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Local topological rigidity of nongeometric 3–manifolds

FILIPPO CEROCCHI

ANDREA SAMBUSETTI

We study Riemannian metrics on compact, orientable, nongeometric 3–manifolds
(ie those whose interior does not support any of the eight model geometries) with
torsionless fundamental group and (possibly empty) nonspherical boundary. We
prove a lower bound “à la Margulis” for the systole and a volume estimate for these
manifolds, only in terms of upper bounds on the entropy and diameter. We then
deduce corresponding local topological rigidity results for manifolds in this class
whose entropy and diameter are bounded respectively by E and D. For instance, this
class locally contains only finitely many topological types; and closed, irreducible
manifolds in this class which are close enough (with respect to E and D ) are
diffeomorphic. Several examples and counterexamples are produced to stress the
differences with the geometric case.
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1 Introduction

Compact, orientable, differentiable 3–manifolds (with or without boundary) naturally
fall into two main mutually exclusive classes: geometric manifolds, a chosen few, whose
interior supports a complete metric locally isometric to one of the eight complete,
maximal, homogeneous 3–dimensional geometries,1 and nongeometric manifolds.

1We use here the term “geometric” as in the original definition given by Thurston [60]; in the case
of manifolds with boundary, variations on this definition are possible and suitable for other purposes
(ie uniqueness of the model geometries on each piece); see for instance Bonahon [7].
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These latter, by the solution of the geometrization conjecture, are either punctured
3–spheres, or nonprime manifolds, or irreducible with nontrivial JSJ splitting; this has
interesting consequences on the structure of their fundamental group, as we shall see
later (notice that also closed Sol–manifolds have a nontrivial JSJ decomposition, but
this splitting does not have exactly the same properties as in the nongeometric case;
see discussion in Section 4).

In the last thirty years much effort has been made to understand the model geometries
supported by the pieces of the JSJ decomposition of irreducible 3–manifolds (notably,
of atoroidal 3–manifolds) and special metrics on general 3–manifolds (mostly because
of the simplification of the curvature tensor in dimension 3): for instance, and by no
means claiming to be exhaustive, the works on asymptotically harmonic metrics by
Heber, Knieper and Shah [24] and by Schroeder and Shah [53], works on nonnegatively
Ricci curved metrics by Schoen and Yau [52], Anderson and Rodriguez [1] and Shi [56]
and, last but foremost, on the Ricci flow (see for instance Hamilton’s seminal paper [22]
and the monography by Bessières, Besson, Boileau, Maillot and Porti [5]). This has
led to amazing results, such as Hamilton’s elliptization of manifolds with positive Ricci
curvature, and culminated in Perelman’s solution of the geometrization and Poincaré
conjectures.

The Riemannian geometry of nongeometric manifolds, or families of Riemannian
metrics on them, deserved considerably less attention, in spite of their topological pecu-
liarities and their genericity: nongeometric manifolds are very easy to produce, starting
from hyperbolic or Seifert fibered pieces, and this class encompasses, for instance,
the class of all graph manifolds.2 This can be explained by the lack of any possible
“best metric” on this class. Some remarkable exceptions are Leeb’s work [35] on the
existence of nonpositively curved metrics on aspherical 3–manifolds, with or without
boundary; or the results of Kapovich and Leeb [32] and Behrstock and Neumann [4] on
quasi-isometric rigidity and quasi-isometry classification of nongeometric manifolds,
and other works on the restricted class of Seifert and graph manifolds (for instance
Scott and Bonahon classic surveys [54; 7], Ohshika’s paper [42] on Teichmüller space
of Seifert fibered manifolds, and works by Behrstock and Neumann [3], Neumann [41]
and Frigerio, Lafont and Sisto [17] for graph manifolds and their higher-dimensional
counterparts), which are however mostly topological in spirit.

2A graph manifold is an irreducible 3–manifold having a nontrivial JSJ decomposition whose JSJ
components are all Seifert fibered (see Section 4.1).
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Local topological rigidity of nongeometric 3–manifolds 2901

This paper and, in part, the forthcoming [13] are devoted to the Riemannian geometry
of nongeometric 3–manifolds. We want to point out from the outset that all of our
results on nongeometric 3–manifolds do not extend to geometric manifolds, as we
shall show in each case, with possibly the exception of the class of 3–manifolds of
hyperbolic type, where the possibility of an extension is an interesting open question.

Our first result is an estimate à la Margulis for compact, orientable, nongeometric
3–manifolds with torsionless fundamental group. The original Margulis lemma (estab-
lished for nonpositively curved manifolds X with bounded sectional curvature, and then
generalized by the works of Fukaya and Yamaguchi [18] and Cheeger and Colding [15]
and by Kapovich and Wilking [33] to manifolds with only a lower Ricci curvature bound)
concerns the virtual nilpotency of the subgroup of �1.X / generated by sufficiently
small loops at any point x 2X. For compact, negatively curved manifolds, this yields an
estimate of the systole, or of the injectivity radius, in terms of bounds of the sectional cur-
vature and of the diameter (see, for instance, Buser and Karcher [9, Proposition 2.5.3]),

sys�1.X /D 2 inf
x2X

inj.x/�
"0.n/

K � sinhn�1 KD

for any n–manifold X with �K2 �KX < 0 and diameter bounded by D.

A similar result, based more on topological arguments than on the analysis of the
curvature tensor, is the estimate by Zhu [70] of the contractibility radius for 3–manifolds
under controlled Ricci curvature, diameter and volume.

The systolic estimate we give, for nongeometric 3–manifolds, ignores curvature, and
only uses a normalization by the entropy:

Theorem 1.1 Let X be any compact, orientable, nongeometric Riemannian 3–
manifold, with torsionless fundamental group and no spherical boundary components.
Assume that Ent.X /�E and that diam.X /�D . Then

(1) sys�1.X /� s0.E;D/ WD
1

E
� log

�
1C

4

e26ED � 1

�
:

Recall that the (volume) entropy of a compact Riemannian manifold X is the exponen-
tial growth rate of the volume of balls in the universal covering zX ,

(2) Ent.X /D lim sup
R!1

R�1
� log Vol B zX .zx;R/

for any choice of zx 2 zX. Actually, the lift z� of any finite Borel measure � on X

can be used in the above formula, obtaining the same result; see Sambusetti [51]. In
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particular, using the measure � D
P

g2G ıgzx given by the sum of Dirac masses of
one orbit of G Š �1.X;x/ on zX, one sees that the entropy gives the exponential
growth rate of pointed homotopy classes of loops in X (where the length of classes is
measured by the shortest loop in the class). Moreover, it is well known that this also
equals, in nonpositive curvature, the topological entropy of the geodesic flow on the
unitary tangent bundle of X; see Manning [36]. For closed manifolds, a lower bound
of the Ricci curvature, RicciX � �.n� 1/K2, implies a corresponding upper bound
of the entropy, Ent.X / � .n� 1/K , by the classical volume-comparison theorems
of Riemannian geometry. However, entropy is a much weaker invariant than Ricci
curvature; actually, Ent.X / can be seen as an averaged version of the curvature (this can
be given a precise formulation in negative curvature by integrating the Ricci curvature
on the unitary tangent bundle of X with respect to a suitable measure; see Knieper [34]),
and only depends on the large-scale geometry of X.

Theorem 1.1 stems from the interplay between the metric structure and the algebraic
properties of �1.X /, given by the prime decomposition theorem and the JSJ decom-
position theorem for orientable, irreducible 3–manifolds. We shall see in Section 3 a
more general estimate for manifolds whose fundamental group acts acylindrically on a
simplicial tree (which generalizes some estimates given by Cerocchi [11]).

Remark 1.2 The assumption “nongeometric” in Theorem 1.1 is necessary.

Besides the four geometries of subexponential growth, S3, S2�R, E3 and Nil, where
it is evident that a simple bound on the diameter does not force any lower bound of
the systole, we shall see in Section 5 that every closed 3–manifold modeled on Sol,
H2 �R or H2 z�R also admits a sequence of metrics g" such that Ent.X;g"/ �E ,
diam.X;g"/�D and sys�1.X;g"/! 0. In all the examples, with the exception of
H2 z�R, the metrics g" are even locally isometric to the respective model geometries.

In contrast, such a family of metrics cannot be found on a fixed, closed 3–manifold X

of hyperbolic type; actually, if a hyperbolic metric g0 is fixed on X (recall that by
Mostow’s rigidity theorem this metric is unique up to isometries), then the systole
of any other Riemannian metric g on X is bounded away from zero in terms of its
entropy and diameter, and of the injectivity radius of .X;g0/, in view of the results
in an unpublished paper by Besson, Courtois and Gallot [6]. It is not known to the
authors if it is possible to find a universal lower bound as in (1), holding for Riemannian
metrics on all closed 3–manifolds of hyperbolic type.
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Remark 1.3 Also, the torsionless assumption in Theorem 1.1 cannot be dropped. For
any closed 3–manifold X and any p � 2, one can construct on the connected sum
Y D X # .S3=Zp/ with a lens space a family of metrics g" , with �! 0, such that
diam.Y;g"/�D, Ent.Y;g"/�E and sys.Y;g"/D " (see [11, Example 5.4]).

The assumption on the boundary in Theorem 1.1 can be relaxed by asking that X not
have the homotopy type of a punctured, geometric manifold; notice that one can excise
an arbitrarily small ball from a geometric manifold without modifying the fundamental
group and the systole, and this gives an easy counterexample to (1) for punctured
geometric manifolds.

As an immediate consequence of (1) and of Gromov’s systolic inequality for essential
manifolds [20, Theorem 0.1.A] we deduce the following volume estimate:

Corollary 1.4 Let X be any closed, orientable, nongeometric Riemannian 3–manifold
with torsionless fundamental group which is not homeomorphic to the connected sum of
a finite number of copies of S2�S1. Assume Ent.X /�E and diam.X /�D . Then

(3) Vol.X /� C � s0.E;D/
3:

It is worth stressing that the volume estimate holds in particular for any nongeometric
closed graph manifold (ie any graph manifold which is not a Sol–manifold) and for
connected sums of such manifolds, with the remarkable exception of connected sums
of copies of S2 �S1. The volume estimate above is particularly interesting in these
cases because, for graph manifolds (and connected sums of graph manifolds), the
simplicial volume vanishes (see Soma [57, Corollary 1]) and it is thus impossible to
obtain estimates for the volume via the classical arguments of bounded cohomology
(as in Cao and Chen [10], Gromov [19] and Sambusetti [50]).

Remark 1.5 The exception of a connected sum of copies of S2�S1 in Corollary 1.4
cannot be avoided. In Example 5.2, we shall exhibit a family of metrics g" on X D

#k.S
2 �S1/, for any k � 1, with lim"!0 Vol.X;g"/D 0, while, for all � > 0,

Ent.X;g"/�E; diam.X;g"/�D; sys�1.X;g"/� s:

The systolic estimate in Theorem 1.1 is the keystone of the local topological rigidity
and finiteness results that we shall prove in Section 4. Namely, consider the classes

Mngt.E;D/ (respectively, M@
ngt.E;D/)
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of closed (resp. compact, with possibly empty boundary and no spherical boundary
components) connected, orientable, nongeometric Riemannian 3–manifolds X, with
torsionless fundamental group, whose entropy and diameter are respectively bounded
by E and D, endowed with the Gromov–Hausdorff distance dGH . Recall that, in
restriction to oriented, irreducible 3–manifolds X, the following are equivalent:

(i) X is a K.�; 1/–space;

(ii) X has torsionless fundamental group;

(iii) X has infinite fundamental group;

(iv) X is not a quotient of S3.

(The implication (i) ) (ii) is standard — see Hatcher’s book [23, Proposition 2.45]
for example — while (ii) ) (iii) ) (iv) are trivial; on the other hand, (iv) ) (iii)
follows from Perelman’s elliptization theorem, and (iii) ) (i) is consequence of the
JSJ decomposition and of the classification of Seifert fibered manifolds.)

The topological type of geometric manifolds, possibly with the exception of manifolds of
hyperbolic type, enjoys a lot of freedom under Gromov–Hausdorff convergence: one can
easily produce geometric manifolds which are arbitrarily close in the Gromov–Hausdorff
distance, while being very different. For instance, the quotients of the Heisenberg group
or of the Sol–group by the respective integral lattices H 3

Z and SolZ admit metrics which
make them arbitrarily close to a flat 3–torus, since all of them can collapse with bounded
curvature (and, a fortiori, with bounded entropy) to a circle; similar examples can be
produced by taking a surface of hyperbolic type †g , and considering its unit tangent
bundle U†g and the product †g�S1, which both can collapse with bounded curvature
to †g (see Example 5.1). Nongeometric manifolds (though often also collapsible,
since graph manifolds admit the so-called F–structures of Cheeger and Gromov [16])
are more topologically rigid, as their topological type is locally determined, provided
that the entropy stays bounded while approaching some fixed manifold:

Theorem 1.6 There exists ı0 D ı0.E;D/ > 0 such that for any X;X 0 2M@
ngt.E;D/,

(i) if dGH.X;X
0/ < ı0 , then �1.X /Š �1.X

0/;

(ii) if X;X 0 are irreducible and dGH.X;X
0/<ı0 , then X and X 0 are homotopically

equivalent.
�
One can take ı0 D 1

40
s0.E;D/ for s0.E;D/ as in Theorem 1.1.

�
This theorem might be reminiscent of the quasi-isometric (virtual) rigidity results for the
fundamental group of nongeometric 3–manifolds by Kapovich and Leeb [31]. However,
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besides the stronger conclusions (the fundamental group cannot be determined simply
from the quasi-isometry type), notice that, without any assumption on the entropy, one
can easily produce nongeometric manifolds X and X 0 which are arbitrarily close in the
Gromov–Hausdorff distance and which do not have quasi-isometric fundamental groups.
Take, for instance, the connected sum of an irreducible manifold X with any arbitrarily
small in size 3–manifold M that is not simply connected; then, the fundamental group
of the resulting manifold X 0 DX # M is not quasi-isometric to �1.X /, by Papasoglu
and Whyte [45]. Also, it is well known that any two closed graphs manifolds have
quasi-isometric fundamental group (see Behrstock and Neumann [3]), while being far
from having isomorphic fundamental groups.

The fundamental group completely determines the integral homology groups of closed
(connected) orientable 3–manifolds, as H0.X;Z/ D H3.X;Z/ D Z, H1.X;Z/ D

�1.X /=Œ�1.X; /; �1.X /� and H2.X;Z/DH 1.X;ZDH1.X;Z/=tor; thus, in restric-
tion to the subset Mngt.E;D/, the local rigidity of the fundamental group implies the
local constancy of all homology groups. However, by Swarup’s finiteness theorem for
irreducible 3–manifolds with given fundamental group and by Kneser’s conjecture,
Theorem 1.6(i) has the following stronger consequence:

Corollary 1.7 The diffeomorphism type is locally finite on the space M@
ngt.E;D/.

Recall that, if X and X 0 are two closed 3–manifolds with torsionless fundamental
group, then they are homotopy equivalent if and only if they are homeomorphic,3 if and
only if they are diffeomorphic. The first equivalence is a consequence of the solution
of the Borel conjecture for closed 3–manifolds with torsionless fundamental group,
which follows from the work of Waldhausen [67] for Haken 3–manifolds, and from
the work of Turaev [65] and Perelman’s solution of the geometrization conjecture for
non-Haken 3–manifolds. The second equivalence follows from the work of Moise,
Munkres and Whitehead [37; 39; 40; 68] and holds for any 3–manifold, even without
the orientability, torsionless and closedness assumptions.

From Theorem 1.6(ii) we also deduce the following, more explicit result:

Corollary 1.8 For all X;X 0 2Mngt.E;D/ with X irreducible, if dGH.X;X
0/ � ı0

then X 0 is diffeomorphic to X (for ı0 D ı0.E;D/ as in Theorem 1.6).

3This is no longer true if we assume the manifolds to have nontrivial boundary (even for irreducible
manifolds with incompressible boundary); see Johannson [28] and Swarup [59].
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Notice that Corollary 1.8 shows, in particular, that the Gromov–Hausdorff distance
defines a metric (quotient) structure on the diffeomorphisms classes of irreducible
manifolds in Mngt.E;D/; this is false for reducible manifolds:

Remark 1.9 Irreducibility in Theorem 1.6(ii) and Corollary 1.8 is necessary.

We will see in Example 5.4 a pair of closed, nongeometric, nonhomotopically equivalent
3–manifolds Y and Y which admit sequences of metrics .gn/n2N and .xgn/n2N with
uniformly bounded entropy and diameter such that the Gromov–Hausdorff distance
between .Y;gn/ and .Y ; xgn/ goes to zero when n!1.

These results should be compared to general finiteness and convergence theorems in
Riemannian geometry, under classical curvature, diameter and volume (or injectivity
radius) bounds. In particular, Corollary 1.8 can be interpreted as a quantitative version
(in restriction to nongeometric 3–manifolds with infinite fundamental group) of the
celebrated diffeomorphism theorem of Cheeger and Colding [15], saying that if a
sequence of smooth n–manifolds Xk , with Ricci curvature uniformly bounded from
below, tends in the Gromov–Hausdorff convergence to a smooth n–manifold X, then Xk

is diffeomorphic to X for k� 0. Notice however that, despite the restricted class of
application, our results only need the control of a much weaker invariant than Ricci
curvature: it is easy to exhibit convergent families of Riemannian manifolds with
bounded entropy, where the Ricci curvature is not uniformly bounded (see Reviron [49]
for some enlightening examples). Also, the Cheeger–Colding diffeomorphism theorem
does not apply without the strong assumption that the limit space is a manifold, whereas
Corollary 1.8 shows that the Xk are always diffeomorphic for k�0. In this perspective,
it is somewhat surprising that, for nongeometric manifolds, a bound on the entropy
suffices to capture the local topological type, and actually does a better service than a
Ricci curvature bound in the case of manifolds with boundary (notice in fact that we
do not need any supplementary curvature assumption on the boundary).

Finally, let us state the following finiteness theorem under Ricci curvature bounds, as
an immediate corollary of Corollary 1.8 and Gromov’s precompactness theorem (or,
equivalently, of the volume estimate of Corollary 1.4 and Zhu’s homotopy finiteness
theorem [70, Theorem 1]):

Corollary 1.10 Let Mngt.RicciK ;D/ be the family of closed, orientable, nongeo-
metric, Riemannian 3–manifolds with torsionless fundamental group, satisfying the
bounds Ricci � �.n� 1/K2 and diam � D. The number of diffeomorphism types
in Mngt.RicciK ;D/ is finite.
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Comparing with Zhu’s theorem, we are dropping the lower bound assumption on
the volume; we pay for this choice by restricting ourselves to the set of torsionless
nongeometric 3–manifolds. A similar finiteness result holds for nongeometric manifolds
satisfying only a bound on entropy instead of Ricci curvature; this point of view has
been developed elsewhere by the authors [14].
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Cerocchi wishes to thank the Department of Mathematics Guido Castelnuovo of
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2 Nonabelian, rank 2 free subgroups

In this section we recall some facts about k–acylindrical actions of groups on simplicial
trees. The aim is to give quantitative results on the existence of 2–generator free
subgroups starting from two prescribed elliptic or hyperbolic generators.

We recall that, given a group G acting by automorphisms on a tree T without edge
inversions (ie no element swaps the vertices of some edge), the elements of G can be
divided into two classes: elliptic and hyperbolic elements. They can be distinguished
by their translation length, which is defined, for g 2G, as

�.g/D inf
v2T

dT .v;g � v/;

where dT denotes the simplicial distance of T , ie with all edges of unit length. If
�.g/D 0 the element g is called elliptic, otherwise it is called hyperbolic.

We shall denote by Fix.g/ the set of fixed points of an elliptic element g , and by
T .g/ D

S
n2Z� Fix.g

n/ the set of points which are fixed by some nontrivial power
of g ; these are (possibly empty) connected subtrees of T . If h is a hyperbolic element
then Fix.h/ D ¿ and h has a unique axis on which it acts by translation, denoted
by Axis.h/; each element on the axis of h is translated by distance �.h/ along the axis,
whereas elements at distance ` from the axis are translated by �.h/C 2`.

Let TG be the minimal subtree of T which is G–invariant: the action of G is said to
be elliptic if TG is a point, and linear if TG is a line; in both cases we shall say that
the action of G is elementary. We also recall that an action without edge inversions
is called k–acylindrical if the set Fix.g/ has diameter less than or equal to k for any
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elliptic g 2G. The notion of k–acylindrical action on a tree is due to Sela [55], and
arises naturally in the context of Bass–Serre theory, as we shall see later.

Groups acting k–acylindrically on trees are well known to possess free subgroups. We
need a quantitative version of this, estimating, for every prescribed, noncommuting
pair of elements g1 and g2 , the maximal length of a word in g1 and g2 generating
with g1 (or with some bounded power of g1 ) a free sub(semi)group:

Theorem 2.1 (quantitative free product subgroup theorem) Let G be a group acting
k–acylindrically on a simplicial tree T . Then:

(i) If g1;g2 2G are elliptic elements and Fix.g1/\ Fix.g2/D¿, then the group
hg1; h

pg1h�pi is a rank 2 free product for hD g1g2 and p � 1
2
.kC 1/.

(ii) If g 2 G is elliptic and h 2 G is hyperbolic, then the group hg; hpgh�pi is a
rank 2 free product for p � kC 1.

(iii) If h1; h2 2G are hyperbolic with Axis.h1/¤ Axis.h2/, then:
� If diam.Axis.h1/\Axis.h2// � 3k , then hhq

1
; h

q
2
i is rank 2 free subgroup

for q � 3kC 1.
� If diam.Axis.h1/ \ Axis.h2// > 3k , then at least one of the two groups
hh1; h

p
2

h1h
�p
2
i and hh2; h

p
1

h2h
�p
1
i is a rank 2 free subgroup for p � 3.

� In any case (even without the assumption of k–acylindricity) either fh1; h2g

or fh�1
1
; h2g freely generates a rank 2 free semigroup.

In order to prove Theorem 2.1, we shall need the following basic facts (see Bucher and
Talambutsa [8] and Kapovich and Weidmann [29]):

Lemma 2.2 Let g1 and g2 be elliptic elements of a group G acting without edge
inversions on a simplicial tree T . Then:

(i) If Fix.g1/\ Fix.g2/D∅, then g1g2 is hyperbolic with translation length

�.g1g2/D 2dT .Fix.g1/; Fix.g2//:

(ii) If T .g1/\T .g2/D∅, then the group hg1;g2i is a rank 2 free product.

Lemma 2.3 Let g1 and g2 be hyperbolic elements of a group G acting without edge
inversions on a simplicial tree T , and let J D Axis.h1/\Axis.h2/. If

diam.J / < n minf�.h1/; �.h2/g;

then hn
1

and hn
2

generate a nonabelian, rank 2 free subgroup of G.
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Proof of Theorem 2.1 To prove (ii) it is sufficient, by Lemma 2.2(ii), to show that
T .g/\T .g0/D ∅ for g0 D hpgh�p and p � kC 1. This is equivalent to showing
that Fix.g`1/\Fix.g0`2/D¿ for all `1; `2 2Z�. As Fix.g`/� Fix.g/ for any ` 2Z�,
this last condition is equivalent to

(4) Fix.g`/\ Fix.hpg`h�p/D¿ for all ` 2 Z�:

We consider the two cases: Fix.g`/\Axis.h/D¿ or Fix.g`/\Axis.h/¤¿.

In the first case the projection of Fix.g`/ onto Axis.h/ is one point, denoted by v� . Since
Fix.hpg`h�p/D hp �Fix.g`/, the image hp �v� is the projection of Fix.hpg`1`2h�p/

onto Axis.h/. This implies that (4) holds for all p > 0, as in this case

dT .Fix.h
pg`h�p/; Fix.g`//� dT .v�; h

pv�/C 2 � p�.h/C 2:

In the second case, let J D Fix.g`/ \ Axis.h/ and notice that diam.J / � k by k–
acylindricity. So, let v�2J such that dT .v�; v/�

1
2
k for any v2J ; observe that hp �v�

satisfies the same property with respect to the set hp.J /D Fix.hpg`h�p/\Axis.h/.
Since h acts by translation of �.h/� 1 on its axis, we have

dT .Fix.h
pg`h�p/; Fix.g`//� dT .v�; h

p
� v�/�

1
2
k � 1

2
k � p�.h/� k:

Since the action is k–acylindrical we conclude that, in this case, condition (4) is satisfied
for all ` 2 Z� if p � kC 1 (as �.h/� 1), which proves part (ii).

Assertion (i) follows by applying the above argument to g D g1 and to h D g1g2 ,
which is a hyperbolic element with �.h/� 2, by Lemma 2.2(i).

To prove (iii), we may assume that J D Axis.h1/\Axis.h2/¤¿, because otherwise
h1 and h2 have an evident ping-pong dynamics for every choice of base point x0 2 T ,
and they clearly generate a nonabelian, rank 2 free subgroup.

If d D diam.J /� 3k , then the elements h
q
1

and h
q
2

, for any q � 3kC 1, generate a
nonabelian, rank 2 free subgroup by Lemma 2.3. Assume now that d � 3kC 1. By
the condition of k–acylindricity, we infer that maxf�.h1/; �.h2/g >

1
3
d ; otherwise,

there exists a connected subset J 0 � J with diam.J 0/ D 1
3
d > k which is fixed

by h�1
1

h�1
2

h1h2 . (Actually, assume J is oriented by the translation direction of h1 .
Then it is enough to take J 0 equal to the first subsegment of J of length 1

3
d if

h1 and h2 translate J in the same direction and J 0 equal to the middle subsegment
of J of length 1

3
d when h1 and h2 translate in opposite directions.) So, we may
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assume that �.h1/ >
1
3
d ; in this case, for p � 3 we have

Axis.h
p
1

h2h
�p
1
/\Axis.h2/D .h

p
1
:Axis.h2//\Axis.h2/D¿:

Hence h2 and h
p
1

h2h
�p
1

generate a nonabelian, rank 2 free subgroup by Lemma 2.2.
The case where �.h2/ >

1
3
d is analogous. The last assertion in (iii) is classical.

3 Systolic estimates

Definition 3.1 Let .G; d/ be a discrete, proper metric group, ie a discrete group G

endowed with a left-invariant distance such that the balls of finite radius are finite sets.
The entropy of .G; d/ is

Ent.G; d/D lim sup
R!1

1

R
log.#Bd .id;R//;

where Bd .g;R/D fg
0 j d.g;g0/ <Rg denotes the ball of radius R centered at g .

We shall be mainly interested in two different kinds of distances on G :

(1) Word or word-weighted distances, each associated to some finite generating
set † and to some weight function `W † ! RC and denoted by d` . The
word-weighted distance d` is the unique left-invariant length distance on the
Cayley graph C.G; †/ such that d`.id; s/D `.s/ and d` is linear on each edge
(when `D 1 this is the usual word metric d† associated with †).

(2) Geometric distances, each associated to some discrete, free action of G on
a pointed, Riemannian manifold .Y;y0/ and denoted by dy0

; in this case
dy0

.g;g0/D d.g:y0;g
0:y0/ is the distance between corresponding orbit points.

We shall denote the corresponding distances from the identity by jgj† , jgj` and jgjy0
.

The following properties of the entropy are well known, and will be used later:

(E1) When Y D zX is the Riemannian universal covering of a Riemannian manifold X,
with GŠ�1.X / acting on Y by deck transformations, for any choice of zx0 2

zX,
the volume-entropy of X satisfies Ent.X /�Ent.G; dzx0

/, with equality when X

is compact; see [51].

(E2) Given distances d1 � d2 on G, we have Ent.G; d1/� Ent.G; d2/.

The announced volume estimates of Theorem 1.1 and Corollary 1.4 are a particular
case of the following result:
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Theorem 3.2 Let X be any compact, connected Riemannian manifold with torsionless
fundamental group, acting nonelementarily and k–acylindrically on a simplicial tree.
If diam.X /�D and Ent.X /�E , then

(5) sys�1.X /�
s0.E �D/

E
;

where s0.t/D log.1C 4=.e.4kC10/t
� 1//. Moreover, if X is 1–essential then

(6) Vol.X /� Cn �

�
s0.E �D/

E

�n

:

Recall that, following Gromov [20], a 1–essential n–manifold X is a closed, connected
n–manifold which admits a continuous map into an aspherical space f W X !K such
that the image of the fundamental class ŒX �2Hn.X;Z/ via the homomorphism induced
in homology by f does not vanish.

In the proof of Theorem 3.2, we shall need the following, elementary lemma:

Lemma 3.3 Let G be any finitely generated group, acting without edge inversions on
a simplicial tree T , and let † be any finite generating set for G . Then:

(a) If the action is nonelliptic, then there exists a hyperbolic element h 2 G such
that jhj† � 2. Namely, either h 2†, or h is the product of two elliptic elements
s1; s2 2† such that Fix.s1/\ Fix.s2/D¿.

(b) If the action is nonelementary, then for any hyperbolic element h 2 G there
exists s 2† which does not belong to the normalizer NG.h/ of hhi in G.

(c) If the action is linear and acylindrical, then G is virtually cyclic.

Proof of Lemma 3.3 Let us show (a). If s 2 † is a hyperbolic element, we
choose hD s . On the other hand, if † only contains elliptic elements, there exists a pair
of elements s1 and s2 , from †, such that Fix.s1/\Fix.s2/D¿, because G acts on T
without global fixed points. Then hD s1s2 is a hyperbolic element with jhj† � 2.

Let us now prove (b). Let h be a hyperbolic element of G ; an element s 2† belongs
to NG.hhi/ if and only if it globally preserves Axis.h/. Therefore, if s 2NG.hhi/ for
all s 2†, we would deduce that G DNG.hhi/ preserves a line, and thus the action
is elementary, a contradiction. For (c), assume that G preserves a line of T ; this is
the axis of some hyperbolic element h with minimal displacement, by (a). Any other
element s 2† either is a hyperbolic element such that Axis.s/D Axis.h/, or is elliptic
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and globally preserves Axis.h/, swapping the two ends. In the first case s is a power
of h, by acylindricity. In the second case, s acts on Axis.h/ as a reflection with respect
to some vertex, and s2 fixes pointwise the axis; hence, again by acylindricity, s2D1 and
shs�1D h�1 . Also, if s0 2† is another elliptic element, ss0 fixes the ends of Axis.h/,
hence it is again a power of h. It follows that GDhhiŠZ or GDhh; siŠZÌZ2 .

Proof of Theorem 3.2 The volume estimate (6) follows from (5) just by apply-
ing Gromov’s systolic inequality Vol.X / � Cn � .sys�1.X //

n, which holds for any
1–essential n–manifold, for a universal constant Cn only depending on the dimen-
sion n (see [20, Theorem 0.1.A]). To show (5), let 1 be a shortest nonnullhomotopic
closed geodesic realizing the systole of X, let x0 2 1 and let g1 be the class of 1

in �1.X;x0/. Consider the natural action by deck transformations of G D �1.X;x0/

on the Riemannian universal covering zX, and the displacement function of G on zX

�G.zx/ WD inf
g2G�

d.zx;g:zx/

whose infimum over zX coincides with sys�1.X /, and is realized by g1 at any preimage
zx0 2

zX of x0 . Then, consider the finite generating set of G given by (see [21])

†D fg 2G j d.zx0;g:zx0/� 2Dg:

We shall consider separately the cases where g1 is elliptic or hyperbolic.

If g1 is elliptic, we know by Lemma 3.3(a) that there exists a hyperbolic element h

with jhj†� 2. Setting g2Dhpg1h�p , for the least integer p� 1
2
.kC1/, the elements

g1 and g2 generate a nonabelian free subgroup, by Theorem 2.1(ii).

We now use the following lemma, which is folklore (see for instance [11]):

Lemma Let F2 be a free nonabelian group, freely generated by †Dfg1;g2g. For any
word-weighted distance d` on the Cayley graph C.F2; †/, defined by the conditions
jg1j` D `1 and jg2j` D `2 , the entropy E D Ent.F2; d`/ solves the equation

(7) .eE �`1 � 1/.eE �`2 � 1/D 4:

Applying this lemma to F2 Š hg1;g2i, endowed with the word-weighted distance d`

defined by `1 WD jg1jzx0
D sys�1.X / and `2 WD jg2jzx0

� .4k C 10/D, we derive
from (7) that

(8) `1 �
1

E
� log

�
1C

4

e`2�DE � 1

�
�

1

E
� log

�
1C

4

e.4kC10/�DE � 1

�
;
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since dzx0
� d` and so, by (E1) and (E2),

E D Ent.hg1;g2i; d`/� Ent.hg1;g2i; dzx0
/� Ent.G; dzx0

/� Ent.X /DE:

This concludes the proof in the case where g1 is elliptic.

Assume now that g1 is a hyperbolic element. By Lemma 3.3, we can pick an element
s 2† which is not in NG.g1/. By the discussion in Lemma 3.3, either s is hyperbolic
with Axis.s/¤Axis.g1/, or s is elliptic and does not preserve Axis.g1/. In the first case,
we deduce by Theorem 2.1(iii) that g1 and g2 generate a free nonabelian semigroup
of rank 2, for some choice of g2 2 fs; s

�1g. In the second case, g2 WD sg1s�1 is a
hyperbolic element with Axis.g2/¤ Axis.g1/ and, by the same theorem, g1 and g2

generate a free nonabelian semigroup.

We can now use the following (see [6, Lemme 2.4]):

Lemma 3.4 Let FC
2

be a nonabelian semigroup, freely generated by †D fg1;g2g.
For any left-invariant distance d on FC

2
and any choice of positive real numbers

.`1; `2/ such that jg1jd � `1 and jg2jd � `2 , the entropy E D Ent.FC
2
; d/ satisfies the

inequality

E D Ent.FC
2
; d/� sup

a2.0C1/

�
1

`1Ca`2

�
� ..1C a/ � log.1C a/� a log.a//:

We apply this lemma to FC
2
Š hg1;g2i for `1 WD jg1jzx0

and `2 WD jg2jzx0
� 6D, and

we derive, by choosing aDE � `1 ,

(9) `1 �
1

E
� e�6DE ;

since log.1C a/� a=.1C a/ and E �E .

If k � 1, this lower bound for the systole is greater than the one in (8) (actually, the
inequality e�6x < log.1C 4=.e.4kC10/x � 1// implies that x � 21

125
, and in this case

2x < e�6x ; but if x D ED � 21
125

then `1 �E � 2DE < e�6DE , contradicting (9)).
On the other hand, if k D 0 the stabilizers of the edges of T are trivial and thus G

splits as a free product of a finite number of finitely generated, torsionless groups. By
[11, Theorem 1.3] the following estimate for the systole of finitely generated, torsion-
less free products holds:

sys�1.X /�
1

E
� log

�
1C

4

e2DE � 1

�
:

This estimate is sharper than (8) and concludes the proof of Theorem 3.2.
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4 Applications to 3–manifolds

This section is devoted to the proof of Theorems 1.1 and 1.6 and their corollaries.

In Section 4.1, we recall some basic results of 3–dimensional topology (prime decompo-
sition and JSJ decomposition) and prove that given a compact, orientable, 3–manifold X

without spherical boundary components, either int.X / admits a geometric metric, or
�1.X / has a splitting as a free or amalgamated product which is 4–acylindrical.

In Section 4.2, as a consequence of this dichotomy and of Theorem 3.2, we shall obtain
the systolic and volume estimates (Theorem 1.1 and Corollary 1.4), and we shall prove
the rigidity results (Theorem 1.6 and Corollaries 1.7, 1.8 and 1.10).

4.1 Acylindrical splittings of nongeometric, 3–manifolds groups

For a comprehensive exposition of the topics that we recall here, we refer to the
classical books of Hempel and Thurston [25; 64], to the survey papers of Scott and
Bonahon [54; 7] and to the recent monography of Aschenbrenner, Friedl and Wilton [2].

We recall that a compact 3–manifold X is said to be prime if it cannot be decomposed
nontrivially as the connected sum of two manifolds; ie when X DX1 # X2 then either
X1 or X2 is diffeomorphic to S3. A compact 3–manifold X is called irreducible if
every embedded 2–sphere in X bounds a 3–ball in X (and reducible otherwise). Every
orientable, irreducible 3–manifold is prime; conversely, if X is an orientable, prime
3–manifold with no spherical boundary components, then either X is irreducible, or
X D S1 �S2 (see [25, Lemma 3.13]). Notice that an irreducible, orientable, compact
3–manifold does not have boundary components homeomorphic to the 2–sphere, unless
the manifold is the 3–ball.

As we deal also with compact 3–manifolds X with possibly nonempty boundary we
need a few more definitions: an embedded surface S �X is said to be incompressible
if for any embedded disk D � X with @D � S there exists a disk D0 � S such
that @D0 D @D ; when X is irreducible, this implies that the disk D is isotopic to D0.
In particular, X has incompressible boundary if any connected component of @X is
an incompressible surface. Finally, a @–parallel properly embedded surface of X is
an embedded surface S whose (possibly empty) boundary is contained in @X and
such that S is isotopic rel @X to a subsurface in @X. A cornerstone of 3–dimensional
topology is the prime decomposition theorem:

Geometry & Topology, Volume 23 (2019)



Local topological rigidity of nongeometric 3–manifolds 2915

Prime Decomposition Theorem Let X be any compact, oriented 3–manifold. There
exist oriented, prime, compact 3–manifolds X0;X1; : : : ;Xm such that X0 is diffeo-
morphic to a sphere minus a finite collection of disjoint 3–balls, Xi has no spherical
boundary components for i � 1, and X DX0 # X1 # � � � # Xm .

Moreover, if X 0i for i D 0; : : : ;m0 are manifolds with the same properties as the Xi ,
and X D X0 # X1 # � � � # Xm D X 0

0
# X 0

1
# � � � # X 0m0 , then mDm0 and (possibly after

reordering the indices) there exist orientation-preserving diffeomorphisms Xi
�
��!X 0i .

The manifolds Xi are the prime pieces of X.

The prime decomposition theorem has a partial converse, Kneser’s conjecture. In classi-
cal references, the conjecture is stated for closed 3–manifolds or compact 3–manifolds
with incompressible boundary; actually, the conjecture is false in presence of compress-
ible boundary, except in the case where the compressible boundary components are tori:

Kneser’s Conjecture Let X be any compact 3–manifold whose compressible bound-
ary components (if any) are homeomorphic to tori. If �1.X /DG1�� � ��Gn , then there
exist compact 3–manifolds X1; : : : ;Xn such that �1.Xi/DGi and X DX1 # � � �# Xn .

For compact, orientable irreducible 3–manifolds there exists a second important de-
composition theorem, which is due to the independent work of Jaco and Shalen [26]
and Johannson [27; 28]. This decomposition is obtained by cutting along embedded
incompressible tori which split the manifold into elementary pieces which are of two
different (but not mutually exclusive) kinds: atoroidal pieces and Seifert fibered pieces.
We recall that a compact, irreducible 3–manifold X is said to be atoroidal if any
incompressible torus is @–parallel. A compact, irreducible 3–manifold is said to be a
Seifert fibered manifold if it admits a decomposition into disjoint simple closed curves
(the fibers of the Seifert fibration) such that each fiber has a tubular neighborhood
which is isomorphic, as a circle bundle, to a standard fibered torus.4

JSJ Decomposition Theorem Suppose that X is a compact, orientable, irreducible
3–manifold. There exists a (possibly empty) collection of disjointly embedded in-
compressible tori T1; : : : ;Tm such that each component of X n

Sm
1 Ti is atoroidal or

Seifert fibered. A collection of tori with this property and having minimal cardinality is
unique up to isotopy.

4A pair of integers .a; b/2N��Z being given, the associated standard fibered torus Ta;b is the circle
bundle over the disk D2 obtained from D2� Œ0; 1� by identifying the boundaries D2�f0g and D2�f1g

via the automorphism 'W D2!D2 given by the rotation by an angle of 2�b=a ; this manifold comes
naturally equipped with a fibering by circles, given by gluing the “parallels” fpg � Œ0; 1� of Ta;b via ' .
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We shall refer to the minimal collection of tori fT1; : : : ;Tmg as the JSJ tori of X , and
to the connected components of X cut along

Sm
iD1 Ti as the JSJ components of X ;

the JSJ decomposition is said to be trivial when the collection of JSJ tori is empty.

As we remarked, Seifert fibered 3–manifolds can be atoroidal: the list of atoroidal
Seifert fibered 3–manifolds can be found in Jaco and Shalen [26, IV.2.5, IV.2.6].
Following Thurston [60] we say that an irreducible 3–manifold X is homotopically
atoroidal if every �1–injective map from the torus to X is homotopic to a map into
the boundary; using the Jaco–Shalen terminology this means that a manifold X does
not admit a nondegenerate map f W T 2 ! X. Being homotopically atoroidal is a
stronger property than just being atoroidal (as one allows continuous maps which are
not embeddings); however, the two notions coincide outside of Seifert fibered manifolds.
The list of compact, homotopically atoroidal, orientable, Seifert fibered manifolds is the
following: Seifert fibered manifolds with finite fundamental group, S2�S1, D2�S1,
T 2 � I and the twisted, orientable interval bundle over the Klein bottle K z� I ; we
observe that only the last three have nonempty boundary.

Following again [60], we define:

Definition 4.1 Let X be a compact, orientable 3–manifold with (possibly empty)
boundary. We say that X is nongeometric if its interior cannot be endowed with a
complete metric which is locally isometric to one of the eight model geometries.

The geometrization of closed, orientable, Seifert fibered 3–manifolds S is explained
in [54]; on the other hand, the geometrization of Seifert fibered manifolds with boundary
can be found in [7] (where the geometrization is meant with totally geodesic boundary;
the geometrization in Thurston’s sense, ie with complete, geometric metrics, is obtained
from a Fuchsian representation of the orbifold fundamental group of the base space with
parabolic boundary generators, and then by extending it to a representation of �1.S/

in IsomC.H2 � R/, as explained in [42]). For the remaining three Seifert fibered
manifolds, the interior of K z� I, D2 � I and T 2 � I can be endowed with complete
euclidean metrics.

For what concerns the atoroidal pieces, Thurston’s hyperbolization theorem5 asserts
that a closed, Haken 3–manifold admits a complete hyperbolic metric if and only if it
is homotopically atoroidal, and that the interior of a compact, irreducible 3–manifold

5Thurston announced for the first time in 1977 his hyperbolization theorem, and in 1982 the geometriza-
tion conjecture [60]; in the series of papers [61; 62; 63] (the latter two unpublished) Thurston filled some
of the major gaps. Complete proofs can be found in [43; 44; 30].
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with nonempty boundary can be endowed with a complete hyperbolic metric if and
only if it is homotopically atoroidal and not homeomorphic to K z� I.

On the other hand, the fact that closed, orientable, irreducible, homotopically atoroidal
non-Haken 3–manifolds admit a geometric metric is the content of Thurston’s ge-
ometrization conjecture, proved by Perelman [46; 47; 48]. In particular, the ellip-
tization theorem shows that closed 3–manifolds with finite fundamental group are
finite quotients of S3 (and thus Seifert fibered), and the hyperbolization theorem for
the non-Haken case shows that irreducible, homotopically atoroidal, non-Haken 3–
manifolds carry complete hyperbolic metrics (for more references and further readings
see [2, Chapter 1, Section 7]).

In view of this discussion, and for future reference, we record the following, now
well-established fact:

Fact A compact, orientable, irreducible 3–manifold with trivial JSJ decomposition is
geometric.

Given a compact 3–manifold X, we shall call the splitting of the fundamental group
of X as a graph of groups induced by the prime decomposition of X, or by the JSJ
decomposition (when X is irreducible), the canonical splitting of �1.X /. We shall
say that X has a nonelementary, canonical, k–acylindrical splitting if the action
of �1.X / on the Bass–Serre tree associated to the canonical splitting is nonelementary
and k–acylindrical.

Dichotomy (geometric vs acylindrical splitting) Let X be a compact, orientable
3–manifold with no spherical boundary components. Then either X is geometric or
�1.X / has a nonelementary, canonical 4–acylindrical splitting. The two possibilities
are mutually exclusive.

Remark 4.2 The dichotomy clearly does not hold in presence of spherical boundary
(as excising an arbitrary number of disjoint balls from a geometric manifold does not
change the fundamental group). Moreover, we stress the fact that the above dichotomy
does not assert that fundamental groups of geometric, compact 3–manifolds do not admit
acylindrical splittings different from the canonical one, as we shall see in Example 5.5.

Proof of the dichotomy Assume first that X is a compact, orientable 3–manifold,
whose prime decomposition is nontrivial. Then X has at least two prime pieces that are
not simply connected (because, since X has no spherical boundary components, the first
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piece X0 given by the prime decomposition is empty). Then either X is homeomorphic
to RP3 # RP3 or the action of �1.X / on the Bass–Serre tree associated to the prime
splitting is nonelementary (since the action of any nontrivial free product different
from Z2 �Z2 on its Bass–Serre tree does not have any globally invariant line). In the
first case observe that RP3 # RP3 is the unique orientable nonprime, Seifert fibered
space (see [2, page 10]) and, in particular, admits a geometry modeled on S2 �R

(see [54]). Otherwise, since the edge stabilizers in the prime splitting are trivial and at
least one vertex group is different from Z2 , the prime splitting is 0–acylindrical.

Let us assume now that X is a prime, compact 3–manifold; we may actually assume
that X is irreducible, as S2 � S1 is geometric. If the JSJ decomposition of X is
trivial, then X is geometric, in view of the fact on page 2917, and the canonical
splitting of �1.X / is elementary. On the other hand, in [69], Wilton and Zalesskii
prove that if X is a closed, orientable, irreducible 3–manifold, then either X admits a
finite-sheeted covering space that is a torus bundle over the circle, or the JSJ splitting
is 4–acylindrical. The same result holds for compact, irreducible manifolds (see for
details [12], where the precise constants of acylindricity of the splitting of �1.X / as an
amalgamated or an HNN extension over the peripheral groups is computed, according
to the different types of the adjacent JSJ components).

Now, compact, orientable, irreducible 3–manifolds with nontrivial JSJ decomposition,
which are finitely covered by a torus bundle, are either equal to a twisted double
D.K z� I;A/ or to a mapping torus M.T 2;A/, for a gluing map A 2 SL2.Z/

such that, respectively, JAJA�1 and A are Anosov (where J.x;y/ D .�x;y/;
see [2, Theorems 1.10.1 and 1.11.1]). In both cases the resulting manifolds admit
a Sol–metric [2, Theorem 1.8.2], hence they are geometric.

It remains to show that the 4–acylindrical splitting is nonelementary. Actually as X

has a nontrivial JSJ decomposition, it is clear that the action of �1.X / is not elliptic;
moreover, if it were linear then �1.X / would be virtually cyclic, by Lemma 3.3, which
contradicts the fact that �1.X / contains a rank 2 free abelian subgroup.

4.2 Systolic and volume estimates, local rigidity and finiteness

Proof of Theorem 1.1 In view of the above dichotomy, �1.X / admits a nonelemen-
tary, canonical, 4–acylindrical splitting. By assumption, �1.X / is torsionless, so we
can apply Theorem 3.2 to deduce

sys�1.X /�
1

E
log
�

1C
4

e26ED � 1

�
D s0.E;D/:

Geometry & Topology, Volume 23 (2019)



Local topological rigidity of nongeometric 3–manifolds 2919

Proof of Corollary 1.4 Let X D X0 # � � � # Xm be the prime decomposition of X.
Since X is closed and different from #k.S

2 �S1/, the piece X0 is empty and there
exists at least a prime piece, say X1 , which is closed and irreducible. Moreover,
since X has torsionless fundamental group, X1 is aspherical, and the existence of a
degree-one projection map X !X1 shows that X is 1–essential. Since we know that
the systole of X is bounded below by s0.E;D/, we can apply Theorem 1.0.A in [20]
to obtain the estimate Vol.X /� C � s0.E;D/

3.

Proof of Theorem 1.6 Consider X;X 0 2M@
ngt.E;D/. By Theorem 1.1 we know that

the systoles of X and X 0 are bounded below by s0.E;D/; then each semilocal simple
connectivity radius r.Xi/

6 also is bounded below by 1
2
s0.E;D/. Now, two compact

Riemannian manifolds with dGH.X1;X2/ <
1

20
minfr.X1/; r.X2/g have isomorphic

fundamental groups, as proved by Sormani and Wei [58] (as a consequence of work by
Tuschmann [66, Theorem (b)]). This proves (i). To show (ii), assume that, moreover,
X and X 0 are irreducible: since their fundamental groups are torsionless, they are
aspherical, and then homotopy equivalent by Whitehead’s theorem.

Proof of Corollary 1.7 By Theorem 1.6(i) we know that given X 2 M@
ngt.E;D/,

there exists a ı0 D ı0.E;D/ such that every other manifold X 0 in M@
ngt.E;D/ which

is ı0–close to X has the same fundamental group as X. Now, recall that, by results of
Swarup [59], there is a finite number of irreducible, compact 3–manifolds with a given
fundamental group. By the prime decomposition theorem (as stated in Section 4.1),
and by uniqueness of the decomposition of a group as a free product, this is also
true for (possibly reducible) compact 3–manifolds, without spherical boundary com-
ponents (recall that S2 � S1 is the only prime, not irreducible, orientable manifold
without spherical boundary components). We then conclude that the ball at X of
radius ı0 in M@

ngt.E;D/ contains only a finite number of homeomorphism (and then
diffeomorphism) types.

Corollary 1.8 is a particular case of the following:

Proposition 4.3 Let X;X 0 2M@
ngt.E;D/ with X irreducible and dGH.X;X

0/ < ı0

for ı0 D ı0.E;D/ as in Theorem 1.6. Then:

(i) If @X is incompressible, then X 0 is homotopy equivalent to X .

(ii) if @X D¿, then X is diffeomorphic to X 0.

6The semilocal simple connectivity radius of X is the supremum of all r such that every closed curve
in a ball of radius r is homotopic to zero in X.
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Proof Let us prove (i). By Theorem 1.6(i) we deduce that �1.X /Š �1.X
0/, and this

group is indecomposable, by Kneser’s conjecture. As X 0 has no spherical boundary
components, it follows from the prime decomposition theorem that X 0

0
is empty and

X 0 D X 0
1

; better, since it is not geometric, it is different from S2 � S1 and so it is
irreducible too. We can then apply Theorem 1.6(ii) to deduce that X 0 is homotopically
equivalent to X.

For (ii), we deduce as in (i) that X 0 is homotopy equivalent to X, and then closed. This
implies that X 0 is homeomorphic (and actually diffeomorphic) to X, by the discussion
after Corollary 1.7 in Section 1.

Proof of Corollary 1.10 By Bishop’s comparison theorem it follows that the space
Mngt.RicciK ;D/ is included in Mngt.2K;D/. Moreover, Gromov’s precompactness
theorem asserts that the family Mngt.RicciK ;D/ is precompact; therefore, for any
arbitrary ı > 0, this space can be covered by a finite number of balls of radius ı . Taking
ı D ı0.2K;D/, where ı0 is the function in Theorem 1.6, and using Corollary 1.7, we
infer the finiteness of the diffeomorphism types in Mngt.RicciK ;D/.

Remark 4.4 (Is the peripheral structure preserved by Gromov–Hausdorff approxi-
mations?) We recall that the peripheral structure of a 3–manifold X with incom-
pressible boundary is the data of the fundamental group �1.X / together with the
collection of the conjugacy classes of subgroups determined by the boundary com-
ponents. Let X1 and X2 be two compact, orientable, irreducible 3–manifolds with
nonspherical, incompressible boundary. Waldhausen [67] proved that any isomorphism
'W �1.X1/! �1.X2/ sending the peripheral structure of X1 into the peripheral struc-
ture of X2 is induced by a homeomorphism. It is not known to the authors if the
isomorphism between the fundamental groups induced from a Gromov–Hausdorff
"–approximation f W X1 � X2 , with " sufficiently small, preserves the peripheral
structure. If this is the case, then Corollary 1.8 would hold for all nongeometric,
irreducible manifolds with (possibly empty) incompressible boundary.

5 Examples

We give here a collection of examples (which do not satisfy the assumptions of Theorems
1.1 and 1.4), where the systole or the volume can be collapsed while keeping the entropy
and diameter bounded.

Geometry & Topology, Volume 23 (2019)



Local topological rigidity of nongeometric 3–manifolds 2921

Example 5.1 (collapsing the systole of geometric 3–manifolds) For each model
geometry different from H3, we can exhibit a closed Riemannian manifold X and a
sequence of metrics h"G for " 2 .0; 1� such that Ent.X; h"G/�E , diam.X; h"G/�D

and sys�1.X; h
"
G/! 0.

This is trivial for G D S3, S2 �R, E3 and Nil, which have subexponential growth:
just take the standard sphere, S2 �S1, any flat torus T , and the quotient H 3

ZnNil of
the Heisenberg group by the standard integral lattice, and scale the model metric by � .
The systole and diameter collapse, while the entropy is always zero.

For GDH2�R and H2 z�R, we can just take the Riemannian product X D Sg �S1

of a closed hyperbolic surface Sg of genus g � 2 with the circle, and the unitary
tangent bundle X D USg of Sg with its Sasaki metric; then, we contract by � the
model metrics hG along the fibers of the S1–fibration X ! Sg . In both cases, the
sectional curvature of the new metrics h�G stays bounded, as X admits a free, isometric
action of S1 along the fibers (a pure, polarized F–structure; see [16]); thus, the
entropy is bounded uniformly, while the systole collapses (and X tends to Sg in the
Gromov–Hausdorff distance).

Notice that, in the second case, the collapse is through nonmodel metrics.

In the last case consider the group GD Sol, defined, for any hyperbolic endomorphism
A2 SL.2;Z/ with eigenvalues �˙1 , as the semidirect product R2ÌA R, with R acting
on R2 as At, and endowed with the canonical left-invariant metric (in the diagonalizing
coordinates .x;y/)

hSol D �
2t dx2

˚��2t dy2
˚ dt2:

Consider the quotient X � of Sol by the discrete subgroup of isometries �" generated
by the lattice �Z2 (acting by translations on the xy–planes) and by the isometry
s.u; t/ 7! .Au; t C 1/.

The manifolds X � are diffeomorphic, with sys.X �/! 0 and bounded diameter; on
the other hand, they all have isometric universal covering, and thus Ent.X �; hSol/ is
equal to the exponential growth rate of Ent.Sol; hSol/ for all " 2 .0; 1�.

Example 5.2 (collapsing the volume of the connected sum #k.S
2 �S1/) We shall

construct a family of metrics g" for "2 .0; 1� on the connected sum kX DX1 # � � �#Xk

of k copies of Xi D S2 � S1 such that sys�1.kX;g"/ � 2� , diam.kX;g"/ � D

and Ent.kX;g"/�E for all � , while the volume goes to 0 as "! 0.
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Consider the canonical product metric hD hS2 ˚ hS1 on S2 �S1. We construct g�

by scaling hS2 by � and gluing the k copies of S2 �S1 through a thin, flat cylinder.
Namely, two base points x˙i on Xi being chosen (with xC

1
D x�

1
and xC

k
D x�

k
), let

h� D �
2hS2 ˚ hS1 and let r� D inj.S2 �S1; h�/. We write the metric in each copy in

polar coordinates around x˙i as

h� D '
2
� .r;u/hS2 C dr2

and modify h� around the points x˙i into a new metric zhi
� on Xi n fx

˙
i g, which

interpolates, on the annulus Bh�
.x˙i ; �r�/nBh�

.x˙i ; �
2r�/, between h� and the product

metric .�2r�/
2hS2 C dr2 of the cylinder .�2r�/S2 � S1; finally, we glue the copies

.Xi n fx
˙
i g;
zhi
�/ and .XiC1 n fx

˙
iC1
g; zhiC1

� / to obtain .kX;g�/, by identifying the flat
�2r�–annulus around x�i to the corresponding annulus around xC

iC1
via an isometry

interchanging the boundaries.

It is then easy to check that the manifolds .kX;g"/ converge in the Gromov–Hausdorff
distance to the length space given by the wedge X0 D

W
xi ;:::;xk

S1 of k copies of
the standard circle S1 with respect to appropriate points x1; : : : ;xk . Notice that by
construction we have diam.kX;g"/� k�C1, that the systole of .kX;g"/ is bounded
from below by 2� � 1 for all sufficiently small � , and that clearly Vol.kX;g"/! 0.
Moreover, the entropy of all these manifolds is uniformly bounded from above by
Ent.X0/C 1, for �! 0; this follows for instance from [49, Proposition 38].

Finally, we give examples of 3–manifolds with different topology, which are arbitrarily
close in the Gromov–Hausdorff distance, while satisfying entropy and diameter uniform
bounds.

Example 5.3 (manifolds with spherical boundary components) Take any closed,
irreducible Riemannian 3–manifold X with sys�1.X / � 1, and remove a disjoint
collection of n balls B.xi ; �/, for arbitrarily small � . The resulting reducible manifold
Xn;� with spherical boundary has the same fundamental group as X, while being not
homotopically equivalent to X. The manifold Xn;� clearly is .2n��/–close to X, as the
metric on a sufficiently small ball around xi can be approximated by the Euclidean one;
hence diam.Xn;�/ � diam.X /C 2n�� too. It is easy to verify that, for small values
of � , the orbits of G D �1.X /Š �1.Xn;�/, on the respective Riemannian universal
coverings, are

�
1C3n�=.sys.X //

�
–bi-Lipschitz to each other; this implies the entropy

bound Ent.Xn;�/�
�
1C 3n�=.sys.X //

�
Ent.X /.
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Example 5.4 (connected sums of hyperbolic manifolds) Let .X; h/ be a closed
hyperbolic 3–manifold with no orientation-reversing isometries (see Müllner [38]
for instance), and denote by X the same hyperbolic manifold endowed with the
opposite orientation. We know by standard differential topology that X # X and
X # X are not diffeomorphic; hence, by the discussion in Section 1, they are not
even homotopically equivalent. Now, remove from X and X small geodesic balls
Bh.x0; �/ of radius �� inj.X /. As in Example 5.2, we modify the metric h around
x0 into a new metric h� which interpolates, on the annulus Bh.x0; �/ nBh.x0; �

2/,
between h and the product metric �4hS2 C dr2; then, we glue together the two copies
of .X n fx˙

0
g; h�/ by identifying the two cylinders S2 � .�2; 0/ via an orientation-

reserving (resp. orientation-preserving) isometry interchanging the boundaries to obtain
a Riemannian connected sum Y� D .X # X;g�/ (resp. Y � D .X # X ; xg�/). Then it is
easy to show that both manifolds tend in the Gromov–Hausdorff topology to the length
space given by the metric wedge X _x0

X ; hence they are arbitrarily close to each
other for �! 0, with diameters bounded by 2 diam.X /C 1. Moreover, the systoles
are uniformly bounded from below by 1

2
sys�1.X /, so by [49, Proposition 38], we

deduce that their entropies converge to Ent.X _x0
X / and are uniformly bounded.

Example 5.5 (hyperbolic manifolds with acylindrical splittings) A handlebody Hg

of genus g>0 is, topologically, the "–neighborhood in R3 of a wedge sum of g circles;
handlebodies are classified by their genus. The boundary of Hg is an orientable, closed
surface of genus g , and �1.Hg/Š Fg ; in particular, the fundamental group of Hg ,
for g � 2, is the nontrivial free product of g infinite cyclic groups, hence it admits a
0–acylindrical splitting. It is not difficult to show that the interior of the handlebodies
admits complete hyperbolic metrics: for g � 2, it is sufficient to identify Hg with the
quotient of H3 by a Schottky group of hyperbolic isometries, generated by g hyperbolic
translations, with disjoint axes and disjoint attractive and repulsive domains.
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