Volume 23, issue 5 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 2, 549–862
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Fourier–Mukai and autoduality for compactified Jacobians, II

Margarida Melo, Antonio Rapagnetta and Filippo Viviani

Geometry & Topology 23 (2019) 2335–2395
Bibliography
1 A B Altman, A Iarrobino, S L Kleiman, Irreducibility of the compactified Jacobian, from: "Real and complex singularities, Oslo 1976" (editor P Holm), Sijthoff & Noordhoff (1977) 1 MR0498546
2 A B Altman, S L Kleiman, Compactifying the Picard scheme, II, Amer. J. Math. 101 (1979) 10 MR527824
3 A B Altman, S L Kleiman, Compactifying the Picard scheme, Adv. Math. 35 (1980) 50 MR555258
4 D Arinkin, Cohomology of line bundles on compactified Jacobians, Math. Res. Lett. 18 (2011) 1215 MR2915476
5 D Arinkin, Autoduality of compactified Jacobians for curves with plane singularities, J. Algebraic Geom. 22 (2013) 363 MR3019453
6 C Bartocci, U Bruzzo, D Hernández Ruipérez, Fourier–Mukai and Nahm transforms in geometry and mathematical physics, 276, Birkhäuser (2009) MR2511017
7 V V Batyrev, Birational Calabi–Yau n–folds have equal Betti numbers, from: "New trends in algebraic geometry" (editors K Hulek, F Catanese, C Peters, M Reid), London Math. Soc. Lecture Note Ser. 264, Cambridge Univ. Press (1999) 1 MR1714818
8 J Briançon, Description de HilbnC{x,y}, Invent. Math. 41 (1977) 45 MR0457432
9 J Briançon, M Granger, J P Speder, Sur le schéma de Hilbert d’une courbe plane, Ann. Sci. École Norm. Sup. 14 (1981) 1 MR618728
10 W Bruns, J Herzog, Cohen–Macaulay rings, 39, Cambridge Univ. Press (1993) MR1251956
11 R Donagi, T Pantev, Langlands duality for Hitchin systems, Invent. Math. 189 (2012) 653 MR2957305
12 E Esteves, Compactifying the relative Jacobian over families of reduced curves, Trans. Amer. Math. Soc. 353 (2001) 3045 MR1828599
13 E Esteves, M Gagné, S Kleiman, Autoduality of the compactified Jacobian, J. London Math. Soc. 65 (2002) 591 MR1895735
14 E Esteves, S Kleiman, The compactified Picard scheme of the compactified Jacobian, Adv. Math. 198 (2005) 484 MR2183386
15 B Fantechi, L Göttsche, L Illusie, S L Kleiman, N Nitsure, A Vistoli, Fundamental algebraic geometry : Grothendieck’s FGA explained, 123, Amer. Math. Soc. (2005) MR2222646
16 M Granger, Géométrie des schémas de Hilbert ponctuels, 8, Soc. Mat. de France (1983) 84 MR716783
17 M Groechenig, Moduli of flat connections in positive characteristic, Math. Res. Lett. 23 (2016) 989 MR3554499
18 A Grothendieck, Éléments de géométrie algébrique, II : Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. 8 (1961) 5 MR217084
19 A Grothendieck, Éléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, I, Inst. Hautes Études Sci. Publ. Math. 20 (1964) 5 MR0173675
20 A Grothendieck, Éléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, II, Inst. Hautes Études Sci. Publ. Math. 24 (1965) 5 MR0199181
21 A Grothendieck, Éléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, III, Inst. Hautes Études Sci. Publ. Math. 28 (1966) 5 MR0217086
22 M Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001) 941 MR1839919
23 R Hartshorne, Residues and duality, 20, Springer (1966) MR0222093
24 R Hartshorne, Algebraic geometry, 52, Springer (1977) MR0463157
25 R Hartshorne, Generalized divisors on Gorenstein schemes, K–Theory 8 (1994) 287 MR1291023
26 D Hernández Ruipérez, A C López Martín, F Sancho de Salas, Fourier–Mukai transforms for Gorenstein schemes, Adv. Math. 211 (2007) 594 MR2323539
27 D Huybrechts, Fourier–Mukai transforms in algebraic geometry, , Oxford Univ. Press (2006) MR2244106
28 A Iarrobino, Punctual Hilbert schemes, Bull. Amer. Math. Soc. 78 (1972) 819 MR308120
29 A A Iarrobino, Punctual Hilbert schemes, 188, Amer. Math. Soc. (1977) MR0485867
30 Y Kawamata, D–equivalence and K–equivalence, J. Differential Geom. 61 (2002) 147 MR1949787
31 S L Kleiman, A B Altman, Bertini theorems for hypersurface sections containing a subscheme, Comm. Algebra 7 (1979) 775 MR529493
32 H Matsumura, Commutative ring theory, 8, Cambridge Univ. Press (1989) MR1011461
33 M Melo, A Rapagnetta, F Viviani, Fine compactified Jacobians of reduced curves, Trans. Amer. Math. Soc. 369 (2017) 5341 MR3646765
34 M Melo, A Rapagnetta, F Viviani, Fourier–Mukai and autoduality for compactified Jacobians, I, J. Reine Angew. Math. 755 (2019) 1 MR4015227
35 M Melo, F Viviani, Fine compactified Jacobians, Math. Nachr. 285 (2012) 997 MR2928396
36 L Migliorini, V Shende, F Viviani, A support theorem for Hilbert schemes of planar curves, II, preprint (2018) arXiv:1508.07602v2
37 S Mukai, Duality between D(X) and D(X) with its application to Picard sheaves, Nagoya Math. J. 81 (1981) 153 MR607081
38 S Mukai, On the moduli space of bundles on K3 surfaces, I, from: "Vector bundles on algebraic varieties", Tata Inst. Fund. Res. Stud. Math. 11, Oxford Univ. Press (1987) 341 MR893604
39 D Mumford, Abelian varieties, 5, Oxford Univ. Press (1970) MR0282985
40 E Sernesi, Deformations of algebraic schemes, 334, Springer (2006) MR2247603