Volume 23, issue 5 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 5, 2251–2782
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
 
Author index
To appear
 
Other MSP journals
On the asymptotic dimension of the curve complex

Mladen Bestvina and Ken Bromberg

Geometry & Topology 23 (2019) 2227–2276
Bibliography
1 I Agol, Ideal triangulations of pseudo-Anosov mapping tori, from: "Topology and geometry in dimension three" (editors W Li, L Bartolini, J Johnson, F Luo, R Myers, J H Rubinstein), Contemp. Math. 560, Amer. Math. Soc. (2011) 1 MR2866919
2 T Aougab, Quadratic bounds on the quasiconvexity of nested train track sequences, Topology Proc. 44 (2014) 365 MR3173789
3 J Behrstock, M F Hagen, A Sisto, Asymptotic dimension and small-cancellation for hierarchically hyperbolic spaces and groups, Proc. Lond. Math. Soc. 114 (2017) 890 MR3653249
4 G C Bell, K Fujiwara, The asymptotic dimension of a curve graph is finite, J. Lond. Math. Soc. 77 (2008) 33 MR2389915
5 M Bestvina, K Bromberg, K Fujiwara, Constructing group actions on quasi-trees and applications to mapping class groups, Publ. Math. Inst. Hautes Études Sci. 122 (2015) 1 MR3415065
6 M Bonk, O Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000) 266 MR1771428
7 B H Bowditch, Tight geodesics in the curve complex, Invent. Math. 171 (2008) 281 MR2367021
8 S V Buyalo, Asymptotic dimension of a hyperbolic space and the capacity dimension of its boundary at infinity, Algebra i Analiz 17 (2005) 70 MR2159584
9 S V Buyalo, Capacity dimension and embedding of hyperbolic spaces into the product of trees, Algebra i Analiz 17 (2005) 42 MR2173936
10 S V Buyalo, N D Lebedeva, Dimensions of locally and asymptotically self-similar spaces, Algebra i Analiz 19 (2007) 60 MR2319510
11 D Gabai, On the topology of ending lamination space, Geom. Topol. 18 (2014) 2683 MR3285223
12 É Ghys, P de la Harpe, Sur les groupes hyperboliques d’après Mikhael Gromov, 83, Birkhäuser (1990) MR1086657
13 B Grünbaum, Convex polytopes, 221, Springer (2003) MR1976856
14 U Hamenstädt, Geometry of the mapping class groups, I : Boundary amenability, Invent. Math. 175 (2009) 545 MR2471596
15 J L Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157 MR830043
16 S Hensel, P Przytycki, The ending lamination space of the five-punctured sphere is the Nöbeling curve, J. Lond. Math. Soc. 84 (2011) 103 MR2819692
17 D Hume, Embedding mapping class groups into a finite product of trees, Groups Geom. Dyn. 11 (2017) 613 MR3668054
18 E Klarreich, The boundary at infinity of the curve complex and the relative Teichmüller space, preprint (2018) arXiv:1803.10339
19 U Lang, T Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not. 2005 (2005) 3625 MR2200122
20 J M Mackay, A Sisto, Embedding relatively hyperbolic groups in products of trees, Algebr. Geom. Topol. 13 (2013) 2261 MR3073916
21 H A Masur, Y N Minsky, Geometry of the complex of curves, I : Hyperbolicity, Invent. Math. 138 (1999) 103 MR1714338
22 H A Masur, Y N Minsky, Geometry of the complex of curves, II : Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902 MR1791145
23 H A Masur, Y N Minsky, Quasiconvexity in the curve complex, from: "In the tradition of Ahlfors and Bers, III" (editors W Abikoff, A Haas), Contemp. Math. 355, Amer. Math. Soc. (2004) 309 MR2145071
24 R C Penner, J L Harer, Combinatorics of train tracks, 125, Princeton Univ. Press (1992) MR1144770
25 M Sapir, A Higman embedding preserving asphericity, J. Amer. Math. Soc. 27 (2014) 1 MR3110794
26 W P Thurston, The geometry and topology of three-manifolds, lecture notes (1979)
27 R C H Webb, Combinatorics of tight geodesics and stable lengths, Trans. Amer. Math. Soc. 367 (2015) 7323 MR3378831
28 G M Ziegler, Lectures on polytopes, 152, Springer (1995) MR1311028