Volume 23, issue 5 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 2, 533–1073
Issue 1, 1–532

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
On the asymptotic dimension of the curve complex

Mladen Bestvina and Ken Bromberg

Geometry & Topology 23 (2019) 2227–2276
Bibliography
1 I Agol, Ideal triangulations of pseudo-Anosov mapping tori, from: "Topology and geometry in dimension three" (editors W Li, L Bartolini, J Johnson, F Luo, R Myers, J H Rubinstein), Contemp. Math. 560, Amer. Math. Soc. (2011) 1 MR2866919
2 T Aougab, Quadratic bounds on the quasiconvexity of nested train track sequences, Topology Proc. 44 (2014) 365 MR3173789
3 J Behrstock, M F Hagen, A Sisto, Asymptotic dimension and small-cancellation for hierarchically hyperbolic spaces and groups, Proc. Lond. Math. Soc. 114 (2017) 890 MR3653249
4 G C Bell, K Fujiwara, The asymptotic dimension of a curve graph is finite, J. Lond. Math. Soc. 77 (2008) 33 MR2389915
5 M Bestvina, K Bromberg, K Fujiwara, Constructing group actions on quasi-trees and applications to mapping class groups, Publ. Math. Inst. Hautes Études Sci. 122 (2015) 1 MR3415065
6 M Bonk, O Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000) 266 MR1771428
7 B H Bowditch, Tight geodesics in the curve complex, Invent. Math. 171 (2008) 281 MR2367021
8 S V Buyalo, Asymptotic dimension of a hyperbolic space and the capacity dimension of its boundary at infinity, Algebra i Analiz 17 (2005) 70 MR2159584
9 S V Buyalo, Capacity dimension and embedding of hyperbolic spaces into the product of trees, Algebra i Analiz 17 (2005) 42 MR2173936
10 S V Buyalo, N D Lebedeva, Dimensions of locally and asymptotically self-similar spaces, Algebra i Analiz 19 (2007) 60 MR2319510
11 D Gabai, On the topology of ending lamination space, Geom. Topol. 18 (2014) 2683 MR3285223
12 É Ghys, P de la Harpe, Sur les groupes hyperboliques d’après Mikhael Gromov, 83, Birkhäuser (1990) MR1086657
13 B Grünbaum, Convex polytopes, 221, Springer (2003) MR1976856
14 U Hamenstädt, Geometry of the mapping class groups, I : Boundary amenability, Invent. Math. 175 (2009) 545 MR2471596
15 J L Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157 MR830043
16 S Hensel, P Przytycki, The ending lamination space of the five-punctured sphere is the Nöbeling curve, J. Lond. Math. Soc. 84 (2011) 103 MR2819692
17 D Hume, Embedding mapping class groups into a finite product of trees, Groups Geom. Dyn. 11 (2017) 613 MR3668054
18 E Klarreich, The boundary at infinity of the curve complex and the relative Teichmüller space, preprint (2018) arXiv:1803.10339
19 U Lang, T Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not. 2005 (2005) 3625 MR2200122
20 J M Mackay, A Sisto, Embedding relatively hyperbolic groups in products of trees, Algebr. Geom. Topol. 13 (2013) 2261 MR3073916
21 H A Masur, Y N Minsky, Geometry of the complex of curves, I : Hyperbolicity, Invent. Math. 138 (1999) 103 MR1714338
22 H A Masur, Y N Minsky, Geometry of the complex of curves, II : Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902 MR1791145
23 H A Masur, Y N Minsky, Quasiconvexity in the curve complex, from: "In the tradition of Ahlfors and Bers, III" (editors W Abikoff, A Haas), Contemp. Math. 355, Amer. Math. Soc. (2004) 309 MR2145071
24 R C Penner, J L Harer, Combinatorics of train tracks, 125, Princeton Univ. Press (1992) MR1144770
25 M Sapir, A Higman embedding preserving asphericity, J. Amer. Math. Soc. 27 (2014) 1 MR3110794
26 W P Thurston, The geometry and topology of three-manifolds, lecture notes (1979)
27 R C H Webb, Combinatorics of tight geodesics and stable lengths, Trans. Amer. Math. Soc. 367 (2015) 7323 MR3378831
28 G M Ziegler, Lectures on polytopes, 152, Springer (1995) MR1311028