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The extended Bogomolny equations and
generalized Nahm pole boundary condition

SIQI HE

RAFE MAZZEO

We develop a Kobayashi–Hitchin-type correspondence between solutions of the
extended Bogomolny equations on †�RC with Nahm pole singularity at †�f0g and
the Hitchin component of the stable SL.2;R/ Higgs bundle; this verifies a conjecture
of Gaiotto and Witten. We also develop a partial Kobayashi–Hitchin correspondence
for solutions with a knot singularity in this program, corresponding to the non-Hitchin
components in the moduli space of stable SL.2;R/ Higgs bundles. We also prove
existence and uniqueness of solutions with knot singularities on C �RC .

53C07

1 Introduction

An intriguing proposal by Witten [27] interprets the Jones polynomial and Khovanov
homology of knots on a 3–manifold Y by counting solutions to certain gauge-theoretic
equations; see Kapustin and Witten [18; 27] and Haydys [12] for much more on this. In
this picture, the Jones polynomial for a knot K � Y is realized by a count of solutions
to the Kapustin–Witten equations on Y �RC satisfying a new type of singular boundary
conditions. We refer to Gaiotto and Witten [11; 28; 29] for a more detailed explanation,
along with Mazzeo and Witten [21; 22] and He [13] for the beginnings of the analytic
theory for this program. In the absence of a knot, the problem is still of interest and
may lead to 3–manifold invariants. When K D∅, the singular boundary conditions
are called the Nahm pole boundary conditions, while in the presence of a knot, they
are called the generalized Nahm pole boundary conditions, or Nahm pole boundary
conditions with knot singularities. For simplicity, we usually just refer to solutions
with Nahm pole or with Nahm pole and knot singularities.

There are two main sets of technical difficulties in this program. The first arises from
the singular boundary conditions, which turn the problem into one of nonstandard
elliptic type. These are now understood; see [21; 22]. A more serious difficulty

Published: 13 October 2019 DOI: 10.2140/gt.2019.23.2475

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=53C07
http://dx.doi.org/10.2140/gt.2019.23.2475


2476 Siqi He and Rafe Mazzeo

x1

y

Figure 1: A knot placed at the boundary of Y �RC.

involves whether it is possible to prove compactness of the space of solutions to the
Kapustin–Witten (KW) equations. An important first step was accomplished by Taubes
in [25; 24], but at present there is no understanding about how the Nahm pole boundary
conditions interact with these compactness issues.

Gaiotto and Witten [11] proposed the study of a more tractable aspect of this problem.
Suppose that we stretch the 3–manifold across a separating Riemann surface † in
a Heegaard decomposition of Y which meets the knot transversely. In the limit,
Y separates into two components Y ˙ and zooming in on the transition region leads to a
problem on †�R�RC which is independent of the R direction normal to the separating
surface. We are thus led to study the dimensionally reduced problem, called the extended
Bogomolny equations, on †�RC with the induced singular boundary condition.

A further motivation for studying the moduli space of solutions of the extended Bogo-
molny equations on †�RC is provided by the Atiyah–Floer conjecture [5]. In terms of
a handlebody decomposition Y 3D Y C[†Y � , the Atiyah–Floer conjecture states that
the instanton Floer homology of Y can be recovered from Lagrangian Floer homology
of two Lagrangians associated to the handlebodies in the moduli space M.†/ of flat
SU.2/ connections of †. These Lagrangians consist of the flat connections which
extend into Y C or Y � . Another way to view M.†/ is as the moduli space for the
reduction of the antiselfdual equations to †. One then expects to use Lagrangian
intersectional Floer theory to define invariants. We refer to Daemi and Fukaya [9] and
Abouzaid and Manolescu [1] for recent progress on this.

In any case, we are presented with the problem of studying the dimensionally reduced
Kapustin–Witten equations on †�RC with generalized Nahm pole boundary condi-
tions. We describe these now; their derivation and further explicit computations appear
in Section 2 below. Let P be a principal SU.2/ bundle over †, pulled back to †�RC,
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Figure 2: †�RC ; the “knots” correspond to points on †� f0g .

and gP its adjoint bundle. The extended Bogomolny equations are the following set
of equations for a connection A on P, and gP –valued 1– and 0–forms � and �1 ,
respectively:

(1) FA�� ^� D ?dA�1; dA� D ?Œ�; �1�; d?A� D 0:

The knot corresponds in this setting to where the stretched knot crosses †, or in other
words, to a set of marked points fp1; : : : ; pN g on †; see Figure 2.

In the following we denote the standard linear coordinate y on RC. Define MEBE
NP

and MEBE
KS to be the moduli spaces of solutions to (1) which satisfy the Nahm pole

and generalized Nahm pole boundary conditions at y D 0, and which converge to
an SL.2;R/ flat connection as y !1. For the second of these spaces, we tacitly
restrict to the subset of solutions which are compatible with an SL.2;R/ structure, as
explained more carefully in Section 3. The subscripts NP and KS here stand for “Nahm
pole” and “knot singularity”. We also write M for the moduli space of stable SL.2;R/
Higgs bundles and recall that MDMHit tMHitc , where the first term on the right is
the Fuchsian, or Hitchin, component and MHitc the union of the other components. It
is well known that MHit is identified with a finite cover of the Teichmüller space for †.

In the spirit of Donaldson [10] and Uhlenbeck and Yau [26], Gaiotto and Witten [11]
define maps

(2) INPWMEBE
NP !MHit; IKSWMEBE

KS !MHitc ;

which we recall in Section 3. They conjecture that INP is one-to-one. We prove this
here and also describe the map IKS . Our main result is:

Theorem 1.1 (i) The map INP is a bijection. Explicitly, to every element in the
Hitchin component MHit , there exists a solution to (1) satisfying the Nahm
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pole boundary condition. If two solutions to (1) satisfying these boundary
conditions map to the same element in MHit under INP , then they are SU.2/–
gauge equivalent.

(ii) The map IKS is two-to-one: For every element in the MHitc , there exist two solu-
tions to (1) which satisfy generalized Nahm pole boundary conditions with knot
singularities and which are compatible with the SL.2;R/ structure as y!1.
Any solution to (1) satisfying these boundary and compatibility conditions is
equal , up to SU.2/–gauge equivalence , to one of these two solutions.

We define in Section 3 what it means for solutions of (1) with knot singularities to be
compatible with the SL.2;R/ structure as y!1. This condition allows (1) to be
reduced to a scalar equation. There are almost surely solutions to (1) which do not
satisfy this condition.

The expectation, explained in [27], is that the Jones polynomial should be recovered
by counting solutions to the extended Bogomolny equations on R3 �RC, with a knot
singularity at some K �R3 . Thus, as a dimensionally reduced version of this problem,
we also consider these equations on C �RC :

Theorem 1.2 Given any positive divisor D D
P
nipi on C, there exists a solution

to (1) which has knot singularities of order ni at pi . This solution is unique to the
scalar equation.

Acknowledgements He wishes to thank Ciprian Manolescu, Qiongling Li and Victor
Mikhaylov. Mazzeo is grateful to Edward Witten for introducing him to this problem
originally and for his many patient explanations. Mazzeo has been supported by the
NSF grant DMS-1608223.

2 Preliminaries

We begin by considering various ways in which the extended Bogomolny equations (1)
may be interpreted.

2.1 S 1–invariant Kapustin–Witten equations

Let X be a smooth 4–manifold with boundary, P an SU.2/ bundle over X and gP
the adjoint bundle of P. If yA is a connection on P and ŷ is a gP –valued one-form,
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then the Kapustin–Witten equations for the pair . yA; ŷ / are

(3) F yA�
ŷ ^ ŷ C?d yA

ŷ D 0; d?
yA
ŷ D 0:

Consider the special case where XDS1�Y is the product of a circle and a 3–manifold,
and where . yA; ŷ / is an S1 invariant solution to (3). We then set

(4) yAD ACA1dx1; ŷ D �C�1dx1;

where A; � 2�1Y .gP / and A1; �1 2�0Y .gP / are independent of x1 2 S1 . Then (3)
becomes

FA�� ^� �?dA�1�?ŒA1; ��D 0;

?dA�C Œ�1; ��C dAA1 D 0;

d?A� � ŒA1; �1�D 0:

(5)

Denoting the quantities on the left of these three qualities by X1 , X2 and X3 , respec-
tively, we define the expressions

I0 D

Z
Y

jX1j2CjX2j2CjX3j2;

I1 D

Z
Y

jFA�� ^� �?dA�1j
2
Cj?dA�C Œ�1; ��j

2
Cjd?A�j

2;

I2 D

Z
Y

jŒA1; ��j
2
CjdAA1j

2
CjŒA1; �1�j

2;

(6)

and also, if Y is a 3–manifold with boundary,

I3 D�

Z
@Y

Tr.dAA1 ^�1/�
Z
@Y

Tr.ŒA1; �1�^?�/:

After a straightforward calculation, assuming that all integrations are valid, we have

(7) I0 D I1C I2C I3:

Since I0 , I1 and I2 are all nonnegative, we deduce the

Proposition 2.1 If .A1; �1/ satisfies a boundary condition which guarantees that
I3 D 0, and if .A; �/ is irreducible, then A1 D 0 and (5) reduces to the equations
corresponding to I1 D 0.

The case of principal interest in this paper is when Y D†�RCy and . yA; ŷ / satisfy the
Nahm pole boundary conditions at y D 0 and converge as y!1 to a flat SL.2;C/
connection. The conditions of this proposition are then satisfied. We recall the claim —
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see [24, page 36] as well as [13, Corollary 4.7] — that for solutions satisfying these
boundary conditions, the dy component of � vanishes. Results from [21] show that as
y& 0, A1 � y2 and �1 � 1

y
, hence ?� D 0 at y D 0. In addition, A1 and �1 both

converge to 0 as y!1. These facts together imply that I3 vanishes at both y D 0
and y D1, so Proposition 2.1 holds.

When the boundary condition for a knot appears, we refer to Definition 3.4 for an
explicit definition. If there is a knot p 2†�RC, let R be the distance to p ; then the
boundary condition requires that for some � > 0, we have A1 � R�1C� , �1 � R�1

and � �R�1 . Thus, both dAA1 ^�1 and ŒA1; �1�^?� are asymptotic to R�3C� as
R! 0. Using the spherical coordinate, we have found the boundary condition for the
knot doesn’t contribute to the integral I3 .

If an S1–invariant solution satisfies the Nahm pole boundary condition at y D 0 and
converges to a flat SL.2;C/ connection as y!1, then the pair .A;ˆ/ satisfies the
so-called extended Bogomolny equations on †�RC,

(8) FA�� ^� D ?dA�1; dA� D ?Œ�; �1�; d?A� D 0:

Here A is a connection, � 2 �1.gP /, �1 2 �0.gP / and the dy component of �
vanishes.

These equations reduce, when �1 D 0, to the Hitchin equations; when � D 0, to the
Bogomolny equations; and when A D 0 and � is independent of †, to the Nahm
equations. Thus one expects that all known techniques for these special cases should
be applicable to these hybrid equations as well.

2.2 Hermitian geometry

Choose a holomorphic coordinate z D x2 C ix3 on † and let y be the linear co-
ordinate on RC. In these coordinates, define dA D r2 dx2 Cr3 dx3 Cry dy and
� D �2 dx2 C �3 dx3 D

1
2
.'z dz C '

�
xz dxz/, where 'z D �2 � i�3 ; we also write

' D 'zdz . Using these, we can rewrite (1) in the “three D’s” formalism: with
Ay D Ay � i�1 , set

D1 Dr2C ir3;

D2 D ad'z D Œ'z; � �;

D3 Dry � i�1 D @y CAy D @y CAy � i�1:

(9)
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The adjoints of these operators are

(10) D�1 D�r2C ir3; D�2 D�Œ�2C i�3; � �; D�3 D�ry � i�1:

The extended Bogomolny equations can then be written in the alternative form

(11) ŒDi ;Dj �D 0 for i; j D 1; 2; 3 and
3X
iD1

ŒDi ;D
�
i �D 0:

We write out the last of these, which is the most intricate. Noting that

ŒD1;D
�
1�D Œr2C ir3;�r2C ir3�D 2iF23;

ŒD2;D
�
2�D�2iŒ�2; �3�;

ŒD3;D
�
3�D�2iry�1;

(12)

we have
1

2i

3X
kD1

ŒDk;D
�

k
�D F23� Œ�2; �3��ry�1 D 0:

As is standard for such equations — see [27] — the smaller system ŒDi ;Dj � D 0 is
invariant under the complex (SL.2IC/–valued) gauge group GC

P , while the full system
(11) is invariant under the unitary gauge group, Di ! g�1Dig for g 2 GP , and the
final equation is a real moment map condition. Following the spirit of Donaldson,
Uhlenbeck and Yau [10; 26], we thus expect that Hermitian geometric data from the
GC
P –invariant equations play a role in solving the moment map equation.

Suppose that E is a rank 2 Hermitian bundle over †�RC. As we now explain, for
any function f and section s , D1.f s/ D @xzf s C f D1s , which is a @–operator in
the Newlander–Nirenberg sense; D2 is then a K†–valued endomorphism of E, while
D3 specifies a parallel transport in the y direction. In terms of these, the equations
ŒDi ;Dj �D 0 have a nice geometric meaning.

Denote by Ey WDEj†�fyg the restriction of E to each slice †� fyg. Since D21 D 0
is always true for dimensional reasons, the Newlander–Nirenberg theorem gives that
D1 induces a holomorphic structure on Ey for each y , ie in some gauge, we can write
D1Dx@. A connection A is compatible with this holomorphic structure if A0;1 equals x@.

Next, ŒD1;D2� D 0 says that the endomorphism ' is holomorphic with respect to
this structure, so .E;D1; '/ is a Higgs bundle over each slice. Finally, the equations
ŒD2;D3�D 0 and ŒD1;D3�D 0 show that this family of Higgs bundles is parallel in y ,
ie there is a specified identification of these objects at different values of y .
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Following [10], a data set for our problem consists of a rank two bundle E over †�RC

and a triplet of operators ‚D .D1;D2;D3/ on C1.E/ satisfying

� D1.f s/D @xzf sCf D1s and D3.f s/D .@yf /sCf D3s for f 2 C1.†�RC/

and s 2 C1.E/;

� D2 D Œ'; � � for some ' 2�1;0.gP /;

� ŒDi ;Dj �D 0 for all i and j .

Given .E;‚/, a choice of Hermitian metric H on E determines Hermitian adjoints D0i
of the operators Di by the requirements that for any smooth functions f and sections s ,

� D01 and D03 are derivations, ie D01.f s/ D .@zf /s C f D01s and D03.f s/ D
.@yf /sCf D03s , while D2.f s/D f D2.s/;

� D1 and D3 satisfy @xzH.s; s0/ D H.D1s; s0/CH.s;D01s
0/ and @yH.s; s0/ D

H.D3s; s0/CH.s;D03s
0/;

� H.D2s; s0/CH.s;D
0

2s
0/D 0.

The moment map equation in (11) can be regarded as an equation for the Hermitian
metric H. Indeed, setting Dy D 1

2
.D3CD03/, Dxz D D1 and Dz D D01 , we define a

unitary connection DA , and an endomorphism-valued 1–form � and 0–form �1 on
.E;‚;H/ by

DA.s/ WD D1.s/ dxzCD
0

1.s/ dzCDy.s/ dy;

Œ�; s� WD ŒD2; s� dzC ŒD
0

2; s� dxz;

�1 WD
1
2
i.D3�D

0

3/:

(13)

We call .A; �; �1/ a unitary triplet. Note however that in an arbitrary trivialization
of E, .A; �; �1/ may not consist of unitary matrices. We recall a standard result [4]
which provides the link between connections in unitary and holomorphic frames. In the
following, and later, we refer to parallel holomorphic gauges. These are, as the moniker
suggests, holomorphic gauges for each Ey which are parallel with respect to D3 .

Proposition 2.2 With .E;‚;H/ as above, there is a unique triplet .A; �; �y/ com-
patible with the unitary structure and with the structure defined by ‚. In other words,
in every unitary gauge, A? D �A, �? D � and �?1 D ��1 , while in every parallel
holomorphic gauge, D1 D x@E and D3 D @y , ie A.0;1/ D Ay � i�1 D 0.

Proof With the convention H.s; s0/ D xs>Hs0, we compute first in a holomorphic
parallel gauge, from the defining equations for the D0i , that x@H D .A.1;0//>H and
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@yH D H.�Ay � i�1/, so in this gauge, A D A.1;0/ D H�1@H and Ay C i�1 D
�H�1@yH.

Suppose next that we know H with respect to a holomorphic frame. If g is a complex
gauge transformation such that H D g�g , then in the parallel holomorphic gauge,

(14) A.1;0/ DH�1@H D g�1.g�/�1.@zg
�/gCg�1@zg; A.0;1/ D 0:

If yA is the connection form in unitary gauge, then

(15) yAz D .g
�/�1@zg

�; yAxz D�.@xzg/g
�1;

and yA�
xz D�

yAz . Thus g transforms the holomorphic form to the unitary one.

Similarly, the same Higgs field in holomorphic and unitary gauge, ' and � , are related
by

(16) �z D g'g
�1; �xz D .g

�/�1x'>g�:

For the final component, suppose that Ay is given in holomorphic gauge. Then in
unitary gauge,

(17) Ay D
1
2
..@yg/g

�1
� .g�/�1@yg

�/; �1 D
1
2
i..g�/�1@yg

�
C @yg

�.g�/�1/:

This concludes the proof.

We now record some computations in a local holomorphic coordinate chart. Writing
D1 D @xzC˛ , D01 D @zCA

.1;0/ , D3 D @y CAy and D03 D @y CA0y , we compute

A.1;0/ DH�1@zH �H
�1.x̨/>H;

AD A.1;0/C˛ DH�1@zH �H
�1
x̨
>H C˛;

'� DH�1x'>H;

A
0

y DH
�1@yH �H

�1 xA>yH:

(18)

Thus, if ˛ DAy D 0, then the adjoint operators become

D�1 D�D
0

1 D�.@zCH
�1@zH/;

D�2 D�D
0

2 D Œ'
�; � �;

D�3 D�D
0

3 D�@y �H
�1@yH:

(19)
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Altogether, in a local holomorphic coordinate z for which the metric on † equals
g20 jdzj

2 , and in the holomorphic parallel gauge where D1 D x@ and D3 D @y , then in
local coordinates .z; y/, the extended Bogomolny equations (11) become

(20) �x@xz.H
�1@zH/�g

2
0@y.H

�1@yH/C Œ'z; '
?
xz �D 0:

Two sets of data .E;‚/ and .E; z‚/ are called equivalent if there exists a complex
gauge transform g such that g�1 zDig D Di for i D 1; 2; 3. A key fact is that .E;‚/
is completely determined by a Higgs bundle .E ; '/ over the Riemann surface †.

Proposition 2.3 (i) Suppose that .E;‚/ and .E; z‚/ are two data sets. If the
restrictions of ‚ to Ey and z‚ to some possibly different Ey0 are complex
gauge equivalent, then .E;‚/ and .E; z‚/ are equivalent.

(ii) If .E;‚;H/ is a solution to the extended Bogomolny equations, and if g is a
complex gauge transform, then .E;‚g/, where

‚g D .g�1D1g; g
�1D2g; g

�1D3g/; Hg
DHg?Hg

is also a solution.

Proof Since D3 and zD3 both define isomorphisms of the Higgs bundles, (i) follows
immediately. Then, recalling that D�i is the conjugate of Di with respect to H, one
may check (ii) directly from the definition.

3 Boundary conditions

In this section we introduce boundary conditions for the extended Bogomolny equations
over †�RC at y D 0 and as y!C1.

3.1 SL.2 ; R/ Higgs-bundles

We impose an asymptotic boundary condition as y!C1 by requiring that solutions
of (1) converge to flat SL.2;R/ connections. To explain this more carefully, we recall
some basic facts about the moduli space of stable SL.2;R/ Higgs-bundles; see [15; 16].

Consider a Riemann surface † of genus g > 1. A Higgs bundle consists of a pair
.E ; '/ where E is a holomorphic vector bundle over a complex vector bundle E and
' 2H 0.End.E/˝K/ is a Higgs field. Let .E ; '/ be a rank 2 Higgs bundle such that
degE D 0. It is proved in [15] that once an SL.2;R/ structure is fixed, there is an
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isomorphism E ŠL�1˚L, where L is a line bundle with 0� degL� g�1, in terms
of which the Higgs field takes the form

(21) ' D

�
0 ˛

ˇ 0

�
;

where ˛ 2H 0.L�2˝K/ and ˇ 2H 0.L2˝K/. When degLD g�1 and LDK1=2

for one of the 22g square roots of K , then we write this canonical form for the Higgs
field in the familiar form

(22) ' D

�
0 1

q 0

�
:

Here 1 is the canonical identity element in

Hom.L;L�1/˝K D Hom.K1=2; K�1=2/˝K DO

and q 2H 0.L2˝K/DH 0.K2/ is a holomorphic quadratic differential. This set of
Higgs bundles constitutes the Hitchin component of the SL.2;R/ moduli space.

The splittings with jdegLj < g � 1 constitute the non-Hitchin components. Write
k D degL, so that deg.L�2 ˝K/ D degK � 2 degL D 2g � 2 � 2k . Thus when
0� k < g�1, the section ˛ has 2g�2�2k zeros; these are of course invariant under
complex gauge transform.

If �1 D 0 in (1), or if D3 D 0 in (11), we obtain the Hitchin equation

(23) FH C Œ'; '
?�D 0; x@A' D 0:

A rank 2 Higgs bundle .E ; '/ with det.E/ D O is stable if degS < 0 for every '–
invariant subbundle S �E. We say in general that .E ; '/ is polystable if it is a direct
sum of stable Higgs bundles. In the rank 2 case, a polystable Higgs bundle takes the
form

�
E D L�1˚L; ' D

�
a
0

0
�a

��
, but by assumption we shall exclude these.

The solvability of the Hitchin equation (23) was analyzed completely in [15]:

Theorem 3.1 [15] Let .E ; '/ be a Higgs bundle over †. There exists an irreducible
solution H to the Hitchin equations if and only if the Higgs bundle is stable, and a
reducible solution if and only if it is polystable.

When degL>0, the Higgs bundles
�
L�1˚L; 'D

�
0
ˇ
˛
0

��
are all stable. If degLD 0,

then LŠO and E is holomorphically trivial. If ' D
�
0
ˇ
˛
0

�
, then the pair is stable if

and only if neither ˛ nor ˇ are identically zero. If precisely one of ˛ and ˇ vanishes,
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the pair is neither stable nor polystable and the Hitchin equation has no solution. If
˛ D ˇ D 0, then the Higgs bundle is polystable and there exists a reducible solution.

In this paper we restrict attention to irreducible solutions. The moduli space of stable
SL.2;R/ Higgs bundles can then be described as follows:

Theorem 3.2 [15] The SL.2;R/ Higgs bundle moduli space contains 2g� 1 com-
ponents, classified by the degree k of the line bundle L, where jkj � g � 1. The
component MSL.2;R/

k
is a smooth manifold of dimension 6g�6 diffeomorphic to a

complex vector bundle of rank g�1C2k over the 22g –fold cover of the symmetric
product S2g�2�2k†.

Proof We sketch the proof. For the SL.2;R/ Higgs bundle
�
L�1˚L;

�
0
ˇ
˛
0

��
, the

zeros of ˛ 2H 0.L�2˝K/ give a divisor D where O.D/DL�2˝K , and hence an
element of S2g�2�2k†. Then ˇ 2H 0.†;O.�D/K2/ determines a line bundle.

Note that since we are working with SL.2;R/, given D we can only determine
L2 DO.�D/K , but L itself can only be recovered up to the choice of a line bundle
I with I 2 DO. There are precisely 22g such choices.

We recall finally a well-known result:

Proposition 3.3 The harmonic metric H corresponding to a stable SL.2;R/ Higgs
bundle splits with respect to the decomposition E D L�1˚L as H D

�
h
0
0
h�1

�
.

A proof appears in [8, Theorem 2.10].

3.2 The Nahm pole boundary condition and holomorphic data

We next recall the Nahm pole boundary condition and its associated Hermitian geometry,
following [11].

The starting point is the model solution [27]. Consider a trivial rank 2 bundle E over
C �RC. The model Nahm pole solution is

(24) Az D 0; �z D
1

y

�
0 1

0 0

�
; Ay D�i�1 D

1

2y

�
1 0

0 �1

�
:

Under the singular complex gauge transformation, these fields become gD
�
y�1=2

0
0

y1=2

�
to ' D

�
0
0
1
0

�
, Az D 0 and Ay D 0, ie the connection in the RC direction transforms

to @y .
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Now, s D
�ay�1=2
by1=2

�
is an D3 parallel section of E for any a; b 2R, and indeed is a

solution of the full extended Bogomolny equations. A generic solution of this form
blows up as y! 0, but there is a well-defined subbundle L�E, called the vanishing
line bundle, defined as the space of solutions which tend to 0 as y! 0. For this model
solution and line bundle, spanf'.L/; L˝Kg DE˝K at all points.

We say that a solution .A; '; �1/ to (1) on a rank 2 Hermitian bundle E with determi-
nant zero over † satisfies the Nahm pole boundary condition if, in terms of any local
trivialization,

(25) Az�O.y�1C�/; 'D
1

y

�
0 1

0 0

�
CO.y�1C�/; AyD

1

2y

�
1 0

0 �1

�
CO.y�1C�/

as y! 0. As described in [21], it is of course necessary to consider fields which lie in
some function space, eg a weighted Hölder space, and the error estimate O.y�1C�/
is interpreted in terms of that norm. The regularity theory in that paper shows that a
solution of the extended Bogomolny equations, or indeed of the full Kapustin–Witten
system, is then much more regular after being put into gauge.

In exactly the same way as in the model case, this boundary condition defines a line
bundle L � E, and since detE D O, we have E=L Š L�1 . On the other hand,
spanf'.L/; L˝Kg DE˝K , so that pushing forward L via

(26) L
'
�!E˝K! .E=L/˝K

shows that LŠ L�1˝K , ie LŠK1=2 , and then E=LŠK�1=2 . In other words,

(27) 0!K1=2!E!K�1=2! 0:

In addition, write i1W '.L/!E˝K and i2W L˝K!E˝K , and define

(28) i W '.L/˚L˝K!E˝K; i D i1C i2:

As spanf'.L/; L˝Kg DE˝K , we obtain that i is surjective between two rank two
bundles, thus an isomorphism. Tensoring by K�1 , we obtain E ŠK�1=2˚K1=2 .

Under a complex gauge transform, we can then put the Higgs field into the form
' D

�
t
ˇ 0

1
�t

�
. Setting g D

�
1
�t

0
1

�
, we compute that g�1'g D

�
0
ˇ
1
0

�
. This shows that

an SL.2;R/ Higgs bundle lies in the Hitchin component of the SL.2;R/ Higgs bundle
moduli space.

In summary, recalling that MEBE
NP is the moduli space of solutions of the extended

Bogomolny equations with limit in SL.2;R/ and MHit is the Hitchin component of the
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stable SL.2;R/ Higgs bundle, we have now explained the map INPWMEBE
NP !MHit .

Gaiotto and Witten [11] conjectured that this map is a bijection, and we show below
that this is the case.

3.3 Knot singularity

We next define the model knot singularity introduced by Witten in [27], and the modified
Nahm pole condition for knots. In the Riemann surface picture, knot singularities
correspond to marked points, at which monopoles are wrapped.

Fix coordinates z D x2C ix3 2C and y 2RC on C �RC. Then, with respect to the
Higgs field ' D

�
0
0
zn

0

�
and Hermitian metric H D

�
eu

0
0
e�u

�
, equation (20) takes the

form

(29) �.�C @2y/uC r
2ne2u D 0;

where �D @2x2 C @
2
x3

and r D jzj.

Assuming homogeneity in .z; y/ and radial symmetry in z , Witten [27] obtained the
model solution

(30) Un.r; y/D log
�

2.nC 1/

.
p
r2Cy2Cy/nC1� .

p
r2Cy2�y/nC1

�
:

To investigate this further, introduce spherical coordinates .R; ; �/,

RD
p
r2Cy2; z D rei� ; sin D y

R
; cos D r

R
:

Writing aD
p
r2Cy2Cy and b D

p
r2Cy2�y , then

a

R
D 1C

y

R
D 1C sin ; b

R
D 1�

y

R
D 1� sin ;

and hence

Un D�logy �n logRC log
nC 1

Sn. /
;

where

Sn. /D Sn.a; b/D
nX
kD0

an�kbk :

Note that U0 D�logy when nD 0, which recovers the model Nahm pole solution.
Moreover, Un is compatible with the Nahm pole singularity in the sense that Un �
�logy as y! 0 for r � � > 0.

Geometry & Topology, Volume 23 (2019)



The extended Bogomolny equations and generalized Nahm pole boundary condition 2489

Define gn D
�
eun=2

0
0

e�un=2

�
; then, in unitary gauge,

(31)
Az D g

�1
n @gn; �z D gn'g

�1
n ;

Axz D�.x@gn/gn
�1; �1 D

1
2
i.g�1n @ygnC @ygng

�1
n /;

or, explicitly,

�z D

�
0 zneUn

0 0

�
D
2

R

.nC 1/ cosn  
.1C sin /nC1� .1� sin /nC1

ein�
�
0 1

0 0

�
D

1

R sin 
.nC 1/ cosn  

Sn. /
ein�

�
0 1

0 0

�
;

�1 D�U
0
n

�
i
2

0

0 � i
2

�
D
nC 1

R

.1C sin /nC1C .1� sin /nC1

.1C sin /nC1� .1� sin /nC1

�
i
2

0

0 � i
2

�
;

Ay D 0:

(32)

Suppose that s is a section with D3s D 0. Then s D
�
aeUn=2

be�Un=2

�
is a solution for

any a; b 2 R, where eUn D .nC 1/=.yRnSn. //. As in the Nahm pole case, we
can still define a line subbundle L corresponding to parallel sections whose limits as
y! 0 vanish; generic parallel sections blow up. However, a new feature here is that
span.L˝K; '.L//¤ E˝K precisely at the knot singularities, reflecting the zeros
of ' .

For any p2† we can transport the model solution to †�RC using the local coordinates
.z; y/, giving an approximate solution .Ap; �p; �p1 / in a neighborhood of .p; 0/. It is
convenient to define:

Definition 3.4 A solution .A; �; �1/ to the extended Bogomolny equations satisfies
the general Nahm pole boundary condition with knot singularity of order n at .p; 0/ 2
†�RC if in a suitable gauge it satisfies

(33) .A; �; �1/D .A
p; �p; �

p
1 /CO.R�1C�.sin /�1C�/

for some � > 0, where R and  are the spherical coordinates used above.

Corresponding to a solution with knot singularity is a set of holomorphic data. Suppose
.A; �; �1/ is a solution with a knot singularity at the points fpj g with orders nj for
j D 1; : : : ; N. We define the line subbundle L of E and obtain the exact sequence

(34) 0! L!E! L�1! 0:
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Using the asymptotic boundary condition at y!C1 and the Milnor–Wood inequality
[23; 30], we have jdegLj � g� 1.

The knot singularity and Higgs field induce a map

(35) P W L
'
�!E˝K! L�1˝K:

Regarding P as an element of H 0.L�2˝K/, we deduce that there are 2g�2�2 degL
marked points, counted with multiplicity.

The data we must specify then consists of the following:

(a) An SL.2IC/ Higgs bundle with a line subbundle L.

(b) Marked points fpj g with orders nj .

(c) Generic parallel sections of E over † n fpj g blow up at the rate y�1=2 .

(d) The section P 2H 0.L�2K/ in (35) has zeros precisely at pj of order nj .

Just as for the Nahm pole case, we impose an SL.2;R/ structure on the Higgs bundle.
The following assumption simplifies the Hermitian geometric data.

Definition 3.5 Suppose we have a solution to (1) which satisfies the general Nahm
pole boundary conditions, and assume that the solution converges to an SL.2;R/ Higgs
bundle

�
L�1˚L; ' D

�
0
ˇ
˛
0

��
as y !1. We say that this solution is compatible

with the SL.2;R/ structure at y D1 if either L or L�1 is the vanishing line bundle.

Merely assuming that the Higgs bundle converges to an SL.2;R/ Higgs bundle, as
above, is not enough to imply that L is the vanishing line bundle.

Remark If the exact sequence (34) splits, the Higgs field may take the slightly more
general form ' D

�
t
ˇ

˛
�t

�
. Such Higgs fields with t ¤ 0 exist, but at present we do

not know whether it is possible to solve the extended Bogomolny equations with knot
singularity with this data. The vanishing of t will play a minor but important technical
role below in Proposition 3.9, which we need in proving uniqueness theorems later.

The compatibility of the solution with the SL.2;R/ structure is a technical condition
that allows us to reduce the Bogomolny equation to a scalar equation. There is one
special case where we do not need to assume this compatibility condition. Under the
assumption of Definition 3.5, denote the vanishing line bundle by L0. We then obtain:

Proposition 3.6 If L0 ¤ L or L�1 , then degL0 � �jdegLj,
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Proof The line subbundle L0 induces the exact sequence

0! L0! L�1˚L! L0�1! 0;

which defines the holomorphic map 
1W L!L0�1 and 
2W L�1!L0�1 . Since L0¤L
or L�1 , we obtain that neither 
1 nor 
2 equals the identity. In other words, we obtain
nonzero elements 
1 2H 0.L�1˝L0�1/ and 
2 2H 0.L˝L0�1/. Since 
1 and 
2
do not have poles, we obtain deg.L�1˝L0�1/ � 0 and deg.L˝L0�1/ � 0, which
implies degL0 � �jdegLj.

Denoting by N WD
P
nj the sum of the orders of the marked points, we conclude:

Corollary 3.7 If degL> 0 and N < 2g� 2C 2 degL, then L0 D L.

Proof Recall that N D 2g� 2� 2 degL0, and furthermore, if N < 2g� 2C 2 degL,
then degL0 > � degL. Proposition 3.6 then implies this result.

3.4 Regularity

We have defined these boundary conditions both at yD 0 and at the knot singular points
by requiring the fields .A; �/ to differ from the corresponding model solutions by an
error term, the relative size of which is smaller than the model. In the existence theorems
later in this paper this may be all we know about solutions at first. However, to be
able to carry out many further arguments it is important to know that, in an appropriate
gauge, solutions have much stronger regularity properties. Fortunately there is an
appropriate regularity theory available which was developed in [21] in the Nahm pole
case and [22] near the knot singularities. We note that in those papers solutions to the
full four-dimensional KW system are treated, but those results specialize directly to
the present setting, and in fact there are some minor but important strengthenings here
which we point out inter alia.

Regularity theory relies on ellipticity, and to turn the extended Bogomolny equations
into an elliptic system we must add an appropriate gauge condition. We recall the
choice made in [21] for the KW system on a four-manifold and then specialize it in our
dimensionally reduced setting. Fix a pair of fields . yA0; y�0/ on a four-manifold which
are either solutions or approximate solutions of KW equations. Then nearby fields can
be written in the form . yA; y�/D . yA0; y�0/C .˛;  /. The gauge-fixing equation is then

(36) d�
yA0
˛C?Œy�0; ? �D 0:

It is shown in [21] that adjoining (36) to the KW equations is elliptic.
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Denote by L the linearization of this system at . yA0; y�0/. This is a Dirac-type operator
with coefficients which blow up at y D 0 and RD 0 in a very special manner. In the
absence of knots, L is (up to a multiplicative factor) a uniformly degenerate operator,
while near a knot it lies in a slightly more general class of incomplete iterated edge
operators. These are classes of degenerate differential operators for which tools of
geometric microlocal analysis may be applied to construct parametrices, which in
turn lead to strong mapping and regularity properties. We refer to [21; 22] for further
discussion about all of this and simply state the consequences of this theory here.

Before doing this we first recall that for degenerate elliptic problems it is too restrictive to
expect solutions to be smooth up to the boundary. Instead we consider polyhomogeneous
regularity. Let X be a manifold with boundary, with coordinates .s; z/ near a boundary
point, with s � 0 and z a coordinate in the boundary. We say that a function u is
polyhomogeneous at @X if

u.s; z/�

1X
jD0

NjX
`D0

aj`.z/s

j .log s/` with aj` 2 C1.@X/:

The exponents 
j here is a sequence of (possibly complex) numbers with real parts
tending to infinity; importantly, for each j , only finitely many factors with (positive
integral) powers of log s can appear. The set of pairs .
j ; `/ which appear in this
expansion is called the index set for this expansion. Denoting this index set by I , we
say that u is I–smooth, which emphasizes that this regularity is a very close relative
of and satisfactory replacement for ordinary smoothness. Similarly, if X is a manifold
with corners of codimension 2, with coordinates .s1; s2; z/ near a point on the corner,
then u is polyhomogeneous if

u.s1; s2; z/�

1X
i;jD0

Ni;jX
p;qD0

aijpq.z/s

i
1 s

�j
2 .log s1/p.log s2/q:

In other words, we require the expansion for u to be of product type near the corner.
These are all classical expansions with the usual meaning and the corresponding
expansions for any number of derivatives hold as well. The reason for introducing
this more general notion is precisely because, at least in favorable situations, solutions
of this have regularity but are not smooth in a classical sense. The important point
is that this is a perfectly satisfactory replacement for smoothness up to the boundary
and allows one to analyze and manipulate expressions using these “Taylor series”-type
expansions.
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We first consider the case where there are no knot singularities, but note that this result
is a local one and can be applied away from knot singular points. Here the manifold
with boundary is simply †�RC and we use coordinates .y; z/.

Proposition 3.8 [21] Let .A; '; �1/ be a solution to the extended Bogomolny equa-
tions near y D 0 which satisfies the Nahm pole boundary conditions and is in gauge
relative to the model approximate solution. Then these fields are polyhomogeneous
with

ADO.1/; ' D
1

y

�
0 1

0 0

�
CO.y/; �1 D

1

y

�
i
2

0

0 � i
2

�
CO.y logy/:

This statement incorporates recent work in [14], which provides much more detail
about the expansions than is present in [21].

To state the corresponding result in the presence of a knot singularity, we first define
the manifold with corners X to be the blowup of †�RC around each of the knot
singular points .pj ; 0/. In other words, we replace each .pj ; 0/ by the hemisphere
R D 0 (parametrized by the spherical coordinate variables . ; �/), points of which
label directions of approach to that point. The discussion is local near each pj , so we
may as well fix coordinates .R; ; �/. The corner of X is defined by RD  D 0.

Proposition 3.9 [22] Let .A; �; �1/ satisfy the extended Bogomolny equations near
.0; 0/ as well as the gauge condition relative to the model knot solution Un . Then these
fields are polyhomogeneous with the same asymptotics as in the previous proposition
when y! 0 away from the knot, while

ADAnCO.R� sin /; 'D'nCO.R� sin /; �1D�
n
1CO.R

�.sin / log.sin //

near the knot. Here .An; 'n; �n1 / is the model solution described in Section 3.3 associ-
ated to Un .

Referring to the language of [22], these rates of decay, ie the first exponents in the
expansions beyond the initial model terms, are indicial roots of type II and II0. The
exponent 0 is a possible indicial root of type II 0, but does not appear in our setting
because the SL.2;R/ structure forces ' to have no diagonal terms — see the remark
on page 2490 — and it is precisely in these diagonal terms where the exponent 0 might
appear in the expansion.
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3.5 The boundary condition for the Hermitian metric

Since we must deal with singularities of the gauge field, it is often simpler to work
in holomorphic gauge but consider singular Hermitian metrics. We now describe a
boundary condition for the Hermitian metric compatible with the unitary boundary
condition defined above. We use the Riemannian metric gDg20 jdzj

2Cdy2 on †�RC.
The following result is a direct consequence of the previous computations in Sections 3.2
and 3.3.

Proposition 3.10 Consider the Higgs bundle
�
E Š L�1 ˚ L; ' D

�
0
ˇ
˛
0

��
. Fix

p 2†� f0g and an open set Up containing p . Let H be a polyhomogeneous solution
to the Hermitian extended Bogomolny equations (11).

(i) Suppose that 'jUp D
�
0
?
1
0

�
in a local trivialization on Up . If , for some � > 0,

(37) H �

�
y�1.g0CO.y�// 0

0 y.g�10 CO.y�//

�
as y! 0;

then the unitary solution with respect to H satisfies the Nahm pole boundary
condition near p and

�
0
1

�
is the vanishing line bundle in this trivialization.

(ii) Suppose that 'jUp D
�
0
?
zn

0

�
in a local trivialization on Up (where z D 0 is the

point p ). In spherical coordinates .R; �;  /, suppose , for some � > 0,

(38) H D

�
eUn.1CO.R�// 0

0 e�Un.1CO.R�//

�
as R! 0:

Then the unitary solution with respect to H satisfies the Nahm pole condition
with knot singularity at p and

�
0
1

�
is the vanishing line bundle in this trivializa-

tion.

Since we wish to work with holomorphic gauge fields and singular Hermitian metrics,
we obtain some restrictions. Let P be an SU.2/ bundle and .A; �; �1/ a solution to
the extended Bogonomy equations (1) with Nahm pole boundary and knot singularities
of order nj at the points pj for j D 1; : : : ; n. For each j choose small balls Bj
around pj , and also let B0 be a neighborhood of † n fB1; : : : ; Bkg which does not
contain any of the pj . Choosing a partition of unity �j subordinate to this cover,
define the approximate solution uD

P
jD0 �jUnj , where Unj is the model solution,

and with Un0 D�logy .

Proposition 3.11 There exists a Hermitian bundle .E;H/ such that

(i) .H;A.0;1/; ';Ay/ is a solution to the Hermitian extended Bogomolny equations;
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(ii) .A.0;1/; ';Ay/ is bounded as y! 0;

(iii) H D
�
euh11
h21

h12
e�uh22

�
, where u is the approximate function above and the hij

are bounded.

Proof We have explained that .A; �; �1/ is polyhomogeneous, ie .A; �; �1/ D

.Apj ; �pj ; �
pj
1 /C .a; b; c/ near pj , where .a; b; c/ are bounded. Near other points of

†�f0g, .A; �; �1/ is the sum of a Nahm pole and a bounded term. Since P is an SU.2/
bundle over †�RC, it is necessarily trivial, so consider the associated rank 2 Hermitian
bundle .E;H0/, with H0D Id in some trivialization. Now write H D

�
h11
h21

h12
h22

�
, where

the hij are bounded. Then .H0; A.0;1/; ';Ay/, where ' D �z , Ay D Ay � i�1 , is a
solution to the Hermitian extended Bogomolny equations (11). Consider the complex
gauge transform g D

�
eu=2

0
0

e�u=2

�
. Since u is compatible with the knot singularity,

we obtain a new solution .H 0; A.0;1/
0

; '0;A0y/, where H 0DH0g�gD
�
euh11
h21

h12
e�uh22

�
,

and A.0;1/
0

, '0 and A0y are all bounded.

We conclude this section with a brief discussion about the regularity of a harmonic
metric which satisfies the boundary conditions described here. Such metrics correspond
precisely to the solutions .Az; Ay ; '; �1/ of the original extended Bogomolny equations,
and for this reason one obvious route to obtain this regularity is to exhibit the direct
formula from the set of A’s and � ’s to the metric H. Another reasonable approach is
to simply look at the equation (20) defining H and prove the necessarily regularity
directly from this equation. In fact, the methods used in [21; 22] are sufficiently robust
that this adaptation is quite straightforward. In the interests of efficiency, we simply
state the conclusion:

Lemma 3.12 A harmonic metric H which satisfies the boundary conditions discussed
above is necessarily polyhomogeneous.

The terms which appear in the polyhomogeneous expansion of H may be determined
by the obvious formal calculations once we know that the expansion actually exists.

4 Existence of solutions

We shall prove in this section an existence theorem for the extended Bogomolny
equations on †�RC, either without or with knot singularities at y D 0. The proofs
employ the classical barrier method, which we review briefly.
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4.1 Semilinear elliptic equations on noncompact manifolds

We consider on a Riemannian manifold .W; g/ the elliptic equation

(39) N.u/ WD ��uCF.x; u/D 0; F 2 C1.W �R/:

A C2 function uC is called a supersolution for this problem if N.uC/� 0, while u�

is called a subsolution if N.u�/� 0. These are called barriers for the operator. It is
often much simpler to construct such functions which are only continuous, and which
satisfy the corresponding differential inequalities weakly (either in the distributional or
viscosity sense). We refer to [6] for more details about the viscosity solutions.

Proposition 4.1 Suppose that W is a possibly open manifold, and that there exist
continuous barriers u˙ which satisfy u� � uC everywhere on W . Then there exists a
solution u to N.u/D 0 which satisfies u� � u� uC .

Proof sketch We first assume that W is a compact manifold with boundary. Then
u˙ are bounded functions and we may choose � > 0 so that @uF.x; u/ � � for all
numbers u lying in the interval Œu�.x/; uC.x/� for every x 2W . The equation can
then be written as

.���/uD zF .x; u/ WD F.x; u/��u:

We then define a sequence of functions uj for j D 0; 1; 2; : : : by setting u0D u� and
successively solving .�� �/ujC1 D zF .x; uj /, and with ujC1 equal to some fixed
function  on @W which satisfies u�j@W �  � uCj@W . The monotonicity of zF
in u and the maximum principle can be used to prove inductively that u� D u0 �
u1 � u2 � � � � � u

C . When W is a manifold with boundary we require a version of
the maximum principle which holds up to the boundary even for weak solutions; one
version appears in [17, Theorem II.1].

It is then obvious that uj converges pointwise to an L1 function u, and standard
elliptic regularity implies that u 2 C1 and that N.u/D 0.

Now suppose that W is an open manifold. Choose a sequence of compact smooth
manifolds with boundary Wk with W1�W2� � � � which exhaust all of W . For each k ,
choose a function  k on @Wk which lies between u� and uC on this boundary, and
then find a solution uk to N.uk/D 0 on Wk with uk D k on @Wk . The sequence uk
is uniformly bounded on any compact subset of W , so we may choose a sequence
which converges (by elliptic regularity) in the C1 topology on any compact subset
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of W . The limit function is a solution of N and still satisfies u� � u � uC on all
of W .

We conclude this general discussion by making a few comments about the construction
of weak barriers. A very convenient principle is that sub- and supersolutions may be
constructed locally in the following sense. Suppose that U1 and U2 are two open sets
in W and that wj is a supersolution for N on Uj for j D 1; 2. Define the function w
on U1 [ U2 by setting w D w1 on U1 n .U1 \ U2/, w D w2 on U2 n .U1 \ U2/ and
wDminfw1; w2g on U1\U2 . Then w is a supersolution for N on U1[U2 . Similarly,
the maximum of two (or any finite number) of subsolutions is again a subsolution. In
our work below, the individual wj will typically be smooth, but the new barrier w
produced in this way is only piecewise smooth, but is still a sub- or supersolution in
the weak sense. We refer to [7, Appendix A] for a proof.

4.2 The scalar form of the extended Bogomolny equations

Following the discussion in Section 3, suppose that E Š L˚L�1 and

(40) ' D

�
0 ˛

ˇ 0

�
:

When degL D g � 1, L D K1=2 and ˛ D 1, we seek a solution of the extended
Bogomolny equations which satisfies the Nahm pole boundary condition at y D 0,
while if degL < g � 1, then the zeros of ˛ determine points and multiplicities pj
and nj on † at y D 0 and we search for a solution which satisfies the Nahm pole
boundary condition with knot singularities at these points.

Fix a metric gDg20 jdzj
2Cdy2 on †�RC (where zDx2Cix3 is a local holomorphic

coordinate on †), and assume also that the solution metric splits as H D
�
h
0
0
h�1

�
,

where h is a bundle metric on L�1 . We are then looking for a solution to

(41) ��g log hCg�20 .h2˛ x̨ � h�2ˇ x̌/D 0:

We simplify this slightly further. Choose a background metric h0 on L�1 and recall
that its curvature equals ��g0 log h0 . Then, writing h D h0eu and calculating the
norms of ˛ and ˇ in terms of g0 and h0 , (41) becomes

(42) Kh0 � .�g0 C @
2
y/uCj˛j

2e2u� jˇj2e�2u D 0:

In the remainder of this paper, we denote by N.u/ the operator on the left in (42).
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An explicit solution to this equation was noted by Mikhaylov in a special case (personal
communication, 2017):

Example 4.2 Consider the Higgs bundle
�
E Š K1=2 ˚ K�1=2; ' D

�
0
0
1
0

��
. Let

g0 be the hyperbolic metric on † with curvature �2 and h0 the naturally induced
metric on K�1=2 , for which Kh0 D�1. Then, restricted to †–independent functions,
(42) equals

(43) �1� @2yuC e
2u
D 0:

We seek a solution for which u��logy as y! 0 and v! 0 as y!1. The first
integral of (43) is u0 D�

p
e2u� 2u� 1, and hence the unique solution is

(44)
Z 1
u

ds
p
e2s � 2s� 1

D y:

Note that u is monotone decreasing and strictly positive for all y > 0.

We now describe the precise asymptotics of this solution. If u!1, then s is large;
write the denominator as es

p
1� .2sC 1/e�2s , whence

y D

Z 1
u

e�s
�
1C 1

2
.2sC 1/e�2sC � � �

�
ds � e�uC � � � ;

so u � �logy . Similarly, if u < � for some small � , then e2s � 2s � 1 � 2s2C � � �
when u < s < � , so

uD

Z 1
�

ds
p
e2s � 2s� 1

C

Z �

u

�
1
p
2s
C � � �

�
ds D A�

1
p
2

loguC � � � ;

so uD Ce�
p
2y C � � � . Obviously, with only a little more effort, one may develop full

asymptotics in both regimes.

4.3 Limiting solution at infinity

We first consider the simpler problem of finding a solution of the reduction of (42)
reduced to †, ie of

(45) K ��u1Cj˛j
2e2u1 � jˇj2e�2u1 D 0;

where K DKh0 and �D�g0 . Without loss of generality, we assume degL� 0 and
note that since degL�1 � 0,

R
†K � 0 (and is strictly negative if the degree of L

is positive). A solution to (45) is the obvious candidate for the limit as y !1 of
solutions on †�RC.
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Proposition 4.3 If ˛ 6� 0, which is equivalent to the stability of the pair .E; '/, there
exists a solution u1 2 C1.†/ to (45).

Proof Since this is an equation on † rather than †�RC, this follows immediately
from the existence of solutions to the Hitchin equations [15]. However, we give another
proof, at least when degL > 0, using the barrier method. A proof in the same style
when degLD 0 requires more work so we omit it.

Solve �w� DK �K , where K < 0 is the average of K , and set u� D w��A for
some constant A. Then K��u�Cj˛j2e2u

�

�jˇj2e�2u
�

�KCj˛j2ew
��A , which

is negative when A is sufficiently large. Thus u� is a subsolution.

To obtain a supersolution, first modify the background metric h0 by multiplying it by
a suitable positive factor so that its curvature K is positive near the zeros of ˛ . Next
solve �wC D j˛j2�B, where B is the average of j˛j2 , and set uC DwCCA. Then

K��uCCj˛j2e2u
C

�jˇj2e�2u
C

DKCBCj˛j2.e2.w
CCA/

�1/�jˇj2e�2.w
CCA/

�KCBC2j˛j2.wCCA/�jˇj2e�2.w
CCA/:

Away from the zeros of ˛ this is certainly positive if we choose A sufficiently large.
Near these zeros we obtain positivity, using that KCB > 0 there, and since the final
term can be made arbitrarily small. Thus uC is a supersolution.

Noting that u� < uC and applying Proposition 4.1, we obtain a solution of (45).

Observe that since it is only the boundary condition, but not the equation, which
depends on y , this limiting solution is actually a solution of (42) on any semi-infinite
region †� Œy0;1/ with y0 > 0.

4.4 Approximate solutions and regularity near y D 0

As a complement to the result in the previous subsection, we now construct an ap-
proximate solution u0 to (42) near fy D 0g. Unlike there, however, we do not find
an exact solution, but rather show how to build an initial approximate solution and
then incrementally correct it so that it solves (42) to all orders as y! 0. In the next
subsection we use u0 and u1 together to construct global barriers.

We first begin with the simpler situation where there is only a Nahm pole singularity
without knots.

Geometry & Topology, Volume 23 (2019)



2500 Siqi He and Rafe Mazzeo

Proposition 4.4 Let LDK1=2 and ˛ � 1. Then there exists a function u0 which is
polyhomogeneous as y! 0 and is such that N.u0/D f decays faster than y` for any
`� 0.

Proof We seek u0 with a polyhomogeneous expansion of the form

�logyC
X
j;`

aj`.z/y
j .logy/` WD �logyC v;

where all the coefficients are smooth in z , and where the number of logy factors is
finite for each j . Rewriting N.�logyC v/ as

(46)
�
�@2y C

2

y2

�
vC

1

y2
.e2v � 2v� 1/� jˇj2y2e�2v ��g0vCKh0

and inserting the putative expansion for v shows that a0`Da1`D0 for all `, and a21D
1
3
.Kh0 � jˇj

2/ and a2` D 0 for ` > 1, ie v � a21y2 logyC a20y2CO.y3.logy/`/
for some `. Inductively we can solve for each of the coefficients aj` with j > 2 using
that�
�@2y C

2

y2

�
yj .logy/`

D yj�2.logy/`�2
�
.�j.j � 1/C 2/.logy/2� `.2j � 1/ logy � `.`� 1/

�
:

Note that the coefficient a20 is not formally determined in this process and different
choices will lead to different formal expansions, and also that there are increasingly
high powers of logy higher up in the expansion.

Now use Borel summation to choose a polyhomogeneous function u0 with this expan-
sion. This has a Nahm pole at y D 0 and satisfies N.u0/D f DO.y`/ for all `, as
desired.

We next turn to the construction of a similar approximate solution to all orders in the
presence of knot singularities. To carry this out, we first review a geometric construction
from [22] which is at the heart of the regularity theorem quoted in Section 3.4 for
the full extended Bogomolny equations and the analogous result for (42) which we
describe below.

If p 2†, we define the blowup of †�RC at .p; 0/ to consist of the disjoint union
.†�RC/ n f.p; 0/g and the hemisphere S2

C
, which we regard as the set of inward-

pointing unit normal vectors at .p; 0/, and denote by Œ†�RCI f.p; 0/g�, or more simply,
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just .†�RC/p There is a blowdown map which is the identity away from .p; 0/ and
maps the entire hemisphere to this point. This set is endowed with the unique minimal
topology and differential structure such that the lifts of smooth functions on †�RC and
polar coordinates around .p; 0/ are smooth. We use spherical coordinates .R; ; �/
around this point, so RD 0 is the hemisphere and  D 0 defines the original boundary
y D 0 away from RD 0. This is a smooth manifold with corners of codimension two.

Now fix a nonzero element ˛ 2 H 0.L�2K/ and denote its divisor by
PN
jD1 njpj .

For each j , choose a small ball yBj and a local holomorphic coordinate z so that
pj D fz D 0g, and write j˛j2 D �2j r

2nj there, with r D jzj and �j > 0. Extend r
from the union of these balls to a smooth positive function on † n fp1; : : : ; pN g. By
the existence of isothermal coordinates, we write g0 D e2� xg0 , where xg0 is flat on
each yBj , and set g D g0C dy2 and xg D xg0C dy2 . Then �g0 D e

�2��xg0 in these
balls, and by dilating xg0 , we can assume that e�2� D 1 at each pj . We denote by
.†�RC/p1;:::;pN the blowup of †�RC at the collection of points fp1; : : : ; pN g.

Proposition 4.5 With all notation as above , there exists a function u0 which is poly-
homogeneous on .†�RC/p1;:::;pN and which satisfies N.u0/D f with f smooth
and vanishing to all orders as y! 0 (ie at all boundary components of the blowup).

Proof In a manner analogous to the previous proposition, we construct a polyhomo-
geneous series expansion for u0 term-by-term, but now at each of the boundary faces
of .†�RC/p1;:::;pN .

The initial term of this expansion involves the model solutions Un . Choose nonintersect-
ing balls yBj with Bj b yBj and an open set yB0 �†n

SN
jD1Bj so that

SN
jD0
yBj D†.

Let f�j g be a partition of unity subordinate to the cover f yBj g with �j D 1 on Bj
for j � 1. We lift each of these functions from † to the blowup of †�RC. Finally,
set Gj WD Unj � log �j , where G0 WD U0� log j˛j D �logy � log j˛j. Now define

(47) yu0 WD

NX
jD0

�jGj :

We compute that N.yu0/D f0 , where f0 is polyhomogeneous and is bounded at the
original boundary  D 0 and has leading term of order R�1 at each of the “front”
faces where RD 0.

Our goal is to iteratively solve away all of the terms in the polyhomogeneous expansion
of f0 . This must be done separately at the two types of boundary faces. It turns out to
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be necessary to first solve away the series at RD 0 and after that the series at  D 0.
The reason for doing things in this order is that, as we now explain, the iterative problem
that must be solved at the R D 0 front faces is global on each hemisphere, and the
solutions “spread” to the boundary of this hemisphere, ie where  D 0. By contrast,
the iterative problem at the original boundary is completely local in the y directions
and may be done uniformly up to the corner where RD  D 0, so its solutions do not
spread back to the front faces.

For simplicity, we assume that there is only one front face, and we begin by considering
the model case .C�RC/0 , on which the linearization of (42) at Un can be written as

(48) LnD�@2R�
2

R
@R�

1

R2
�S2
C
C2r2ne2UnD�@2R�

2

R
@RC

1

R2
.��S2

C
CT . //;

where the potential equals

T . /D
.nC 1/2

sin2  Sn. /2
:

In general terms, Ln is a relatively simple example of an “incomplete iterated edge
operator”, as explained in more detail in [22], based on the earlier development of
this class in [2; 3]. We need relatively little of this theory here and quote from [22]
as needed. In the present situation, we can regard Ln as a conic operator over the
cross-section S2

C
. (It is the fact that this link of the cone itself has a boundary which

makes Ln an “iterated” edge operator.)

The crucial fact is that the operator

J D��S2
C
CT . /

induced on this conic link has discrete spectrum. The proof of this is based on the
observation that T . / � 1= 2 as  ! 0. It can then be shown using standard
arguments — see [2; 3] — that the domain of J as an unbounded operator on L2.S2

C
/

is compactly contained in L2 . This implies the discreteness of the spectrum. Another
proof which provides more accurate information uses that J is itself an incomplete
uniformly degenerate operator, as analyzed thoroughly in [20]. The main theorem
in that paper produces a particular degenerate pseudodifferential operator G which
inverts J on L2 . It is also shown there that GW L2.S2

C
/! 2H 2

0 .S
2
C
/ (where H 2

0 is
the scale-invariant Sobolev space associated to the vector fields  @ and  @� ). The
compactness of  2H 2

0 .S
2
C
/ ,! L2.S2

C
/ follows from the L2 Arzelà–Ascoli theorem.

There is an accompanying regularity theorem: if .J ��/w D f where (for simplicity)
f is smooth and vanishes to all orders at  D 0 and � 2 R (or more generally can
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be any bounded polyhomogeneous function), then w is polyhomogeneous with an
expansion of the form

w �
X

wj`.�/ 

j .log /` with wj` 2 C1.S1/:

As usual, there are only finitely many log terms for each exponent 
j . These exponents
are the indicial roots of the operator J, and a short calculation shows that these satisfy
2D 
0 < 
1 < � � � . Note that the lowest indicial root equals 2, so solutions all vanish
to at least order 2 at  D 0, which is in accord with our knowledge about the behavior
of solutions to the linearization of (42) at the model Nahm pole solution �logy .

Denote the eigenfunctions and eigenvalues of J by �i . ; �/ and �i . Since T . / > 0,
�i > 0 for each i . The restriction of Ln to the i th eigenspace is now an ODE
Ln;i D�@

2
R � 2R

�2@RCR
�2�i . Seeking solutions of the form Rı�i . ; �/ leads to

the corresponding indicial roots

ı˙i D�
1
2
˙
1
2

p
1C 4�i ;

which are the only possible formal rates of growth or decay of solutions to LnuD 0 as
R! 0. To satisfy the generalized Nahm pole condition, we only consider exponents
greater than �1, ie the sequence 0 < ıC1 < ı

C
2 < � � � . We now conclude the following:

Lemma 4.6 Suppose that f �
P
fj`. ; �/R


j .logR/` is polyhomogeneous at the
face R D 0 on .C �RC/0 , where all fj` are polyhomogeneous with nonnegative
coefficients at  D 0 on S2

C
. Then there exists a polyhomogeneous function u such

that LnuD f C h, where h is polyhomogeneous at  D 0 and vanishes to all orders
as R! 0. At R! 0, u �

P
uj`R


 0
j .logR/` ; the exponents 
 0j are all of the form


iC2, where 
j appears in the list of exponents in the expansion for f , or else ıCi C`
with ` 2N. Each coefficient function uj` , as well as the entire solution u itself and
the error term h, vanish like  2 at the boundary  D 0.

Using the same result, we may clearly generate a formal solution to our semilinear
elliptic equation in exactly the same way. Therefore, using this lemma, we may now
choose a function yu1 which is polyhomogeneous on .†�RC/p1���pN and such that
N.yu0C yu1/D f1 , where f1 vanishes to all orders at RD 0 and is polyhomogeneous
and vanishes like  2 at  D 0. The lowest exponent in the expansion for yu1 equals
minf1; ıC0 > 0g.

The final step in our construction of an approximate solution is to carry out an analogous
procedure at the original boundary y D 0 away from the front faces. This can be done
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almost exactly as above. In this case, (46) can be thought of as an ODE in y with
“coefficients” which are operators acting in the z variables, so we are effectively just
solving a family of ODEs parametrized by z. This may be done uniformly up to the
corner R D  D 0. We omit details since they are the same as before. We obtain
after this step a final correction term yu2 which is polyhomogeneous and vanishes to all
orders at RD 0, and which satisfies

N.yu0C yu1C yu2/D f;

where f vanishes to all orders at all boundaries of .†�RC/p1���pN .

The calculations above are useful not just for calculating formal solutions to the problem,
but also for understanding the regularity of actual solutions to the nonlinear equation
N.u/D 0 which satisfy the generalized Nahm pole boundary conditions with knots.
The new ingredient that must be added is a parametrix G for the linearization of N
at the approximate solution u0 . This operator G is a degenerate pseudodifferential
operator for which there is very precise information known concerning the pointwise
behavior of the Schwartz kernel. This is explained carefully in [21] for the simple
Nahm pole case and in [22] for the corresponding problem with knot singularities. We
shall appeal to that discussion and the arguments there and simply state:

Proposition 4.7 Let u be a solution to (42) which is of the form uD u0Cv , where v
is bounded as y! 0 (in particular, as  ! 0 and R! 0). Then u is polyhomogeneous
at the two boundaries  D 0 and R D 0 of the blowup .† �RC/p1;:::;pN , and its
expansion is fully captured by that of u0 .

4.5 Existence of solutions

We now come to the construction of solutions to (42) on the entire space † �RC

which satisfy the asymptotic SL.2;R/ conditions as y!1 and which also satisfy
the generalized Nahm pole boundary conditions with knot singularities at y D 0. We
employ the barrier method. The main ingredients in the construction of the barrier
functions are the approximate solutions u0 and u1 obtained above.

We first consider this problem in the simpler case.

Proposition 4.8 If E D K1=2˚K�1=2 and ' D
�
0
ˇ
1
0

�
, ie there are no knot singu-

larities, then there exists a solution u to (42) which is smooth for y > 0, asymptotic
to u1 as y!1 (and which satisfies the Nahm pole boundary condition at y D 0).
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Proof Choose a smooth nonnegative cutoff function �.y/ which equals 1 for y � 2
and which vanishes for � � 3, and define yuD �.y/u0C .1� �.y//u1 . We consider
the operator

yN.v/DN.yuC v/D�.@2y C�g0/vC e
2yu.e2v � 1/Cjˇj2e�2yu.1� e�2v/Cf;

where f DN.yu/ is smooth on †�RC , vanishes to infinite order at yD 0 and vanishes
identically for y � 3.

We now find barrier functions for this equation. Indeed, we compute that if 0 < � < 1,
then

yN.Ay�/D A�.1� �/y��2C e2yu.e2Ay
�

� 1/Cjˇj2e�2yu.1� e�2Ay
�

/Cf:

The second and third terms on the right are nonnegative because Ay� > 0, and we can
certainly choose A sufficiently large that the entire right-hand side is positive for all
y > 0.

We can improve this supersolution for y large. Indeed,

yN.A0e��y/� �A0�2e��y C e2yu.2A0e��y/Cjˇj2e�2yu.1� e�2A
0e��y /Cf;

and if � is sufficiently small and A0 is sufficiently large, then the entire right-hand side
is positive, at least for y � 1, say.

We now define vC D minfAy�; A0e��yg. The calculations above show that vC is
a supersolution to the equation. Essentially the same equations show that v� D
maxf�Ay�;�A0e��yg is a subsolution.

We now invoke Proposition 4.1 to conclude that there exists a solution v to yN.v/D 0,
or equivalently a solution uD yuC v to N.u/D 0, which satisfies juC logyj � Ay�

as y! 0 and ju�u1j � A0e��y as y!1. The regularity theorem for (42) shows
that this solution is polyhomogeneous at y D 0, and hence must have an expansion of
the same type as yu, and a similar but more standard argument can be used to produce
a better exponential rate of decay as y!1.

Proposition 4.9 Let E D L˚L�1 and ' D
�
0
ˇ
˛
0

�
be a stable Higgs bundle, and let

.pj ; nj / be the “knot data” determined by ˛ . Then there exists a solution u to (42) of
the form uD yuC v where v! 0 as y! 0 and as y!1.

Proof We proceed exactly as before, writing

yN.v/DN.yuC v/D�.@2y C�g0/vCj˛j
2e2yu.e2v � 1/Cjˇj2e�2yu.1� e�2v/Cf;
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with f DN.yu/ vanishing to all orders as y! 0 and identically for y � 3. The same
barrier functions obviously work in the region y � 3, and also in the region near y D 0
away from the knot singularities.

To construct barriers near a knot .p; 0/ of weight n, recall the explicit structure of yu
near this point and expand the nonlinear term e2v�1 one step further to write, in some
small neighborhood of the front face created by blowing up this point,

yN.v/D

�
�@2R �

2

R
@RC

1

R2
.��S2

C
C zT /

�
vC ke2Un.e2v � 1� 2v/

Cjˇj2e�2Un.1� e�2v/Cf:

Here k is a strictly positive function which contains all the higher-order terms in
the expansion for yu, and zT is a slight perturbation of the term T appearing in the
linearization Ln . Let �0 denote the ground state eigenfunction for this operator on S2

C
.

The corresponding eigenvalue �00 is a small perturbation of �0 , which we showed
earlier was strictly greater than 0. Now compute

yN.AR��0. ; �//D .�
0
0� �.�C 1//AR

��2�0Cf CE;

where E is the sum of the two terms involving e˙2Un . As before, since v � 0 implies
e2v�1�2v � 0 and 1�e�2v , we have that E � 0, and if � is sufficiently small, then
this first term on the right has positive coefficient, and dominates f . We have thus
produced a local supersolution near .p; 0/. The full supersolution is

vC DminfAR��0; A0y�=2; A00e��yg:

We have chosen to use the exponents � and �
2

in the first two terms here in order to
ensure that the first term is smaller than the second in the interior of the front face
RD 0; indeed, AR��0<A0.R sin /�=2 when R<.A0=A/2=�.sin /�=2 . This means
that vC agrees with A0y�=2 near the original boundary and with AR��0 near the other
boundaries, and, as before, with the exponentially decreasing term when y is large.

A very similar calculation with the same functions produces a subsolution v� . Alto-
gether, we deduce, by Proposition 4.1 again, the existence of a solution uD yuC v to
N.u/D 0 with the correct asymptotics.

5 Uniqueness

In this section, we prove a uniqueness theorem for solutions of the extended Bogo-
molny equations satisfying the (generalized) Nahm pole boundary condition. This
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will be phrased in terms of the associated Hermitian metrics. The key to this is the
subharmonicity of the Donaldson metric, which we recall in the first subsection.

5.1 The distance on Hermitian metrics

Suppose that H is a Hermitian metric on a bundle E, with compatible data .A; �; �1/,
which satisfies the extended Bogomolny equations. As we have discussed, it is possible
to choose a holomorphic gauge which is parallel in the y direction such that D1 D @xz ,
D2 D ad' and D3 D @y . In this gauge, the Hermitian metric H determines the gauge
fields by

(49) @A D @CH�1@H; '? DH�1'�H; @Ay D @
Ay C i�1 D @y CH

�1@yH;

where of course @ is the complex differential on † and, in this trivialization, '� D
'� D x'> . We can then write the extended Bogomolny equations as

@xz.H
�1@H/C Œ'?H ; '�C h20@y.H

�1@yH/D 0;

where h20 jdzj
2 is the Riemannian metric on †.

Following [10], we define the distance between Hermitian metrics,

(50) �.H1;H2/D Tr.H�11 H2/CTr.H�12 H1/� 4;

and recall from that paper two important properties:

(i) �.H1;H2/� 0, with equality if and only if H1 DH2 .

(ii) A sequence of Hermitian metric Hi converges to H in the usual C0 norm if
and only if sup† �.Hi ;H/! 0.

Lemma 5.1 Suppose that H1 and H2 are both harmonic metrics. Then the complex
gauge transform h WDH�11 H2 satisfies

(51) @xz.h
�1@A1h/C @y.h

�1@A1y h/C Œh�1Œ'?; h�; '�D 0:

Proof In holomorphic gauge,

A2 DH
�1
2 @H2 D h

�1H�11 @H1hC h
�1@hDH�11 @H1C h

�1@A1h;

hence @xz.H�12 @H2/� @xz.H
�1
1 @H1/D @xz.h

�1@A1h/.

Similarly,

H�12 @yH2 DH
�1
1 @yH1C h

�1.@yhC ŒH
�1
1 @yH1; h�/DH

�1
1 @yH1C h

�1@
Ay
y h:
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Hence @y.H�12 @yH2/� @y.H
�1
1 @yH1/D @y.h

�1@
Ay
y h/.

Finally,
Œ'?H2 ; '�� Œ'?H1 ; '�D Œh�1Œ'?H1 ; h�; '�:

Altogether, we deduce the stated equation from the harmonic metric equations

@xz.H
�1
j @Hj /C Œ'

?Hj ; '�C h20@y.H
�1
j @yHj /D 0 for j D 1; 2:

We next show that � is subharmonic.

Proposition 5.2 Define hDH�11 H2 as above, where H1 and H2 satisfy the extended
Bogonomy equation. Then .�C @2y/� � 0 on †� .0;C1/.

Proof We first compute

(52) @xz@zTr.h/D Tr.@xz@A1h/D Tr.@xz.hh�1@A1h//

D Tr.@xz.h/h�1@A1h/CTr.h@xz.h�1@A1h//

� Tr.h@xz.h�1@A1h//;

since Tr.BhB?/� 0 for any matrix B.

Continuing on,

(53) @2yTr.h/D Tr.@y@A1y h/D Tr..@yh/h�1@A1y h/CTr
�
h.@y.h

�1@A1y h//
�

� Tr
�
h.@y.h

�1@A1y h//
�
;

where we use @y D .@
A1
y /? and that ? is the conjugate transpose with respect to H1 .

Finally,

(54) 0D Tr.ŒŒ'?; h�; '�/D Tr.Œh; '�h�1Œ'?; h�/CTr.hŒh�1Œ'?; h�; '�/:

Since Tr.Œh; '�h�1Œ'?; h�/� 0, we obtain Tr.hŒh�1Œ'?; h�; '�/� 0.

Putting these together gives

(55) .@xz@zC h
2
0@
2
y/Tr.h/

� Tr
�
h@xz.h

�1@A1h/C h20h.@y.h
�1@A1y h//

�
� Tr

�
h@xz.h

�1@A1h/C h20h.@y.h
�1@A1y hC hŒh�1Œ'?; h�; '�//

�
� 0;

and dividing by h20 proves the claim.
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5.2 Asymptotics of the Hermitian metric

In order to apply the subharmonicity of �.H1;H2/ from the last subsection, we need
to understand the asymptotics of this function near y D 0. This, in turn, relies on a
detailed examination of the asymptotics of the Hermitian metric.

Proposition 5.3 Fix a Higgs bundle
�
E Š L�1˚L; ' D

�
t
ˇ

˛
�t

��
. For any p 2 †,

choose an open set Up around .p; 0/ in †�RC. Let H be a solution to the Hermitian
extended Bogomolny equations (11); as explained earlier , H is polyhomogeneous on
.†�RC/p1���pN (where the pj are the zeros of ˛ ).

(i) Suppose in some local trivialization in Up that 'jUx D
�
0
q
1
0

�
, where q is

holomorphic. Suppose also that

(56) H D

�
O.y�1/ O.1/
O.1/ O.1/

�
:

Here O.ys/ indicates a polyhomogeneous expansion with lowest-order term a
smooth multiple of ys . Suppose also that H satisfies the Nahm pole boundary
condition in unitary gauge. Then

(57) H �

�
y�1g0CO.1/ o.1/

o.1/ yg�10 CO.1/

�
;

where o.1/ indicates a polyhomogeneous expansion with positive leading expo-
nent.

(ii) Suppose that in a local trivialization , 'jUp D
�
t
q

zn

�t

�
, where zD0 is the point p

and q is holomorphic. If , in spherical coordinates ,

(58) H D

�
O.y�1R�n/ O.1/

O.1/ O.1/

�
;

then

(59) H D

�
O.y�1R�n/ O.1/

O.1/ O.yRn/

�
:

Proof We first address (i). Write H D
�
h11
h21

h12
h22

�
and consider a gauge transformation g

for which H D g2 . Then we have g� D g and g D
�a
xb
b
d

�
, where a and d are real

functions and ad � bxb D 1. We then compute

(60) �z D g'g
�1
D

�
a b
xb d

��
0 1

q 0

��
d �b

�xb a

�
D

�
bdq� axb �b2qC a2

d2q� xb2 �bdqC axb

�
:
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By Proposition 3.8, the Nahm pole boundary condition requires that

(61) bdq� axb � o.1/; d2q� xb2 � o.1/; �b2qC a2 �
g0

y
CO.1/:

By definition,

H D g2 D

�
a2C bxb abC bd
xbaC xbd d2C bxb

�
:

The leading term of d2C bxb is positive, hence b and d are bounded. Combining this
with (61) and the relation ad � bxb D 1, we obtain

(62) a � y�1=2g
1=2
0 ; d � y1=2g

�1=2
0 ; b D o.y1=2/

and thus

(63) H D

�
a2C bxb abC bd
xbaC xbd d2C bxb

�
D

�
y�1g0C o.y

�1/ o.1/

o.1/ yg�10 C o.y/

�
:

As for (ii), we compute

(64) �z D g'g
�1
D

�
a b
xb d

��
t zn

q �t

��
d �b

�xb a

�
D

�
bdq� axbznC atd Cjbj2t �b2qC a2zn� 2bat

d2q� znxb2C 2td xb �bdqC axbzn� jbj2t � adt

�
:

By Proposition 3.9, the knot singularity implies that

(65)

bdq� axbznC atd Cjbj2t �O.1/;

�b2qC a2zn� 2ba � zneUn C � � � ;

�bdqC axbzn� jbj2t � adt �O.1/:
As before,

H D g2 D

�
a2C bxb abC bd
xbaC xbd d2C bxb

�
;

where d2 C bxb � O.1/, so by the same positivity, d and b are both O.1/. Next,
eUn D f . /=yRn , where f is regular. From �b2qC a2zn � 2ba � zneUn we get
a � y�1=2R�n=2 . In addition, since abC bd DO.1/ and ad � bxb D 1, we see that
b � y1=2Rn=2 , so d � y1=2Rn=2 . Altogether, H has the form (59).

Proposition 5.4 Suppose

Hj D

 
pj qj

q
�
j sj

!
for j D 1; 2
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are two solutions which both satisfy the Nahm pole boundary condition at y D 0 and
have the same limit as y!1. Then H1 DH2 .

Proof By Propositions 3.11 and 5.3, we see that as y ! 0, pj � y�1g0 C � � � ,
sj � yg

�1
0 C � � � and qj � o.1/. We claim that this implies that �.H1;H2/! 0 as

y! 0. First,

H�11 H2 D

 
s1p2� q1q

�
2 ?

? �q
�
1q2Cp1s2

!
;

so

(66) Tr.H�11 H2/D s1p2� q1q
�
2 � q

�
1q2Cp1s2 D 2C o.1/:

The same holds for Tr.H�12 H1/. This proves the claim.

We have now see that �.H1;H2/ is nonnegative and subharmonic, and approaches 0
as y! 0 and also as y!1, hence �.H1;H2/� 0, ie H1 DH2 .

Proposition 5.5 Let H1 and H2 be two Hermitian metrics which are both solutions
with a knot singularity of degree n at .p; 0/. Then there exists a constant C such that
�.H1;H2/� C in a neighborhood U of .p; 0/.

Proof Write

Hj D

 
aj bj

b
�
j dj

!
for j D 1; 2:

By Propositions 3.11 and 5.3,

aj � y
�1R�n; dj � yR

n; bj D o.1/; b
�
j D o.1/:

Thus Tr.H1H�12 /Da1d2�b1b
�
2�b

�
1b2Cd1a2DO.1/, and, similarly, Tr.H�12 H1/D

O.1/. The result follows immediately.

We next recall the Poisson kernel of �g D �g0 C @
2
y . For any p 2 †, Pp.z; y/ is

the unique function on †�RC which satisfies �gPq.z; y/ D 0, P jyD0 D ıq and
P.z; y/! 1=Area.†/ as y!1.

Theorem 5.6 Suppose that there exist two Hermitian metrics H1 and H2 which are
solutions and satisfy the Nahm pole boundary condition with knot singularities at pj of
degree nj , as determined by the component ˛ in the Higgs field ' D

�
t
ˇ

˛
�t

�
. Suppose

also that H1 and H2 have the same limit as y!1. Then H1 DH2 .
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Proof By Proposition 5.3, �.H1;H2/! 0 as y! 0 and z … fp1; : : : ; pN g. Near
each pj there is a neighborhood Uj where �.H1;H2/jUj � C.

Now define Q.z; y/ to equal the sum of Poisson kernels
PN
jD1 Ppj .z; y/. Then, for

any � > 0, .�g0 C @
2
y/.�.H1;H2/� �Q/ � 0, and �.H1;H2/� �Q � 0 as y! 0

and as y!1. This means that �.H1;H2/� �Q . Since this is true for every � > 0,
we conclude that �.H1;H2/� 0, ie H1 DH2 .

6 Solutions with knot singularities on C �RC

We now consider the extended Bogomolny equations on C �RC with generalized
Nahm pole boundary conditions and a finite number of knot singularities.

6.1 Degenerate limit

Consider a trivial bundle E over C �RC, as in [27; 11], the limiting behavior of the
classical Jones polynomial indicates that one expects that for solutions of the extended
Bogomolny equations on C �RC, � ! 0 and �1 ! 0 as y !1. The equation
D3' D 0 also implies that the conjugacy class of ' is independent of y , and as argued
in these papers, this implies that if Q is any invariant polynomial, then @yQ.'/D 0,
hence that ' is necessarily nilpotent.

Based on these heuristic considerations, we consider a trivial rank 2 holomorphic
bundle over C and assume ' D

�
0
0
p.z/
0

�
. We can assume p.z/ is a polynomial

as, up to a complex gauge transform, the equivalent class of the Higgs bundle only
depends on the zeros of the upper triangular part of ' . In general, the vanishing
section determined by the line bundle has the form s D

�R.z/
S.z/

�
. Consider the section

K.z/ WD .s^'.s//.z/D p.z/S.z/2 of the determinant bundle, which we can naturally
identify with a holomorphic function on C. Its zero set defines a positive divisor D.

If the singular monopoles all have order 1, as K.z/ WD .s^'.s//.z/D p.z/S.z/2 , we
obtain that S.z/ will not have zeros. Up to a complex gauge transform g D

�
1
0
�R=S
1

�
,

we can assume, in the same trivialization, ' D
�
0
0
p.z/
0

�
and s D

�
0
1

�
. In general, we

can only assume ' D
�
t
q

p
�t

�
and the vanishing line bundle correspond to s D

�
0
1

�
with the nilpotent condition that t2Cpq D 0.

Although we expect to be able to solve extended Bogomolny equations with knot
singularities corresponding to any divisor, the equation will generally not reduce to a
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scalar one, except in the special case where ' D
�
0
0
p.z/
0

�
and s D

�
0
1

�
and it gives an

SL.2;R/ structure. Now the extended Bogomolny equations reduce to

(67) �.�C @2y/vCjp.z/j
2e2v D 0;

and we shall search for a solution for which v!�C logy as y!1.

Remark It is not enough to simply require that v ! �1 as y !1. Indeed, if
p.z/� 1, then z–independent solutions solve the ODE �u00C e2u D 0. One solution
is �logy , but there is an additional family log.C=sinh.Cy// for any C > 0. These
are the only global solutions to this ODE. The solutions in this second family grow
like �Cy as y!1, and

�1! C

�
i
2

0

0 � i
2

�
:

These solutions appear in [19] and are described by Gaiotto and Witten [11] as a real
symmetry breaking phenomenon at y!1.

6.2 Existence

In this section, we will prove:

Proposition 6.1 Let p.z/ be any polynomial on C of degree N0 > 1. Then there
exists a solution u to (67) satisfying the generalized Nahm pole conditions with knot
determined by the divisor D D

P
njpj of the polynomial p , and which is asymptotic

to �.N0C 1/ logR� log sin CO.1/ as R!1, uniformly in . ; �/ 2 S2
C

.

Proof As before, first construct a function yu which is an approximate solution to this
equation with boundary conditions to all orders in all asymptotic regimes, and then use
the method of barriers to find a correction term which gives the exact solution.

We first pass to the blowup of C �RC around the points .pj ; 0/, and in an additional
step, also take the radial compactification as R!1. This gives a compact manifold
with corners, which we call yX for simplicity; there are boundary faces F1; : : : ; FN ,
each hemispheres corresponding to the blowups at the zeros of p , another boundary
face F1 , also a hemisphere, corresponding to the radial compactification at infinity,
and the original boundary B, which is a disk with N smaller disks removed.

The first step in the construction of yu is to use the approximate solutions near each of
these faces. Around Fj for j D 1; : : : ; N, we use Unj ; near F1 we use UN0 , but now
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of course with R!1 rather than near 0, and finally near B we use �logy . Pasting
these together gives a polyhomogeneous function yu0 on yX for which N.yu0/ D f0
blows up like 1=Rj near each Fj , decays like R�3 near F1 and blows up like �logy
near y D 0. Here we are denoting the nonlinear operator by N as before.

The second step is to correct the expansions, or, equivalently, to solve away the terms in
the expansions of f0 , at each of these boundary faces. Near each Fj this is done exactly
as in the last section. Near F1 it is done in a completely analogous manner, solving
away the terms of order R�3�j using correction terms of order R�1�j . Near Fj we
are using the solvability of the operator Jnj , while near F1 we use the operator JN0 .
Finally, exactly as before, we solve away the terms in the expansion of the remainder as
y! 0 along B. This may be done uniformly up to the boundaries of B. Taking Borel
sums of each of these expansions, there exists a polyhomogeneous function yu1 on yX
which satisfies N.yu0C yu1/D f1 , where f1 vanishes to all orders at every boundary
component of yX. The approximate solution is yuD yu0C yu1 .

Now write yN.v/DN.yuC v/. We expand this as

yN.v/D��xgvC e
2yu
jp.z/j2.e2v � 1/Cf1:

We construct a supersolution using the following three constituent functions: first,
R��1 �

N0
0 near F1 (where �N00 is the ground state eigenfunction for JN0 ); next,

R�j�
nj
0 near Fj ; and finally, y�=2 near B. We then take

vC DminfR��1 �
N0
0 ; R�1�

n1
0 ; : : : ; R

�
N�

nN
0 ; y�=2g:

It is straightforward to check that yN.vC/ � 0. With the obvious changes, we also
obtain a function v� for which yN.v�/� 0.

Proposition 4.1 now implies that there exists a solution v to this equation. By construc-
tion, uD yuC v satisfies all the required boundary conditions.

As in Section 4, this existence theorem is accompanied by some sharp estimates for
the solution u.

Proposition 6.2 The solution u obtained in the previous proposition is polyhomoge-
neous on yX. In particular, it has a full asymptotic expansion as R!1, where the
leading term is the model solution UN0 .

This, in turn, leads to a uniqueness theorem for the scalar equations:
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Theorem 6.3 Let p.z/ be a polynomial on C of degree N0 > 1. Suppose that u1
and u2 are two solutions to (67) satisfying the generalized Nahm pole conditions with
knot determined by the zeros of polynomial p at y D 0. Assume also that as R!1,
ui � UN0 CR

�� for i D 1; 2. Then u1 D u2 .

Proof By (67),

�.�C@2y/.u1�u2/Cjp.z/j
2.e2u1�e2u2/D

�
�.�C@2y/Cjp.z/j

2F.u1; u2/
�
wD 0:

Here w D u1 � u2 and F.u1; u2/ D .e2u1 � e2u2/=.u1 � u2/. By the assumption
that both u1 and u2 satisfy the same boundary conditions, and using the regularity
theory for solutions, we obtain that limy!0w D 0, while by the hypothesis on decay
at infinity, limR!1w D 0 as well. Noting that F.u1; u2/ � 0, no matter whether
u1 < u2 or u1 � u2 , the maximum principle implies that w � 0, ie u1 � u2 .
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