there exists an
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index ` and a strictly increasing sequences of indices 0D `0 < `1 < `2 < � � � such that
the following hold:

(6.2.1) The space V0 decomposes as V0 DW0˚ � � �˚W` .

(6.2.2) For every positive j , we have W`Cj D V
j̀�1C1˚ � � �˚V

j̀
. The summands

are isomorphic as Gı–representation spaces.

Remark 6.3 (behaviour under quasi-étale covers) Continuing Remark 5.2, recall
from Corollary 4.8 that if 
 W Y ! X is a quasi-étale cover, and y 2 
�1.x/ is any
point, then V D TxX and VY D TyY are canonically identified, and the holonomy
group GY is a subgroup of G under this identification. In this sense, the canonical
decomposition on Y refines the canonical decomposition on X.

6.2 The decomposition the tangent sheaf

The holonomy principle for bundles immediately yields a canonical direct sum decom-
position of the tangent.

Construction and Notation 6.4 (canonical decomposition of TX ) Assume the setup
of Construction and Notation 6.1. If Wj denotes the sheaf of smooth sections of�Wj � TXreg , we have a decomposition TXreg D W ı

0
˚ � � � ˚W ı

k
in the category of

coherent analytic sheaves such that

TXreg ŠW0˚ � � �˚Wk Š .W
ı

0 ˝OX
AXreg/˚ � � �˚ .W

ı
k ˝OX

AXreg/:

Writing Wi WD ��W
ı

i , where � WXreg!X is the inclusion, we obtain a splitting

(6.4.1) TX DW0˚ � � �˚Wk :

As a direct summand of a coherent analytic sheaf, each one of the analytic sheaves Wi is
coherent and hence algebraic by GAGA. Moreover, each Wi is reflexive by construction.
Write V ı

0
WDW ı

0
˚ � � � ˚W ı

`
and V0 WD ��V

ı
0

. We refer to (6.4.1) as the canonical
decomposition of TX .

Remark 6.5 (behaviour under quasi-étale covers) If 
 W Y ! X is a quasi-étale
cover, there are now two decompositions on Y : the canonical decomposition on Y ,
and the reflexive pullback of the canonical decomposition on X,

TY DWY;0˚ � � �˚WY;`Y
˚WY;`YC1˚ � � �˚WY;kY

(6.5.1)

D 
 Œ��W0˚ � � �˚ 

Œ��W`˚ 


Œ��W`C1˚ � � �˚ 

Œ��Wk :(6.5.2)

Geometry & Topology, Volume 23 (2019)



Klt varieties with trivial canonical class 2077

Remark 6.3 implies that (6.5.1) refines (6.5.2). Remark 5.2 implies that


 Œ��V0 D 

Œ��W0˚ � � �˚ 


Œ��W` and VY;0 DWY;0˚ � � �˚WY;`Y

agree.

We conclude the present subsection with a first description of the summands that appear
in the decomposition. Once the Bochner principle for reflexive tensors is established in
Theorem 8.2, we will be able say more; see Corollary 8.4.

Proposition 6.6 (summands in the canonical decomposition of TX ) In the setting
of Construction and Notation 6.4, the following hold:

(6.6.1) The Hermitian holomorphic vector bundles W ı
0

, . . . , W ı
`

are unitary flat. In
particular, the locally free sheaves W ı

0
, . . . , W ı

`
and V ı

0
are holomorphically

flat.

(6.6.2) If yF � TXreg is any parallel subbundle and i > 0 is any index, then the
projection map pi W F !Wi at x is either zero or surjective.

(6.6.3) The locally free sheaf W ı
0

is holomorphically trivial, and if i > 0 is any index,
then Wi is stable of slope zero with respect to any ample polarisation on X. In
particular, TX is polystable with respect to any ample polarisation on X.

Remark 6.7 (nonflatness of remaining summands) Improving on (6.6.1), we will
later see in Corollary 7.2 that none of the remaining summands W ı

`C1
, . . . , W ı

k
is

holomorphically flat.

Proof of Proposition 6.6 The items are proven separately:

Proof of (6.6.1) Choose an integer 0� j � `. As the holomorphic vector bundle W ıj
is obtained by parallel transport, it is a direct summand of TXreg as a Hermitian
holomorphic subbundle. Furthermore, W ıj is acted trivially upon by the restricted
holonomy group Gı , and hence its restricted holonomy group is trivial. Shrinking to
small simply connected neighbourhoods, one can therefore find parallel local frames
for W ıj . It follows that the Hermitian structure of W ıj is flat, and the .1; 0/–part of
the Chern connection is a flat holomorphic connection.

Proof of (6.6.2) Parallel transport stabilises both yF and �Wi , and commutes with the
projection map pri . As a consequence, it follows that the rank of pri is constant. To
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prove surjectivity, it will therefore suffice to show surjectivity at the point x . In other
words, writing F WD yF jfxg , we need to show surjectivity of the composition

(6.6.4) F
inclusion

// V DW0˚ � � �˚Wk projection
// Wi :

The morphisms in (6.6.4) are linear maps of G–representation spaces. Since the
representation space Wi is irreducible by assumption, any equivariant map with image
in Wi must be either zero or surjective. Item (6.6.2) follows.

Proof of (6.6.3) The triviality of W ı
0

is clear, as one can parallel transport any basis
of W0 to obtain a trivialising set of holomorphic sections of W ı

0
. Now, recall from

[33, Theorem A.(ii)] that there exists a decomposition TX D
L

Fj with the following
properties:

(6.6.5) The Fj are reflexive, and stable of slope zero with respect to any ample
polarisation of X.

(6.6.6) The restrictions F ıj WDFj jXreg are locally free. The associated subbundles
of Fıj � TXreg are parallel.2

In particular, it follows that TX is semistable of slope zero with respect to any polari-
sation, and hence so are the direct summands W� in the canonical decomposition. Now,
given any index i > 0, we will show that Wi is isomorphic to one of the Fj , hence
stable with respect to any polarisation. We start by choosing an index j such that the
projection map pji WD pri jFj

W Fj !Wi is not zero.

As a nontrivial map from a stable sheaf to a semistable sheaf of the same slope, pji

is clearly injective. We claim that pji is also surjective. Since both Fj and Wi are
reflexive, it suffices to show surjectivity of the restricted map pıji WF

ı
j !W ıi . That,

however, has been established in (6.6.2).

6.3 Canonical decomposition vs earlier results

Next, we explain how the canonical decomposition of TX relates to earlier work, and
how its uniqueness improves known results.

6.3.1 Uniqueness The decomposition of a polystable sheaf into stable summands is
unique up to noncanonical isomorphism, but not unique in general. However, as soon
as a singular Ricci-flat Kähler metric is fixed, the canonical decomposition of TX is
unique up to permutation of the factors W1; : : : ;Wk , as follows from Remark 2.10.

2This is shown in the proof of [33, Theorem A(ii)], on page 35, a few lines ahead of Section 5.
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The factor W0 , although unique, is not stable as soon as its rank is larger than one, and
it does not admit a unique decomposition into stable subsheaves.

6.3.2 Comparison with earlier results It follows from the discussion above that the
polystability decomposition of [33, Theorem A] in the case KX � 0 is isomorphic to
the canonical decomposition of TX , unless there exists a trivial summand of rank at
least two.

Moreover, the proof of (6.6.3) implies that on the quasi-étale cover 
 W Y !X whose
existence is established in [29, Theorem 1.3] the summands of the decomposition of the
tangent sheaf TY produced by loc. cit.. are isomorphic to the ones in the canonical de-
composition (6.4.1) of TY . In particular, the summands in the canonical decomposition
of TY are strongly stable in the sense of [29, Definition 7.2] and have trivial determinant.
The latter property furthermore implies integrability by [29, Theorem 7.11].

6.4 Stability and irreducibility of the holonomy representations

The canonical decomposition relates stability of TX to irreducibility of the holonomy
representation. The following corollaries are immediate consequences of Proposition 6.6.
Later, Corollary 7.4 will also relate strong stability and irreducibility of Gı 	 V .

Corollary 6.8 (stability and irreducibility, I) In the standard setting (Setup and
Notation 4.1), the following statements are equivalent:

(6.8.1) The sheaf TX is stable with respect to any ample polarisation.

(6.8.2) The holonomy representation G 	 V is irreducible.

Proposition 6.6 also applies to describe the holonomy representation in the case
where TX is stable only with respect to a movable curve class, or with respect to nef
divisors. Stability with respect to a movable class is discussed in the paper [28]. We
refer to [28, Definition 2.11] for a precise definition.

Corollary 6.9 (stability and irreducibility, II) In the standard setting (Setup and
Notation 4.1), assume that one of the following holds:

(6.9.1) There exist nef Cartier divisors H1 , . . . , Hn�1 on X such that TX is stable
with respect to .H1; : : : ;Hn�1/.

(6.9.2) The variety X is Q–factorial, and there exists a movable curve class ˛ 2
N1.X /R such that TX is ˛–stable.

Then the holonomy representation G 	 V is irreducible.
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Proof We discuss case (6.9.2) only; the other case is completely similar. If the
holonomy representation is reducible, Construction and Notation 6.4 yields a proper
decomposition TX DW0˚� � �˚Wk , with k>0 or kD0 and dim W0>1. In the second
case, TX is trivial, a contradiction. In the first case, stability of TX with respect to ˛ im-
plies the slope inequality �˛.Wi/<�˛.TX /D0 for all i , which contradicts the identity

0D �˛.TX /D

kX
iD1

rank.Wi/

n
��˛.Wi/:

7 Covering constructions

7.1 Main result

The quotient G=Gı frequently appears as an obstruction to extending locally defined
parallel tensors to global objects. The difference between holonomy and restricted
holonomy clearly goes away once we pass to the universal covering space of Xreg ,
but this comes at the price of potentially losing all algebraic structures, as we have no
a priori information on the fundamental group of Xreg . The following result, which
deals with this issue, is crucial for all our subsequent arguments and is therefore one of
the main results of this paper.

Theorem and Notation 7.1 (holonomy cover) In the standard setting (Setup and
Notation 4.1), there exists a quasi-étale cover 
 W Y !X and a point y 2 
�1.x/ such
that holonomy and restricted holonomy agree, that is, Gı

Y
DGY . Further, there exist

normal, projective varieties A and Z and an isomorphism Y Š A�Z such that the
following additional properties hold:

(7.1.1) The variety A is abelian, of dimension dim AD zq.X /.

(7.1.2) The variety Z has canonical singularities, trivial canonical bundle, and aug-
mented irregularity zq.Z/D 0.

(7.1.3) The summands VY;0 and WY;0 of VY both coincide with pr�
1
.TA/jy .

(7.1.4) The summand WY;1˚ � � �˚WY;k of VY coincides with pr�
2
.T Z/jy .

Quasi-étale covers with these properties will be called holonomy covers.

Corollary 7.2 (consequences for the standard setting) In the standard setting (Setup
and Notation 4.1), the following will hold:

(7.2.1) The quotient group G=Gı is finite. In particular, the factors G1 , . . . , G` of
the holonomy group G are all finite.
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(7.2.2) The augmented irregularity zq.X / equals dim V0 .

(7.2.3) None of the summands W ı
`C1

, . . . , W ı
k

is holomorphically flat.

Theorem and Notation 7.1 will be shown in Section 7.4. Corollary 7.2 is proven immedi-
ately afterwards in Section 7.5. To prepare for the proof of Theorem and Notation 7.1,
Sections 7.2 and 7.3 construct covers that realise partial aspects of the holonomy cover.
Combining all results obtained thus far, Section 7.6 proves Proposition D.

7.2 The weak holonomy cover

The canonical decomposition of V induced by the holonomy group G does not in
general refine the decomposition induced by restricted holonomy Gı . The following
result shows that this problem vanishes once we pass to a suitable quasi-étale cover.

Proposition and Notation 7.3 (weak holonomy cover) In the standard setting (Setup
and Notation 4.1), there exists a quasi-étale cover 
 W Y !X and a point y 2 
�1.x/

such that the following hold:

(7.3.1) Using Notation 4.4, the holonomy action GY 	 VY stabilises the canoni-
cal decomposition of VY that is induced by the restricted holonomy action
Gı

Y
	 VY . In particular, the canonical decomposition induced by GY is a

refinement of the canonical decomposition induced by Gı
Y

.

(7.3.2) A quasi-étale cover of pointed spaces satisfies (7.3.1) if and only if it admits a
factorisation via 
 . In this case, the factorisation is unique. In particular, the
covering 
 is unique up to canonical isomorphism.

We refer to the covering 
 as the weak holonomy cover.

Proof Write V D V0˚ � � �˚Vm for the canonical decomposition of V induced by
the action of Gı . We have seen in Observation and Notation 6.2 that every element
g 2 G stabilises V 0 and permutes the remaining summands. From this and from
Reminder 2.5 we obtain a morphism:

(7.3.3) �1.Xreg;x/ // //

�
,,

G=Gı // Permutationsf1; : : : ;mg

Recalling from Remark 2.15 that there exists an equivalence between quasi-étale covers
and finite sets with transitive action of �1.Xreg;x/, the morphism (7.3.3) thus gives
the desired cover.

Geometry & Topology, Volume 23 (2019)



2082 Daniel Greb, Henri Guenancia and Stefan Kebekus

For the next corollary, recall that a reflexive sheaf is “strongly stable” if its reflexive pull-
back to any quasi-étale cover is stable with respect to any polarisation .H1; : : : ;Hn�1/

there. We refer to [29] for a more detailed discussion, in particular concerning the role
of varieties with strongly stable tangent sheaf in the structure theory of varieties with
numerically trivial canonical divisor.

Corollary 7.4 (strong stability and irreducibility of restricted holonomy) In the
standard setting (Setup and Notation 4.1), the following assertions are equivalent:

(7.4.1) The sheaf TX is strongly stable.

(7.4.2) The restricted holonomy representation Gı 	 V is irreducible.

Proof of Corollary 7.4 The implications are proven separately:

Implication (7.4.1) ) (7.4.2) Consider a weak holonomy cover 
 W Y ! X, as
constructed in Proposition and Notation 7.3. Assuming (7.4.1), the sheaf TY will then
be stable with respect to any ample polarisation. By Corollary 6.8, this implies that
the holonomy action GY 	 VY is irreducible. By choice of Y , the same will hold for
the restricted holonomy. Identifying V and VY as explained in Notation 4.4, we have
seen in Corollary 4.8 that the groups Gı and Gı

Y
are naturally identified, and that

their natural representations Gı 	 V and Gı
Y
	 VY are equivalent. The implication

(7.4.1) ) (7.4.2) follows.

Implication :(7.4.1)) :(7.4.2) We start the proof by constructing a sequence of
quasi-étale coverings

Y
˛, index-one cover

//




,,X 0
ˇ, given by :(7.4.1)

// X

as follows: As we assume that TX is not strongly stable, we find a quasi-étale cover
ˇW X 0!X and ample divisors H1; : : : ;Hn�1 on X 0 such that TX 0 is not stable with
respect to .H1; : : : ;Hn�1/. The space X 0 is again klt, and its canonical class KX 0

is again numerically trivial. Let ˛W Y ! X 0 be a global index-one cover, whose
existence is guaranteed by Proposition 2.16. Moreover, setting HY;i WD ˛

�Hi , the
sheaf TY D ˛

Œ��TX 0 is not stable with respect to .HY;1; : : : ;HY;n�1/. Together with
[29, Proposition 5.7] these properties imply that TY is in fact not stable with respect to
any tuple of ample bundles. Corollary 6.8 therefore implies that the holonomy action
GY 	 VY is not irreducible, and then neither is the action of the restricted holonomy
group, Gı

Y
	 VY . Using Corollary 4.8 to identify the representations Gı 	 V and

Gı
Y
	 VY , the implication :(7.4.1) ) :(7.4.2) thus follows.
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7.3 Torus covers

We have seen in Proposition 6.6 that the first summands of the canonical decomposition
W0 , . . . , W` are locally free on Xreg , and are holomorphically flat there. The following
theorem gives a geometric explanation for this observation.

Proposition and Notation 7.5 (torus cover) In the standard setting (Setup and No-
tation 4.1), there exist normal, projective varieties A and Z , and a quasi-étale cover

 W Y ! X , such that Y has a product structure, Y D A �Z , with the following
properties:

(7.5.1) The variety A is abelian, of dimension dim AD zq.X /.

(7.5.2) The variety Z has canonical singularities, trivial canonical bundle, and aug-
mented irregularity zq.Z/D 0.

A quasi-étale cover Y !X , where Y DA�Z has a product structure with properties
(7.5.1) and (7.5.2), will be called a torus cover.

Proof We construct a sequence of projective varieties and quasi-étale covers

A�Z
c

splitting off torus
// X 00

b

index-one
// X 0

a

realising zq
// X

as follows: As quasi-étale covers of X, all varieties will again be klt, with numerically
trivial canonical class. To be more precise, let aW X 0!X be a quasi-étale cover that
realises the augmented irregularity, q.X 0/D zq.X /. Such a cover exists by definition,
because zq.X / is finite by (2.19.2) of Lemma 2.19. Next, we consider a global index-one
cover bW X 00!X 0, as given by Proposition 2.16. Finally, recall from [29, Theorem 1.3]
that there exists an abelian variety A, a canonical variety Z with zq.Z/D 0 and a quasi-
étale cover cW A�Z! X 00. Recalling from [48, Lemma 4.1.14 (injectivity lemma)]
that the irregularity increases in covers, the equality of augmented and actual irregularity
still holds on A�Z . In other words, zq.X /D q.A�Z/D dim A. We consider the com-
position 
 W A�Z!X. The construction clearly satisfies items (7.5.1) and (7.5.2).

The canonical decompositions on a torus cover are described as follows.

Proposition 7.6 (canonical decompositions on torus cover) In the standard setting
(Setup and Notation 4.1), let 
 W Y !X be a torus cover, Y DA�Z . Then the Kähler
manifold .Yreg; !HY

/ splits as .A; !HA
/� .Zreg; !HZ

/, where !HA
is flat and !HZ

is Ricci-flat. If y D .a; z/ 2 
�1.x/, the summands in the canonical decompositions
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of VY relate to the product structure of Y as follows:

(7.6.1) The summands VY;0 and WY;0 both equal pr�
1
.TA/jy .

(7.6.2) The summand WY;1˚ � � �˚WY;k equals pr�
2
.T Z/jy .

7.3.1 Preparation for the proof of Proposition 7.6 Proposition 7.6 relies on a re-
markable result of Druel [19] concerning algebraic integrability of foliations. Druel
relates flat subsheaves of TX to torus factors in suitable covers, but does so only for
terminal varieties. We apply Druel’s result in the following, slightly indirect manner.

Lemma 7.7 (flat summands and augmented irregularity) Let X be a projective
klt variety with numerically trivial canonical divisor and assume that there exists
a direct sum decomposition TX D E ˚F , where the locally free sheaf E jXreg is
holomorphically flat. Then zq.X /� rank E .

Proof The proof is carried out in three steps:

Step 1 (X is terminal) Choose an ample Cartier divisor H 2 Div.X / and recall
from Proposition 6.6 or [33, Theorem A] that TX is H–polystable. The sheaf F thus
decomposes into a direct sum of H–stable sheaves, F DF1˚ � � �˚Fm . The inter-
sections of ŒH �n�1 with the first Chern class of the Fi clearly vanishes. Moreover, it
follows from Flenner’s version of the Mehta–Ramanathan theorem [37, Theorem 7.1.1]
and the Bogomolov inequality [37, Theorem 3.4.1] that c2.Fi/ � ŒH �n�2 � 0 for all i .
Renumbering if necessary, we find a number k such that c2.Fi/ � ŒH �n�2 D 0 if
and only if i � k . Using the assumption that X is terminal, Druel then shows in
[19, Corollary 5.8] that

zq.X /D rank.E ˚F1˚ � � �˚Fk/� rank E :

Step 2 (X is canonical and E is locally free and flat) In this case, consider a
terminalisation, that is, a birational crepant morphism � W yX !X , where yX is terminal
and Q–factorial. The existence of a terminalisation is shown in [7, Corollary 1.4.3].
As the pullback of a flat bundle, ��E is clearly flat. More is true. The extension
theorem for differential forms [25, Theorem 1.4] gives an injection ��E ,!T yX and
the polystability result of Guenancia [33, Theorem A] shows that ��E is in fact a direct
summand there. We obtain inequalities

zq.X /� zq. yX / by (2.19.3) of Lemma 2.19

� rank ��E D rank E by Step 1:

Step 3 (general case) Suppose that ˛W X 0 ! X is a global index-one cover (see
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Proposition 2.16) which is quasi-étale. The variety X 0 is then canonical with trivial
canonical class. Next, let ˇW Y ! X 0 be a maximally quasi-étale cover, as given by
[27, Theorem 1.5]. The composition 
 W Y !X is then quasi-étale, the variety Y is
canonical with trivial canonical class, and the algebraic fundamental groups y�1.Y /

and y�1.Yreg/ agree. The extension theorem for flat sheaves [27, Theorem 1.14] thus
asserts that 
 Œ��E is locally free and flat. Recalling from (2.19.3) of Lemma 2.19 that
zq.X /D zq.Y /, an application of Step 2 to the direct sum decomposition

TY D 

Œ��E ˚ 
 Œ��F

thus finishes the proof of Lemma 7.7 in the general case.

7.3.2 Proof of Proposition 7.6 Assumption (7.5.2) on the augmented irregularity
implies that q.Z/D 0. The ample Cartier divisor HY 2 Div.Y / is therefore linearly
equivalent to a sum: HY � pr�

1
HAC pr2 HZ , where HA and HZ are ample divisors

on A and Z , respectively. The arXiv version of this paper contains a detailed proof of
this fact.

As a consequence of the decomposition of HY , recall from Proposition 3.7 that the
Ricci-flat Kähler manifold .Yreg; !HY

/ is a product of .A; !HA
/ and .Zreg; !HZ

/.
Recall from [6, Section 10.35 and Corollary 10.48] that the (restricted) holonomy group
then also decomposes. More precisely, writing y D .a; z/,

GıY D Hol.A;gHA
/ıa �Hol.Zreg;gHZ

/ız;

GY D Hol.A;gHA
/a �Hol.Zreg;gHZ

/z :

By the classical Bochner principle, the elements of a global holomorphic frame for TA

are parallel with respect to gHA
. It follows that gHA

is flat and that the holonomy
group Hol.A;gHA

/a is trivial. This implies that pr�
1
.TA/jy � WY;0 . On the other

hand, Lemma 7.7 asserts that the canonical decomposition of TZ does not contain
a flat summand. Item (6.6.1) of Proposition 6.6 therefore implies that the restricted
holonomy of Z has no nonzero fixed points, from which we obtain the remaining
inclusion, VY;0 � pr�

1
.TA/jy . In summary, we have seen that

pr�1.TA/jy �WY;0 � VY;0 � pr�1.TA/jy :

Proposition 7.6 is thus shown.

7.4 Proof of Theorem and Notation 7.1

The following lemma provides the last missing piece for the proof of Theorem and
Notation 7.1. Using the classification of restricted holonomy groups found in Section 5,
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it relates finiteness of G=Gı to the augmented irregularity of the underlying space. It
crucially uses the existence of a “maximally quasi-étale cover” [27, Theorem 1.5] and
hence uses a global algebrogeometric result.

Lemma 7.8 (finiteness of connected components) In the standard setting (Setup and
Notation 4.1), assume that zq.X /D 0. Then G=Gı is finite. In particular, there exists a
quasi-étale cover 
 W Y !X where holonomy and restricted holonomy agree, that is,
GY DGı

Y
.

Proof If G=Gı is finite, then the kernel of the natural surjection �1.Xreg/!G=Gı

will yield the desired quasi-étale cover 
 claimed in the lemma above.

Moreover, by Corollary 4.8 finiteness of G=Gı follows from finiteness of GY =Gı
Y

,
where Y ! X is any quasi-étale cover. Note that every such cover will also have
vanishing augmented irregularity. Based on this observation, let us make two reduction
steps. First, using the assumption that zq.X /D 0, (7.6.1) of Proposition 7.6 asserts that
V0Df0g. Replacing X by its weak holonomy cover (see Proposition and Notation 7.3),
we may therefore assume without loss of generality that the canonical decompositions
of V agree. More precisely, we have V0 DW0 D f0g and Vi DWi for all remaining
indices i . Second, we can further replace X by a maximally quasi-étale cover, as given
by [27, Theorem 1.5]. This guarantees that any complex representation of �1.Xreg/

factors via a representation of �1.X / by [27, Theorem 1.14 and its proof].

To prove that G=Gı is finite, recall that the holonomy group G is a subgroup of U.V /
and Gı is its maximal connected subgroup. The group G is therefore contained in the
normaliser of Gı in U.V /. In the special situation at hand, where G and Gı are both
totally decomposed with identical canonical decompositions, there is more we can say:

G �N1 � � � � �;Nm; where Ni WD Norm.Gıi � U.Vi//:

The groups Gıi have been classified in Proposition 5.3, and their normalisers are found
by an elementary computation – compare with [6, Proposition 10.114] but observe that
we, unlike [6], consider normalisers in the unitary group and not in the orthogonal
group. Writing ni WD dim Vi , one of the following holds:

� The group Gıi is isomorphic to SU.ni/ and Ni=Gıi Š U.1/.

� The number ni is even, Gıi Š Sp.ni=2/, and Ni=Gıi Š U.1/.

In summary, we see that G=Gı ¨ U.1/�m is abelian.
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By the second reduction made at the beginning of the proof, the complex represen-
tation �1.Xreg/� G=Gı ¨ U.1/�m factors via �1.X /, and hence further via the
abelianisation H1.X;Z/. In other words, we obtain a surjection

H1.X;Z/�G=Gı:

We claim that H1.X; Z/ is finite. Indeed, otherwise H 1.X;Z/ would be of positive
rank. Moreover, the exponential sequence on the complex space X an [34, Proof of
Theorem 6 in Chapter K] together with GAGA would yield an embedding H 1.X;Z/ ,!

H 1.X;OX /. But the latter space vanishes owing to zq.X /D 0, a contradiction. This
concludes the proof of Lemma 7.8.

With all preparations in place, the proof of Theorem and Notation 7.1 is now easy.

Proof of Theorem and Notation 7.1 Let 
 be a composition

A�Z0
b
// A�Z

a

torus cover
// X

of quasi-étale covers, where a is a torus cover of X, and b is the product of the
identity IdA and the cover of Z constructed in Lemma 7.8. One checks immediately
that 
 is a torus cover, and also satisfies the remaining conditions spelled out in
Theorem and Notation 7.1.

7.5 Proof of Corollary 7.2

Let 
 W Y !X be a holonomy cover. Item (7.2.1) is a consequence of Corollary 4.8
and Lemma 7.8. Item (7.2.2) follows immediately from (7.1.1) and (7.1.3) combined.
Item (7.2.3) follows from Lemma 7.7, using the observation that W ıi is holomorphically
flat if and only if its pullback 
 �W ıi is holomorphically flat on A�Zreg .

7.6 Decomposition of the tangent sheaf

Combining the existence of a holonomy cover with the classification of restricted
holonomy, we obtain a holonomy cover whose canonical decomposition of the tangent
sheaf admits a particularly precise description.

Proposition 7.9 (decomposition of the tangent sheaf) In the standard setting (Setup
and Notation 4.1), there exists a holonomy cover 
 W A�Z!X such that in addition
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to properties (B.1)–(B.3), there exists a direct sum decomposition of the tangent sheaf
of Z ,

TZ D

M
i2I

Ei ˚

M
j2J

Fj ;

where the reflexive sheaves Ei (resp. Fj ) satisfy the following properties:

(7.9.1) The subsheaves Ei �TZ (resp. Fj �TZ ) are foliations with trivial determi-
nant, of rank ni � 3 (resp. of even rank 2mj � 2). Moreover, they are strongly
stable in the sense of [29, Definition 7.2].

(7.9.2) On Zreg , the Ei (resp. Fj ) are locally free and correspond to holomorphic
subbundles Ei (resp. Fj ) of T Zreg that are parallel with respect to the Levi-
Civita connection of gZ , the Riemannian metric on Zreg induced by !Z .
Moreover, their holonomy groups are SU.ni/ and Sp.mj /, respectively.

(7.9.3) If x 2Xreg and .a; z/ 2 
�1.x/, then the splitting

TxX Š T.a;z/.A�Z/D TaA˚
M

i2I
Ei;z˚

M
j2J

Fj ;z

corresponds to the decomposition of TxX into irreducible representations
under the action of the restricted holonomy group Hol.Xreg;gH / at x .

Proof Theorem and Notation 7.1 yields a quasi-étale cover 
 W A �Z ! X that
satisfies the properties listed in (7.1.1)–(7.1.4). Observe that all these remain true if we
replace Z by a further quasi-étale cover. According to Section 6.3.2, we may therefore
choose Z such that the summands in the canonical decomposition TZ DW0˚� � �˚Wk

are strongly stable foliations with trivial determinant. By construction, the Wi are
locally free on Zreg and correspond to holomorphic subbundles of T Zreg that are
parallel with respect to the Levi-Civita connection.

We prove (7.9.2) next. Corollary 7.2 guarantees that none of the summands Wi

is holomorphically flat. Since determinants are trivial, this already guarantees that
rank Wi � 2 for all i . More is true. Theorem and Notation 7.1 guarantees holonomy
and restricted holonomy agree, that is, Gı

Y
DGY , and the classification of the restricted

holonomy, Proposition 5.3, guarantees that the associated factors of the holonomy group
G D Hol.Zreg;gZ /D G1 � � � � �Gk are isomorphic either to SU.ni/ or to Sp.mj /,
respectively. Writing Ei for those summands with holonomy SU.ni/ and Fj for the
others, (D.2) follows.

Item (7.9.1) summarises the results of the two paragraphs above. Item (7.9.3) holds by
construction.
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Part III The Bochner principle on singular spaces

8 The Bochner principle for reflexive tensors and bundles

8.1 The Bochner principle

The goal of this section is to establish the following “Bochner principle”, which
generalises [33, Theorem C].

Theorem 8.1 (Bochner principle for bundles) In the standard setting (Setup and
Notation 4.1), given any two numbers p; q 2 N , consider the following sheaf of

“reflexive tensors”:
E WD .T ˝p

X
˝ .T �X /

˝q/��:

Denote the associated bundle on Xreg by E and recall that the holonomy group G acts
on the vector space Ex in a canonical manner. Then the following hold:

(8.1.1) There exists a direct sum decomposition E D E1˚� � �˚Ek whose summands
are stable of slope zero with respect to any polarisation. The induced subbun-
dles E jXreg of E are parallel with respect to the connection induced by the
Chern connection of .TXreg; hH /. In particular, E is polystable with respect
to any polarisation.

(8.1.2) The fibre map E!Ex induces a one-to-one correspondence between arbitrary
direct summands of E and G–invariant complex subspaces of Ex .

A nonzero section � of E is the same thing as a trivial subsheaf OX �E . Using semista-
bility arguments, group-theoretic considerations and the Bochner principle just proven,
we will show that every such section yields a G–fixed point �x 2Ex and vice versa.

Theorem 8.2 (Bochner principle for reflexive tensors) Setting as in Theorem 8.1.
Then the natural evaluation map induces an isomorphism H 0.X;E /!EG

x . In particu-
lar, the restriction of every holomorphic tensor to Xreg is parallel.

Remark 8.3 As �Œp�
zX

and SymŒp��1
X

are direct summands of ..T �
zX
/˝p/�� , the

Bochner principle also applies to (symmetric) differential forms.

Theorems 8.1 and 8.2 will be shown in Sections 9 and 10. The following corollary,
which we promised in Section 6.2, gives an additional description of the summands
in the canonical decomposition of TX . The arXiv version of this paper contains a
detailed proof.
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Corollary 8.4 (summands in the canonical decomposition of TX ) In the standard
setting (Setup and Notation 4.1), consider the canonical decomposition of TX , as
in (6.4.1). Then the sheaf W0 is trivial and none of the sheaves W1 , . . . , Wk and
W �

1
: : :W �

k
admits a section.

8.2 Applications

The Bochner principle allows us to carry over many arguments from the smooth to
our singular case. As a sample application, we generalise [3, Section 1, Item (iii) of
Corollary] to our setup. See Corollary 11.4 as well as [56, Section 3] for related results.

Corollary 8.5 (detecting finite quotients of abelian varieties, I) In the standard setting
(Setup and Notation 4.1), the following inequality holds for all p 2N :

(8.5.1) h0.X; �
Œp�
X
/�

� n

p

�
:

If equality holds for one 0< p < n, then X is of the form A=� , where A is an abelian
variety and � is a finite group whose action on A is free in codimension one.

Remark 8.6 If X is smooth and equality holds in (8.5.1) for some 0<p<n, Beauville
proves that X is an abelian variety already, so that no quasi-étale cover is needed.
However, this is false in general if X is singular. Indeed, take X DA=h˙1i, the quotient
of an abelian fourfold A by the natural involution x 7! �x . As every holomorphic
two-form on A is preserved by the involution, the maximal value h0.X; �

Œ2�
X
/D 6 is

attained, yet X is not abelian.

Proof of Corollary 8.5 Inequality (8.5.1) follows immediately from the Bochner
principle for E WD .T �

X
/Œp� . Now assume that there exists one index 0 < p < n for

which equality holds. We employ the decomposition V D V0˚V1˚� � �˚Vm induced
by the restricted holonomy group GıDGı

1
�� � ��Gım , as discussed in Construction and

Notation 5.1. The Bochner principle gives an embedding H 0.X; �
Œp�
X
/ ,!

�Vp
V �
�Gı,

and therefore shows that

h0.X; �
Œp�
X
/� dim

�Vp
V �
�Gı
�

X
k0;:::;km2NP

kjDp

�
dim

Vk0V �0
�
�

mY
iD1

dim
�Vki V �i

�Gı
i :

If m> 0, then the factors on the right are obviously estimated as follows:

(8.5.2) dim
�Vki V �i

�Gı
i � dim

Vki V �i for all i > 0 and all ki .
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To conclude, by using Vandermonde’s identity for binomial coefficients observe that
equality in (8.5.1) can only happen if equality happens in (8.5.2) for all i > 0 and
all ki . But then the groups Gıi would necessarily be trivial, given Proposition 5.3.
The assumption that m> 0 is thus absurd. Equality in (8.5.1) therefore implies that
V0 D V , and Corollary 8.5 follows from Theorem and Notation 7.1.

Corollary 8.7 (restricted holonomy is independent of choice of polarisation) In the
standard setting (Setup and Notation 4.1), the isomorphism class of the restricted
holonomy group Hol.Xreg;gH /

ı does not depend on the ample polarisation H.

Proof Assume we are given two ample Cartier divisors H and H 0 on X. Theorem and
Notation 7.1 allows to pass to a holonomy cover. Since this does not affect the restricted
holonomy, we may assume without loss of generality that the holonomy groups GH

and GH 0 are connected already on X. The classification of restricted holonomy,
Proposition 5.3, thus equips these groups with a product structure. More precisely, we
obtain two canonical decompositions of the tangent sheaf into stable subsheaves,

TX Š O˚r
X
˚

M
i

Ei Š O˚r 0

X
˚

M
j

E 0j ;

where the respective holonomy groups act trivially on the trivial parts and are given by
the products GH D

Q
Gi and GH 0 D

Q
G0j , where Gi (resp. G0j ) is isomorphic either

to the special unitary group or the unitary symplectic group in dimension rank Ei � 2

(resp. rank E 0j � 2). Clearly, r D r 0, and the remaining stable factors have to be pairwise
isomorphic. Up to renumbering, one can assume that Ei Š E 0i and thereforeM

p

H 0
�
X;
VŒp�Ei

�
Š

M
p

H 0
�
X;
VŒp�E 0i �:

Once we observe that Gi is special unitary if and only if

h0
�
X;
VŒp�Ei

�
D

�
1 if p D 0 or p D rank Ei ;

0 otherwise

and that Gi is unitary symplectic if and only if

h0
�
X;
VŒp�Ei

�
D

�
1 if 0� p � rank Ei and p is even;
0 otherwise,

the conclusion then follows from Bochner principle for reflexive tensors, Theorem 8.2.
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9 Proof of Theorem 8.1 (“Bochner principle for bundles”)

We maintain notation and assumptions of Theorem 8.1 in this section. The proof is
similar to the one of [33, Theorem A], which deals with the case E DTX .

Step 1 Setup Let � W zX ! X be a strong log-resolution of singularities of X.
Throughout the proof, we discuss the following objects on zX :

Discrepancy divisors Write the standard Q–linear equivalence

(9.0.1) K zX C
X

ai �Di �Q ��KX ;

where DD
P

aiDi is a �–exceptional Q–divisor with simple normal crossing support
and coefficients ai 2 .�1; 1/\Q. Choose sections si 2H 0. zX ;O zX .Di// that vanish
precisely on Di .

Metrics and currents We fix a Kähler reference metric !0 on zX , but we will also
consider the pullback ! zH WD ��!H . Set zH WD ��H 2 Div. zX / and observe that
Ric! zH equals the current of integration of D, that is, Ric! zH D ŒD�.

Equip the line bundles O zX .Di/ with Hermitian metrics j � ji , and write ‚i 2A1;1
R . zX /

for the associated curvature form.

Bundles In analogy to the definition of E , consider the bundle

zE WD T zX˝p
˝ .T � zX /˝q;

as well as the associated locally free sheaf�E WDT ˝p

zX
˝ .T �

zX
/˝q:

We aim to establish polystability of E by studying zE .

Step 2 Construction of smooth metrics As in [33, page 518], we aim to construct
sequences of smooth metrics converging to ! zH .

Construction 9.1 (construction of smooth metrics !t;" ) Given a pair of numbers
"; t 2RC , consider the following form:

(9.1.1) �" WD
X

ai.‚i C ddc log.jsi j
2
i C "

2/„ ƒ‚ …
DW�i;"

/ in A1;1
R . zX /:

We view �" as a regularisation of the current of integration ŒD�. The discrepancy
formula (9.0.1) implies that f�"g D c1. zX / in H 1;1. zX /. We let !t;" be the unique
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Kähler metric on zX whose class equals

(9.1.2) f!t;"g D c1. zH /C t � f!0g 2H 1;1. zX /;

and that solves the equation

(9.1.3) Ric!t;" D �":

For existence and uniqueness, see [63].

Remark 9.2 (convergence of !t;" for ."; t/! .0; 0/) It follows from the proof of
[20, Theorem 3.5] and from the uniqueness result [32, Theorem 3.3] that the smooth
Kähler forms !t;" converge on zX nsupp D to the singular Kähler–Einstein metric ! zH .
More precisely, we have

lim
.";t/!.0;0/

!t;" D ! zH

on zX n supp D in the C1loc–topology.

Remark 9.3 Let r 0i be the .1; 0/–part of the Chern connection of .O zX .Di/; j � ji/. A
direct computation shows that the form �i;" 2A1;1

R . zX / decomposes as follows:

�i;" D
"2 � jr 0i si j

2
i

.jsi j
2
i C "

2/2„ ƒ‚ …
DWˇi;"

C
"2 �‚i

jsi j
2
i C "

2„ ƒ‚ …
DW
i;"

:

We refer to [14, beginning of Section 3] for an analogous computation. The summands
ˇi;" and 
i;" are smooth forms in A1;1

R . zX /.

Notation 9.4 (hermitian metrics and curvature on T zX ) We endow T zX with the
Kähler form !t;" , so T zX and more generally zE can be equipped with the structure of
a holomorphic Hermitian vector bundle. We denote by zht;" the Hermitian metric on zE
induced by !t;" and write ‚zht;"

. zE/ 2A1;1. zX ;End. zE// for its Chern curvature. The
form i‚zht;"

. zE/ is a real .1; 1/–form with values in the Hermitian endomorphisms
of .E; zht;"/.

In the course of the proof we will need the following result, which is proved in
[33, Lemma 3.7]. In our context, there is a much simpler proof though, which we give
below for the convenience of the reader.

Claim 9.5 For every fixed t > 0, and every index i we have

0D lim
"!0

Z
zX

"2

jsi j
2
i C "

2
�!0 ^!

n�1
t;" :
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Proof As the total mass of !0 ^!
n�1
t;" is independent of ", it is enough to prove thatR

fjsi j
2<"g !0 ^!

n�1
t;" converges to 0 as " approaches zero. The important observation

is that the potentials 't;" of !t;" are uniformly bounded in ", when t is fixed. This is a
consequence of Kołodziej’s Lp–estimate (see [47, Proof of Theorem 2.4.2, Example 2]),
because !n

t;" has a density f" with respect to a volume form satisfying kf"kLp � C ,
where C is independent of ".

Next, one can introduce a family of cut-off functions .�"/">0 for the divisor Di as
in [14, Section 9]. These functions satisfy the important property that their complex
Hessian, ddc�" , is uniformly dominated by a metric !P with Poincaré type along Di .
Then one can perform successive integrations by parts in a similar way as in the proof
of the Chern–Levine–Nirenberg inequality and see that there exists a uniform constant
C > 0 such that

R
fjsi j

2<"g !0 ^ !
n�1
t;" � C

R
fjsi j

2<"g !
n
P

. The constant incorporates
the sup-norms of the various potentials above. Claim 9.5 follows at once from the
finiteness of the volume of the Poincaré type metric !P .

Step 3 Computing slopes using !t;" Given a saturated subsheaf F � E , we aim
to lift F to a subsheaf of �F � �E , and to compute the slope of �F with respect to the
Kähler metrics !t;" .

Setup and Notation 9.6 Assume we are given a saturated subsheaf F � E , which
will automatically be reflexive. We write �F � �E for the unique saturated subsheaf
that agrees with F wherever the resolution morphism � is isomorphic. We denote
the singularity set of �F � �E by W � zX . This is the minimal closed subset of zX
outside which �F � �E corresponds to a subbundle, which we denote as zF � zEj zX nW .

Recall that W has codimension at least two. The restriction of zht;" endows zF with a
Hermitian structure. Write

‚zht;"
. zF / 2A1;1. zX nW;End. zF //

for its Chern curvature.

Claim 9.7 In the setting of Setup and Notation 9.6, the inequality

(9.7.1) n � c1. �F / � f!t;"g
n�1
�

Z
zX nW

trEnd
�
pr zF .tr!t;"

i‚zht;"
. zE/j zF /

�
�!n

t;"

holds. We refer to the right-hand side of (9.7.1) as the error term.

Explanation 9.8 In Equation (9.7.1), pr zF is the orthogonal projection zE! zF . The
symbol tr!t;"

denotes the trace relative to the Kähler metric !t;" . Given a bundle G
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and a G–valued form ˛ 2 A1;1.G/, recall that tr!t;"
˛ is the unique section of G

such that .tr!t;"
˛/˝!n

t;" D n �˛^!n�1
t;" . The object tr!t;"

i‚zht;"
. zE/j zF in (9.7.1) is

therefore a section of Hom. zF ; zE/.

Proof of Claim 9.7 We aim to relate the curvature of the subbundle . zF ; zht;"/ to the
one of . zE; zht;"/. Classically, this is done by introducing the second fundamental form
�t;" 2A1;0. zX nW;Hom. zF ; zF?// (see [16, Section V.14]), which satisfies the relation

‚zht;"
. zF /D pr zF .‚zht;"

. zE/j zF /C �
�
t;" ^ �t;" in A1;1. zX nW;End. zF //:

Multiplying by i , taking the trace (as endomorphism) and wedging with !n�1
t;" — and

observing that the operations of taking the metric trace and taking the endomorphism
trace commute — we obtain the following identity:

(9.7.2) c1. zF ; zht;"/^!
n�1
t;"

D trEnd
�
pr zF .tr!t;"

i‚zht;"
. zE/j zF /

�
�
!n

t;"

n
C trEnd.i�

�
t;" ^ �t;" ^!

n�1
t;" /„ ƒ‚ …

seminegative

in An;n. zX nW /. To make use of (9.7.2), recall the following identity, which follows
for instance from [43, Equation (**) on page 181]:3

(9.7.3)
Z
zX nW

c1. zF ; zht;"/^!
n�1
t;" D c1. �F / � f!t;"g

n�1:

Indeed, (9.7.1) follows by integrating (9.7.2) over zX nW with the help of (9.7.3).
Claim 9.7 follows.

Step 4 Analysis of the error term The aim of the current step is to state the following
claim.

Claim 9.9 In the setting of Setup and Notation 9.6, the error term converges to zero as
t; "! 0. More precisely,

(9.9.1) lim
.";t/!.0;0/

Z
zX nW

trEnd
�
pr zF .tr!t;"

i‚zht;"
. zE/j zF /

�
�!n

t;" D 0:

Before proving Claim 9.9 in Step 7 below, we need to introduce notation and establish
a number of auxiliary results.

3See also [33, Proposition 3.8, Case 1].
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Notation 9.10 If V is a complex vector space of dimension n and f 2 End.V /, we
denote by f �p the endomorphism of V ˝p defined on pure tensors by

f �p.v1˝ � � �˝ vp/ WD

pX
iD1

v1˝ � � �˝ vi�1˝f .vi/˝ viC1˝ � � �˝ vp:

Observation 9.11 In the setting of Notation 9.10, one has tr.f �p/D p �np�1 � tr.f /.
If V has an Hermitian structure and if f is Hermitian semipositive, then so is f �p .

Step 5 Analysis of tr!t;" ‚zht;"
. zE/ One fundamental object that appears in the

error term is tr!t;"
i‚zht;"

. zE/, which is a Hermitian endomorphism of the bundle zE .
The following claim relates it to the Ricci curvature of !t;" . Its formulation uses the
operator ]t;" . We briefly recall the definition.

Construction and Notation 9.12 Using the Kähler metrics !t;" , one constructs from
any .0; 1/–form � a .1; 0/–vector field ]t;" �, requiring that the relation

�.x�/ WD gt;".i]t;" �; �/

holds for any vector field � of type .1; 0/, where gt;" is the Hermitian metric on T 1;0 zX

associated with the Kähler form !t;" . Next, one extends the operator ]t;" to vector-
valued forms. In particular, if ˛ 2 A1;1. zX /, one can see ˛ as a .0; 1/–form with
values in .T 1;0 zX /� and define ]t;" ˛ 2 End.T zX / as follows: in local coordinates, let
us write !t;" D i

P
j ;k g

j xk
� dzj ^ dzk . Let .gj xk/ be the inverse of .g

j xk
/, and let

˛ D i
P

j ;k j̨ xk
� dzj ^ dzk be a .1; 1/–form. Then

]t;" ˛ D
X

j ;k;`

j̨ xk
g`
xk
� dzj ˝

@

@z`
:

It is easy to check the formula

(9.12.1) trEnd ]t;" ˛ D tr!t;"
˛:

Finally, the endomorphism ]t;" ˛ is Hermitian (resp. Hermitian semipositive) with
respect to gt;" if ˛ is real (resp. semipositive).

Claim 9.13 In the setting of Setup and Notation 9.6,

(9.13.1) tr!t;"
i‚zht;"

. zE/D .]t;" �"/
�p
˝ Id

T � zX˝q � Id
T zX˝p ˝.]t;" �"/

�q

in End. zE/.
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Proof of Claim 9.13 Following the standard computations of [33, page 524], one
obtains the following identities:

n �i‚zht;"
.T zX˝p/^!n�1

t;" D .]t;" Ric!t;"/
�p
�!n

t;" in An;n. zX ;End.T zX˝p//;

n �i‚zht;"
..T � zX /˝q/^!n�1

t;" D�.]t;" Ric!t;"/
�q
�!n

t;" in An;n. zX ;End.T � zX˝q//:

In summary, we deduce the following identity in An;n. zX ;End. zE//:

n � i‚zht;"
. zE/^!n�1

t;" D�
.]t;" Ric!t;"/

�p
˝ Id

T � zX˝q � Id
T zX˝p ˝.]t;" Ric!t;"/

�q
�
�!n

t;":

Equation (9.1.3) and the definition of tr!t;"
(see Explanation 9.8) thus imply (9.13.1).

This finishes the proof of Claim 9.13.

Step 6 Convergence of integrals Claim 9.13 reduces the study of the error term
to an analysis of the forms �" . We have seen in Step 2 that �" decomposes as �" DP

i ai�i;"D
P

i ai.ˇi;"C
i;"/. The present step analyses the contributions to the error
term that come from the 
i;" and ˇi;" , respectively.

Claim 9.14 In the setting of Setup and Notation 9.6, given any positive number t and
any index i , the following integrals converge to zero:

0D lim
"!0

Z
zX nW

trEnd
�
pr zF

�
.]t;" 
i;"/

�p
˝ Id

T � zX˝q j zF

��
�!n

t;";(9.14.1)

0D lim
"!0

Z
zX nW

trEnd
�
pr zF

�
Id

T
˝p

zX

˝.]t;" 
i;"/
�q
j zF

��
�!n

t;":(9.14.2)

Proof of Claim 9.14 Using the special form of 
i;" found in Remark 9.3, there exists
a constant C 2RC such that

(9.14.3) ˙
i;" �
C � "2

jsi j
2
i C "

2
�!0 in A 1;1

R . zX / for all " 2RC:

Each of the operations ]t;" � , � , ��p , and �˝ Id preserves (semi)positivity; see
Observation 9.11 and Construction and Notation 9.12. The following inequalities of
Hermitian endomorphisms of . zE; zht;"/ will thus again hold for all " 2RC :

˙.]t;" 
i;"/
�p
˝ Id

T � zX˝q �
C � "2

jsi j
2
i C "

2
� .]t;" !0/

�p
˝ Id

T � zX˝q ;(9.14.4)

˙ Id
T zX˝p ˝.]t;" 
i;"/

�q
�

C � "2

jsi j
2
i C "

2
� Id

T zX˝p ˝.]t;" !0/
�q:(9.14.5)
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As ]t;" !0 is a positive endomorphism of T zX whose trace is tr!t;"
!0 by (9.12.1), an

elementary computation4 shows that

(9.14.6) .]t;" !0/
�p
� p � np�1

� tr!t;"
.!0/ Id

T zX˝p in End.T zX˝p; zh
˝p
t;" /:

Consequently, there exists C 0 2RC such that the following inequalities of Hermitian
endomorphisms of . zF ; zht;"/ will hold for all " 2RC :

˙ pr zF
�
.]t;" 
i;"/

�p
˝ Id

T � zX˝q j zF

�
�

C � "2

jsi j
2
i C "

2
� pr zF

�
.]t;" !0/

�p
˝ Id

T � zX˝q j zF

�
by (9.14.4)

�
C 0 � "2

jsi j
2
i C "

2
� tr!t;"

.!0/ � Id zF by (9.14.6):

Recalling the definition of tr!t;"
.!0/ from Explanation 9.8, we find C 00 2 RC such

that the following inequality of real .n; n/–forms holds:

(9.14.7) ˙ trEnd
�
pr zF

�
.]t;" 
i;"/

�p
˝ Id

T � zX˝q j zF

��
�!n

t;" �
C 00 � "2

jsi j
2C "2

�!0 ^!
n�1
t;" :

From Claim 9.5 and Lebesgue’s dominated convergence theorem, one deduces the
convergence of (9.14.1). Convergence of (9.14.2) follows in a similar fashion, using
(9.14.5) in place of (9.14.4). Claim 9.14 follows.

Claim 9.15 In the setting of Setup and Notation 9.6, given any index i , the following
integrals converge to zero:

0D lim
.";t/!.0;0/

Z
zX nW

trEnd
�
pr zF

�
.]t;" ˇi;"/

�p
˝ Id

T � zX˝q j zF

��
�!n

t;";(9.15.1)

0D lim
.";t/!.0;0/

Z
zX nW

trEnd
�
pr zF

�
Id

T zX˝p ˝.]t;" ˇi;"/
�q
j zF

��
�!n

t;":(9.15.2)

Proof of Claim 9.15 Using its special form, we see that ˇi;" is a semipositive, real
.1; 1/–form. Using Observation 9.11, and using again that the operations ]t;" � , � ,
��p , and �˝ Id preserve semipositivity, we hence obtain the following inequality of
real forms in An;n.End. zE/; zht;"/:

(9.15.3) ..]t;" ˇi;"/
�p
˝ Id

T � zX˝q / �!
n
t;" � pnp

� Id zE �ˇi;" ^!
n�1
t;" :

4Use Observation 9.11 to compute the left-hand side.
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Therefore, there exists a constant C 2RC such that the following inequalities hold for
all values of t and ":

0�

Z
zX nW

trEnd
�
pr zF

�
.]t;" ˇi;"/

�p
˝ Id

T � zX˝q j zF

��
�!n

t;" semipositivity of ˇi;"

� C �

Z
zX nW

ˇi;" ^!
n�1
t;" inequality (9.15.3)

D C �

�Z
zX

.ˇi;"C 
i;"/^!
n�1
t;" �

Z
zX


i;" ^!
n�1
t;"

�
D C �

�
f�i;"g � f!t;"g

n�1„ ƒ‚ …
lim

t!0
D0, see (9.15.4)

�

Z
zX


t;" ^!
n�1„ ƒ‚ …

lim
"!0
D0, by Claim 9.14

�

As for the first term, since zH D ��H is orthogonal to Di , (9.1.1) and (9.1.2) imply

(9.15.4) f�i;"g � f!t;"g
n�1
D tn�1.Di � f!0g

n�1/ for all "; t and i:

Consequently, the term converges to 0 when t goes to 0. Equation (9.15.1) follows.
Equation (9.15.2) follows in a similar fashion. This ends the proof of Claim 9.15.

Step 7 Proof of Claim 9.9 Claim 9.9 now follows from Claim 9.13, and the conver-
gence results of Claims 9.14 and 9.15.

Step 8 Proof of item (8.1.1) of Theorem 8.1 We will first prove semistability of E

with respect to H. Since the ample divisor H 2Div.X / was arbitrarily chosen when we
fixed the standard setting (Setup and Notation 4.1), this will in fact prove semistability
of E with respect to any ample class. To this end, let F � E be any reflexive sheaf.
Using Setup and Notation 9.6, we need to show that the number

(9.15.5) c1.F / � ŒH �n�1
D c1. �F / � Œ zH �n�1 (9.1.2)

D lim
.t;"/!.0;0/

c1. �F / � f!t;cg
n�1

is seminegative. But seminegativity of the right-hand side follows immediately from
Claims 9.7 and 9.9. Semistability follows.

Therefore, arguing by induction, to prove the existence of a parallel decomposition
E D E1 ˚ � � � ˚ Ek whose summands are stable of slope zero with respect to any
polarisation, it suffices to show the following claim.

Claim 9.16 Any saturated subsheaf F �E of slope �H .F /D 0 is a direct summand
and the associated subbundle F WDF jXreg is parallel with respect to the connection
on E jXreg induced by the Chern connection of .TXreg; hH /.
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Proof of Claim 9.16 Assume that one such F is given. Both sides of (9.15.5) are
then zero. Recall from Construction 9.1 that !t;" converges to ! zH in the C1loc.

zX nD/–
topology. Therefore, the second fundamental form �t;" converges locally smoothly on
zX n .D[W / to a smooth form � zH . Moreover, we get from (9.7.2) that

lim inf
.t;"/!.0;0/

Z
zX nW

trEnd.�i��t;" ^ �t;" ^!
n�1
t;" /D 0:

As �i��t;" ^ �t;" ^ !
n�1
t;" and �i��

zH
^ � zH ^ !

n�1
zH

are top-forms with values in the
bundle of Hermitian semipositive endomorphisms of zF , the Fatou lemma shows that
�i��

zH
^ � zH ^!

n�1
zH

and hence the second fundamental form vanish identically:

(9.16.1) � zH D 0 on zX n .D[W /:

This has two consequences. First, by [16, IV. Proposition 14.9] on zX n .D[W / one
has a holomorphic splitting zE D zF ˚ zF? . One can push that splitting down to X to
obtain a holomorphic splitting EDF˚F? on the big open subset Xreg n�.W / of X.
By reflexivity, this direct sum decomposition extends to X.

Second, as F is a direct summand of E , the bundle F is a subbundle of E , and hence
�.W /\Xreg D∅. In fact, we even have W D∅. Consequently, (9.16.1) implies that
the second fundamental form of F in E vanishes, from which parallelism follows by
definition; see [16, V. Proposition 14.3].

Step 9 Proof of (8.1.2) Let F be a direct summand of E . Necessarily, �H .F /D 0.
By Claim 9.16, the bundle F WDF jXreg is holomorphically complemented and parallel.
Therefore, Fx �Ex is a G–invariant complex subspace by the holonomy principle.
We are left to prove that the parallel transport of a G–invariant subspace of Ex induces
a holomorphic subbundle of E over Xreg that extends to X as a direct summand of E .
This follows from the observation that G is unitary, so that the orthogonal complement
of a G–invariant complex subspace of Ex is still G–invariant.

10 Proof of Theorem 8.2 (“Bochner principle for tensors”)

First, observe that parallel transport of a G–invariant C–linear tensor t 2Ex induces
a parallel section � of E . As the .0; 1/–part of the connection coincides with the
holomorphic structure x@E on E , we have x@E.�/ D 0, so that � is holomorphic.
As E is reflexive, the corresponding coherent analytic sheaf E an over X an is likewise
reflexive; see for example [26, Lemma 2.16]. It follows that � yields an element
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of H 0.X an;E an/ and hence of H 0.X;E / by GAGA. Therefore, every G–invariant
element of Ex produces a section of E over X.

For the converse, we need to show that the evaluation �x of any section � 2H 0.X;E /

is a G–invariant element of Ex . The proof is carried out in two steps:

Step 1 (G is connected) Let � 2H 0.X;E /Xf0g and let F be the saturation in E

of the trivial subsheaf h�i�E generated by � . We claim that codim supp.F=h�i/�2.
Indeed, otherwise one would have �H .F / > �H .h�i/D 0, which would contradict
the semistability of E with respect to H n�1 proved in (8.1.1) of Theorem 8.1. From
this, we conclude that h�i coincides with F , as both sheaves are reflexive and agree on
a big open subset of X. In other words, h�i is saturated, and hence a direct summand
of E ; see Claim 9.16 for detailed arguments of this. It therefore follows from (8.1.2)
of Theorem 8.1 that �x generates a G–invariant complex line in Ex .

As G is connected, it follows from Proposition 5.3 that G is a product of SU’s and Sp’s.
In particular, G is semisimple and therefore equal to its own commutator subgroup
[11, Theorem 23.2]. It follows that every homomorphism �W G!C� is trivial. As a
result, every G–invariant line in Ex has to be pointwise fixed, and hence �x 2Ex is
fixed by G, as claimed.

Step 2 (general case) Theorem and Notation 7.1 provides us with a holonomy cover,
that is, a quasi-étale morphism 
 W Y !X such that Hol.Yreg;gHY

/ is connected for
HY WD 


�H. Set
EY WD .T

˝p
Y
˝ .T �Y /

˝q/��

and take � 2H 0.X;E /. Let Y ı WD 
�1.Xreg/. Then 
 jY ı W Y ı! Xreg is a locally
biholomorphic map between complex manifolds, so there is a well-defined pullback
tensor .
 jY ı/�.� jXreg/ 2 H 0.Y ı;EY / which extends to a section �Y of EY on the
whole of Y . By Step 1 and the holonomy principle, z� jYreg is parallel with respect
to gHY

. It follows from the universal property of the EGZ construction, Proposition 3.5,
that on Y ı we have 
 �!H D !HY

, which induces the analogous equality for the
associated Riemannian metrics. The claim follows from the holonomy principle together
with the observation that vanishing of covariant derivatives and hence parallelism is a
local property. This concludes the proof of Theorem 8.2.

11 Augmented irregularity revisited

Combining our findings on covering constructions and Bochner principles, we obtain
two new characterisations of varieties with (non)vanishing augmented regularity, which
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do not rely on the computation of invariants on quasi-étale covers, but only on invariants
of the variety under investigation. Additionally, we use the Bochner principle to provide
two criteria for detecting finite quotients of abelian varieties.

Theorem 11.1 (augmented regularity and symmetric differentials) In the standard
setting (Setup and Notation 4.1), the following are equivalent:

(11.1.1) The augmented irregularity does not vanish: zq.X /¤ 0.

(11.1.2) The restricted holonomy leaves a nonzero vector of V invariant: V0 ¤ f0g.

(11.1.3) There exists a nontrivial symmetric differential on X. In other words, there
exists m 2NC such that h0.X;SymŒm��1

X
/¤ 0.

Remark 11.2 In the smooth case, similar results were proven by Kobayashi in
[42, Theorem 6]. Following the argumentation of [42, Theorem 6 and 7], our methods
even give an upper bound for the number of symmetric differentials:

h0.X;SymŒm��1
X /�

�mCzq.X /�1

m

�
for all m> 0:

Remark 11.3 We emphasise that the equivalence .11.1.1/() .11.1.3/ gives a purely
algebrogeometric characterisation of nonvanishing augmented regularity in terms of
invariants of X alone. This underlines yet again the importance of this concept in the
structure theory of klt varieties with numerically trivial canonical divisor.

As a corollary we obtain the following vanishing theorem, which generalises [60,
Theorem 2.1(2)] to our setup.

Corollary 11.4 (detecting finite quotients of abelian varieties, II) Let X be a klt
variety with numerically trivial canonical divisor. Assume that TX is stable with
respect to some ample Q–divisor. Then

h0.X;SymŒm��1
X /D 0 for all m 2NC;

unless X is of the form A=G , where A is an abelian variety and G is a finite group
whose action on A is free in codimension one.

Proof If h0.X;SymŒm��1
X
/ ¤ f0g, it follows from Theorem 11.1 that V0 ¤ f0g.

As TX is stable, using Corollary 6.8 we see that the representation of the full holonomy
group G on V is irreducible. Looking at Observation and Notation 6.2 we conclude
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that V0 DW0 D V . Therefore, Theorem and Notation 7.1 implies that there exists a
quasi-étale cover 
 0W A0!X, where A0 is an abelian variety. By taking Galois closure
of 
 0 (see Appendix B in the arXiv version of [27]) and observing that finite étale
covers of abelian varieties are abelian varieties themselves, we conclude that there
exists an abelian variety A together with a quasi-étale Galois cover 
 W A!X.

Remark 11.5 Setup as in Corollary 11.4. If nonzero symmetric differentials exist
on X, the cotangent sheaf is flat with finite monodromy and stable, but not strongly
stable. The group G is isomorphic to the holonomy group of a singular Kähler–Einstein
metric on X, and the holonomy representation of G on the fibre over some smooth point
of X is irreducible. Smooth examples exhibiting this behaviour can be found in [52].

11.1 Preparation for the proof of Theorem 11.1

We note the following two simple representation-theoretic lemmata, whose proof can
be found in the arXiv version of this paper.

Lemma 11.6 Let n� 2. Let G D SU.n/ or let n be even and G D Sp.n=2/. Let W

be the complex standard representation of G. Then .Symm W �/G D f0g for all m� 0.

Lemma 11.7 Let � be a finite group of order m WD #� and let V ¤ f0g be a finite-
dimensional complex �–representation. Then .Symm V /� ¤ f0g.

11.2 Proof of Theorem 11.1

Equivalence (11.1.1)() (11.1.2) This follows from (7.2.2) of Corollary 7.2.

Implication (11.1.2)) (11.1.3) The action of G on V0 is given by the representation
of a finite group � on V0 ; see (7.2.1) of Corollary 7.2. Set m WD #� . Hence, by
Lemma 11.7, there exists a G–invariant nonzero vector in .Symm V �

0
/� .Symm V �/.

The Bochner principle for reflexive tensors, Theorem 8.2, then implies that, as claimed,
H 0.X;SymŒm��1

X
/¤ f0g.

Implication :(11.1.2)) :(11.1.3) Suppose V0Df0g. Let � 2H 0.X;SymŒp��1
X
/

for some p > 0. We aim to show that � vanishes identically. The Bochner principle
for tensors, Theorem 8.2, implies that �x 2 .Symp V �/G

ı

. As the action of Gı

on V � is totally decomposed (see Construction and Notation 5.1) and as V0D f0g, the
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standard decomposition of the symmetric product of a direct sum of representations
[9, Chapter II, (3.1)] yields

.Symp V �/G
ı

D

M
k1;:::km2NP

kjDp

.Symk1 V �1 /
Gı

1 ˝ � � �˝ .Symkm V �m/
Gım :

Set ni WD dim Vi and recall from Proposition 5.3 that for each i D 1; : : : ;m, either
Gıi Š SU.ni/, or ni is even and Gıi Š Sp.ni=2/. In either case, observe that the action
Gıi 	 V �i is isomorphic to the dual of the standard action of the respective group.
Lemma 11.6 hence implies that �x 2 .Symp V �/G

ı

D f0g. Therefore � D 0.

Part IV Varieties with strongly stable tangent sheaf

12 The basic dichotomy: CY and IHS

If X is a smooth, simply connected, irreducible compact Kähler manifold with trivial
first Chern class, then X is either an irreducible Calabi–Yau manifold or an irreducible
holomorphic symplectic variety, where these two classes are distinguished by the
algebra of holomorphic forms. The goal of this section is to show that after passing
to a quasi-étale cover, any projective klt variety with numerically trivial canonical
divisor and strongly stable tangent sheaf falls into one of the two classes introduced in
Definition 1.3. We will also give the proof of Proposition F and relate our discussion
to algebraic holonomy, a concept introduced by Balaji and Kollár in [2].

12.1 Differential forms on varieties with strongly stable tangent sheaf

From the irreducible case of the general results obtained in Part II, we obtain the
following description of varieties with strongly stable tangent sheaf.

Theorem 12.1 (holonomy dichotomy for strongly stable varieties) Assume the stan-
dard setting (Setup and Notation 4.1). Then the sheaf TX is strongly stable if and
only if the restricted holonomy group is one of the following two groups and the action
of Gı on V is the standard action of the respective group:

(12.1.1) The group Gı is isomorphic to SU.n/.

(12.1.2) The dimension n is even, and the group Gı is isomorphic to Sp.n=2/.

In either case, there exists a quasi-étale cover 
 W Y !X such that restricted holonomy
and holonomy agree on Y . More precisely, using Notation 4.4 we have GıDGı

Y
DGY .
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Proof Recall from Corollary 7.4 that TX is strongly stable if and only if the restricted
holonomy representation Gı 	 V is irreducible. Proposition 5.3 (classification of
restricted holonomy) then yields the claimed dichotomy. The last claim is just the
existence of the holonomy cover, Theorem and Notation 7.1.

Theorem 12.2 (reflexive differentials on strongly stable varieties) In the standard
setting (Setup and Notation 4.1), assume that the sheaf TX is strongly stable. Then the
spaces of holomorphic p–forms can be controlled as follows:

(12.2.1) If Gı is isomorphic to SU.n/, then

h0.X; �
Œp�
X
/�

�
1 if p D 0 or p D n,
0 otherwise.

(12.2.2) If the dimension n is even and Gı is isomorphic to Sp.n=2/, then

h0.X; �
Œp�
X
/�

�
1 if 0� p � n and if p is even;
0 otherwise.

If G DGı , then the inequalities are in fact equalities.

Remark 12.3 If Gı is isomorphic to SU.n/ and if KX is linearly trivial, then we
already have G D Gı . In fact, if KX � 0, then there exists a nonzero holomorphic
top-form on Xreg , hence by the Bochner principle, Theorem 8.2, we have G � SU.n/.
But then G DGı D SU.n/.

Proof of Theorem 12.2 We handle both cases simultaneously. Let 
 W Y ! X be
a quasi-étale cover such that holonomy and restricted holonomy of Yreg agree, as
recalled in Theorem 12.1. The tangent sheaf TY is then likewise strongly stable, and
the restricted holonomies of Yreg and Xreg agree. We also observe that the reflexive
pullback morphisms 
 Œ��W H 0.X; �

Œp�
X
/! H 0.Y; �

Œp�
Y
/ are injective for all p . In

order to establish all claims made, it therefore remains to show that equality holds in
inequalities (12.2.1) and (12.2.2) for h0.Y; �

Œp�
Y
/. The Bochner principle for tensors,

Theorem 8.2, applies to show that the natural evaluation map establishes a linear
isomorphism

H 0.Y; �
Œp�
Y
/ Š�!

�Vp
V �
�GY :

In addition, we have that
�Vp

V �
�GY
Š
�Vp

V
�GY . The desired equalities hence follow

from classical invariant theory and representation theory for the groups SLC.V / D

SU.n/C and SpC.V /D Sp.n=2/C .
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Definition 12.4 (holomorphic symplectic form) Let X be a normal variety. A reflex-
ive differential two-form � 2H 0.X; �

Œ2�
X
/ on X is called holomorphic symplectic if

(12.4.1) � jXreg is everywhere nondegenerate,

(12.4.2) � jXreg is closed, that is, d.� jXreg/D 0, and

(12.4.3) � jXreg extends regularly to any resolution of singularities of X.

Lemma 12.5 (two-forms are holomorphic symplectic) In the standard setting (Setup
and Notation 4.1), assume that the sheaf TX is strongly stable. If there exists a
nonvanishing form 0¤ � 2H 0.X; �

Œ2�
X
/, then � is holomorphic symplectic, and any

other reflexive differential form on X is a constant multiple of the appropriate wedge
power � ^ � � � ^ � of � .

Proof The existence of 0 ¤ � 2 H 0.X; �
Œ2�
X
/ implies that we are in case (12.1.2)

of Theorem 12.1. As X is assumed to be projective and klt, the restriction of �
to Xreg extends to any resolution of X and is therefore automatically closed; see
[26, Proposition 1.4]. The assertion that � jXreg is everywhere nondegenerate has been
shown in [29, Corollary 8.10]. Together with (12.2.2) of Theorem 12.2 we conclude that
every reflexive differential form on X is a constant multiple of a wedge power of � .

Combine Corollary 7.4, Theorem 12.2, and Lemma 12.5 to obtain the following.

Corollary 12.6 In the standard setting (Setup and Notation 4.1), if n is even and
G Š Sp.n=2/, then X carries a holomorphic symplectic form � with the following
property: if 
 W Y !X is any quasi-étale cover, we have an isomorphism of algebras

nM
pD0

H 0.Y; �
Œp�
Y
/DCŒ
 Œ����:

12.2 Calabi–Yau and irreducible holomorphic symplectic varieties

One can reformulate the results obtained in the previous subsection using the terminol-
ogy introduced in Definition 1.3 as follows.

Corollary 12.7 (dichotomy for varieties with strongly stable tangent sheaf) In the
standard setting (Setup and Notation 4.1), assume that TX is strongly stable. Then one
of the following cases occurs:

(12.7.1) The restricted holonomy group is equal to SU.n/, and if 
 W Y !X denotes
a quasi-étale cover making KY � 0, then Y is Calabi–Yau.
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(12.7.2) The dimension of X is even, the restricted holonomy group is equal to
Sp.n=2/, and if 
 W Y !X is a quasi-étale cover making Gı DGı

Y
DGY ,

then Y is irreducible holomorphic symplectic.

Remark 12.8 If n D 2, the definition of CY and IHS varieties coincide. However,
if n� 3, then (12.7.1) and (12.7.2) are mutually exclusive. The tangent sheaf of a CY
or IHS variety is strongly stable by [29, Proposition 8.20].

Remark 12.9 (varieties with linearly trivial canonical divisor and strongly stable
tangent sheaf) Corollary 12.7 implies that a normal projective variety with at worst
canonical singularities, linearly trivial canonical divisor, and strongly stable tangent
sheaf is either Calabi–Yau, or admits a finite, quasi-étale cover that is an irreducible
holomorphic symplectic variety; Example 14.9 describes a variety with linearly trivial
canonical divisor and no two-form that admits a quasi-étale cover that is IHS. This shows
that in (12.7.2) taking a quasi-étale cover in general cannot be avoided. The reader is en-
couraged to compare this observation with the smooth situation; see [29, Remark 8.22].

12.3 Characterisation of IHS and CY varieties in terms of holonomy

We recall that the definition of CY and IHS varieties, Definition 1.3, is formulated in
purely algebrogeometric terms. We are now in a position to give a complementary
characterisation of these two types of varieties purely in terms of differential-geometric
holonomy, as formulated in Proposition F and in complete accordance with the smooth
theory.

Proposition 12.10 (characterisation of CY and IHS varieties in terms of holonomy)
In the standard setting (Setup and Notation 4.1), the following conditions are equivalent:

(12.10.1) X is a Calabi–Yau variety.

(12.10.2) Hol.Xreg;gH / is connected and H 0.X; �
Œp�
X
/D f0g for all 0< p < n.

(12.10.3) Hol.Xreg;gH / is isomorphic to SU.n/.

Analogously, the following conditions are equivalent:

(12.10.4) X is an irreducible holomorphic symplectic variety.

(12.10.5) Hol.Xreg;gH / is connected, and there exists a holomorphic symplectic
two-form � 2H 0.X; �

Œ2�
X
/ such that

Ln
pD0 H 0.X; �

Œp�
X
/DCŒ� �.

(12.10.6) Hol.Xreg;gH / is isomorphic to Sp.n=2/.
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Proof Notice first that any of the conditions (12.10.1)–(12.10.6) implies that KX is
linearly equivalent to zero, and in particular that X has canonical singularities. This
is clear for (12.10.1), (12.10.4), and (12.10.5). For (12.10.3) and (12.10.6), this is a
consequence of the Bochner principle for reflexive forms, Theorem 8.2. Finally, for
(12.10.2) this follows from Proposition 5.3 and the Bochner principle for reflexive forms.

So, in any case, there exists a nowhere vanishing n–form on X. The Bochner principle
hence implies that G � SU.n/. Using the notation of Proposition 5.3 (classifica-
tion of restricted holonomy), we obtain that Gı D �m

iD1
Gıi acts as a product, and

if ni D dim Vi then either Gıi D SU.ni/ or ni is even and Gıi D Sp.ni=2/.

Implication (12.10.1)) (12.10.3) We know that Gı �G � SU.n/ and we need to
prove that equality holds in both steps. Using Theorem and Notation 7.1, one can find
a quasi-étale holonomy cover 
 W Y !X such that GY D �

m
iD1

Gıi . By the Bochner
principle for reflexive forms, this yields m independent reflexive holomorphic forms of
positive degree on Y . Given the restrictions on the algebra of reflexive differential forms
on Y dictated by the CY condition, one gets successively that mD 1 and GıD SU.n/.
The conclusion follows.

Implication (12.10.3) ) (12.10.2) This is a direct application of the Bochner prin-
ciple for reflexive forms.

Implication (12.10.2)) (12.10.1) We have GıDG�SU.n/. Using Proposition 5.3,
one gets for each 1� i �m that Gi DGıi is either SU.ni/ or Sp.ni=2/, where ni D

dim Vi . By the Bochner principle for reflexive forms, we have that h0.X; �
Œni �
X
/� 1,

which implies that for all 1 � i �m, one either has ni D 0 or ni D n. In particular,
mD 1. Moreover, given the restrictions on the algebra of reflexive differential forms
on X dictated by the CY condition, G cannot be the unitary symplectic group; it follows
that GD SU.n/. Now, if 
 W Y !X is any quasi-étale cover, then Gı

Y
DGıD SU.n/,

and hence the Bochner principle implies that X is CY.

The second set of equivalences is proven analogously. The arXiv version of this paper
spells out all details.

12.4 Characterisation in terms of algebraic holonomy groups

In this section, we characterise the two cases of the dichotomy in terms of stability
properties of powers of the (co)tangent sheaf.
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12.4.1 Holonomy groups of stable bundles We start by giving a quick introduction
to the theory of algebraic holonomy groups of stable reflexive sheaves, as developed
in [2]. We follow [19, Section 6.19] and refer the reader to these two sources for
references of the classical results mentioned below.

Theorem and Definition 12.11 (algebraic holonomy) Let X be a normal projective
variety, and let E be a reflexive sheaf on X, locally free away from a small subset
B � X. Suppose that E is stable and of slope �H .E /D 0 with respect to an ample
Cartier divisor H on X. Let x 2Xreg nB and let Ex be the fibre of E over x .

Then there exists a unique smallest subgroup Hx.E /�GLC.Ex/, called the algebraic
holonomy group of E at x , such that the following holds: For every smooth, pointed,
projective curve .D;y/ and every pointed morphism gW .D;y/! .X;x/, where E

is locally free along g.D/ and where g�.E / is polystable (and hence unitary flat by
a theorem of Narasimhan and Seshadri), the image of the resulting representation of
�1.D;y/! GLC..g

�E /y/D GLC.Ex/ is contained in Hx.E /.

We emphasise that in contrast to the discussion of differential-geometric holonomy
groups in previous parts of the paper, the above construction is algebraic.

Remark 12.12 We refer the reader to [2, Theorem 20] for a further characterisation
of algebraic holonomy groups. More explanations regarding this result are given in the
arXiv version of this paper.

Remark 12.13 Connectivity properties of the algebraic holonomy groups are closely
connected to the question whether a given stable sheaf of degree zero is actually strongly
stable; see [19, Lemma 6.22].

The following Bochner principle for the algebraic holonomy group provides a link to
differential-geometric holonomy groups.

Proposition 12.14 (Bochner principle for algebraic holonomy [2, Theorem 20(3)])
Setup as in Theorem and Definition 12.11. Then, for every m; n 2N , the evaluation
map gives a one-to-one correspondence between direct summands of the reflexive tensor
product .E˝m˝.E �/˝n/�� and Hx.E /–invariant subspaces of E˝m

x ˝.E �x /
˝n .

Observing that Tannakian duality and the knowledge of a small number of representa-
tions determines a reductive group completely [2, Section 4] one obtains the following
result.
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Proposition 12.15 Setup as in Theorem and Definition 12.11. Assume additionally
that det Ex Š OX and that Hx.E / is connected. Then the following are equivalent:

(12.15.1) For some (and a posteriori all) m� 2, the mth reflexive symmetric power
SymŒm�.E / WD Symm.E /�� is indecomposable.

(12.15.2) The algebraic holonomy Hx.E / satisfies either Hx.E / Š SLC.Ex/ or
Hx.E /Š SpC.Ex/ for a suitable complex-symplectic form on Ex . In the
second case, rank E is even.

Proof From the proof of [2, Proposition 41], it follows that Hx.E / is one of the
following: SLC.Ex/, GLC.Ex/, SpC.Ex/, or GSpC.Ex/. The two groups not ap-
pearing in our list are excluded by the Bochner principle, Proposition 12.14, and the
assumption on the determinant of E .

12.4.2 The basic dichotomy in terms of algebraic holonomy Using the theory of
algebraic holonomy groups summarised in the previous section, we may now give
another characterisation of the two cases in the basic dichotomy.

Theorem 12.16 In the standard setting (Setup and Notation 4.1), additionally assume
that !X ŠOX , that TX is strongly stable, and that G DGı . Then the following hold:

(12.16.1) The variety X is CY if and only if the connected component of Hx.TX / is
equal to SLC.TxX /.

(12.16.2) The variety X is IHS if and only if the connected component of Hx.TX /

is equal to SpC.TxX /, where the linear complex-symplectic form on TxX

is the evaluation of the holomorphic symplectic two-form.

Remark 12.17 We thank Stéphane Druel for explaining the following to us: In the
setup of Theorem 12.16, it can be shown by a more detailed differential-geometric
analysis that the structure group of TXreg can be reduced to the complexification GC

of G, which is reductive since G is compact. Therefore, by [2, Theorem 1(4)] the
subgroup Hx.TX /�GC is in fact already connected.

Proof of Theorem 12.16 From [19, Lemma 6.20] and the proof of [2, Lemma 40] it
follows that there exists a quasi-étale cover 
 W Y !X and a point y 2Y mapping to x

such that Hy.

Œ��TX /DHy.TY /DHx.TX /

ı . Note that X is CY (resp. IHS) if and
only if Y is. Thus one can assume without loss of generality that Hx.TX / is connected.

We claim that SymŒ2�TX is indecomposable. Indeed, by the Bochner principle for
bundles, Theorem 8.1, a direct summand would give rise to a G–stable subspace of
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the G–representation Sym2.TxX /, which is irreducible by [22, Section 24.1 and 24.2],
a contradiction.

We may hence apply Proposition 12.15 to conclude that Hx.TX / is either SLC.TxX /

or SpC.TxX /. We claim that the latter case occurs if and only if X carries a
holomorphic symplectic form. Indeed, if Hx.TX /D SpC.TxX /, then the Bochner
principle for algebraic holonomy, Proposition 12.14, implies that �Œ2�

X
has a one-

dimensional trivial direct summand; the corresponding two-form is holomorphic
symplectic owing to Lemma 12.5. Conversely, if there exists a nonvanishing two-
form on X, then the direct summand �Œ2�

X
� .TX ˝TX /

�� , which is polystable by
Theorem 8.1, is decomposable. As a consequence,

V2
.T �x X / is decomposable as a

Hx.TX /–representation, which in turn excludes the algebraic holonomy from being
equal to SLC.TxX / by [24, Theorem 5.5.11].

13 Fundamental groups

This section is devoted to studying the fundamental group of Calabi–Yau and irreducible
holomorphic symplectic varieties. In the smooth case, these varieties are by definition
simply connected but in our singular setup, this might not be the case anymore. Actually,
there are two relevant fundamental groups to look at, �1.X / and �1.Xreg/, and we
will obtain finiteness results concerning both of them.

13.1 Fundamental groups of even-dimensional CY and IHS varieties

Theorem 13.1 summarises our results for varieties of even dimension. It is expected
to hold also in odd dimensions, and even more generally for varieties with vanishing
augmented regularity; see [45, Conjecture 4.16] and [13, Question 5.12]. Section 13.2
contains partial results in this direction.

Theorem 13.1 (fundamental groups of even-dimensional strongly stable varieties)
In the standard setting (Setup and Notation 4.1), if TX is strongly stable and if dim X

is even, then �1.X / is finite. In particular, the topological fundamental group of an
IHS variety is finite.

Proof Let 
 W Y ! X be a global index-one cover, as given by Proposition 2.16.
The image of �1.Y / in �1.X / has finite index by [12, Proposition 1.3]. To prove
finiteness of �1.X /, it therefore suffices to show that �1.Y / is finite. As Y has
canonical singularities, this will follow from [29, Proposition 8.23] once we show
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that �.Y;OY /¤ 0. First, we note that dim Y is even and that the tangent sheaf TY is
strongly stable. In addition, [29, Proposition 6.9] shows that

hq.Y;OY /D h0.Y; �
Œq�
Y
/ for all 0� q � n;

and so Theorem 12.2 yields that

�.Y;OY /D h0.Y;OY /C h0.Y; �
Œ2�
Y
/C � � �C .�1/n � h0.Y; �

Œn�
Y
/� 2:

This concludes the proof of Theorem 13.1.

Combining Theorem 13.1 and [29, Proposition 7.3] we obtain the following result.

Corollary 13.2 (étale fundamental groups of smooth locus) In the setting of Theorem
13.1, the étale fundamental group y�1.Xreg/ is finite. In particular, the étale fundamental
group of the smooth locus of any IHS variety is finite.

Once finiteness of the fundamental group is established, following the arguments of
[4, Proof of Proposition 4(2)] one sees that the fundamental group is actually trivial;
see the arXiv version of this paper for a detailed proof.

Corollary 13.3 Let X be a CY variety of even dimension or an IHS variety. Then X

is simply connected.

Remark 13.4 (Corollary 13.3 is optimal) There are smooth odd-dimensional CY
manifolds with nontrivial, finite fundamental group. For instance, there exists a fixed-
point-free action of Z5 on the diagonal quintic threefold in P4 such that the quotient
has trivial canonical divisor.

Remark 13.5 The arguments and techniques of [53, Section 2] can be easily adapted
to study klt varieties with numerically trivial canonical class that admit a quasi-étale
cover by an IHS variety, or, in other words, to varieties whose restricted holonomy
equals Sp.n=2/. In analogy with the smooth case, one might call these Enriques
varieties. An analogue of [29, Lemma 8.14] holds in this singular setup.

13.2 Fundamental groups of odd-dimensional CY varieties

After the discussion in the previous subsection, it remains to consider the funda-
mental group of odd-dimensional CY varieties. In the smooth case, it follows from
the Cheeger–Gromoll theorem that such varieties have finite fundamental group;
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see [4, Proof of Theorem 1]. Here, we gather some partial information for the singular
case. All of these go back to Hodge-theoretical arguments and use the nonexistence of
reflexive symmetric differentials. In fact, they hold for arbitrary varieties with vanishing
augmented irregularity.

Theorem 13.6 (fundamental group of varieties with zq D 0, I) Let X be a projec-
tive klt variety with numerically trivial canonical divisor and vanishing augmented
irregularity, zq.X /D 0. Then the following hold:

(13.6.1) The fundamental group �1.X / does not have any finite-dimensional repre-
sentation with infinite image (over any field).

(13.6.2) For each n 2 N , the fundamental group �1.X / has only finitely many
n–dimensional complex representations up to conjugation.

(13.6.3) If infinite, the group �1.X / cannot have weakly polynomial growth in the
sense of [40, Definition 1.1].

Remark 13.7 There exist finitely generated, infinite groups that do not admit finite-
dimensional representations. One example is Higman’s group [5, Example 1.1].

Remark 13.8 Concerning (13.6.3), see also the discussion in [13, page 500].

Proof of Theorem 13.6 Let � W zX ! X be a resolution of X and recall from
[59, Theorem 1.1] that �1. zX /D �1.X /.

Proof of (13.6.1) Argue by contradiction and suppose that there exists a representation
�1. zX /!GLr .K/ with infinite image for some positive integer r and some field K. It
then follows from a recent result of Brunebarbe, Klingler, and Totaro [10, Theorem 0.1]
that there exists a number m> 0 such that there is a nonzero element

0¤ z� 2H 0. zX ;Symm�1
zX
/:

Restricting z� to the complement of the exceptional divisor of � we obtain a non-
trivial element � 2H 0.X;SymŒm��1

X
/, which by Theorem 11.1 yields zq.X /¤ 0, a

contradiction.

Proof of (13.6.3) Item (13.6.3) follows from (13.6.1) and from the (deep) fact that
an infinite, finitely generated group with weakly polynomial growth admits a finite-
dimensional (real) representation with infinite image; see [40, Section 4].

Proof of (13.6.2) We saw in the proof of (13.6.1) that H 0. zX ;Symm�1
zX
/D f0g for

all m> 0. It hence follows from [1, Proposition 2.4] or [41, Theorem 1.6(i)] that the
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variety Hom.�1.X /;GLr .C// ==GLr .C/, which parametrises representations up to
Jordan–Hölder equivalence, consists of finitely many points. By (13.6.1) and Maschke’s
theorem every complex representation of �1.X / is in fact semisimple, in which case
Jordan–Hölder equivalence reduces to equivalence up to conjugation. This establishes
the claim made in item (13.6.2).

Remark 13.9 The converse of (13.6.1) is however false. The singular Kummer
surface X DA=h˙1i that will be discussed in Example 14.1 satisfies zq.X /D 2 but
�1.X /D f1g. Indeed, the minimal resolution of X is a K3 surface, hence it is simply
connected and therefore so is X by Takayama’s result [59, Theorem 1.1].

Corollary 13.10 (fundamental group of varieties with zq D 0, II) Let X be a pro-
jective klt variety with numerically trivial canonical divisor and vanishing augmented
irregularity. Then the following hold:

(13.10.1) The fundamental group �1.Xreg/ does not have any finite-dimensional
representation with infinite image (over any field).

(13.10.2) For each n 2 N , the fundamental group �1.Xreg/ has only finitely many
n–dimensional complex representations up to conjugation.

(13.10.3) If infinite, the group �1.Xreg/ cannot have weakly polynomial growth in
the sense of [40, Definition 1.1].

Proof of Corollary 13.10 The items are proven separately:

Proof of (13.10.1) Let 
 W Y ! X be a Galois, maximally quasi-étale cover, as
constructed in [27, Theorem 1.5]. As 
 is quasi-étale, the Galois group G of 
 fits
into an exact sequence as follows:

(13.10.4) 1! �1.Yreg/

�
�!�1.Xreg/!G! 1:

We let �W Yreg ,! Y denote the inclusion map. Let �W �1.Xreg/! GLr .K/ be any
representation of �1.Xreg/ over any field K. Because Y is maximally quasi-étale,
it follows from [27, Section 8.1] or [30, Theorem 1.2] there exists a representation
�Y W �1.Y /! GLr .K/ making the following diagram commutative:

�1.Yreg/
� _


�

��

��
// //

�ı
Y

%%

�1.Y /

�Y

��

�1.Xreg/
�
// GLr .K/
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Let � WD img.�/. Further, as zq.Y /D 0, we may apply part (13.6.1) of Theorem 13.6
to conclude that �Y WD img.�ı

Y
/D img.�Y / is a finite, normal subgroup of � . Using

the exact sequence (13.10.4), from � we obtain a surjective group homomorphism
x�W G� �=�Y . As G is finite by definition, �=�Y is hence finite. Together with the
finiteness of �Y observed above, (13.10.1) follows.

Proof of (13.10.3) The claim follows as in the proof of (13.6.3).

Proof of (13.10.2) Fix n 2 N and set † WD �1.Xreg/ and †Y WD �1.Yreg/. As
every finite-dimensional complex representation of † is semisimple by (13.10.1) and
Maschke’s theorem, it suffices to show the claim for simple †–representations. Because
each �Y –representation factors over �1.Y /, Theorem 13.6 implies that the group †Y

has only finitely many n–dimensional complex representations up to conjugation.
Therefore, if �W †! GLC.V / is a simple n–dimensional representation, there are
only finitely many possibilities for �j†Y

up to conjugation. Consequently, again up to
conjugation, there are only finitely many possibilities for ind††Y

.�j†Y
/, the †–module

obtained via induction5 from †Y to †. There exists a natural †–module isomorphism

�W CŒ†=†Y �˝C V Š
�! ind††Y

.�j†Y
/;

where CŒ†=†Y � is the †–module of C–valued functions on the homogeneous †–space
†=†Y ; see [22, Example 3.6]. As the †–equivariant map v 7! �.1˝ v/ realises
the simple representation V as a direct summand of the semisimple representation
ind††Y

.�j†Y
/, there are only finitely many possibilities for � up to isomorphism, as

claimed in (13.10.2).

14 Examples

The present section gathers examples that illustrate the main results of this paper. As
announced in the introduction, we begin in Section 14.1 with two examples that show
how the holonomy changes under birational transformation. Perhaps more importantly,
Section 14.2 illustrates the classification scheme established in the previous sections, un-
derlines the necessity of using quasi-étale covers, and points out the differences to other
suggestions for a definition of “irreducible holomorphic symplectic variety” that are
found in the literature. Finally, Section 14.3 discusses moduli of sheaves on K3 surfaces.

5See for example [22, Section 3.3].
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14.1 Change of holonomy under crepant resolutions

The singular Kähler–Einstein metric !H discussed in the standard setting (Setup and
Notation 4.1) does depend on the choice of the ample divisor H. However, we have
seen in Proposition C that the isomorphism class of the restricted holonomy group Gı

is in fact independent of H. We can therefore speak of the restricted holonomy, and
ask how it changes under birational transformation. The following two examples show
that holonomy does in fact change, even for crepant resolutions of singularities.

Example 14.1 (singular Kummer surface) Let X WDA=h˙1i, where A is an abelian
surface, and let � W zX !X be the (crepant) minimal resolution of X, which is a K3
surface. We analyse the relevant (singular) Kähler–Einstein metrics:

On the crepant resolution If ! zX is any Ricci-flat Kähler metric on zX with associated
Riemannian metric g zX , then the associated holonomy group Hol. zX ;g zX / is isomorphic
to SU.2/.

On the singular Kummer surface If !A is any flat metric on A induced by a constant
metric from Cn , then !A is invariant under the action of ˙1 on A, and hence descends
to a singular Ricci-flat metric !X on X, in the sense of Theorem 3.3. The metric !X

is flat on Xreg .

Example 14.2 (symmetric square of a K3) Let S be a K3 surface, and let X WD

S �S=hii, where i W .s1; s2/ 7! .s2; s1/. The quotient map 
 W S �S ! X is quasi-
étale and Galois with group Z2 . Recall from [4, Section 6] that the Hilbert scheme zX
parametrising zero-dimensional subschemes of length two is an irreducible holomorphic
symplectic manifold and admits a birational, crepant map � W zX !X. Once again, we
analyse the relevant Kähler–Einstein metrics:

On the resolution Any smooth Ricci-flat Kähler metric ! on zX with associated
Riemannian metric g zX satisfies Hol. zX ;g zX /Š Sp.2/.

On the singular symmetric square On the other hand, if !S is a Ricci-flat Kähler
metric on S, then pr�

1
!S C pr�

2
!S defines a Kähler Ricci-flat metric on S �S that

descends to a singular Kähler Ricci-flat metric !X on X, with associated Riemannian
metric gXreg . One computes6 that Hol.Xreg;gXreg/ is an extension of SU.2/� SU.2/
by Z2 , hence the restricted holonomy is reducible.

6See Remark 4.6 and Proposition 4.3, as well as the first few lines of Section 10.
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14.2 Finite quotients

Singular varieties with trivial canonical class can be easily be constructed by taking
quotients. For an example, consider a quotient of an even-dimensional abelian variety
by the involution x 7! �x or a symmetric product of an irreducible holomorphic
symplectic manifold (resp. an even-dimensional Calabi–Yau manifold) as in Examples
14.1 and 14.2. However, exhibiting strongly stable singular varieties with trivial
canonical class seems to require more work.

14.2.1 Quotient of abelian varieties We construct quotients of abelian varieties
that have the algebra of reflexive holomorphic forms of a Calabi–Yau variety or of a
irreducible holomorphic symplectic variety.

Example 14.3 (a fake IHS variety with canonical singularities) This is a higher-
dimensional generalisation of the singular Kummer surfaces discussed in Example 14.1.
Take A an abelian surface, and consider Y WD A=h˙1i. A nonzero holomorphic
two-form !A on A descends to a symplectic form !Y of Yreg . Now, let us consider
X WD Y .n/, the nth symmetric product of Y for some n� 2. The variety X is realised
as the quotient Y n=Sn . The two-form

P
pr�i !Y is an Sn–invariant symplectic form

on .Yreg/
n , where pri W Y

n! Y is the projection to the i th factor. Hence it descends
to a symplectic form ! on Xreg , which we can interpret as a reflexive two-form on X.
It is not hard to see that

L2n
pD0 H 0.X; �

Œp�
X
/D CŒ!�. In particular, X has the same

algebra of reflexive forms as a smooth irreducible holomorphic symplectic manifold.
However, its augmented irregularity is maximal, that is, equal to the dimension of X.
The tangent sheaf TXreg is flat and X admits a quasi-étale, Galois cover that is an
abelian variety.

In [49], Matsushita studies what he calls cohomologically irreducible symplectic (CIHS)
varieties. By definition, these are projective, holomorphic symplectic varieties X

satisfying the following two conditions:

� The variety X has Q–factorial, terminal singularities.

� We have an isomorphism of algebras,
L2n

pD0 H 0.X; �
Œp�
X
/DCŒ!�, where ! is

a holomorphic symplectic form.

While these varieties share many properties with smooth irreducible holomorphic
symplectic manifolds, they are not necessarily IHS; see the next example. This should
be compared with the smooth case, where requiring the second condition to hold already
forces the manifold to be simply connected, and hence IHS; see [29, Remark 8.19].
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Example 14.4 (a CIHS variety that has maximal augmented irregularity) Let A

be an abelian surface and t0 2 A be a two-torsion point. Let trt0
be the translation

by .0; t0/, and consider the morphism � W .s; t/ 7! .t; s/ as well as ' WD trt0
ı� . Observe

that ' induces a free action of Z4 on A � A. We notice that ' commutes with
.�1/W .s; t/ 7! .�s;�t/, so that ' and .�1/ generate an action of G WD Z4 � Z2

on A�A. We set X WD .A�A/=G and let � W A�A!X be the quotient map. As
the Z4–action is free, the map � is quasi-étale and the singularities of X are exactly
the images of the 256 two-torsion points under � , which are therefore isolated. Either
by direct computation or by a result of Namikawa [51, Corollary 1], we see that X has
terminal singularities, which are in addition obviously Q–factorial. On the other hand,
by construction

H 0.A�A; �2
A�A/

G
DC �!; where ! D pr�1.dz1 ^ dz2/C pr�2.dz1 ^ dz2/:

Observe that ! is symplectic, and that H 0.A�A; �
p
A�A

/G D f0g for p D 1; 3.

Example 14.5 (a fake CY threefold) The Calabi–Yau case is a bit more involved,
but still well-known; see [52, Example 2.17]. That example yields a free action of
G WD Z2 �Z2 on a product ADE1 �E2 �E3 of three elliptic curves such that

H 0.A; �
p
A
/G D

�
1 if p D 0; 3;

0 if p D 1; 2:

In particular, A=G is a smooth manifold with trivial canonical bundle and the algebra
of holomorphic forms of a Calabi–Yau threefold.

14.2.2 Quotients of CY manifolds A classical way to produce singular CY varieties
with quotient singularities is to start with a Fano manifold X of dimension at least 3

and a finite group G acting on X. Then one considers a general element Y 2 j�KX j
G.

If Y is smooth, then it is an irreducible Calabi–Yau manifold endowed with an action
of G. Indeed, it has trivial canonical bundle by adjunction, it is simply connected
by the Lefschetz hyperplane theorem and as X is Fano, one has h0.X; �

p
X
/ D 0

for p > 0 by Kodaira–Nakano vanishing, which in turn implies that h0.Y; �
p
Y
/D 0

for 0< p < dim Y by the Lefschetz theorem for Hodge groups; see [48, Lemma 4.2.2].
The variety Y=G has klt singularities. Moreover, if G preserves the holomorphic
volume form on Y , then Y=G has trivial canonical bundle; in particular it is Gorenstein
with canonical singularities. In that case, Y=G is automatically a Calabi–Yau variety
in the sense of Definition 1.3.
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Example 14.6 (a terminal quotient with non-Gorenstein isolated singularities) In
[21, Example 1], Favale shows that X D P2 �P2 admits an action of G D Z3 such
that a general element Y 2 j�KX j

G is smooth and such that G does not preserve the
holomorphic volume form on Y . The singular locus of the variety Y=G consists of
nine points, each of them being terminal. The restricted holonomy is equal to SU.3/,
yet Y=G is not CY.

The following example is constructed in a similar fashion, although the details are
more technical to work out. It is Gorenstein, has trivial canonical bundle, and possesses
nonisolated singularities.

Example 14.7 (a CY threefold with a one-dimensional singular locus) Now, fol-
lowing [21, Example 4], take X D P1 � P1 � P1 � P1 . It admits an action of
G DD16 �Z2 , where D16 is the dihedral group. As explained in loc. cit., a general
element Y 2 j�KX j

G is smooth and G preserves the holomorphic volume form
on Y . Moreover, the singular locus of the variety Y=G has dimension one — it is not
irreducible and some of its components may be zero-dimensional though.

14.2.3 Quotients of K3�K3 and of IHS manifolds The following example is an
example of cohomologically irreducible holomorphic symplectic variety in the sense
of Matsushita [49] (see also Section 14.2.1 and Example 14.4), yet it is covered by a
product of two K3 surfaces.

Example 14.8 (a CIHS variety with restricted holonomy SU.2/ � SU.2/) Let S

be a K3 surface with a symplectic involution � . The fixed-point locus of � consists
of isolated points. Consider the action of Z4 on S � S generated by the automor-
phism � defined by .x;y/ 7! .�.y/;x/. The fixed points of � are of the form .x;x/,
where x 2 Fix.�/, hence X WD .S � S/=h�i has isolated, Q–factorial singularities.
Moreover, we have by constructionM

p
H 0.S �S; �

p
S�S

/h�i DCŒ!�; where ! D pr�1 !S C pr�2 !S

for some symplectic form !S on S. Using Namikawa’s result [51, Corollary1] as
before, we see that X has terminal singularities, and therefore it is a CIHS variety.
However, it is covered by the product of two K3 surfaces, so it is not a quotient of
an IHS variety.
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We conclude with an example that shows that given a variety with trivial canonical
bundle and restricted holonomy Sp.n=2/, taking a finite, quasi-étale cover is indeed
necessary before a symplectic form will necessarily exist; see Section 12.2.

Example 14.9 (a quotient of an IHS manifold with KX trivial but no two-form)
Let S be a K3 surface endowed with an antisymplectic involution � . For instance,
take S to be the minimal resolution of the quotient .E �E/=h�i, where E is the
elliptic curve C=.Z ˚ iZ/ and � acts on E � E by diag.i;�i/. Define then �

to be the lift of diag.�1; 1/ to S ; see [54, Example 2]. Now, let us consider S Œ2�

the Hilbert scheme parametrising length 2 zero-dimensional subschemes of S. The
variety S Œ2� is an irreducible holomorphic symplectic manifold endowed with an
antisymplectic involution that we will still call � . The fixed locus of � is a smooth
Lagrangian submanifold of S Œ2� . If ! is a symplectic form on S Œ2� , then ��! D�!
hence ��!2D!2 . In particular X WDS Œ2�=h�i has canonical singularities (concentrated
along a surface), trivial canonical bundle, but no nonzero two-form. However, it has a
quasi-étale cover that is an IHS manifold.

14.3 Moduli spaces of sheaves on K3 surfaces

Let S be projective K3 surface. As usual, we equip the even integral cohomology
of S with the pairing

hv;wi WD �

Z
X

vw�;

where w� D .�1/iw for w 2H 2i.S;Z/. To each coherent sheaf E we associate its
Mukai vector v.E/ D ch.E/

p
td.S/ 2 H even.S;Z/. For a given v and an ample

Cartier divisor H on S, we denote by Mv.H / the Gieseker–Maruyama moduli
space of H–semistable sheaves with Mukai vector v on S. Any given v can be
decomposed as v D mv0 , where v0 D .r0; c0; a0/ is primitive and m 2 NC . For
simplicity, we assume that r0 > 0 in the following. Under the additional assumption
that H is “v–general”, every H–semistable sheaf is H–stable, and the corresponding
moduli space is nonempty if and only if c0 2 NS.S/ and hv0; v0i � �2. In [39],
Kaledin, Lehn, and Sorger show that if either m� 2 and hv0; v0i> 2, or m> 2 and
hv0; v0i � 2, then Mmv0

.H / is a projective variety with locally factorial, symplectic
(and hence canonical) singularities that admits a holomorphic symplectic two-form,
but no symplectic resolution. Assuming that hv0; v0i � 2 and m � 1, Perego and
Rapagnetta recently proved in [55, Theorem 1.19] that Mmv0

.H / is an IHS variety.
They also prove a similar statement for moduli of sheaves on abelian surfaces.

Geometry & Topology, Volume 23 (2019)



Klt varieties with trivial canonical class 2121

References
[1] D Arapura, Higgs bundles, integrability, and holomorphic forms, from “Motives,

polylogarithms and Hodge theory, II” (F Bogomolov, L Katzarkov, editors), Int. Press
Lect. Ser. 3, International, Somerville, MA (2002) 605–624 MR

[2] V Balaji, J Kollár, Holonomy groups of stable vector bundles, Publ. Res. Inst. Math.
Sci. 44 (2008) 183–211 MR

[3] A Beauville, Some remarks on Kähler manifolds with c1 D 0 , from “Classification
of algebraic and analytic manifolds” (K Ueno, editor), Progr. Math. 39, Birkhäuser,
Boston (1983) 1–26 MR

[4] A Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J.
Differential Geom. 18 (1983) 755–782 MR

[5] A J Berrick, Groups with no nontrivial linear representations, Bull. Austral. Math. Soc.
50 (1994) 1–11 MR Correction in 52 (1995) 345–346

[6] A L Besse, Einstein manifolds, Ergeb. Math. Grenzgeb. 10, Springer (1987) MR
[7] C Birkar, P Cascini, C D Hacon, J McKernan, Existence of minimal models for

varieties of log general type, J. Amer. Math. Soc. 23 (2010) 405–468 MR
[8] S Boucksom, P Eyssidieux, V Guedj (editors), An introduction to the Kähler–Ricci

flow, Lecture Notes in Mathematics 2086, Springer (2013) MR
[9] T Bröcker, T tom Dieck, Representations of compact Lie groups, Graduate Texts in

Mathematics 98, Springer (1985) MR
[10] Y Brunebarbe, B Klingler, B Totaro, Symmetric differentials and the fundamental

group, Duke Math. J. 162 (2013) 2797–2813 MR
[11] D Bump, Lie groups, Graduate Texts in Mathematics 225, Springer (2004) MR
[12] F Campana, On twistor spaces of the class C , J. Differential Geom. 33 (1991) 541–549

MR
[13] F Campana, Fundamental group and positivity of cotangent bundles of compact Kähler

manifolds, J. Algebraic Geom. 4 (1995) 487–502 MR
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[57] M Păun, Regularity properties of the degenerate Monge–Ampère equations on compact

Kähler manifolds, Chin. Ann. Math. Ser. B 29 (2008) 623–630 MR

Geometry & Topology, Volume 23 (2019)

http://dx.doi.org/10.1017/CBO9780511711985
http://msp.org/idx/mr/2665168
http://msp.org/idx/mr/1787733
http://dx.doi.org/10.1007/s00222-005-0484-6
http://msp.org/idx/mr/2221132
http://dx.doi.org/10.1090/S0894-0347-09-00658-4
http://msp.org/idx/mr/2629989
http://dx.doi.org/10.1007/s00222-012-0411-6
http://msp.org/idx/mr/3044124
http://dx.doi.org/10.2969/jmsj/03220325
http://msp.org/idx/mr/567422
http://dx.doi.org/10.1515/9781400858682
http://msp.org/idx/mr/909698
http://msp.org/idx/mr/1393940
http://dx.doi.org/10.1515/9781400864195
http://msp.org/idx/mr/1341589
http://dx.doi.org/10.1017/CBO9780511662560
http://msp.org/idx/mr/1658959
http://dx.doi.org/10.1007/BF02392879
http://msp.org/idx/mr/1618325
http://dx.doi.org/10.1007/978-3-642-18808-4
http://dx.doi.org/10.1007/978-3-642-18808-4
http://msp.org/idx/mr/2095471
http://dx.doi.org/10.1007/s11425-014-4927-7
http://msp.org/idx/mr/3319924
http://dx.doi.org/10.2969/msjmemoirs/014010000
http://msp.org/idx/mr/2104208
http://msp.org/idx/arx/math/0101028
http://dx.doi.org/10.4310/AJM.2001.v5.n1.a5
http://msp.org/idx/mr/1868164
http://dx.doi.org/10.1515/CRELLE.2011.077
http://msp.org/idx/mr/2863907
http://dx.doi.org/10.1353/ajm.1996.0052
http://dx.doi.org/10.1353/ajm.1996.0052
http://msp.org/idx/mr/1420924
http://msp.org/idx/arx/1802.01182
http://dx.doi.org/10.1007/BF02571950
http://msp.org/idx/mr/1306667
http://dx.doi.org/10.1007/s11401-007-0457-8
http://dx.doi.org/10.1007/s11401-007-0457-8
http://msp.org/idx/mr/2470619


2124 Daniel Greb, Henri Guenancia and Stefan Kebekus

[58] R Schoen, S-T Yau, Lectures on differential geometry, Conference Proceedings and
Lecture Notes in Geometry and Topology I, International, Cambridge, MA (1994) MR

[59] S Takayama, Local simple connectedness of resolutions of log-terminal singularities,
Internat. J. Math. 14 (2003) 825–836 MR

[60] G Tian, Kähler–Einstein metrics on algebraic manifolds, from “Transcendental meth-
ods in algebraic geometry” (F Catanese, C Ciliberto, editors), Lecture Notes in Mathe-
matics 1646, Springer (1996) 143–185 MR

[61] G Tian, Z Zhang, On the Kähler–Ricci flow on projective manifolds of general type,
Chinese Ann. Math. Ser. B 27 (2006) 179–192 MR

[62] H Tsuji, Existence and degeneration of Kähler–Einstein metrics on minimal algebraic
varieties of general type, Math. Ann. 281 (1988) 123–133 MR

[63] S T Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge–
Ampère equation, I, Comm. Pure Appl. Math. 31 (1978) 339–411 MR

[64] Z Zhang, On degenerate Monge–Ampère equations over closed Kähler manifolds, Int.
Math. Res. Not. 2006 (2006) art. id. 63640, 18 pages MR

DG: Essener Seminar für Algebraische Geometrie und Arithmetik
Fakultät für Mathematik, Universität Duisburg–Essen
Essen, Germany

HG: Department of Mathematics, Stony Brook University
Stony Brook, NY, United States

Current address: Institut de Mathématiques de Toulouse, Université Paul Sabatier
Toulouse, France

SK: Mathematisches Institut, Albert-Ludwigs-Universität Freiburg
Freiburg im Breisgau, Germany

Freiburg Institute for Advanced Studies
Freiburg im Breisgau, Germany

University of Strasbourg Institute for Advanced Study
Strasbourg, France

daniel.greb@uni-due.de, henri.guenancia@math.univ-toulouse.fr,
stefan.kebekus@math.uni-freiburg.de

http://www.esaga.uni-due.de/daniel.greb,
https://www.math.univ-toulouse.fr/~hguenanc/,
https://cplx.vm.uni-freiburg.de

Proposed: Dan Abramovich Received: 6 November 2017
Seconded: Richard Thomas, Jim Bryan Accepted: 2 December 2018

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://msp.org/idx/mr/1333601
http://dx.doi.org/10.1142/S0129167X0300196X
http://msp.org/idx/mr/2013147
http://dx.doi.org/10.1007/BFb0094304
http://msp.org/idx/mr/1603624
http://dx.doi.org/10.1007/s11401-005-0533-x
http://msp.org/idx/mr/2243679
http://dx.doi.org/10.1007/BF01449219
http://dx.doi.org/10.1007/BF01449219
http://msp.org/idx/mr/944606
http://dx.doi.org/10.1002/cpa.3160310304
http://dx.doi.org/10.1002/cpa.3160310304
http://msp.org/idx/mr/480350
http://dx.doi.org/10.1155/IMRN/2006/63640
http://msp.org/idx/mr/2233716
mailto:daniel.greb@uni-due.de
mailto:henri.guenancia@math.univ-toulouse.fr
mailto:stefan.kebekus@math.uni-freiburg.de
http://www.esaga.uni-due.de/daniel.greb
https://www.math.univ-toulouse.fr/~hguenanc/
https://cplx.vm.uni-freiburg.de
http://msp.org
http://msp.org

	1. Introduction
	1.1. The Bochner principle
	1.2. The holonomy cover
	1.3. Decomposition of the tangent sheaf
	1.4. Irreducible pieces of the decomposition
	1.5. Stability and irreducible (restricted) holonomy
	1.6. Fundamental groups
	Outline of the paper
	Acknowledgements

	Part I. Preparations
	2. Notation and conventions
	2.1. Global conventions
	2.2. Differential-geometric notions
	2.2.1. Differentials and vector fields
	2.2.2. Holonomy

	2.3. Local decomposition of Kähler manifolds
	2.4. Varieties and sets
	2.5. Morphisms
	2.6. Sheaves
	2.7. Augmented irregularity

	3. Singular Kähler–Einstein metrics
	3.1. Existence of Ricci-flat Kähler metrics
	3.2. Universal property of the EGZ construction
	3.3. Product situations

	4. The standard setting
	4.1. The standard setting
	4.2. Geodesic incompleteness
	4.3. Real analytic structure
	4.4. Quasi-étale covers in the standard setting
	4.4.1. Standard notation for quasi-étale covers
	4.4.2. Behaviour of holonomy under covers



	Part II. Holonomy
	5. The classification of restricted holonomy
	5.1. Notation
	5.2. Classification

	6. The canonical decomposition of the tangent sheaf
	6.1. Construction of the decomposition
	6.2. The decomposition the tangent sheaf
	6.3. Canonical decomposition vs earlier results
	6.3.1. Uniqueness
	6.3.2. Comparison with earlier results

	6.4. Stability and irreducibility of the holonomy representations

	7. Covering constructions
	7.1. Main result
	7.2. The weak holonomy cover
	7.3. Torus covers
	7.3.1. Preparation for the proof of Proposition 7.6
	7.3.2. Proof of Proposition 7.6

	7.4. Proof of Theorem and Notation 7.1
	7.5. Proof of Corollary 7.2
	7.6. Decomposition of the tangent sheaf


	Part III. The Bochner principle on singular spaces
	8. The Bochner principle for reflexive tensors and bundles
	8.1. The Bochner principle
	8.2. Applications

	9. Proof of Theorem 8.1 ("Bochner principle for bundles") 
	10. Proof of Theorem 8.2 ("Bochner principle for tensors") 
	11. Augmented irregularity revisited
	11.1. Preparation for the proof of Theorem 11.1
	11.2. Proof of Theorem 11.1


	Part IV. Varieties with strongly stable tangent sheaf
	12. The basic dichotomy: CY and IHS
	12.1. Differential forms on varieties with strongly stable tangent sheaf
	12.2. Calabi–Yau and irreducible holomorphic symplectic varieties
	12.3. Characterisation of IHS and CY varieties in terms of holonomy
	12.4. Characterisation in terms of algebraic holonomy groups
	12.4.1. Holonomy groups of stable bundles
	12.4.2. The basic dichotomy in terms of algebraic holonomy


	13. Fundamental groups
	13.1. Fundamental groups of even-dimensional CY and IHS varieties
	13.2. Fundamental groups of odd-dimensional CY varieties

	14. Examples
	14.1. Change of holonomy under crepant resolutions
	14.2. Finite quotients
	14.2.1. Quotient of abelian varieties
	14.2.2. Quotients of CY manifolds
	14.2.3. Quotients of K3 K3 and of IHS manifolds

	14.3. Moduli spaces of sheaves on K3 surfaces

	References


